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The disjointly non-singular (DN-S) operators T ∈ L(E, Y ) from a Banach lattice 
E to a Banach space Y are those operators which are strictly singular in no 
closed subspace generated by a disjoint sequence of non-zero vectors. When E
is order continuous with a weak unit, E can be represented as a dense ideal in 
some L1(μ) space, and we show that each T ∈ DN-S(E, Y ) admits an extension 
T ∈ DN-S(L1(μ), PO), where PO is certain Banach space, from which we derive 
that both T and T ∗∗ are tauberian operators and that the operator T co : E∗∗/E →
Y ∗∗/Y induced by T ∗∗ is an (into) isomorphism. Also, using a local variation of 
the notion of DN-S operator, we show that the ultrapowers of T ∈ DN-S(E, Y ) are 
also DN-S operators. Moreover, when E contains no copies of c0 and admits a weak 
unit, we show that T ∈ DN-S(E, Y ) implies T ∗∗ ∈ DN-S(E∗∗, Y ∗∗).

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In a Banach lattice E we can consider two kinds of closed subspaces: those generated by a disjoint sequence 
of non-zero vectors, and those that are at a positive distance of every normalized disjoint sequence. The 
later ones are called dispersed subspaces in [12]. In the study of operators acting on E it is useful to consider 
their action on these kinds of subspaces (see [7]). The disjointly strictly singular operators (DSS operators, 
for short) were introduced in [18] as those operators T : E → Y from a Banach lattice E into a Banach 
space Y such that T is an isomorphism on no closed subspace of E generated by a disjoint sequence of 
non-zero vectors. These operators have been applied to the study of the structure of Banach lattices (see 
[6] and references therein). More recently, the disjointly non-singular operators (DN-S operators, for short) 
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where introduced in [12] as those operators T : E → Y from a Banach lattice E to a Banach space Y that 
are strictly singular in no closed subspace of E generated by a disjoint sequence of non-zero vectors. The 
DN-S operators have also been studied in [1] and [13]. Note that the kernel of a DN-S operator is a dispersed 
subspace.

By [10, Theorem 2], an operator T : L1 → Y is DN-S if and only it is tauberian in the sense of Kalton and 
Wilansky [20]. In this case the second conjugate T ∗∗ : L∗∗

1 → Y ∗∗ and the ultrapowers TU : (L1)U → YU are 
also DN-S, and the operator T co : L∗∗

1 /L1 → Y ∗∗/Y induced by T ∗∗ is an (into) isomorphism; see [10,11].
In this paper we extend these results for E = L1 to the operators in DN-S(E, Y ) when E is order 

continuous with a weak unit. Our main tool is the fact that in this case E admits a representation as a dense 
sublattice of some L1(μ) space with μ a probability measure. We characterize the operators in DN-S(E, Y )
in terms of their action over the normalized sequences (xn) in E satisfying limn→∞ μ(suppxn) = 0. As a 
consequence, T is an isomorphism on the closed band EA of E generated by a measurable set A when μ(A)
is small enough. Moreover, using the push-out construction, we show that every operator T ∈ DN-S(E, Y )
admits an extension T ∈ DN-S(L1(μ), PO), where PO is the push-out Banach space. From this result, 
we derive that each T ∈ DN-S(E, Y ) is a tauberian operator such that T ∗∗ is tauberian and T co is an 
(into) isomorphism. Also, using a local variation of the notion of DN-S operator, we prove that the class 
of DN-S operators is preserved by ultrapowers, we give an example showing that it is not preserved by 
ultraproducts, and we introduce and study the (n, r)-dispersed subpaces, a local variation of the notion 
of dispersed subspace. Moreover, when E contains no copies of c0 and admits a weak unit, we show that 
T ∈ DN-S(E, Y ) implies T ∗∗ ∈ DN-S.

Notations. Throughout the paper X and Y are Banach spaces, E is a Banach lattice and E+ = {x ∈ E :
x ≥ 0}. The unit sphere of X is SX = {x ∈ X : ‖x‖ = 1}, and for a sequence (xn) in X, [xn] denotes 
the closed subspace generated by (xn). We also denote d(E) = {(xn) ⊂ E \ {0} : (xn) disjoint}, and 
dn(E) = {(xn) ⊂ SE : (xn) disjoint}.

Operators always are linear and continuous, and L(X, Y ) denotes the set of all operators from X into Y . 
Given T ∈ L(X, Y ), N(T ) is the kernel of T , R(T ) is the range of T , and we denote by TM the restriction 
of T ∈ L(X, Y ) to a closed subspace M of X.

An operator T ∈ L(X, Y ) is strictly singular if there is no closed infinite dimensional subspace M of X
such that TM is an isomorphism; the operator T is upper semi-Fredholm if N(T ) is finite dimensional and 
R(T ) is closed; and T is tauberian if its second conjugate T ∗∗ : X∗∗ → Y ∗∗ satisfies T ∗∗−1(Y ) = X [20]; 
equivalently, if the operator T co : X∗∗/X → Y ∗∗/Y induced by T ∗∗ is injective. We refer to [15] for the 
properties of T co.

2. Preliminaries

An operator T ∈ L(E, Y ) is disjointly strictly singular, and we write T ∈ DSS(E, Y ), if there is no 
(xn) ∈ d(E) such that T[xn] is an isomorphism. The class DSS was introduced by Hernández and Rodríguez-
Salinas in [18] and [17]. The operator T is disjointly non-singular, and we write T ∈ DN-S(E, Y ), if there 
is no (xn) ∈ d(E) such that T[xn] is strictly singular. The class DN-S was introduced in [12], and studied in 
[1] and [13]. Note that DN-S(L1, Y ) is the set of tauberian operators from L1 into Y (see [10,12]). We refer 
to [14] and [11] for information on tauberian operators. A closed subspace M of E is dispersed if there is 
no (xn) ∈ dn(E) such that limn→∞ dist(xn, M) = 0.

A sequence (xn) in E is unbounded norm convergent (or un-convergent) to x ∈ E if (|xn−x| ∧u) converges 
in norm to 0 for each u ∈ E+ [23]. In this case we write xn

un−→ x.
The disjointly non-singular operators can be characterized as follows.
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Theorem 2.1. [12, Theorems 2.8 and 2.10] For an operator T ∈ L(E, Y ), the following assertions are 
equivalent:

(1) T is disjointly non-singular.
(2) For every (xn) ∈ d(E), the restriction T[xn] is an upper semi-Fredholm operator.
(3) For every (xn) ∈ dn(E), lim infn→∞ ‖Txn‖ > 0.
(4) For every compact operator S ∈ L(E, Y ), N(T + S) is dispersed.

Theorem 2.2. [1, Theorem 5.3] Suppose that E is order continuous. For T ∈ L(E, Y ), the following assertions 
are equivalent:

(1) T is disjointly non-singular.
(2) For no normalized un-null sequence (xn) we have limn→∞ ‖Txn‖ = 0.
(3) There exists r > 0 such that for every (xn) ∈ dn(E), lim infn→∞ ‖Txn‖ > r.

A Banach lattice E is order continuous if every net in E decreasing in order to 0 converges in norm to 
0; and a weak unit in E is a vector e ∈ E+ such that ‖|x| ∧ e‖ = 0 implies x = 0. We refer to [21,24] for 
information on order continuous Banach lattices.

2.1. Representation of order continuous Banach lattices

In [21, Theorem 1.b.14] it is shown that every order continuous Banach lattice E with a weak unit admits 
a representation as a Köthe function space, in the sense that there exists a probability space (Ω, Σ, μ) so 
that

• L∞(μ) ⊂ E ⊂ L1(μ) with E dense in L1(μ) and L∞(μ) dense in E,
• ‖f‖1 ≤ ‖f‖E ≤ 2‖f‖∞ when f ∈ L∞(μ),
• the order in E coincides with the one induced by L1(μ).

In the paper, one such representation is fixed for each E order continuous with a weak unit. For vectors 
in L1(μ), we denote by xn

μ−→ x the convergence in measure.
Among the order continuous Banach lattices with a weak unit we have some rearrangement invariant 

(r.i., for short) function spaces on (0, 1). Besides Lp(0, 1) (1 ≤ p < ∞), the most commonly used r.i. function 
spaces on (0, 1) are the Orlicz spaces and the Lorentz spaces (see [21, Section 2a]). Below we give a brief 
description of the second ones.

Example 2.3. Let 1 ≤ p < ∞ and let W be a positive non-increasing continuous function on (0, 1] so that 
limt→0 W (t) = ∞ and 

∫ 1
0 W (t) = 1. The Lorentz function space LW,p(0, 1) is the space of all measurable 

functions f on (0, 1) such that

‖f‖W,p =

⎛
⎝ 1∫

0

f∗(t)pW (t)dt

⎞
⎠

1/p

< ∞,

where f∗ is the decreasing rearrangement of |f |.
The space LW,p(0, 1) is a r.i. function space on (0, 1) different from L1(0, 1).

The following result will be useful.
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Lemma 2.4. [3, Corollary 2.12, Theorem 4.6] Let E be an order continuous Banach lattice with a weak unit 
e, and let (xn) ⊂ E. Then the following statements are equivalent:

(1) xn
un−→ 0.

(2) (|xn| ∧ e) converges in norm to 0.
(3) xn

μ−→ 0.

For an order continuous Banach lattice E with a weak unit e, we define the support of x ∈ E as 
suppx = {t ∈ Ω : x(t) 
= 0}.

Corollary 2.5. Suppose that E is order continuous with a weak unit. Then each sequence (xk) in E with 
limn→∞ μ (suppxn) = 0 is un-convergent to 0.

Proof. Note that limn→∞ μ (suppxn) = 0 implies xn
μ−→ 0. �

2.2. Ultraproducts of spaces and operators

Let I be a set admitting a non-trivial ultrafilter U and let (Xi)i∈I and (Yi)i∈I be families of Banach 
spaces. The ultraproduct (Xi)U of (Xi)i∈I is defined as the quotient of �∞(I, Xi) by the closed subspace

NU (Xi) = {(xi) ∈ �∞(I,Xi) : lim
i→U

‖xi‖ = 0}.

The element of (Xi)U which has (xi) ∈ �∞(I, Xi) as a representative is denoted [(xi)].
When Xi = X for each i ∈ I, we denote the ultraproduct by XU , and we call it an ultrapower of X.
If each Xi is a Banach lattice then (Xi)U has a natural structure of Banach lattice: [(xi)] ≤ [(yi)] if there 

exists (zi) ∈ NU (Xi) such that xi + zi ≤ yi for each i ∈ I.
If (Ti)i∈I is a bounded family of operators with Ti ∈ L(Xi, Yi) for each i ∈ I, the ultraproduct (Ti)U ∈

L((Xi)U , (Yi)U ) is defined by (Ti)U [(xi)] = [(Tixi)]. When Ti = T for each i ∈ I, we write TU which is called 
an ultrapower of T . We refer to [4, Chapter 8] or [16] for additional information on ultraproducts of spaces 
and operators.

3. Disjointly non-singular operators

We begin with a complement to Theorem 2.2.

Theorem 3.1. Let E be an order continuous Banach lattice with a weak unit. For T ∈ L(E, Y ), the following 
assertions are equivalent:

(1) T is disjointly non-singular.
(2) There exists r > 0 such that for every (xn) in SE with limn→∞ μ (suppxn) = 0, lim infn→∞ ‖Txn‖ > r.
(3) For every (xn) in SE with limn→∞ μ (suppxn) = 0, lim infn→∞ ‖Txn‖ > 0.
(4) There is r > 0 such that for every x ∈ SE with μ(suppx) < r we have ‖Tx‖ > r.

Proof. (1)⇒(2) Suppose that T is disjointly non-singular. Without loss of generality, we can assume 
that ‖T‖ = 1. By Theorem 2.2, there is r > 0 such that for every disjoint sequence (zn) in SE , 
lim infn→∞ ‖Tzn‖ > r.

If (2) fails, then we can find a sequence (xn) in SE with limn→∞ μ (suppxn) = 0 and lim infn→∞ ‖Txn‖ <
r/2. Passing to a subsequence if necessary, we can assume that lim supn→∞ ‖Txn‖ < r/2 and
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∑∞
n=1 μ (suppxn) < ∞. We denote An = ∪∞

k=nsuppxn and Bn = Ω \ An. Then μ(An) → 0, (Bn) in-
creases to Ω and, since E is order continuous, (xχBn

) converges in norm to x for every x ∈ E [24, Theorem 
1.1].

First, we choose n1 > 1 such that ‖x1−x1χBn1
‖ < 1/2, and denote y1 = x1χBn1

. Note that ‖Tx1−Ty1‖ <
1/2 and |y1| ∧ |xj | = 0 for j ≥ n1.

Next, we choose n2 > n1 such that ‖xn1 − xn1χBn2
‖ < 1/3, and denote y2 = xn1χBn2

. Note that 
‖Txn1 − Ty2‖ < 1/3 and |yi| ∧ |xj | = 0 for i = 1, 2 and j ≥ n2.

Continuing in this way we obtain a disjoint sequence (yn) such that ‖yn‖ → 1 as n → ∞ and 
lim supn→∞ ‖Tyn‖ < r/2. Thus taking zn = yn/‖yn‖, we obtain a normalized disjoint sequence (zn) with 
lim supn→∞ ‖Tzn‖ < r/2, and we get a contradiction.

(2)⇒(3) is trivial.
(3)⇒(4) If (4) fails, we can find a sequence (xn) in SE with μ(suppxn) < 1/n and ‖Txn‖ < 1/n. So (3) 

also fails.
(4)⇒(1) For every disjoint sequence (xn) in SE , lim infn→∞ ‖Txn‖ ≥ r. Thus Theorem 2.2 implies that 

T is disjointly non-singular. �
If E is order continuous with a weak unit, for each measurable set A with μ(A) > 0, the set EA = {x ∈

E : suppx ⊂ A} is a closed band in E.
From part (4) of Theorem 3.1 we derive:

Corollary 3.2. If E is order continuous with a weak unit and T ∈ DN-S(E, Y ), then there exists r > 0 such 
that, when A is a measurable set with 0 < μ(A) < r, the restriction of T to EA is an isomorphism.

Corollary 3.3. Let E be an order continuous r.i. function space on [0, 1] and suppose that DN-S(E, Y ) 
= ∅. 
Then Y contains a subspace isomorphic to E.

Proof. Note that the characteristic function χ[0,1] is a weak unit in E. Moreover, as in [21, Section 2.b], for 
0 < s < ∞ we consider the linear map Ds defined on the space of measurable functions on [0, 1] by

(Dsf)(t) =
{

f(t/s), t ≤ min{1, s}
0, s < t ≤ 1 (in case s < 1).

Clearly Ds has norm one on L∞[0, 1] and norm s on L1[0, 1]. Thus, a result of Calderón (see [21, Theorem 
2.a.10]) implies that Ds is bounded on E with norm ≤ max{1, s}.

If 1 < s < ∞ and r = s−1, then Dr is injective and DrDsf = χ[0,r]f (see [21, Section 2.b]); hence Dr

is an isomorphism of E onto E[0,r]. Moreover, if T ∈ DN-S(E, Y ) then Corollary 3.2 implies that T is an 
isomorphism on E[0,r] for r small enough. �
4. Push-outs and DN-S operators

Suppose that E is order continuous with a weak unit. We denote by j : E −→ L1(μ) the inclusion of E
into L1(μ), which is a (continuous) operator.

Given an operator T : E −→ Y , the push-out diagram for the pair j, T is

E
T−−−−→ Y

j
⏐⏐� j

⏐⏐�
T

L1(μ) −−−−→ PO
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where Δ = {(Tx, −jx) : x ∈ E} is a subspace of Y ⊕1 L1(μ) with closure Δ, PO is the quotient 
(Y ⊕1 L1(μ)) /Δ, and the operators j and T are defined by jy = (y, 0) + Δ and Tf = (0, f) + Δ. See 
[2, Section 1.3].

Note that j and T are continuous because they are restrictions of the quotient map onto PO, and the 
push-out diagram is commutative: jT = T j.

Proposition 4.1. Let E be an order continuous Banach lattice with a weak unit.

(1) The inclusion j : E → L1(μ) is disjointly strictly singular (j ∈ DSS) if and only if for every (xn) ∈
dn(E), ‖jxn‖1 → 0 as n → ∞.

(2) If E is an r.i. function space on (0, 1) different from L1(0, 1) then j : E → L1(0, 1) is always DSS.

Proof. (1) For the direct implication, suppose that (xn) ∈ dn(E) and C = infn ‖jxn‖1 > 0. Note that (xn)
is an unconditional basic sequence and

‖j (
∑∞

i=1 aixi)‖1 = ‖
∑∞

i=1 aijxi‖1 =
∑∞

i=1 |ai| · ‖jxi‖1

because (jxi) is a disjoint sequence in L1(μ). Therefore,

‖j (
∑∞

i=1 aixi)‖1 ≥ C
∑∞

i=1 |ai| ≥ C ‖
∑∞

i=1 aixi‖ ,

and j is an isomorphism on [xn].
The converse implication is immediate.
(2) is proved in [8, Corollary 4.4]. �
The following result is mentioned without proof in [5], Proposition 1.1 and post comment. For the 

convenience of the reader we will sketch a proof.

Lemma 4.2. Let E be an order continuous Banach lattice with a weak unit.

(1) For every closed subspace N of E, the restriction of j to N is an isomorphism, or N is not dispersed.
(2) For every sequence (xn) in SE, inf ‖xn‖1 > 0 or there exists a subsequence (xnk

) and a disjoint sequence 
(zk) in E such that ‖xnk

− zk‖ → 0 as k → ∞.

Proof. (1) is [21, Proposition 1.c.8] in disguise. Next we include part of the proof in [21] which will be 
helpful to prove (2).

For x ∈ E and ε > 0, put σ(x, ε) = {ω ∈ Ω : |x(ω)| ≥ ε‖x‖} and consider the set M(ε) = {x ∈
E : μ (σ(x, ε)) ≥ ε}. If N ⊂ M(ε) for some ε > 0 then ‖y‖1 ≥ ε2‖y‖ for every y ∈ N , hence j|N is an 
isomorphism. Otherwise we can find (zn) ⊂ SN such that zn /∈ M(2−n) for all n, and there is a subsequence 
(zni

) and a disjoint sequence (yi) in E such that ‖zni
− yi‖ → 0 as i → ∞. Hence N is not dispersed.

(2) If (xn) in SE and inf ‖xn‖L1 = 0, then we can find a subsequence (xnk
) with ‖xnk

‖1 < 2−2k for each 
k. Thus xnk

/∈ M(2−k) and, as in the proof of (1), passing to a further subsequence if necessary, we can find 
a disjoint sequence (zk) in E such that ‖xnk

− zk‖ → 0 as k → ∞. �
Remark 4.3. By Proposition 4.1, both alternatives in Lemma 4.2 become dichotomies if and only if j : E →
L1(μ) is DSS.

Indeed, if j /∈ DSS then j is an isomorphism on the closed subspace generated by a normalized disjoint 
sequence, which is not dispersed. Conversely, if there exists a closed subspace N which is not dispersed 
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and j|N is an isomorphism, then each normalized disjoint sequence (xn) with limn→∞ dist(xn, N) = 0 has 
a subsequence (xnk

) such that j is an isomorphism on [xnk
]; hence j /∈ DSS.

We consider the injective operator D : E → Y ⊕1 L1(μ) defined by Dx = (Tx, −jx).

Proposition 4.4. Suppose that E is an order continuous Banach lattice with a weak unit, and let T ∈ L(E, Y ).

(1) If T ∈ DN-S, then Δ is a closed subspace of Y ⊕1 L1(μ) and j is injective.
(2) If j : E → L1(μ) is DSS and Δ is closed in Y ⊕1 L1(μ) then T ∈ DN-S.

Proof. (1) Suppose that Δ = R(D) is not closed. Then there is a sequence (xn) in SE such that ‖Dxn‖ =
‖Txn‖ + ‖xn‖1 → 0 as n → ∞. By part (2) in Lemma 4.2, there is a subsequence (xnk

) and a disjoint 
sequence (zk) in E such that ‖xnk

− zk‖ → 0. Hence ‖Tzk‖ → 0, and Theorem 2.1 implies that T /∈ DN-S.
Also, jy = 0 implies (y, 0) ∈ Δ = Δ; thus (y, 0) = (Tx, −jx) for some x ∈ E. Since j is injective, x = 0

and y = Tx = 0. Hence j is injective.

(2) Suppose that T /∈ DN-S. Then there exists (xn) ∈ dn(E) such that ‖Txn‖ → 0. Since ‖jxn‖1 → 0, 
R(D) = Δ is non-closed. �

When both j and j are injective, we can see T as an extension of T .

Theorem 4.5. Suppose that E is an order continuous Banach lattice with a weak unit, and let T ∈
DN-S(E, Y ).

(1) T ∈ DN-S(L1(μ), PO); equivalently, T is tauberian.
(2) T is a tauberian operator.
(3) T ∗∗ is tauberian and T co is an (into) isomorphism.

Proof. Since T ∈ DN-S(E, Y ), the subspace Δ is closed by Proposition 4.4.
(1) Let (fn) be a disjoint sequence in SL1(μ). Then Tfn = (0, fn) + Δ and

‖Tfn‖ = inf
x∈E

‖Tx‖ + ‖fn − jx‖L1 .

Since lim infn→∞ ‖fn − jx‖L1 ≥ 1 for each x ∈ E, we get lim infn→∞ ‖Tfn‖L1 ≥ 1, hence T ∈ DN-S by 
Theorem 2.1.

(2) Note that Tf = 0 ⇔ (0, f) ∈ Δ ⇔ f = jx for some x ∈ E and Tx = 0. Then N(T ) = j (N(T )), which 
is closed. Hence j|N(T ) is an isomorphism onto N(T ). Since T is tauberian, N(T ) is reflexive, hence so is 
N(T ).

Now, if T ∈ DN-S and S ∈ L(E, F ) is compact, then T + S ∈ DN-S [12, Corollary]. Therefore N(T + S)
is reflexive for each compact S, hence T is tauberian by the main result of [14].

(3) The argument we gave in the proof of (2) shows that each T ∈ DN-S(E, Y ) is supertauberian in the 
sense of [9], because each reflexive subspace of L1(μ) is superreflexive and supertauberian operators admit 
a perturbative characterization: T ∈ L(X, Y ) is supertauberian if and only if N(T +K) is superreflexive for 
each compact operator K ∈ L(X, Y ) [9, Theorem 15]. Moreover, if T is supertauberian then T co is an (into) 
isomorphism [11, Proposition 6.5.3], and the last fact implies T ∗∗ tauberian because (T co)∗∗ ≡ (T ∗∗)co is 
injective in this case. �
Question 1. Suppose that E is an order continuous Banach lattice with a weak unit.

Is it true that T ∈ DN-S(L1(μ), PO) implies T ∈ DN-S(E, Y )?
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We conjecture that, under the hypothesis of Theorem 4.5, T ∗∗ ∈ DN-S. Next we prove a special case 
of this conjecture. Observe that, for E, containing no copies of c0 is slightly stronger than being order 
continuous [24, Chapter 7].

Proposition 4.6. Suppose that E is a Banach lattice with a weak unit that contains no copies of c0, and let 
T ∈ DN-S(E, Y ). Then T ∗∗ ∈ DN-S(E∗∗, Y ∗∗).

Proof. Since E contains no copies of c0, the canonical copy of E in E∗∗ is a projection band [21, Theorem 
1.c.4]. Thus, denoting E⊥ = {z ∈ E∗∗ : |x| ∧ |z| = 0 for each x ∈ E}, we have that E∗∗ = E ⊕ E⊥. Let P
denote the projection on E∗∗ onto E with kernel E⊥, and let q : Y ∗∗ → Y ∗∗/Y denote the quotient map.

By part (3) in Theorem 4.5, T co is an isomorphism (into); hence so is qT ∗∗ on E⊥. Therefore, given a 
normalized disjoint sequence (zn) in E∗∗ and denoting xn = Pzn and yn = (I − P )zn, the sequence (xn)
is disjoint in E and there exists C > 0 such that ‖T ∗∗zn‖ ≥ C max{‖Txn‖, ‖qT ∗∗yn‖} for each n. Hence 
lim inf ‖T ∗∗zn‖ > 0, and we conclude T ∗∗ ∈ DN-S. �
5. Ultraproducts of operators

Here we prove the stability of the class of DN-S operators under ultrapowers when E is order continuous 
with a weak unit. The following local variation of the notion of DN-S operator will be useful.

Definition 5.1. Let n ∈ N and r > 0. An operator T ∈ L(E, Y ) is in the class DN-Sn,r if for each normalized 
disjoint (xi)ni=1 in E we have max1≤i≤n ‖Txi‖ ≥ r.

Next we state a characterization of the class DN-Sn,r that was given in the proof of [19, Lemma 2.2] for 
E = Y a L1 space. For x ∈ E we write x+ = x ∨ 0 and x− = (−x) ∨ 0.

Proposition 5.2. Suppose that E is a Banach lattice and T ∈ L(E, Y ). Then T ∈ DN-Sn,r if and only if 
for every ε > 0 there is δ > 0 such that if x1, . . . , xn ∈ SE and ‖|xi| ∧ |xj |‖ < δ for 1 ≤ i < j ≤ n then 
max1≤i≤n ‖Txi‖ > r − ε.

Proof. For the direct implication, if x1, . . . , xn ∈ SE satisfy ‖|xi| ∧|xj |‖ < δ for i 
= j, we define zi = z+
i −z−i

by

z+
i = x+

i −
(
x+
i ∧ (∨j �=ix

+
j )

)
and z−i = x−

i −
(
x−
i ∧ (∨j �=ix

−
j )

)
.

Then the vectors zi are pairwise disjoint and 1 − 2nδ ≤ ‖zi‖ ≤ 1. Applying the DN-Sn,r condition to 
(zi/‖zi‖)ni=1 we get max1≤i≤n ‖Txi‖ > r − ε if δ = δ(ε, n, ‖T‖) is small enough.

The converse implication is immediate. �
The next result was proved in [19] for operators acting on a L1 space using Kakutani’s representation 

theorem.

Proposition 5.3. Suppose that E is order continuous with a weak unit. An operator T ∈ L(E, Y ) is in DN-S
if and only if T ∈ DN-Sn,r for some n ∈ N and r > 0.

Proof. If T ∈ DN-Sn,r, then for every (xn) ∈ dn(E), lim infn→∞ ‖Txn‖ ≥ r. Thus, by Theorem 2.1, 
T ∈ DN-S.

Conversely, suppose that T ∈ DN-Sn,r for no pair n ∈ N and r > 0. Then for each n ∈ N we can find a 
normalized disjoint (xn

i )ni=1 with max1≤i≤n ‖Txn
i ‖ ≤ 1/n. This fact contradicts (4) in Theorem 3.1, hence 

T /∈ DN-S. �
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As a consequence, DN-Sn,r is stable under ultraproducts:

Proposition 5.4. Suppose that Ei is order continuous with a weak unit for each i ∈ I. Let U be a non-trivial 
ultrafilter on I. If (Ti)i∈I is a bounded family with Ti ∈ DN-Sn,r(Ei, Yi) for each i ∈ I then (Ti)U ∈ DN-Sn,r.

Proof. Two vectors [(xi)], [(yi)] in (Ei)U are disjoint if and only if limi→U ‖|xi| ∧ |yi|‖ = 0. In this case, 
for each δ > 0, {i ∈ I : ‖|xi| ∧ |yi|‖ < δ} ∈ U ; hence we can choose the representatives (xi), (yi) so that 
‖|xi| ∧ |yi|‖ < δ for every i ∈ I. Since (Ti)i∈I is bounded, for each ε > 0 we can choose δ = δ(ε, n) in 
Proposition 5.2 which is valid for all Ti, and conclude that (Ti)U ∈ DN-Sn,r. �
Corollary 5.5. Suppose that E is order continuous with a weak unit, and let U be a non-trivial ultrafilter. If 
T ∈ DN-S(E, Y ) then the ultrapower TU ∈ DN-S.

As a consequence of the following observation, we shall show that the class of DN-S operators is not 
stable under ultraproducts, by constructing a sequence (qk) ⊂ DN-S such that (qk) ⊂ DN-Sn,r for no pair 
(n, r).

Remark 5.6. It follows from [12, Proposition 2.12] that a closed subspace M of E is dispersed if and only if 
the quotient map q : E → E/M is a DN-S operator.

Example 5.7. Let U be a non-trivial ultrafilter on N. By [21, Corollary 2.f.5], for each k ∈ N with k ≥ 2, 
there exists a subspace Mk of L1 ≡ L1(0, 1) isometric to L1+1/k. Since reflexive subspaces of L1(0, 1) are 
dispersed, if qk : L1 → L1/Mk is the quotient map, then qk ∈ DN-S for each k ∈ N by Remark 5.6. Let us 
see that (qk)U /∈ DN-S.

Since (qk)U acts on (L1)U , which is a L1(μ) space [16, Theorem 3.3], it is enough to show that ker(qk)U
is not reflexive, and this is true because it is not isomorphic to a subspace of Lq(μ) for some q > 1, by the 
main result of [22].

The previous example also shows that the class of dispersed subspaces is not stable under ultraproducts: 
each ker qk is dispersed, but ker(qk)U is not. However, we can prove the stability for a local variation of the 
notion of dispersed subspace.

Definition 5.8. Suppose that E is order continuous with a weak unit, and let n ∈ N and r > 0. A closed 
subspace M of E is (n, r)-dispersed if for each disjoint set {x1, . . . , xn} in SE there exists i ∈ {1, . . . , n} so 
that dist(xi, M) ≥ r.

In the conditions of Definition 5.8, a closed subspace M of E is (n, r)-dispersed if and only if the quotient 
map onto E/M is a DN-Sn,r operator. Therefore, by Proposition 5.3, M is dispersed if and only if it is 
(n, r)-dispersed for some n and r.

Proposition 5.9. Suppose that Ei is order continuous with a weak unit for each i ∈ I. Let U be a non-trivial 
ultrafilter on I. If for each i ∈ I, Mi is a (n, r)-dispersed subspace then (Mi)U is a (n, r)-dispersed subspace 
of (Ei)U .

Proof. It is a direct consequence of Proposition 5.4 and Remark 5.6. �
Observe that T ∈ DN-Sn,r and c > 0 implies cT ∈ DN-Sn,cr; hence N(T ) is not necessarily (n, r)-

dispersed, and there is no perturbative characterization for T ∈ DN-Sn,r.
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