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Abstract—This work reviews recent advances on the realistic 
analysis of injection–locked oscillators, for an efficient 
prediction of their complex multi–valued solution curves. The 
oscillator or its active core is modeled with a nonlinear 
admittance function extracted from harmonic balance, whereas 
other system elements are introduced at a second analysis stage. 
The analytical modeling of the external elements provides 
insight into their effect on the locking bands and other aspects 
of the behavior. In purely numerical simulations, the solution 
curves are traced through contour plots that make use of the 
nonlinear admittance function. The methods are illustrated with 
state–of–the–art applications, including compact transmitters 
and receivers, wireless–power transfer, and active sensing.   
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I. INTRODUCTION  

The injection locking of oscillator circuits enables a 
variety of state–of–the–art applications in communication 
systems, wireless power transfer (WPT) and active sensing, 
among other. For instance, [1]–[2] proposes a Zero–IF self–
oscillating mixer (SOM), based on an injection–locked 
oscillator, for compact and low–consumption transmitters and 
receivers.  In near–field WPT systems, the use of a high–
power oscillator [3] reduces the number of system elements 
and, thus, the total consumption. However, the oscillation 
frequency varies with the coupling conditions [4], which may 
lead to operation out of the allowed frequency band. This 
undesired frequency variation can be avoided through the 
injection locking of the power oscillator, as shown in [5]. As 
a third, and fully different application, active sensors based on 
injection locking [6] have recently been proposed. The 
sensing is based on the variation of the locking band with the 
material under test (MUT), which, as shown in [6], enables a 
high sensitivity with the advantage of a low phase noise. 

Despite the interest of injection locking, predicting the 
solution curves of locked oscillators is involved. In this 
operation mode, the self–generated oscillation exhibits a 
time–constant phase shift with respect to the injection source, 
which is only possible in a certain frequency band [7]. For low 
input power there are three coexisting periodic solutions. Two 
solutions are oscillatory, each with a different phase shift (due 
to the sinusoidal dependences). They are respectively located 
in the upper and lower sections of an ellipsoidal curve, and 
only one of them is stable (physically observable). The third 
solution is not oscillatory; it can be seen as an evolution of the 
(trivial) dc solution of the free–running oscillator. In this kind 
of solution, the circuit responds to the input signal in a non–
autonomous manner. By default, harmonic balance (HB) 
converges to the non–autonomous solution, so 
complementary methods are required. As the input power 
increases the behavior becomes more complex; the closed 
curve deviates from an ellipse and the non–autonomous one 
increases in amplitude, until they merge in a complex single 
curve with several points of infinite slope (turning points [7]). 

The analysis of injection–locked oscillators often relies on 

an insightful model [8], based on a calculation/estimation of 
the oscillator quality factor. However, this model disregards 
the variation of the imaginary part of the oscillator immittance 
with the excitation amplitude and may not be accurate enough 
when dealing with transistor–based oscillators. On the other 
hand, HB simulations are involved due to the need to properly 
excite the self–oscillation and to the presence of multi–valued 
sections in the solution curves. Commercial HB generally fails 
to provide the locked solutions. In–house simulators make use 
of probes and continuation methods [9], but the analysis is not 
exhaustive, and can miss coexisting solution curves.  

This work reviews three recently proposed analysis 
methods [5], [10], compatible with the use of commercial HB. 
In all cases, the oscillator or its active core is modeled with a 
nonlinear admittance function extracted from harmonic 
balance, whereas other system elements are introduced at a 
second analysis stage. The methods are illustrated through 
their application in compact transmitters and receivers, WPT 
and sensors. 

II. LINEARIZED SEMI–ANALYTICAL FORMULATION 

The first system considered is composed by two Zero–IF 
SOMs mutually locked by a wireless signal. One acts as a 
transmitter and the other as a receiver (Fig. 1). Each oscillator 
is described with its admittance function (Y1 and Y2) at the 
antenna connection node.  

 
Fig. 1. System composed by two mutually locked Zero–IF SOMs. (a) 
Schematic. (b) Experimental setup.  

Assuming a locked operation at the frequency , the 
system is formulated as: 
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where VDC is the bias voltage of the oscillator that acts as a 
transmitter, V1 and V2 are the respective voltage amplitudes, 
 = d / c is the time delay,  is the phase shift between the two 
oscillations and C() is: 
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where G1 and G2 are the antenna gains, d, the distance, and 
RRad, the antenna resistance. If d is relatively large (the usual 
case), C() will be small enough to enable the linearization 
of Y1 and Y2 about the standalone (uncoupled) solutions of the 
respective oscillators. Note that the functions on the right of 
(1) cannot be linearized in terms of  due to their significant 
variation with d. Splitting (1) into real and imaginary parts:  
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where the superscripts indicate real and imaginary parts, the 
subscript “o” indicates standalone values (the standalone 
frequency o is assumed identical), 1 2 1( ) ( ) /o oC C V V   

and 2 1 2( ) ( ) /o oC C V V  . Because the first oscillator acts as 

a transmitter and the second, as a receiver, in general we will 
have C1<<C2. The admittance derivatives are extraced from 
HB [10], using an AG (Fig. 1). This is separately introduced 
in each oscillator (in standalone operation) with the ampitude 
Vom (where m = 1,2) and frequency o. Thus, the original 
ratio between the AG current and amplitude is Ym = 0. The 
derivatives are calculated by applying finite differences to the 
AG amplitude and frequency, and to VDC.  

To obtain the locked solution curves versus VDC, we first 
derive the relationship between  and , by solving (3) for 
o. The resulting trascendental equation is addressed 
through a numerical procedure. Then, for each pair , , we 
solve (3) for VDC –VDCo and Vm –Vmo. The results (for different 
values of the common gain G and d) are shown in Fig. 2. The 
frequency basically follows the bias voltage VDC of the 
transmitter oscillator. However, its variation is limited by the 
relationship (). Note that  is bounded (0 to 2) and so is 
. Thus, the edges of the locking band depend on G and d. 
The amplitude in the transmitter oscillator is hardly affected 
by the mutual locking, due to the small C1. Instead, the 
amplitude of the receiver oscillator exhibits the expected 
ellipsoidal variation [Fig. 2(b)].  

The modulation signal is introduced in VDC, and the 
modulated system is analyzed through an envelope–domain 
equation [10], derived from (1). Because the frequency 
increment due to the modulation is small, we perform a first–
order Taylor series expansion C1 and C2 about each . The 
frequency increment j gives rise to a time differentiation of 
the amplitudes and phases, which should be integrated in the 
envelope domain. Fig. 3 compares the transmitted baseband 
signal and the signal demodulated in second oscillator.  

III. NONLINEAR SEMI–ANALYTICAL FORMULATION 

We will consider a near field WPT system based on a 
Class–E oscillator (Fig. 4), which is injection–locked [5] to 
prevent its frequency variation with the coupling conditions. 
However, the locked–operation interval versus the coupling 

factor k wil depend on the values of the external–resonator 
elements. For an efficient selection, we will make use of a 
semi–analytical formulation. The locally introduced locking 
signal may be large enough to prevent the system 
linearization about the free–running solution. Thus, the 
oscillator active core will be described with a nonlinear 
admittance function. To extract this function, we introduce an 
AG in parallel at the coupled inductor node (Fig. 4). The 
locking source with the selected amplitude, Eg, is connected 
during this extraction. We perform a double sweep in the AG 
amplitude V and phase   and calculate YAG(V,) as the ratio 
between the AG current and V. At each sweep step, we carry 
out a HB simulation with NH harmonics. However, the 
coupling effects will only be considered at the fundamental 
frequency, as enabled by the oscillator output filtering.  

 
Fig. 2. Solutions of the mutually locked system under different G and d 
values, traced versus VDC. (a) Oscillation frequency. (b) Amplitude in the 
receiver oscillator.  

 
Fig. 3. Demodulation of a rectangular signal at 1 MHz. 

Assuming a locked operation, the system is described with:  
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where  = LC2. The function YAG(V,) is extracted in the 
presence of the inductor, so one must subtract its reactance. 
As gathered from (4), the detuning , will have a significant 
impact on the locked–operation intervals versus k [5]. To 
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obtain the solution curve, we sweep k and, at each k step, we 
calculate V and  from the intersections of the two curves in 
(4) in the plane (, V). The variation of the drain efficiency 
for Pin = –0.45 dBm is shown in Fig. 5. For  = 0.82 and 
  = 1.23 there are two disconnected curves, and the locked 
operation interval is delimited by a turning point in the high–
amplitude curve. For  =1.03 the curves are merged, which 
leads to a large interval of locked operation. With this semi–
analytical method, the solution curves are traced in a fast 
manner, with no need for convergence procedures. This 
enables an efficient selection of the resonator elements. Full 
HB results (with more demanding simulations) are 
overlapped [5]. Measurements are superimposed in Fig. 5.   

 
Fig. 4. Injection–locked Class–E oscillator. Extraction of YAG(V,) from HB 
simulations and coupled network, described with the admittance Yc.  

 
Fig. 5. Solution curves of for different   values. Measurements are 
superimposed. 

IV. CONTOUR METHOD 

The third method, purely numerical, will be illustrated 
through its application to an injection–locked sensor. It can 
be implemented on commercial HB through the introduction 
of specific functions [5]. The oscillator contains a distributed 
LC resonator connected to its gate terminal (Fig. 6), as well 
as a locking source introduced at the same node. The aim is 
to analyze the variations of the locking band with the 
dielectric constant r of the MUT, placed over the capacitive 
section of the resonator. Now, the nonlinear admittance 
function will account for the full oscillator, in the absence of 
the input source. For each r, we will carry out a double sweep 
in the amplitude V and frequency  of an AG (connected to 
the gate node) and perform an HB simulation with 5 
harmonics at each sweep step. This will provide the function 
YAG(r, V, ). The solution curve under the input current Ig is 
obtained by tracing the following contour in the plane (V, ): 

( , , )AG r gY V V I     (5) 

Note that the input source is not present during the 
extraction of YAG(r, V, ). The family of solution curves 
obtained for Ig = 5 mA is shown in Fig. 7. It demonstrates the 
impact of r on the locking band. The curves have been 
validated through a demanding AG optimization [5] (using 5 
harmonics) with overlapped results. As a key advantage, (5) 

provides the whole family of solution curves versus Ig 
through simple contour plots, with no need to re–simulate the 
circuit.  

 
Fig. 6. Schematic of the sensing oscillator. The material under test is placed 
over the capacitive section of the distributed resonator. 

 
Fig. 7. Variation of the locked solution curves with the dielectric constant.  

CONCLUSIONS 

New methods for the analysis and optimized design of 
injection–locked oscillators have been presented. The 
oscillator or its active core is modeled with functions 
extracted from harmonic balance, whereas the external 
elements may be described in an analytical manner. The 
methods, semi–analytical and purely numerical, enable a 
realistic and efficient prediction of the complex multi–valued 
curves intrinsic to this mode of operation.  
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