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1. Introduction

In a Banach lattice E we can consider two kinds of closed subspaces: those generated by a disjoint sequence
of non-zero vectors, and those that are at a positive distance of every normalized disjoint sequence. The
later ones are called dispersed subspaces in [12]. In the study of operators acting on E it is useful to consider
their action on these kinds of subspaces (see [7]). The disjointly strictly singular operators (DSS operators,
for short) were introduced in [18] as those operators T : E — Y from a Banach lattice E into a Banach
space Y such that T is an isomorphism on no closed subspace of E generated by a disjoint sequence of
non-zero vectors. These operators have been applied to the study of the structure of Banach lattices (see
[6] and references therein). More recently, the disjointly non-singular operators (DN-S operators, for short)
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where introduced in [12] as those operators T': E — Y from a Banach lattice E to a Banach space Y that
are strictly singular in no closed subspace of E generated by a disjoint sequence of non-zero vectors. The
DN-S operators have also been studied in [1] and [13]. Note that the kernel of a DN-S operator is a dispersed
subspace.

By [10, Theorem 2], an operator T': Ly — Y is DN-S if and only it is tauberian in the sense of Kalton and
Wilansky [20]. In this case the second conjugate T** : L}* — Y™** and the ultrapowers Ty, : (L1)y — Yy are
also DN-S, and the operator T : L*/L; — Y**/Y induced by T** is an (into) isomorphism; see [10,11].

In this paper we extend these results for F = L; to the operators in DN-S(E,Y) when FE is order
continuous with a weak unit. Our main tool is the fact that in this case F admits a representation as a dense
sublattice of some Lq(u) space with p a probability measure. We characterize the operators in DN-S(E,Y)
in terms of their action over the normalized sequences (x,) in F satisfying lim, . p(suppz,) = 0. As a
consequence, T is an isomorphism on the closed band E4 of E generated by a measurable set A when p(A)
is small enough. Moreover, using the push-out construction, we show that every operator T' € DN-S(E,Y)
admits an extension T € DN-S(L1(u), PO), where PO is the push-out Banach space. From this result,
we derive that each T € DN-S(E,Y) is a tauberian operator such that T** is tauberian and T is an
(into) isomorphism. Also, using a local variation of the notion of DN-S operator, we prove that the class
of DN-S operators is preserved by ultrapowers, we give an example showing that it is not preserved by
ultraproducts, and we introduce and study the (n,r)-dispersed subpaces, a local variation of the notion
of dispersed subspace. Moreover, when E contains no copies of ¢y and admits a weak unit, we show that
T € DN-S(E,Y) implies T** € DN-S.

Notations. Throughout the paper X and Y are Banach spaces, E is a Banach lattice and By = {x € E :
x > 0}. The unit sphere of X is Sx = {z € X : ||z|| = 1}, and for a sequence (z,) in X, [x,] denotes
the closed subspace generated by (z,). We also denote d(E) = {(z,) C E \ {0} : (z,) disjoint}, and
dn(E) = {(x,) C Sg : (z,) disjoint}.

Operators always are linear and continuous, and L(X,Y") denotes the set of all operators from X into Y.
Given T € L(X,Y), N(T) is the kernel of T, R(T) is the range of T, and we denote by Tis the restriction
of T € L(X,Y) to a closed subspace M of X.

An operator T' € L(X,Y) is strictly singular if there is no closed infinite dimensional subspace M of X
such that T is an isomorphism; the operator T is upper semi-Fredholm if N(T') is finite dimensional and
R(T) is closed; and T is tauberian if its second conjugate T** : X** — Y** satisfies T**~1(Y) = X [20];
equivalently, if the operator T : X**/X — Y**/Y induced by T** is injective. We refer to [15] for the
properties of T<°.

2. Preliminaries

An operator T € L(E,Y) is disjointly strictly singular, and we write T € DSS(E,Y), if there is no
(z5,) € d(E) such that T}, ) is an isomorphism. The class DSS was introduced by Herndndez and Rodriguez-
Salinas in [18] and [17]. The operator T' is disjointly non-singular, and we write T' € DN-S(E,Y), if there
is no (z,,) € d(£) such that Tj,  is strictly singular. The class DN-S was introduced in [12], and studied in
[1] and [13]. Note that DN-S(Lq,Y") is the set of tauberian operators from L; into Y (see [10,12]). We refer
to [14] and [11] for information on tauberian operators. A closed subspace M of FE is dispersed if there is
no (z,) € dn(E) such that lim,_, dist(x,, M) = 0.

A sequence (z,,) in E is unbounded norm convergent (or un-convergent) to x € E if (|x, —x|Au) converges
in norm to 0 for each u € E, [23]. In this case we write z,, — .

The disjointly non-singular operators can be characterized as follows.
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Theorem 2.1. [12, Theorems 2.8 and 2.10] For an operator T € L(E,Y), the following assertions are
equivalent:

(1) T is disjointly non-singular.

(2) For every (xy,) € d(E), the restriction T, is an upper semi-Fredholm operator.
(3) For every (x,) € dn(E), liminf, , [|[Tz,| > 0.

(4) For every compact operator S € L(E,Y), N(T + S) is dispersed.

Theorem 2.2. [1, Theorem 5.3] Suppose that E is order continuous. For T € L(E,Y), the following assertions
are equivalent:

(1) T is disjointly non-singular.
(2) For no normalized un-null sequence (x,,) we have lim,_, || Tx,|| = 0.
(3) There exists v > 0 such that for every (z,) € dn(E), Uminf, o ||Txy| > 7.

A Banach lattice E is order continuous if every net in E decreasing in order to 0 converges in norm to
0; and a weak unit in E is a vector e € E such that |||z]| A e]| = 0 implies z = 0. We refer to [21,24] for
information on order continuous Banach lattices.

2.1. Representation of order continuous Banach lattices

In [21, Theorem 1.b.14] it is shown that every order continuous Banach lattice E' with a weak unit admits
a representation as a Kothe function space, in the sense that there exists a probability space (2,3, ) so
that

o Loo(u) C EC Li(p) with E dense in Ly (u) and Lo (i) dense in E,

o Al < Iflle < 201 fllec when f € Loo(n),
o the order in E coincides with the one induced by Li(u).

In the paper, one such representation is fixed for each E order continuous with a weak unit. For vectors
in L1(u), we denote by x, £ & the convergence in measure.

Among the order continuous Banach lattices with a weak unit we have some rearrangement invariant
(r.i., for short) function spaces on (0, 1). Besides L,(0,1) (1 < p < 00), the most commonly used r.i. function
spaces on (0,1) are the Orlicz spaces and the Lorentz spaces (see [21, Section 2a]). Below we give a brief
description of the second ones.

Example 2.3. Let 1 < p < oo and let W be a positive non-increasing continuous function on (0, 1] so that
lim; o W(t) = oo and fol W (t) = 1. The Lorentz function space Ly,,(0,1) is the space of all measurable
functions f on (0, 1) such that

1 1/p
Iflws = | [ erwnd | <.
0
where f* is the decreasing rearrangement of | f|.

The space Ly,,(0,1) is a r.i. function space on (0, 1) different from L4 (0, 1).

The following result will be useful.
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Lemma 2.4. [3, Corollary 2.12, Theorem 4.6] Let E be an order continuous Banach lattice with a weak unit
e, and let (x,) C E. Then the following statements are equivalent:

(1) z, =5 0.
(2) (|zn| A e) converges in norm to 0.
(3) x, 2= 0.

For an order continuous Banach lattice F with a weak unit e, we define the support of x € E as
suppz = {t € Q: z(t) # 0}.

Corollary 2.5. Suppose that E is order continuous with a weak unit. Then each sequence (xy) in E with
lim,, 00 pt (SUpp ) = 0 4s un-convergent to 0.

Proof. Note that lim,, oo ft (supp ) = 0 implies z,, - 0. O
2.2. Ultraproducts of spaces and operators

Let I be a set admitting a non-trivial ultrafilter & and let (X;);c; and (Y;)ier be families of Banach
spaces. The ultraproduct (X;)y of (X;);er is defined as the quotient of ¢, (I, X;) by the closed subspace

Nu(X:) = {(@:) € Lo, X,) ¢ lim [l = O}

The element of (X;),, which has (x;) € £ (I, X;) as a representative is denoted [(z;)].

When X; = X for each ¢ € I, we denote the ultraproduct by X;;, and we call it an ultrapower of X.

If each X; is a Banach lattice then (X;);, has a natural structure of Banach lattice: [(z;)] < [(y;)] if there
exists (z;) € Ny(X;) such that x; + z; < y; for each i € I.

If (T})ier is a bounded family of operators with T; € L(X;,Y;) for each ¢ € I, the ultraproduct (T;)y €
L((X)u, (Yo)u) is defined by (T;)u[(x;)] = [(Tix;)]. When T; = T for each i € I, we write Ty, which is called
an ultrapower of T'. We refer to [4, Chapter 8] or [16] for additional information on ultraproducts of spaces
and operators.

3. Disjointly non-singular operators
We begin with a complement to Theorem 2.2.

Theorem 3.1. Let E be an order continuous Banach lattice with a weak unit. For T € L(E,Y), the following
assertions are equivalent:

(1) T is disjointly non-singular.

(2) There exists r > 0 such that for every (x,,) in Sg with im, o p (sSuppx,) = 0, iminf, o0 [|Txn|| > r.
(3) For every (x,) in Sg with lim, o 1 (suppx,,) = 0, liminf,, o ||T2z,| > 0.

(4) There is r > 0 such that for every x € Sg with u(suppx) < r we have ||Tx| > r.

Proof. (1)=-(2) Suppose that T is disjointly non-singular. Without loss of generality, we can assume
that ||T]] = 1. By Theorem 2.2, there is » > 0 such that for every disjoint sequence (z,) in Sg,
liminf,, o |T2n ]| > 7.

If (2) fails, then we can find a sequence (z,,) in Sg with lim,,_,. g (supp ) = 0 and lim inf,,_, o || Tz, || <
r/2. Passing to a subsequence if necessary, we can assume that limsup,,_, . ||[Tz,|]| < r/2 and
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>0 w(suppzy,) < oo. We denote A, = U, suppz, and B, = Q\ A,. Then p(4,) — 0, (B,) in-
creases to 2 and, since FE is order continuous, (xxp, ) converges in norm to x for every x € E [24, Theorem
1.1].

First, we choose ny > 1 such that |1 —z1xB
1/2 and |y1| A |zj| = 0 for j > n4.

Next, we choose ny > ny such that [z,, — zn,XxB,,[| < 1/3, and denote y2 = z,,Xx5,,. Note that
| Tz, — Ty2| < 1/3 and |y;| Alz;| =0 for i = 1,2 and j > no.

Continuing in this way we obtain a disjoint sequence (y,) such that ||y,|| = 1 as n — oo and

< 1/2, and denote y; = x1xp,, - Note that || Tz, —Ty;[| <

w |

limsup,,_, o |TYn|| < /2. Thus taking z, = yn/||ynl|, we obtain a normalized disjoint sequence (z,) with
limsup,, , [|Tzn|| < r/2, and we get a contradiction.

(2)=-(3) is trivial.

(3)=(4) If (4) fails, we can find a sequence (x,) in Sg with p(suppx,) < 1/n and ||Tz,| < 1/n. So (3)
also fails.

(4)=(1) For every disjoint sequence (x,) in Sg, liminf, o ||Tz,| > r. Thus Theorem 2.2 implies that
T is disjointly non-singular. 0O

If E is order continuous with a weak unit, for each measurable set A with u(A) > 0, the set E4 = {z €
E :suppz C A} is a closed band in E.
From part (4) of Theorem 3.1 we derive:

Corollary 3.2. If E is order continuous with a weak unit and T € DN-S(E,Y), then there exists v > 0 such
that, when A is a measurable set with 0 < pu(A) < r, the restriction of T to E4 is an isomorphism.

Corollary 3.3. Let E be an order continuous r.i. function space on [0,1] and suppose that DN-S(E,Y) # ().
Then Y contains a subspace isomorphic to E.

Proof. Note that the characteristic function x|o 1) is a weak unit in E. Moreover, as in [21, Section 2.b], for
0 < s < 0o we consider the linear map Dy defined on the space of measurable functions on [0, 1] by

f(t/s), t <min{l,s
(D 1)) = { (0/, ) s<t<1 (in{case}s <1).
Clearly D, has norm one on Lo [0, 1] and norm s on L;[0, 1]. Thus, a result of Calderén (see [21, Theorem
2.a.10]) implies that D, is bounded on F with norm < max{l, s}.
If 1 <s <ooandr=s"' then D, is injective and D, Dyf = x[0,,f (see [21, Section 2.b]); hence D,
is an isomorphism of £ onto Ej ,j. Moreover, if T' € DN-S(£,Y’) then Corollary 3.2 implies that 7" is an
isomorphism on Ejy,j for r small enough. O

4. Push-outs and DN-S operators
Suppose that E is order continuous with a weak unit. We denote by j: E — L;(u) the inclusion of E
into Li(u), which is a (continuous) operator.

Given an operator T : E — Y, the push-out diagram for the pair j,T is

L}Y

[

|

Ly(n) —"— PO
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where A = {(Tz,—jz) : * € E} is a subspace of Y @; L;(u) with closure A, PO is the quotient
(Y @1 Li(1)) /A, and the operators J and T are defined by jy = (y,0) + A and Tf = (0, f) + A. See
[2, Section 1.3].

Note that 7 and T are continuous because they are restrictions of the quotient map onto PO, and the
push-out diagram is commutative: 7" = T1.

Proposition 4.1. Let E be an order continuous Banach lattice with a weak unit.

(1) The inclusion 3 : E — Li(u) is disjointly strictly singular (3 € DSS) if and only if for every (x,) €
dn(E), ||sznlli — 0 as n — oo.
(2) If E is an r.i. function space on (0,1) different from L1(0,1) then y: E — L1(0,1) is always DSS.

Proof. (1) For the direct implication, suppose that (z,) € dn(E) and C = inf,, |[jx,||1 > 0. Note that (z,,)
is an unconditional basic sequence and

Iy 2y aswa)lly = 122320 aawill, = 3224 laal - lywills

because (jx;) is a disjoint sequence in Lj (p1). Therefore,

Iy (Efil aixi)Hl > CZfil lai| > C HZ;.; aizil|

and j is an isomorphism on [x,].
The converse implication is immediate.
(2) is proved in [8, Corollary 4.4]. O

The following result is mentioned without proof in [5], Proposition 1.1 and post comment. For the
convenience of the reader we will sketch a proof.

Lemma 4.2. Let E be an order continuous Banach lattice with a weak unit.

(1) For every closed subspace N of E, the restriction of j to N is an isomorphism, or N is not dispersed.
(2) For every sequence (xy,) in Sg, inf ||x,|1 > 0 or there exists a subsequence (z,,) and a disjoint sequence
(zx) in E such that ||xn, — 2k]| = 0 as k — oo.

Proof. (1) is [21, Proposition 1.c.8] in disguise. Next we include part of the proof in [21] which will be
helpful to prove (2).

For x € E and ¢ > 0, put o(z,e) = {w € Q : |z(w)| > |||} and consider the set M(e) = {z €
E : u(o(x,e)) > et If N C M(e) for some € > 0 then ||y||1 > 2||y| for every y € N, hence j|n is an
isomorphism. Otherwise we can find (z,) C Sy such that z, ¢ M(27™) for all n, and there is a subsequence
(zn,) and a disjoint sequence (y;) in E such that ||z,, — y;]| = 0 as i — oo. Hence N is not dispersed.

(2) If (z,,) in Sg and inf ||z, ||z, = 0, then we can find a subsequence (2, ) with ||z, |1 < 272* for each
k. Thus x,, ¢ M(27%) and, as in the proof of (1), passing to a further subsequence if necessary, we can find
a disjoint sequence (z;) in F such that ||z, — 2] = 0ask — oco. O

Remark 4.3. By Proposition 4.1, both alternatives in Lemma 4.2 become dichotomies if and only if j: £ —
Li(p) is DSS.

Indeed, if j ¢ DSS then j is an isomorphism on the closed subspace generated by a normalized disjoint
sequence, which is not dispersed. Conversely, if there exists a closed subspace N which is not dispersed
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and j|n is an isomorphism, then each normalized disjoint sequence (z,) with lim,,_, dist(z,, N) = 0 has
a subsequence (z,, ) such that j is an isomorphism on [z,,]; hence j ¢ DSS.

We cousider the injective operator D : E — Y @1 Lq(p) defined by Dz = (Tx, —jx).

Proposition 4.4. Suppose that E is an order continuous Banach lattice with a weak unit, and let T € L(E,Y).

(1) If T € DN-S, then A is a closed subspace of Y @1 L1(p) and j is injective.
(2) If3: E — Li(p) is DSS and A is closed in Y @1 L1(p) then T € DN-S.

Proof. (1) Suppose that A = R(D) is not closed. Then there is a sequence (x,) in Sg such that ||Dz,| =
ITzn| + ||znllt — 0 as n — oo. By part (2) in Lemma 4.2, there is a subsequence (x,, ) and a disjoint
sequence (z;) in E such that ||z, — z;|| = 0. Hence ||Tz;|| — 0, and Theorem 2.1 implies that T ¢ DN-S.

Also, jy = 0 implies (y,0) € A = A; thus (y,0) = (Tx, —)x) for some x € E. Since j is injective, z = 0
and y = Tx = 0. Hence J is injective.

(2) Suppose that T' ¢ DN-S. Then there exists (z,,) € dn(E) such that [|[Tz,| — 0. Since ||jz,|1 — 0,
R(D) = A is non-closed. O

When both j and J are injective, we can see T as an extension of 7.

Theorem 4.5. Suppose that E is an order continuous Banach lattice with a weak unit, and let T €
DN-S(E,Y).

(1) T € DN-S(Ly (), PO); equivalently, T is tauberian.
(2) T is a tauberian operator.
(3) T** is tauberian and T is an (into) isomorphism.

Proof. Since T € DN-S(E,Y), the subspace A is closed by Proposition 4.4.
(1) Let (fn) be a disjoint sequence in Sy, (). Then T'f,, = (0, f,,) + A and

Tf,l = inf ||T _ .
1T fnl wlgEII ol + [ fn =32l L,

Since liminf,, o0 || fn — ||z, > 1 for each z € E, we get liminf, o |Tfnllz, > 1, hence T € DN-S by
Theorem 2.1.

(2) Note that Tf =0 < (0, f) € A & f = jx for some x € E and Tx = 0. Then N(T) = j (N(T)), which
is closed. Hence )|n(r) is an isomorphism onto N(T). Since T is tauberian, N(T) is reflexive, hence so is
N(T).

Now, if T'€ DN-S and S € L(E, F') is compact, then T + .S € DN-S [12, Corollary]. Therefore N (T + 5)
is reflexive for each compact S, hence 7' is tauberian by the main result of [14].

(3) The argument we gave in the proof of (2) shows that each T' € DN-S(E,Y) is supertauberian in the
sense of [9], because each reflexive subspace of L (u) is superreflexive and supertauberian operators admit
a perturbative characterization: T' € L(X,Y") is supertauberian if and only if N(T + K) is superreflexive for
each compact operator K € L(X,Y") [9, Theorem 15]. Moreover, if T' is supertauberian then 7% is an (into)
isomorphism [11, Proposition 6.5.3], and the last fact implies 7** tauberian because (7°°°)** = (T**)%° is
injective in this case. O

Question 1. Suppose that E is an order continuous Banach lattice with a weak unit.
Is it true that T € DN-S(Ly (i), PO) implies T € DN-S(E,Y)?
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We conjecture that, under the hypothesis of Theorem 4.5, T** € DN-S. Next we prove a special case
of this conjecture. Observe that, for E, containing no copies of ¢y is slightly stronger than being order
continuous [24, Chapter 7).

Proposition 4.6. Suppose that E is a Banach lattice with a weak unit that contains no copies of co, and let
T € DN-S(E,Y). Then T** € DN-S(E**,Y**).

Proof. Since F contains no copies of ¢y, the canonical copy of E in E** is a projection band [21, Theorem
1.c.4]. Thus, denoting E+ = {z € E** : |z| A |2| = 0 for each x € E}, we have that E** = E @ E*. Let P
denote the projection on E** onto E with kernel E+, and let ¢ : Y** — Y**/Y denote the quotient map.

By part (3) in Theorem 4.5, T is an isomorphism (into); hence so is ¢7** on E*. Therefore, given a
normalized disjoint sequence (z,) in E** and denoting x,, = Pz, and y, = (I — P)z,, the sequence (z,,)
is disjoint in E and there exists C' > 0 such that |T**z,| > Cmax{||Tx,|,||¢T**yn|} for each n. Hence
liminf [|T%*z,|| > 0, and we conclude T** € DN-S. O

5. Ultraproducts of operators

Here we prove the stability of the class of DN-S operators under ultrapowers when E is order continuous
with a weak unit. The following local variation of the notion of DN-S operator will be useful.

Definition 5.1. Let n € N and r > 0. An operator T' € L(E,Y) is in the class DN-S,, , if for each normalized
disjoint (z;)]; in E we have maxi<;<y, || Tz;|| > r.

Next we state a characterization of the class DN-S,, ,. that was given in the proof of [19, Lemma 2.2] for
E =Y a Ly space. For x € E we write z7 =2 V0 and 2~ = (—z) V0.

Proposition 5.2. Suppose that E is a Banach lattice and T € L(E,Y). Then T € DN-S, . if and only if
for every € > 0 there is 6 > 0 such that if x1,...,x, € Sg and |||z;| Alz;||| < 6 for 1 < i < j < n then
maxi<i<n ||[T2;|| >r —e.

Proof. For the direct implication, if z1, ...z, € Sg satisfy |||z;|A|x;||| < & for i # j, we define z; = z;7 —z;

by
g = = (@ A (Vima])) and 2 =2y = (27 A (Vigiy))-
Then the vectors z; are pairwise disjoint and 1 — 2nd < ||z;]] < 1. Applying the DN-S,, , condition to
(zi/112ill)i=y we get maxi<;<n || Tx;i|| > r —¢ if 6 = (e, n,||T|) is small enough.
The converse implication is immediate. O

The next result was proved in [19] for operators acting on a Ly space using Kakutani’s representation
theorem.

Proposition 5.3. Suppose that E is order continuous with a weak unit. An operator T € L(E,Y) is in DN-S
if and only if T € DN-S,, , for somen € N and r > 0.

Proof. If T' € DN-S,, ., then for every (x,) € dn(E), liminf,, ||Tz,| > 7. Thus, by Theorem 2.1,
T € DN-S.

Conversely, suppose that T' € DN-S,, ;. for no pair n € N and r > 0. Then for each n € N we can find a
normalized disjoint (), with maxj<;<, [|T2}] < 1/n. This fact contradicts (4) in Theorem 3.1, hence

T ¢ DN-S. O



M. Gonzdlez, A. Martinén / J. Math. Anal. Appl. 530 (2024) 127685 9

As a consequence, DN-S,, ;. is stable under ultraproducts:

Proposition 5.4. Suppose that E; is order continuous with a weak unit for each i € I. Let U be a non-trivial
ultrafilter on I. If (T;)ier is a bounded family with T, € DN-S,, ,(E;,Y;) for each i € I then (T;)y € DN-S,, ;.

Proof. Two vectors [(x;)],[(v:)] in (E;)y are disjoint if and only if lim; .y |||z:| A |y:]|] = 0. In this case,
for each 0 > 0, {i € I : |||zi| A |yilll < 6} € U; hence we can choose the representatives (x;), (y;) so that
i) A |yilll < 6 for every i € I. Since (T;);cr is bounded, for each ¢ > 0 we can choose § = d(e,n) in
Proposition 5.2 which is valid for all T;, and conclude that (T;)y € DN-S,, .. O

Corollary 5.5. Suppose that E is order continuous with a weak unit, and let U be a non-trivial ultrafilter. If
T € DN-S(E,Y) then the ultrapower Ty € DN-S.

As a consequence of the following observation, we shall show that the class of DN-S operators is not
stable under ultraproducts, by constructing a sequence (g;) C DN-S such that (¢;) C DN-S,, ;- for no pair

(n,7).

Remark 5.6. It follows from [12, Proposition 2.12] that a closed subspace M of E is dispersed if and only if
the quotient map ¢ : E — E/M is a DN-S operator.

Example 5.7. Let U be a non-trivial ultrafilter on N. By [21, Corollary 2.£.5], for each k € N with k& > 2,
there exists a subspace M), of Ly = L1(0, 1) isometric to Ly /4. Since reflexive subspaces of L1(0,1) are
dispersed, if g : L1 — L1/Mj, is the quotient map, then g € DN-S for each k € N by Remark 5.6. Let us
see that (qx)y ¢ DN-S.

Since (qx )y acts on (Lq)y, which is a L;j(u) space [16, Theorem 3.3], it is enough to show that ker(gs )y
is not reflexive, and this is true because it is not isomorphic to a subspace of Lq(u) for some g > 1, by the
main result of [22].

The previous example also shows that the class of dispersed subspaces is not stable under ultraproducts:
each ker gy, is dispersed, but ker(qy )y is not. However, we can prove the stability for a local variation of the
notion of dispersed subspace.

Definition 5.8. Suppose that F is order continuous with a weak unit, and let n € N and r > 0. A closed
subspace M of E is (n,r)-dispersed if for each disjoint set {x1,...,2,} in Sg there exists i € {1,...,n} so
that dist(x;, M) > r.

In the conditions of Definition 5.8, a closed subspace M of E is (n, r)-dispersed if and only if the quotient
map onto E/M is a DN-S,,, operator. Therefore, by Proposition 5.3, M is dispersed if and only if it is
(n,r)-dispersed for some n and r.

Proposition 5.9. Suppose that E; is order continuous with a weak unit for each ¢ € 1. Let U be a non-trivial
ultrafilter on I. If for each i € I, M; is a (n,r)-dispersed subspace then (M;)y is a (n,r)-dispersed subspace
Of (Ez)z,{

Proof. It is a direct consequence of Proposition 5.4 and Remark 5.6. O

Observe that T € DN-S,,, and ¢ > 0 implies ¢I'" € DN-S,, .; hence N(T) is not necessarily (n,r)-
dispersed, and there is no perturbative characterization for T' € DN-S,, ...
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