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Estimating extreme monthly rainfall for Spain using non-stationary techniques
Diego Urrea Méndez and Manuel del Jesus

IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain

ABSTRACT
In hydrology, extreme value analysis is normally applied at stationary yearly maxima. However, climate 
variability can bias the estimation of extremes by partially invalidating the stationary assumption. Extreme 
value analysis for sub-yearly data may depart from stationarity (since maxima from one month may not be 
exchangeable with maxima from another) in terms of requiring to include it in the analysis. Here, we analyse 
the non-stationary structure of extreme monthly rainfall in Spain using two approaches: a parametric 
approach and an approach based on autoregressive time series models. Our analysis considers seasonality, 
climate variability and long-term trends for both approaches, and it compares both including their good-
ness of fit and complexity. The approach uses maximum likelihood estimation and Bayesian techniques. 
Our results show that autoregressive models outperform parametric models, providing a more accurate 
representation of extreme events when extrapolating outside of the period of fit.
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1 Introduction

The analysis of extreme hydrometeorological events allows one to 
make inferences based on the historical records of hydroclimatic 
variables. Commonly, these inferences serve to predict the prob-
ability of occurrence of threshold levels of the variable for future 
extreme events. The selection of the maximum values of a variable 
in successive periods of time (maxima in a block of time, block 
maxima or BM) forms the fundamental basis for modelling cli-
matic extremes. One of the simplest techniques for extreme event 
selection is the method of annual maxima (AMM) (Gumbel  
1958), which consists of selecting the maximum value per year, 
its main limitation being a sub-optimal use of the available infor-
mation. In addition, due to climate variability on time scales below 
the year and the low availability of hydrological series with suffi-
ciently long records, other alternatives have been proposed. 
(Smith 1989) proposed the peaks-over-threshold (POT) method 
that focuses on defining the extreme events of interest as those 
values exceeding a given threshold. This approach presents some 
limitations as it rules out local extreme events, for instance those 
occurring in summer, so it cannot model all the inter-annual 
variability (Menéndez et al. 2009). Another type of study that 
overcomes the limitations of the AMM uses monthly maxima – 
instead of annual – for the study of environmental variables 
(Méndez et al. 2007, 2009, Mínguez et al. 2010). The use of 
monthly maxima has multiple applications that include flood 
risk management at specific times of the year (for instance, ice 
melting season) and reservoir management (to determine the 

maximum flood that can be controlled during a given month 
depending on the stored volume). An additional advantage of 
using monthly maxima corresponds to the possible increase in 
data used, which improves the fit of the upper tail of the distribu-
tion by the maximum likelihood estimation (MLE) method 
(Méndez et al. 2007).

The generalized extreme value distribution (GEV) (Jenkinson  
1955) is one of the most common distributions for fitting extreme 
events associated to environmental variables (Stedinger et al.  
1993). This distribution has been widely used due to its ability to 
capture a wide range of tail behaviours (Coles 2001). Fitting the 
distribution implies finding the values of the three parameters of 
the GEV that best capture the distribution of the observed max-
ima. Although there are several methods to find the parameters, 
the MLE is the most used one (Smith 1985).

Classical frequency analysis assumes that the parameters of the 
distribution remain constant over time (stationarity condition). 
This assumption implies that the samples used for fitting are 
interchangeable. Any two values could be interchanged, and the 
original series could not be distinguished from the modified one. 
This is only the case when stationary periods are used for fitting, 
and that is why yearly maxima are commonly used. The statio-
narity assumption also implies that current and future extremes 
follow the same distribution, so we should not expect any differ-
ence in the behaviour of extremes in the future.

However, the stationarity assumption is not fully satisfied 
under real conditions since climate variability introduces some 
degree of non-stationarity – for example, the maximum rainfall in 
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a dry year and in a wet year may differ enough so as to be 
distinguishable. Climate change may also introduce trends in the 
time series of environmental variables that lead to some degree of 
time dependence in the distribution’s parameters. Proof of this 
claim is the large amount of research in which the non-stationarity 
of extreme events has been analysed (Adlouni et al. 2007, Mínguez 
et al. 2010, Solari and Losada 2011, Salas and Obeysekera 2014). 
For some applications, then, the stationary GEV model – with 
constant parameters – is no longer valid under our current climate 
conditions (Leadbetter et al. 1983).

There is a non-null probability that extreme weather events 
will change in the future (Kharin and Zwiers 2000, 2005, Wang 
et al. 2004). In addition, there is evidence of the influence of 
climate change on the distribution of extreme hydroclimatic 
events, which suggests that they can hardly be treated as sta-
tionary (Wang et al. 2004, IPCC et al. 2013), reinforcing the 
importance of non-stationary analyses. This evidence has pro-
moted advances in extreme value analysis in recent decades 
that have allowed practitioners to better characterize the nat-
ural climate variability and the non-stationarity of extreme 
events. For instance, Scarf (1992) considered an extension of 
the GEV distribution incorporating a trend in the location 
parameter; Coles (2001) provided an approach describing the 
use of covariates in parameters that incorporated teleconnec-
tion indices such as the Southern Oscillation Index (SOI); and 
Katz et al. (2002) provided examples that included the analysis 
of extremes associated with time series of precipitation and 
currents, including trends and the dependence on synoptic 
patterns in the atmosphere–ocean circulation.

Different authors have incorporated covariates in their non- 
stationary analysis of hydroclimatological extremes in recent 
decades. For instance Méndez et al. (2007) introduced a time- 
dependent GEV model incorporating harmonic functions (with 
annual periods), secular trends, and regional climate patterns 
from teleconnection indices in the location, scale, and shape 
parameters. Brown et al. (2008) studied global changes in daily 
temperature extremes since 1950, incorporating regional trends 
and atmospheric synoptic patterns such as the North Atlantic 
Oscillation (NAO). Menéndez et al. (2009) proposed a time- 
dependent GEV model considering the inter-annual variability 
and the seasonality of extreme wave heights. López and Francés 
(2013) implemented generalized additive models of location, 
scale, and shape (GAMLSS) for the analysis of non-stationary 
flood frequency in Spanish continental rivers, using climatic and 
reservoir indices as external covariates. Other approaches that 
identify plausible atmospheric indicators of changes in future 
precipitation extremes can be found in Roderick et al. (2020). 
Most of these analyses fit their models using the MLE approach.

With large sample sizes, the MLE method generates good fits. 
However, when the sample size is relatively small, the numerical 
solution applied to find the distribution parameters tends to 
diverge. To prevent this problem, some techniques have been 
proposed based on the use of prior distributions that contain 
information on the most probable values that the GEV para-
meters can take. These approaches have methodological simila-
rities to the quasi-Bayesian method of maximum likelihood 
(QBML) proposed by Hamilton (1991), which removes the sin-
gularities associated with MLE and sets up Monte Carlo simula-
tions showing its constant potential to improve mean squared 

errors. Similar studies exist, such as that of Zhang et al. (2004), 
who use Monte Carlo simulations, comparing multiple methods 
to detect a trend in the magnitude of the extreme values; or 
Nakajima et al. (2012), who implemented a Bayesian approach 
using the Markov chain Monte Carlo (MCMC) method to find an 
accurate approximation of the GEV model that used an autore-
gressive (AR) or moving average (MA) process.

Integrating the methodologies and approaches described 
above to develop an analysis of extreme events at a regional 
scale poses an additional challenge, since all gauge analyses 
must show compatibility with one another while capturing the 
specific characteristics of each site. There are methods such as 
regional frequency analysis (RFA), based on the selection of 
data from several measurement sites, that assume all data 
follow the same probability distribution (Hosking and Wallis  
1993, Bradley 1998); that is, they assume that the extremes are 
homogeneous over the region. Such analysis involves the divi-
sion of a geographical area to test whether they are homoge-
neous and can be represented by a unique distribution model. 
By including multiple observations at different spatial points, 
RFA provides two main benefits over single-site models: (1) 
frequency estimates at uncalibrated locations, and (2) 
improved estimates of distribution parameters across locations 
(Bracken et al. 2018). Various approximations of the RFA can 
be found in the literature, including a regionalization for the 
study of floods and precipitations in non-stationary conditions 
(Renard 2011, Chebana et al. 2014, Bracken et al. 2016).

Although there are studies in the literature that integrate the 
non-stationary approach with regional analysis, we have not 
found any study that compares and evaluates the application of 
parametric and AR methods. Therefore, the objective of this study 
is to analyse the models that best characterize and estimate the 
temporal variation of extreme precipitation events, using data 
from Spain to make the comparisons. To complement the pro-
posed objective, we propose to divide the territory into climatically 
homogeneous zones (following the Köppen-Geiger climate clas-
sification) and then verify whether extreme events are comparable 
between zones and can be captured by the same model. Two 
approaches will be used to formulate the models: (1) 
a parametric approach based on a non-stationary GEV model 
(Coles 2001), incorporating covariates and an explicit dependence 
on time; and (2) an AR approach in which the parameters of the 
GEV distribution will follow a time series model. The first 
approach will be fitted with the MLE method, while the second 
one will use Bayesian techniques.

2 Study area and information sources

We developed our study in Spain mainly for two reasons: first, 
because Spain has a dense network of pluviometers (Fig. 1) 
with available information; second, and more important, due 
to the wide range of climates that can be found there. Indeed, 
many different climates can be found in Spain, with strong 
changes occurring over very short distances. Four of the five 
climatic groups defined by the Köppen-Geiger climate classi-
fication (AEMET and IPMA 2011) can be found in Spain. Only 
group A, tropical climate, is absent. The most frequent cli-
mates are of type C (temperate) and of type B (dry), which can 
be found in continental Spain, as well as in the Canary and the 
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Figure 1. (a) Location of the Agencia Estatal de Meteorología de España (AEMET) daily raingauges (8310 gauges, blue points); (b) spatial distribution of the Köppen-Geiger 
climatic groups, created by AEMET, and selected raingauges with precipitation records in the period 1979–2019. The abbreviations that appear in the legend KÖPPEN CLIMATE 
ZONES refer to climatic sub-groups: Bsk, cold steppe; BSh, hot steppe; BWh, hot desert; BWk, cold desert; Csa, temperate with dry or hot summer; Csb, temperate with dry or 
temperate summer; Csc, temperate cold-summer; Cfa, temperate with a dry season and hot summer; Cfb, temperate with a dry season and temperate summer; Dsb, hot 
summer humid continental Mediterranean influence; Dsc and Dfc, sub-arctic climates; Dfb, hot summer humid continental climate; ET, tundra climate. The legend SELECTED 
RAIN GAUGES shows the shape of the selected station for each climatic zone.

HYDROLOGICAL SCIENCES JOURNAL 905



Balearic Islands. Types D and E (continental and alpine, 
respectively) are present in mountain areas, although the latter 
only in high areas of the Pyrenees.

This study used daily precipitation data recorded in the 
Agencia Estatal de Meteorología de España (AEMET) network 
of pluviometers (Fig. 1). The network covers most of the climatic 
zones, except for the sub-groups Csc (climate type C) and ET 
(climate type E). These sub-groups occur in high areas of the 
Pyrenees and do not contain pluviometers with daily precipitation 
data, so they were not included in the analysis. Similarly, no 
information was available for the sub-group BWk (climate type 
B). Furthermore, mountain climates Dsb, Dsc, Dfb and Dfc only 
contain six raingauges with available information; for this reason, 
considering their geographical characteristics, they were inte-
grated into a climatic group called D (Diez-Sierra and Del Jesus  
2019).

In total, 8310 raingauges were processed, and we performed 
quality control on their time series. This process included the 
identification of atypical data, ensuring that they were physically 
possible (Gonzalez and Bech 2017); a control of repeated values for 
two or more consecutive days; and the implementation of quality 
indices that discarded time series with many missing data, false 
zeros, null data, etc. (Lez-Rouco 2001, Llabrés-Brustenga et al. 2019).

After selecting the time series with the best quality indica-
tors, a second criterion for selection corresponded to the 
percentual coverage and the record period. Stations with at 
least 80% complete years in the period between 1979 and 2019 
were considered. A full year was defined as one that had at least 
80% complete data for all months. A total of 1576 stations 
passed the quality control. Due to the high computational cost 
involved in processing this information in subsequent ana-
lyses, the best 20 stations for each climate were selected, 
ensuring that they homogeneously covered the spatial distri-
bution of each climate (Fig. 1). In total, 146 raingauges were 
used, since group D only contained six stations.

Teleconnection indices were used to capture inter-annual fluctua-
tions in the occurrence of extreme precipitation events. These indices 
were used as covariates for the variation of the parameters of the GEV 
distribution. Specifically, we used the NAO and the Mediterranean 
Oscillation Index (MOI). These indices were selected considering the 
influence they had on the variability of rainfall in recent decades in 
Spain (Martin-Vide and Lopez-Bustins 2006). The MOI and NAO 
indices were obtained from the University of East Anglia Climate 
Research Unit (University of East Anglia 2021, data available at http:// 
www.cru.uea.ac.uk/cru). All indices have daily data and cover the 
analysis period (1979–2019).

3 Methods

The main objective of our study is to determine an optimal 
non-stationary model to characterize extreme events of pre-
cipitation. We also aim to determine whether this optimal 
model changes depending on the analysed climate type.

To attain these objectives, we follow three steps (shown in 
Fig. 2). First, the historical precipitation and atmospheric data 
are reviewed and processed to build a database of quality- 
controlled observations. Second, non-stationary models of 
extremes (presented in section section 3.1) are fit to the observa-
tions and compared to one another to determine the optimal 

model (see section 3.2.1 and section 3.2.2). Two different techni-
ques are used in this step: parametric models fitted by MLE, and 
AR time series models fitted using Bayesian techniques. Finally, 
the optimal model in each category (MLE and Bayesian) are 
compared to determine which approach provides the best approx-
imation. The comparison is carried out using two measures: one 
based on a performance metric (see section 3.3), and another 
based on how well the approach estimates future precipitation 
(see section 3.3.2).

The optimal model in both approaches is not determined only 
based on the goodness of fit but accounts for model complexity 
also, to favour parsimonious models (assuming an equal goodness 
of fit, the model with fewer parameters should be preferred; see 
section 3.3). This trade-off is attained using the Akaike informa-
tion criterion (AIC) (Akaike 1998) as the performance metric.

The proposed methodology aims to find the models that best 
characterize and estimate the temporal variation of extreme pre-
cipitation events in Spain. It also aims to verify whether the 
optimal model is climate-dependent, or if the temporal structure 
of extremes can be captured with a single model in the whole 
territory. The methodology is structured in four main modules, 
shown in Fig. 2, that are briefly described below:

(1) Panel (a): review and pre-processing of historical pre-
cipitation and atmospheric data.

(2) Panel (b): configuration and fitting of parametric models, 
using AIC as the optimization metric, separating extreme 
events by climate following the Köppen-Geiger 
classification.

(3) Panel (c): configuration and fitting of AR time series 
models, using AIC as the optimization metric, separat-
ing extreme events by climate following the Köppen- 
Geiger classification.

(4) Panel (d): comparison of optimal parametric and AR 
time series models by climatic zone, to determine the 
best-performing model family.

3.1 Non-stationary GEV model

Extreme value distributions were introduced by Fisher and 
Tippett (1928), and it was Jenkinson (1955) who combined 
the three families of extreme distributions – Gumbel, Fréchet 
and Weibull – into a unique cumulative distribution function 
(CDF), known as the GEV distribution, given by Equation (1): 

where μ is the location parameter (−∞ < μ < ∞), σ is the 
scale parameter (σ>0) and � is the shape parameter (−∞ < �
< ∞). The Gumbel, Weibull and Fréchet distributions corre-
spond to � = 0, � < 0 and � > 0, respectively. In addition, the 
domain of the distribution verifies the equation 
1þ � z � μð Þ=σ > 0. For the evaluation of non-stationary 
extremes, it is possible to use the BM approach with 
monthly maxima per year {Zym = max(Xym1; Xym2, Xym3, 
� � � Xymn)}, where Zym represents the maximum value of the 
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selected variable for month m of year y; Xymi represents the 
maximum value of day i, in month m of year y; and n refers 
to the total number of days that month m has in the year y.

For non-stationary models, the parameters of the GEV distri-
bution can be expressed as a function of covariates that change 
with time (Coles 2001). The temporal dependence in models of 
extremes can be parameterized assuming that the monthly max-
ima of the successive months are independent random variables. 
The monthly maximum of the observed variable Zt in month t is 

modelled by a GEV distribution with time-dependent parameters 
(μt , σt , �t) and with a probability density function (PDF) as 
expressed in Equation (2): 

Figure 2. Proposed methodological approach, where panel (a) shows the framework for the reviewing and pre-processing of the historical precipitation and 
atmospheric data in Spain. Panels (b) and (c) present the methodology for selecting the optimal parametric and autoregressive models, respectively, in terms of 
goodness of fit and complexity. Panel (d) shows the comparison and selection of the optimal parametric or autoregressive model by climatic zone, in terms of goodness 
of fit and complexity, for the probabilistic characterization and prediction of extreme precipitation events in Spain.
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3.1.1 GEV parametric models
Parametric models represent the time variation of the GEV 
parameters, expressing them as linear combinations of func-
tions that change over time. We will call these functions that 
change over time covariates. Covariates may represent the 
effects of seasonality, variability, and trend. Seasonality can be 
introduced with sinusoidal functions (Menéndez et al. 2009) 
that explicitly consider annual and semi-annual cycles in the 
parameters of the GEV distribution. The inter-annual and 
decadal variability can be captured from regional climate pat-
terns, which are generally represented by teleconnection 
indices (Hatzaki et al. 2010, Gregersen et al. 2013). The climatic 
variability in Spain is influenced by a great variety of indices, 
but the most relevant ones for precipitation are the MOI and 
NAO indices (Martin-Vide 2004, Lopez-Bustins et al. 2008). 
We assume that the effect of the teleconnection indices over the 
time variation of the parameters is linear. Two forms for the 
long-term trend are considered: a linear term (t) and 
a quadratic one (t2). The model that integrates all the afore-
mentioned effects is shown in Equations (3), (4) and (5). 

where the coefficients α11, β11 and γ11 represent the average values 
of the GEV parameters; the coefficients α2n, β2n and γ2n corre-
spond to the amplitudes of the sinusoidal functions that capture 
seasonality; the coefficients α3n, β3n and γ3n indicate the sensitiv-
ity of extreme rainfall to the teleconnection indices; and α4n, β4n 
and γ4n account for the trend.

The coefficients that multiply the covariates of 
the model can be packed into a vector 
Δ ¼ ðα1n; α2n; α3n; α4n; β1n; β2n; β3n; β4n; γ1n; γ2n; γ3n; γ4nÞ , 
which, in the case where all the variables are considered, will 
contain 25 coefficients, that would multiply 25 non-null 
regression covariates (p ¼ 25). The vector of parameters of 
the candidate models, Δ, will be estimated using the maximum 
likelihood method. To ensure that the scale parameter does not 
have negative values, an exponential transformation is used 
such that σ�tð Þ ¼ exp σ tð Þ

� �
. Similarly, to ensure that the shape 

parameter lies in an acceptable range, a hyperbolic tangent 
transformation is applied ��tð Þ ¼ 0:5 � tanh � tð Þ=100

� �
. This 

transformation guarantees that the parameter values obtained 
lie between −0.5 and 0.5, which are typical values that can be 
obtained when analysing extreme precipitation data in Spain.

3.1.2 GEV AR models
AR time series models are a representation of a random pro-
cess where the behaviour of the variable of interest has a linear 
dependence on its past values. The notation of an autoregres-
sive model of order p, AR pð Þ, is defined in Equation (6). 

where ϕ1; � � � ;ϕn are the model’s AR parameters, c is 
a constant and ε tð Þ is a white noise term. Equation (6) can be 
written equivalently using a backtracking operator A, as pre-
sented in Equation (7). 

Moving the summation term to the left-hand side and using 
polynomial notation, we obtain a more compact representa-
tion (Equation 8). 

An AR model can be expressed in such a way that the infinite 
response input or impulse is the white noise. For the process of 
a generalized AR pð Þ model to be stationary, the roots of the 

polynomial zp �
Pp

i¼1
φiz

p� i must be contained in the unit circle. 

To accomplish this, each root Zi must satisfy Zij j< 1. For 
example, for a model AR 1ð Þ to be stationary in all directions, 
the inequality ϕj j< 1 must hold. If ϕj j ¼ 1, then x tð Þ has 
infinite variance and is non-stationary. Assuming that for 
a given autoregressive model AR 1ð Þ, ϕj j< 1, the mean value 
E tð Þ is the same for all values of t. 

If the mean, E tð Þ, of the process is λ, then, 

And therefore: 

Note that if c ¼ 0 the mean of the process is 0. In turn, the 
variance is described as: 

where σε is the standard deviation of εt . This equality can be 
shown by noting that: 

The GEV-AR model incorporates the AR model described 
above to account for the time variation of the GEV distribution 
parameters; the time dependence of the location, scale, and 
shape parameters is modelled by an AR process. The proposed 
model incorporates the time dependence using a state space 
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representation where the parameters of the GEV are modelled 
by the combination of an and an AR 12ð Þmodel, depending on 
whether seasonality (the latter term) is included or not.

The autoregressive process AR 1ð Þ decomposes each para-
meter as shown in Equations (14), (15) and (16). 

If the seasonal process, AR 12ð Þ, is added to the AR representa-
tion, then the model parameters follow Equations (17), (18) 
and (19): 

where μ tð Þ, σ tð Þ and � tð Þ correspond to the location, scale, and 
shape parameters of the GEV as a function of time; μ t� nð Þ, 
σ t� nð Þ and � t� nð Þ represent the value of each series of para-
meters with a lag time of n months; μm, σm and �m correspond 
to the mean values of the parameters; ϕμ, ϕσ , ϕ� are the 
coefficients of the AR 1ð Þ component; and λμ, λσ , λ� are the 
coefficients of the AR 12ð Þ component.

3.2 Selection of the optimal models

The search for the optimal model explores combinations of the 
terms that capture seasonality, variability, and long-term trend, 
assuming that each time scale is well separated from the other 
two. Within each time scale, e.g. the seasonal one, different 
terms are also tested (e.g. a constant term, a yearly-period 
sinusoidal, etc.). To systematize this exploration, we assimilate 
each term to a gene, that may be expressed or not, and will thus 
change the behaviour of the model. Activating a gene activates 
and fits the corresponding parameter. A combination of genes, 
a gene set, will define a specific model. The performance metric 
of a specific model will thus be assigned to the gene set that 
generates that model. After testing all possible gene sets, 
a statistical test is carried out to verify which gene sets provide 
a statistically significant optimal performance, and the most 
parsimonious model from the optimal ones is selected.

Specific details differ for parametric and AR models, since the 
former are fitted via MLE, while the latter are fitted via Bayesian 
techniques. However, after selecting the optimal model for each 
category, the two are compared, and the best-performing model 
is selected. Moreover, as the analysis period is long enough, we 

decomposed it into two sub-periods, fitting (training) the mod-
els on the first one and making estimations on the second one, to 
evaluate the estimation capability of each of the approaches.

3.2.1 Parametric model selection
To find the optimal model, it is necessary to explore all possible 
combinations of covariates. Iterative methodologies have been 
proposed in the literature to determine the optimal combination 
of covariates (Menéndez et al. 2009, Mínguez et al. 2010). 
However, a viable alternative is to implement a set of gene sets, 
that turns covariates on or off to explore all possible combinations. 
We propose a method equivalent to a genetic algorithm (a type of 
stochastic global optimization algorithm) but instead of testing 
only some gene sets, we test them all to find the optimum one. 
This data structure is inspired by biological theory, based on 
natural selection with binary representation (Sheppard 2018). 
The structure of this gene set is shown in Fig. 3. The figure 
shows that seasonality, variability, and trend are analysed sepa-
rately, each with a different combination of covariates. The gene 
set is represented mathematically as a binary vector (θÞ of 17 
components, one for each covariate that may be activated. Each 
possible combination of the components of the gene set corre-
sponds to a unique model. It is important to note that the coeffi-
cients α11, β11 and γ11 (Equations 3, 4, 5) represent the mean value 
of each parameter and are always active to guarantee the stability 
of the model.

Due to the large number of possible gene sets (217) and the 
time it takes to fit each one of them to all the selected raingauges, 
we divide the fitting procedure into three steps: first we define the 
optimal seasonal components (panel (a) of Fig. 3, totalling 32 (25) 
models), then the optimal variability component (panel (b) of 
Fig. 3, totalling 64 (26) models) and, finally, the optimal trend 
component (panel (c) of Fig. 3, totalling 64 (26) models).

To avoid over-parameterization, and thus reduce overfit-
ting, for model selection we used a procedure analogous to that 
in other studies (Menéndez et al. 2009) that incorporate the 
minimization of the AIC. In this way, the selected model will 
be one that generates a good fit and at the same time is the 
simplest possible model (preserving the principle of parsimony 
and reducing overfitting to a minimum). The criterion is 
described by Equation (20): 

where np is the number of covariates (sinusoidal functions, 
trends, and teleconnection indices) active in the gene set, and 
, x; t; θð Þ is the value of the likelihood function for the optimal 
parameters of the given gene set. The lower the number calcu-
lated with this criterion, the better the model represented by 
the given gene set is.

The specific procedure followed to carry out this analysis 
(panel (b) of Fig. 2) proceeds as follows:

(1) A series of monthly maxima is created for all gauges. All 
models will be fitted to all the time series.

(2) The 32 models that introduce seasonality (represented 
by the corresponding 32 components of the vector θ) 
are fitted to the monthly maxima time series using 
MLE. AIC is computed for each one of them. Gene 
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set 0, where all components are deactivated, is the 
stationary model; all other gene sets incorporate non- 
stationarity (seasonality in this case).

(3) A ratio is computed among the AIC values of all non- 
stationary models and the stationary one 
(AICratio ¼ AICNon� Stationary=AICStationary). Only those 
gene sets that show a better performance than the 
stationary one (AICratio < 1) in at least 95% of the sta-
tions are considered for further analysis.

(4) The distribution of the AICratio for the selected gene sets are 
compared pairwise using a Kolmogorov-Smirnov test 
(Stephens 1992) to determine whether the samples may 
come from the same distribution or not. Bonferroni correc-
tions are applied to account for multiple comparisons 
(Bonferroni 1936). From all the possible optimal gene sets 
(those with the lowest median AICratio) that are indistinguish-
able in performance (those whose AICratio may come from 
the same distribution), we select the one with the fewest 
parameters. Note here that another principle of parsimony 
is used: a model that was optimal over a larger number of 
climate zones was preferred over another with fewer para-
meters but optimal for fewer climate zones. We should not 
forget that all these parameters are indistinguishably optimal, 
and thus the global parsimony principle is preferred over the 
local one.

(5) The same procedure is followed for gene sets representing 
climate variability and trend. For each new category, the 
previously determined optimal gene sets are kept, adding 
only the new components to the vector. Moreover, the 
AICratio is not computed over the stationary model any-
more, but using the optimal model of the previous cate-
gory as a reference. Following this procedure, we 
determined the overall optimal parametric model.

3.2.2 AR model selection

The method used to select the optimal gene set from the AR 
approach is similar to the parametric model selection. 
However, in this case, only two elements are considered: an 
AR component and a seasonal one. Since the AR term may 
model long-range correlations, we hypothesize that it may 
naturally incorporate climate variability, making it unneces-
sary to explicitly incorporate a climate variability component. 
The AR term will only consider a lag-1 component, while the 
seasonal term will be included using a lag-12 component. 
Figure 4 shows a scheme of the different terms (genes) that 
are explored. In this case, the gene set has six components: 
three for the AR part and three for the seasonal one: two for 
each GEV parameter.

It is important to note that the seasonal model components 
are only active when the AR components are active. Therefore, 
for one parameter there are three possibilities: neither the AR 
nor the seasonal terms are active, only the AR term is active, or 
both the AR and the seasonal terms are active. Each parameter 
admits three options, and as we have three parameters, the 
total number of models in this case is 27.

Moreover, Bayesian techniques are used for fitting the AR 
models. These techniques require setting a prior distribution 
for the parameters to be fitted. In this study, we have used the 
following prior distributions: 

Figure 3. Summary of the parametric model terms, grouped by non-stationarity type. Panel (a) presents the proposed seasonal component, where the parameters of 
the generalized extreme value distribution (GEV) are expressed as a function of harmonic functions. Panel (b) describes the climate variability component, introduced 
by atmospheric indices. Panel (c) shows the trend component. Panel (d) describes the vector θ, which represents the gene set that activates or deactivates the 
covariates and their coefficients, represented in the vector Δ.
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The selected distributions allow a wide range of possibilities 
that do not limit the model to specific values. In addition, each 
distribution includes information about reasonable expected 
values. Imposing a prior distribution is equivalent to constrain-
ing the value of the parameters in an optimization problem.

The specific procedure followed to carry out this analysis 
(panel (c) of Fig. 2) proceeds as follows:

(1) A series of monthly maxima is created for all gauges. All 
models will be fitted to all the time series.

(2) The time series of monthly maxima are fitted for each 
gauge, obtaining the posterior distribution of the para-
meters (ðϕμ, ϕσ , ϕ�Þ, ðλμ, λσ , λ�Þ), instead of an optimal 
set of parameters. For this reason, the median AIC is 
computed for each gene set, and the procedure 
described in the previous section (testing the hypoth-
esis that the AIC ratio follows the same distribution) is 
followed to determine the optimal models.

3.3 Comparing parametric and AR models

Once the optimal parametric and AR models have been 
selected, the interest turns towards determining whether one 
category of models performs better than the other one. To 
achieve this goal, two different procedures are proposed: one 
based on AIC ratios and another one on estimating future 
precipitation.

3.3.1 AIC ratios method
The first procedure uses AIC ratios to compare the parametric 
and AR approaches. The performance of the stationary model 

must be equal whether computed through MLE or Bayesian 
techniques (since it is the exact same model in both cases), but 
the former results in just a number, and the latter in a complete 
distribution. Therefore, to compare the AIC of the two 
approaches, the AIC of the AR approach must be summarized 
into a number (we selected the median) and then multiplied by 
a normalization factor. This factor explains the change 
between the performance of the stationary model fitted by 
MLE and the median of the performance of the stationary 
model obtained by Bayesian techniques.

The normalization factor is the ratio between the AIC of the 
stationary model for the parametric approach (MLE) and the 
median of the AIC distribution for the stationary model for the 
AR approach (Bayesian technique), as shown in Equation (21). 

The renormalized AIC values for the optimal AR model 
and the AIC values of the parametric model are compared 
using a Kolmogorov-Smirnov test. This test determines 
whether the distributions associated with the AIC values 
are different, and defines which of the approaches is more 
appropriate to model the non-stationarity in extreme 
monthly rainfall.

3.3.2 Estimating future precipitation
Since one of the objectives of this work is to determine an 
optimal estimation model, we propose to compare the opti-
mal model in each category using their estimation accuracy 
for future rainfall. To make this comparison, the global 
period of analysis is divided into two: a first period that 
covers the years 1979–1998 and a second one that covers the 

Figure 4. Summary of the autoregressive model terms, grouped by non-stationarity type. Panel (a) shows the autoregressive component, where the time dependence 
of the generalized extreme value distribution (GEV) parameters is expressed by a time series model. Panel (b) shows the seasonal component, which is included by 
means of a 12-month lagged autoregressive term. Panel (c) describes the vector θ, which represents the gene set that activates or deactivates the covariates and their 
coefficients, represented in the vector Δ. Note that the coefficients μm , σm and �m are always kept active to guarantee the stability of the models and represent the 
mean value of each parameter.
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years 1999–2019. The first period is used to fit the optimal 
models. These models are then used to estimate rainfall in 
the second period. Another fitting will be carried out in 
the second period to validate the estimations obtained 
from the first fitting.

Based on this decomposition of the analysis period, two 
different statistical characterizations will be compared:

(1) Historical fit: fit of the optimal models to data of 
the second period (1999–2019), summarized by the 
estimations that it provides for the mid-year of the 
range (corresponding to January 2009).

(2) Estimation fit: fit of the optimal models to data of the 
first period (1979–1998), summarized by the estima-
tions that it provides for the mid-year of the second 
period (corresponding to January 2009).

The comparison will be focused on the values of the precipita-
tion corresponding to a return period of 10 years. In the 
parametric case, the historical fit and the estimation fit provide 
a value for the 10-year return period rainfall for each gauge. 
Thus, the accuracy is characterized by the difference between 
the two values. In the AR case, the rainfall for the 10 year 
return period is a distribution. The comparison is thus carried 
out analysing the differences between 5000 samples obtained 
by sampling the historical and the estimation fit distributions.

3.4 Software tools used

Parametric models were fitted using the global black box 
optimization module BlackBoxOptim.jl available in the Julia 
programming language packages (Bezanson et al. 2017). 
Bayesian methods were fit using PyStan (Stan Dev Team  
2021) and Python.

PyStan uses the MCMC method, which is an alternative to 
conventional numerical methods. We used PyStan with four 
chains of size N = 1000, applying a burning period of 2000 
samples. The construction of the chain is done using the 
Metropolis-Hastings algorithm.

4 Results

4.1 Optimal parametric model

The results of the selection of the optimal parametric model 
are shown in Fig. 5. Panel (a) shows that the non-stationarity 
of extremes in all of Spain can be optimally captured by 
a specific model form (area shaded with small circles; green 
in the colour figure). Only in climates of type BWh, in the most 
arid regions, does the stationary model do a better job.

Panels (b) to (i) show box plots for the AIC of the best- 
performing model for each climate type. In those panels, ST refers 
to the stationary model; SE includes seasonality; SEþ V includes 
both seasonality and variability; and SEþ V þ T includes the 
seasonality, variability, and trend. The panels also include 
a dashed horizontal line showing the minimum median AIC (the 
median AIC for the best model) of all the comparisons for a climate.

The best-performing model accounts for seasonality 
through two sinusoidal components, one of yearly period 

and another with a period of six months, in the location and 
scale parameters, with no seasonality in the shape parameter. It 
also requires including the effect of MOI and NAO in both the 
location and shape parameters to account for climate variabil-
ity. A linear and a quadratic trend are required for the location 
parameter, and only a linear one is required for the scale and 
shape parameters. The optimal model is described in 
Equations (22), (23) and (24). 

Figure 5 shows that including every additional component 
(seasonality, variability, and trend) improves the results for 
all climates each time, except for climates BWh and BSh. 
Climate BSh only improves once the trend term is included, 
but the improvement is noticeable. Climate BWh does not 
improve with any addition, showing that the stationary 
model is the best-performing one for that climate.

The results of the optimal parametric model indicate that 
the non-stationarity analysis can be optimally included, almost 
exclusively, in the location and scale parameters. The influence 
of seasonality, variability and trend is relevant in all the cli-
matic groups except for the BWh group, which represents dry 
desert zones located in small areas of the southeast of the 
Iberian Peninsula and in the Canary Islands (Fig. 5(a)), 
where the stationary model does a better job. These regions 
coincide with the minimum pluviometric values of the penin-
sula (AEMET and IPMA 2011), which may indicate that not 
enough extreme events exist to optimally fit a non-stationary 
model.

4.2 Optimal AR model

Of the 27 models tested, only five provided reasonable fits, 
which were:

● Stationary model.
● μ-AR(1): location parameter modelled with the autore-

gressive term.
● μ-AR(1/12): location parameter modelled with the auto-

regressive and the seasonal terms.
● σ-AR(1): scale parameter modelled with the autoregres-

sive term.
● σ-AR(1/12): scale parameter modelled with the autore-

gressive and the seasonal terms.

Figure 6 shows the AIC results for each climate (panels (b) to 
(i)), as well as the spatial distribution of the best-fitting gene 
sets (panel (a)). The figure shows that model μ-AR(1/12) is the 
best performing in climates BSk, Csa, BSh and BWh; σ-AR(1) 
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in climate Csb; and σ-AR(1/12) in climates Cfa, Cfb and D. μ- 
AR(1) is never the best-performing model. The results for the 
stationary model are not shown because it takes AIC values 
higher (indicating worse performance) than the other gene sets 
tested.

The results indicate that in the AR framework the non- 
stationarity is captured in the location and scale parameters 
and does not require incorporating any modification in the 
shape parameter.

AR and seasonal terms are needed to properly capture the 
behaviour of extremes over the whole region analysed, except 
for areas of climate Csb, with markedly drier periods in sum-
mer (AEMET and IPMA 2011), where the seasonality term 
may be less important. Note, however, that the differences 
between σ-AR(1) and σ-AR(1/12) for the climate Csb are 
small, so additional experiments may be required to properly 
account for the need of a seasonal component.

4.3 Comparing the optimal parametric and AR models

Figure 7 compares the AIC distributions for the best perform-
ing model in the two approaches (parametric and AR) for each 
climatic zone. Note that the AIC for the AR model has been 

represented by its median, which has been normalized (see 
Equation 21) to perform a fair comparison between the two 
approaches. The figure clearly shows that AR models outper-
form parametric models for every climate analysed. The dis-
tributions are, indeed, so different that no overlap exists, 
clearly showing the superiority of the AR approach to account 
for the non-stationary behaviour of extreme rainfall events in 
Spain.

Regarding the variability of the results and considering the 
scale observed, a very low dispersion can be seen, with no pre-
sence of atypical data, which marks another difference between 
the two approaches analysed, demonstrating the strength of the 
evidence in favour of the AR models. Because the AR approach is 
the optimal one, the same homogeneous climatic zones (see panel 
(a) in Fig. 7) described in section 4.2 are identified.

To complement the analysis and present additional evi-
dence for the performance of the AR approach, Fig. 8 com-
pares estimations for the rainfall with a return period of 
10 years. The comparison presents the estimates obtained 
from the optimal AR model (distributions) and from the 
optimal parametric models (point estimates in the lower part 
of each panel of the figure). Estimates are computed using the 
historical fit and the estimation fit defined in section 3.3.2.

Figure 5. Spatial distribution of the optimal parametric model and performance evaluation of different parametric models for each climate. Panel (a) shows the spatial 
distribution of the optimal model. The shaded area with little circles (covering the BSh (hot steppe), Bsk (cold steppe), Cfa (temperate with a dry season and hot summer), Csa 
(temperate with dry or hot summer), Cfb (temperate with a dry season and temperate summer), Csb (temperate with dry or temperate summer) and Köppen_D climates) 
represents the region over which the variability of extremes is best captured by including seasonality, variability, and trend ( SEþ Vþ Tð Þ). This area is optimally represented by 
a specific model. The shaded area with small stars (it only includes climate BWh (hot desert)) is best represented by a stationary model. Panels (b) to (i) present the box plots that 
show the performance in terms of Akaike Information Criterion (AIC) of the optimal parametric models obtained increasing the complexity of the model. ST refers to the 
stationary model, SE to the seasonal model, SEþ V to the model that introduces seasonality and variability, and SEþ Vþ T to the complete model. The horizontal dashed line 
shows the minimum median AIC of the box plots (the AIC of the best performing model). A table containing the values of the median AIC per gene set and per climatic sub-group 
is added at the bottom of each sub-figure.
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The figure only shows one selected raingauge per climate to 
illustrate the differences between the two approaches. 
Moreover, the results apply to the value of the return period 
for January 2009, which is the midpoint of the analysed date 
range.

Figure 8 shows that both approaches provide, in general, 
compatible results, except for the most arid climate (BWh, 
centre and lower right panels), where the stationary parametric 
model predicts values that are 66% larger than the ones pre-
dicted by the optimal AR model; and for climate Cfa where the 
parametric estimations are outside of the range (historical fit: 
22 mm and estimation fit: 23 mm). The AR models produce 
more coherent estimations, where the accord between the 
historical and the estimation fits seems better than for the 
parametric case.

In general terms, the distributions of the AR estimations 
for a given climate show a similar shape, with almost 
a perfect match between them (climate Cfb), with a small 
bias (climates Cfa and Csb) or with a larger one (climate 
Bsh), but still below 10%. The distributions for climates 
Csa and D show the largest differences, but still provide 
compatible predictions with biases below 10%. In absolute 
terms, the smallest differences are close to 0 (0:1 mm), 
while the maximum is slightly smaller than 5 mm (corre-
sponding to the station of VILLAFRANCA BOSCANA 
NOU, centre panel in Fig. 8).

However, the results of Fig. 8 refer only to one station 
(one with an average quality fit). To evaluate whether the 
two approaches perform differently, Fig. 9 shows 
a systematic comparison of estimated results for all the 
stations considered for each climate. The box plots shaded 
with inclined lines (45°) show the difference, at a specific 
station, between the 10-year return period values calculated 
using the historical fit and the estimation fit (defined in 
section 3.3.2) for the parametric approach. Each box plot 
summarizes the results for a different climate. Similarly, the 
shaded box plots with dots indicate the same difference, but 
using the AR approach. The VILLAFRANCA BOSCANA 
NOU station of the Csa sub-group was excluded from the 
graph (it presented a difference of −4.7 mm) as it was the 
only station where the difference exceeded the lower limit of 
the graph (−1.5 mm).

Figure 9 shows that the parametric models generate predic-
tions with a greater range of dispersion than the AR ones. Its 
bias is small, although larger than that of the AR models. Most 
of the parametric model results are within the safe zone (the 
area in Fig. 9 that is shaded with horizontal lines), the region 
where the values calculated from the estimation fit are larger 
than the values calculated from the historical fit. However, 
excursions into the unsafe zone (the area in Fig. 9 that is 
shaded with inclined lines (135°)) are more numerous and 
larger for the parametric approach than for the AR one.

Figure 6. Spatial distribution of the optimal autoregressive model and performance evaluation of different autoregressive models for each climate. Panel (a) shows the 
spatial distribution of the optimal model. The area shaded with inclined lines (45°) is the area where μ-AR(1/12) is the optimal model (climates Bsk (cold steppe), Csa 
(temperate with dry or hot summer), BSh (hot steppe) and BWh (hot desert)); the area shaded with horizontal lines for σ-AR(1) (climate Cfb (temperate with a dry season 
and temperate summer)); and the one with crossed lines for σ-AR(1/12) (climates Cfa (temperate with a dry season and hot summer), Csb (temperate with dry or temperate 
summer) and D). Panels (b) to (i) show the box plots of median Akaike Information Criterion (AIC) for each gene set and climate type. The horizontal dashed line in box plots 
shows the minimum median AIC for the best-performing model for each climate. Note that the box plots are shaded and correspond to the described areas.

914 D. URREA MÉNDEZ AND M. DEL JESUS



In fact, AR models show a lower bias than the parametric 
ones (the median of the differences is closer to zero) and 
a lower variance since most of the predictions cluster closely 
around the zero-difference error. The only climate where the 
two approaches are comparable is for the BWh climate because 
here the optimal model is the stationary one. For all the other 
climates, the results of the AR model are superior.

5 Discussion

The optimal parametric model was identified in terms of 
goodness of fit and complexity, favouring models that per-
form better over more types of climates. The results of this 
approach indicate models that introduced the non-stationary 
process in the GEV distribution parameters obtained a better 
representation, with respect to the stationary parametric 
models, in seven of the eight climatic zones studied. The 
introduction of seasonality, variability, and trend in the 
GEV parameters generated an improvement in the adjust-
ment of said distribution to extreme precipitation events, 
except for the BWh sub-group, which represented dry desert 
zones located in small areas of the southeast of the Iberian 
Peninsula and the Canary Islands, where the stationary model 
obtained a better representation.

In the proposed models, we assume that the non-stationarity 
introduced by climate change is captured in the trend, since this 
is the only inter-annual variability included in the model and not 
explained by climate indices. It is important to consider this 
trend because it provides a long-term view of the changes that 
are taking place. The trend could provide a long-term overview 
of the changes that could occur. In the case of the selected 
parametric model, it is framed in the linear term, t, included in 
the location, scale, and shape parameters of the selected model. 
In addition, the location parameter contains a quadratic term, t2, 
showing that this parameter represents a trend with greater 
magnitude than the others. Since our main interest is short- 
term estimation, where climate models predict little to no 
change, we assume that climate change introduces a drift in 
the model parameters to extrapolate the trends from the recent 
past, assuming that other climate change effects (like changes in 
seasonality, etc.) may be neglected.

In the AR models, the non-stationarity introduced by cli-
mate change could not be captured in the same way. In this 
case, the trend term did not represent an improvement in 
terms of fit with respect to the AR and seasonal components 
alone. Indeed, this result may indicate that long-term trends in 
extremes captured in the parametric models could be an arte-
fact, but further analyses will be required to deepen our under-
standing of this specific result.

Figure 7. Spatial distribution of the optimal approach and comparison of performance between the parametric and the autoregressive approach. Panel (a) shows the 
spatial distribution of the optimally performing approach. Since the autoregressive approach outperforms the parametric model every time, the panel shows the same 
distribution as in Fig. 6. Panels (b) to (i) show the box plots of the Akaike Information Criterion (AIC) distribution for the optimal parametric and the optimal 
autoregressive models. The figure shows that the autoregressive models clearly outperform the parametric model for all climate types. Note that the AIC for the 
autoregressive model has been normalized (see Equation 21) to allow a fair comparison between the two approaches.
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The optimal AR models obtained a good representation of 
the extreme precipitation events in all climates. Indeed, these 
models obtained favourable results when the non-stationarity 
was included in the location parameter or in the scale para-
meter. The shape parameter, however, had to be kept constant 
to ensure the convergence of the models, probably because the 
increased expressivity of the model required many more data 
points to converge to a unique solution.

The results of the AR approach indicate that the monthly 
maximum precipitation events are influenced by extreme 
events in previous months, as well as by the seasonal depen-
dence of climate. The effect is best incorporated into the scale 
parameter, although some regions are best captured by intro-
ducing non-stationarity in the location parameter. This beha-
viour was observed in all the climatic zones studied, being 
slightly less marked in the seasonal component of the Csb sub- 
group, which represented zones with markedly dry periods in 
summer (AEMET and IPMA 2011).

The two approaches considered in the study (parametric 
and AR) were used to estimate the maximum annual pre-
cipitation associated with a return period of 10 years in the 
analysed stations. According to the results obtained, the AR 
approach seems more accurate for probabilistic estimations 
of extreme precipitation events. Even when the two 
approaches constitute a tool to consider the dependencies 
between extreme values and the temporal evolution of the 
climate, the AR model provides more flexibility, resulting in 
more accurate estimations.

The application of non-stationary techniques to the 
characterization of extreme events is of great importance 
to managers and practitioners, who may generate more 
accurate descriptions of the forcing for their designs and 
systems. The results that we provide may guide and sim-
plify the application of these methods, and thus assist in 
the management of irrigation and hydroelectric power 
plants in the Spanish territory. Moreover, our experimental 

Figure 8. Comparison of the 10-year return period rainfall for January 2009 obtained from the historical and estimation fits for a representative gauge for each climate. 
The distributions result from sampling 2000 values of the corresponding optimal autoregressive model. The density function shaded with vertical lines represents 
estimations based on data from a previous period (estimation fit; see section 3.3.2). The density function shaded with sloped lines represents the rainfall estimated 
within the same period (historical fit; see section 3.3.2). Below the axis of the distribution plot, there are two additional axes that show the estimates of the 
corresponding optimal parametric model: the upper one showing the estimate from the estimation fit, and the lower one showing the estimates from the historical fit. 
Note that the BWh (hot desert) zone is represented in two sub-figures (bottom right and centre right), which contain the same distributions; however, in the bottom 
right it can be seen that this climatic zone has a greater difference between the estimates of the two models compared. The upper right sub-figure does not contain the 
estimates of the parametric model, because they are outside the range (historical fit: 22 mm and estimation fit: 23 mm).
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design may be used to analyse other rainfall networks and 
find the optimal ways in which climate variability may be 
incorporated.

6 Conclusions

The AR models perform better in terms of quality of fit and 
complexity (AIC) than the parametric models for all the ana-
lysed climates. The results indicate that the AR models best 
capture and characterize the temporal variability of extreme 
precipitation events.

The improvement in terms of AIC of the AR approach can 
probably be attributed to two factors: first and most important, 
the structure and flexibility provided by the AR and seasonal 
terms, capable of modelling long-range correlations (lag up to 
12 months); second, the fitting method, since the Bayesian 
method does not have overfitting problems.

The AIC differences between the AR and parametric models 
are driven by the likelihood function. However, the number of 
parameters – although not a determining factor – show large 
differences. Parametric models need about 19 parameters, while 
AR models need at most four parameters. AR models achieve 
a higher level of expressiveness with a much smaller number of 
parameters. This fact also contributes to the observed differences.

In terms of prediction, the optimal AR model is more 
accurate than the optimal parametric one (see Fig. 9), even 
though the differences in predictive performance, which are 
important, are smaller than in terms of AIC, which are 
remarkable (see Fig. 8). Associating AIC results with pre-
diction performance might be intuitive, but it is not 
a correct comparison, since AIC is not a suitable metric 
to measure prediction goodness of fit (Gelman et al. 2014). 
In fact, Gelman et al. (2014) recognize that it is useful to 
compare very dissimilar models, and for this, predictive 
comparisons can make sense. In the proposed models, we 

assume that the non-stationarity introduced by climate 
change is embedded in the trend, since this is the only 
term that considers inter-annual variability beyond that 
explained by climate indices. In the case of the selected 
parametric model, it is framed in the linear term, t, present 
in the location, scale, and shape parameters of the selected 
model. In addition, the location parameter contains 
a quadratic term t2, showing that this parameter represents 
a trend with greater magnitude than the others.

In the AR models, the non-stationarity introduced by cli-
mate change could not be captured in the same way. In this 
case, the trend term did not represent an improvement in 
terms of fit with respect to the AR and the seasonal component 
introduced in the location and scale parameters of the selected 
model.

Long-term trends, which represent climate change effects, 
were only important for the parametric models, and not for 
the AR ones. Indeed, a trend component was necessary in 
the three parameters for the parametric approach, while AR 
models performed better without this term. This result may 
indicate that trends in monthly maxima may be 
a mathematical artefact born from the interaction between 
a somewhat rigid seasonality term and the climate indices. 
Further analyses will be required to clarify the real causes of 
this result.

The proposed methodological framework constitutes a tool 
to analyse the temporal dependence of extreme precipitation 
events, including estimation under non-stationary conditions. 
The application of the proposed methodology provides a solid 
basis to address problems associated with the design of 
hydraulic structures and the management of water resources. 
Further lines of research may focus on the application of other 
statistical distributions that integrate different covariates to 
represent non-stationarity, including the development of 
a new framework for risk assessment.

Figure 9. Differences in the estimated 10-year return period rainfall between the estimation fit and historical fit (defined in section 3.3.2) for every station of each 
climate. The box plots shaded with inclined lines (45°) show the differences for the parametric approach, and the box plots shaded with dots show those for the 
autoregressive approach. Each box plot summarizes the results for the respective climate. The area where the estimation fit (EF) estimates are larger than the historical 
fit (HF) ones is shaded with horizontal lines, as it is a safe region (estimates based on the past are larger than those based on current values). The area where historical 
fit estimates are larger is shaded with inclined lines (135°), as it is the unsafe zone.
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