Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Disjointly non-singular operators: Extensions and local variations $\stackrel{\bigstar}{\Rightarrow}$

Manuel González $^{\mathrm{a},*},$ Antonio Martinón $^{\mathrm{b}}$

 ^a Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander, Spain
^b Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, E-38271

[•] Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, E-38271 La Laguna (Tenerife), Spain

ARTICLE INFO

Article history: Received 16 January 2023 Available online 14 August 2023 Submitted by V. Troitsky

Keywords: Disjointly non-singular operator Disjointly strictly singular operator Order continuous Banach lattice Unbounded norm convergence

ABSTRACT

The disjointly non-singular (DN-S) operators $T \in L(E, Y)$ from a Banach lattice E to a Banach space Y are those operators which are strictly singular in no closed subspace generated by a disjoint sequence of non-zero vectors. When E is order continuous with a weak unit, E can be represented as a dense ideal in some $L_1(\mu)$ space, and we show that each $T \in \text{DN-S}(E, Y)$ admits an extension $\overline{T} \in \text{DN-S}(L_1(\mu), \text{PO})$, where PO is certain Banach space, from which we derive that both T and T^{**} are tauberian operators and that the operator $T^{co} : E^{**}/E \to Y^{**}/Y$ induced by T^{**} is an (into) isomorphism. Also, using a local variation of the notion of DN-S operators. Moreover, when E contains no copies of c_0 and admits a weak unit, we show that $T \in \text{DN-S}(E, Y)$ implies $T^{**} \in \text{DN-S}(E^{**}, Y^{**})$.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In a Banach lattice E we can consider two kinds of closed subspaces: those generated by a disjoint sequence of non-zero vectors, and those that are at a positive distance of every normalized disjoint sequence. The later ones are called *dispersed subspaces* in [12]. In the study of operators acting on E it is useful to consider their action on these kinds of subspaces (see [7]). The *disjointly strictly singular* operators (DSS operators, for short) were introduced in [18] as those operators $T : E \to Y$ from a Banach lattice E into a Banach space Y such that T is an isomorphism on no closed subspace of E generated by a disjoint sequence of non-zero vectors. These operators have been applied to the study of the structure of Banach lattices (see [6] and references therein). More recently, the disjointly non-singular operators (DN-S operators, for short)

^{*} Supported in part by MICINN (Spain), Grant PID2019-103961GB-C22.

* Corresponding author.

https://doi.org/10.1016/j.jmaa.2023.127685

E-mail addresses: manuel.gonzalez@unican.es (M. González), anmarce@ull.es (A. Martinón).

 $⁰⁰²²⁻²⁴⁷X/\odot 2023$ The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

where introduced in [12] as those operators $T: E \to Y$ from a Banach lattice E to a Banach space Y that are strictly singular in no closed subspace of E generated by a disjoint sequence of non-zero vectors. The DN-S operators have also been studied in [1] and [13]. Note that the kernel of a DN-S operator is a dispersed subspace.

By [10, Theorem 2], an operator $T: L_1 \to Y$ is DN-S if and only it is tauberian in the sense of Kalton and Wilansky [20]. In this case the second conjugate $T^{**}: L_1^{**} \to Y^{**}$ and the ultrapowers $T_{\mathcal{U}}: (L_1)_{\mathcal{U}} \to Y_{\mathcal{U}}$ are also DN-S, and the operator $T^{co}: L_1^{**}/L_1 \to Y^{**}/Y$ induced by T^{**} is an (into) isomorphism; see [10,11].

In this paper we extend these results for $E = L_1$ to the operators in DN-S(E, Y) when E is order continuous with a weak unit. Our main tool is the fact that in this case E admits a representation as a dense sublattice of some $L_1(\mu)$ space with μ a probability measure. We characterize the operators in DN-S(E, Y) in terms of their action over the normalized sequences (x_n) in E satisfying $\lim_{n\to\infty} \mu(\supp x_n) = 0$. As a consequence, T is an isomorphism on the closed band E_A of E generated by a measurable set A when $\mu(A)$ is small enough. Moreover, using the push-out construction, we show that every operator $T \in \text{DN-S}(E, Y)$ admits an extension $\overline{T} \in \text{DN-S}(L_1(\mu), \text{PO})$, where PO is the push-out Banach space. From this result, we derive that each $T \in \text{DN-S}(E, Y)$ is a tauberian operator such that T^{**} is tauberian and T^{co} is an (into) isomorphism. Also, using a local variation of the notion of DN-S operator, we prove that the class of DN-S operators is preserved by ultrapowers, we give an example showing that it is not preserved by ultraproducts, and we introduce and study the (n, r)-dispersed subpaces, a local variation of the notion of dispersed subspace. Moreover, when E contains no copies of c_0 and admits a weak unit, we show that $T \in \text{DN-S}(E, Y)$ implies $T^{**} \in \text{DN-S}$.

Notations. Throughout the paper X and Y are Banach spaces, E is a Banach lattice and $E_+ = \{x \in E : x \ge 0\}$. The unit sphere of X is $S_X = \{x \in X : ||x|| = 1\}$, and for a sequence (x_n) in X, $[x_n]$ denotes the closed subspace generated by (x_n) . We also denote $d(E) = \{(x_n) \subset E \setminus \{0\} : (x_n) \text{ disjoint}\}$, and $dn(E) = \{(x_n) \subset S_E : (x_n) \text{ disjoint}\}$.

Operators always are linear and continuous, and L(X, Y) denotes the set of all operators from X into Y. Given $T \in L(X, Y)$, N(T) is the kernel of T, R(T) is the range of T, and we denote by T_M the restriction of $T \in L(X, Y)$ to a closed subspace M of X.

An operator $T \in L(X, Y)$ is strictly singular if there is no closed infinite dimensional subspace M of X such that T_M is an isomorphism; the operator T is upper semi-Fredholm if N(T) is finite dimensional and R(T) is closed; and T is tauberian if its second conjugate $T^{**} : X^{**} \to Y^{**}$ satisfies $T^{**-1}(Y) = X$ [20]; equivalently, if the operator $T^{co} : X^{**}/X \to Y^{**}/Y$ induced by T^{**} is injective. We refer to [15] for the properties of T^{co} .

2. Preliminaries

An operator $T \in L(E, Y)$ is disjointly strictly singular, and we write $T \in DSS(E, Y)$, if there is no $(x_n) \in d(E)$ such that $T_{[x_n]}$ is an isomorphism. The class DSS was introduced by Hernández and Rodríguez-Salinas in [18] and [17]. The operator T is disjointly non-singular, and we write $T \in DN-S(E, Y)$, if there is no $(x_n) \in d(E)$ such that $T_{[x_n]}$ is strictly singular. The class DN-S was introduced in [12], and studied in [1] and [13]. Note that $DN-S(L_1, Y)$ is the set of tauberian operators from L_1 into Y (see [10,12]). We refer to [14] and [11] for information on tauberian operators. A closed subspace M of E is dispersed if there is no $(x_n) \in dn(E)$ such that $\lim_{n\to\infty} dist(x_n, M) = 0$.

A sequence (x_n) in E is unbounded norm convergent (or un-convergent) to $x \in E$ if $(|x_n - x| \land u)$ converges in norm to 0 for each $u \in E_+$ [23]. In this case we write $x_n \xrightarrow{un} x$.

The disjointly non-singular operators can be characterized as follows.

3

Theorem 2.1. [12, Theorems 2.8 and 2.10] For an operator $T \in L(E, Y)$, the following assertions are equivalent:

- (1) T is disjointly non-singular.
- (2) For every $(x_n) \in d(E)$, the restriction $T_{[x_n]}$ is an upper semi-Fredholm operator.
- (3) For every $(x_n) \in dn(E)$, $\liminf_{n \to \infty} ||Tx_n|| > 0$.
- (4) For every compact operator $S \in L(E, Y)$, N(T+S) is dispersed.

Theorem 2.2. [1, Theorem 5.3] Suppose that E is order continuous. For $T \in L(E, Y)$, the following assertions are equivalent:

- (1) T is disjointly non-singular.
- (2) For no normalized un-null sequence (x_n) we have $\lim_{n\to\infty} ||Tx_n|| = 0$.
- (3) There exists r > 0 such that for every $(x_n) \in dn(E)$, $\liminf_{n \to \infty} ||Tx_n|| > r$.

A Banach lattice E is order continuous if every net in E decreasing in order to 0 converges in norm to 0; and a weak unit in E is a vector $e \in E_+$ such that $|||x| \wedge e|| = 0$ implies x = 0. We refer to [21,24] for information on order continuous Banach lattices.

2.1. Representation of order continuous Banach lattices

In [21, Theorem 1.b.14] it is shown that every order continuous Banach lattice E with a weak unit admits a representation as a Köthe function space, in the sense that there exists a probability space (Ω, Σ, μ) so that

- $L_{\infty}(\mu) \subset E \subset L_1(\mu)$ with E dense in $L_1(\mu)$ and $L_{\infty}(\mu)$ dense in E,
- $||f||_1 \le ||f||_E \le 2||f||_\infty$ when $f \in L_\infty(\mu)$,
- the order in E coincides with the one induced by $L_1(\mu)$.

In the paper, one such representation is fixed for each E order continuous with a weak unit. For vectors in $L_1(\mu)$, we denote by $x_n \xrightarrow{\mu} x$ the convergence in measure.

Among the order continuous Banach lattices with a weak unit we have some rearrangement invariant (r.i., for short) function spaces on (0, 1). Besides $L_p(0, 1)$ $(1 \le p < \infty)$, the most commonly used r.i. function spaces on (0, 1) are the Orlicz spaces and the Lorentz spaces (see [21, Section 2a]). Below we give a brief description of the second ones.

Example 2.3. Let $1 \le p < \infty$ and let W be a positive non-increasing continuous function on (0, 1] so that $\lim_{t\to 0} W(t) = \infty$ and $\int_0^1 W(t) = 1$. The Lorentz function space $L_{W,p}(0, 1)$ is the space of all measurable functions f on (0, 1) such that

$$||f||_{W,p} = \left(\int_{0}^{1} f^{*}(t)^{p} W(t) dt\right)^{1/p} < \infty$$

where f^* is the decreasing rearrangement of |f|.

The space $L_{W,p}(0,1)$ is a r.i. function space on (0,1) different from $L_1(0,1)$.

The following result will be useful.

Lemma 2.4. [3, Corollary 2.12, Theorem 4.6] Let E be an order continuous Banach lattice with a weak unit e, and let $(x_n) \subset E$. Then the following statements are equivalent:

- (1) $x_n \xrightarrow{un} 0.$
- (2) $(|x_n| \wedge e)$ converges in norm to 0.
- (3) $x_n \xrightarrow{\mu} 0.$

For an order continuous Banach lattice E with a weak unit e, we define the support of $x \in E$ as $\sup p x = \{t \in \Omega : x(t) \neq 0\}.$

Corollary 2.5. Suppose that E is order continuous with a weak unit. Then each sequence (x_k) in E with $\lim_{n\to\infty} \mu(\sup x_n) = 0$ is un-convergent to 0.

Proof. Note that $\lim_{n\to\infty} \mu(\operatorname{supp} x_n) = 0$ implies $x_n \xrightarrow{\mu} 0$. \Box

2.2. Ultraproducts of spaces and operators

Let I be a set admitting a non-trivial ultrafilter \mathcal{U} and let $(X_i)_{i \in I}$ and $(Y_i)_{i \in I}$ be families of Banach spaces. The ultraproduct $(X_i)_{\mathcal{U}}$ of $(X_i)_{i \in I}$ is defined as the quotient of $\ell_{\infty}(I, X_i)$ by the closed subspace

$$N_{\mathcal{U}}(X_i) = \{ (x_i) \in \ell_{\infty}(I, X_i) : \lim_{i \to \mathcal{U}} ||x_i|| = 0 \}.$$

The element of $(X_i)_{\mathcal{U}}$ which has $(x_i) \in \ell_{\infty}(I, X_i)$ as a representative is denoted $[(x_i)]$.

When $X_i = X$ for each $i \in I$, we denote the ultraproduct by $X_{\mathcal{U}}$, and we call it an ultrapower of X. If each X_i is a Banach lattice then $(X_i)_{\mathcal{U}}$ has a natural structure of Banach lattice: $[(x_i)] \leq [(y_i)]$ if there exists $(z_i) \in N_{\mathcal{U}}(X_i)$ such that $x_i + z_i \leq y_i$ for each $i \in I$.

If $(T_i)_{i \in I}$ is a bounded family of operators with $T_i \in L(X_i, Y_i)$ for each $i \in I$, the ultraproduct $(T_i)_{\mathcal{U}} \in L((X_i)_{\mathcal{U}}, (Y_i)_{\mathcal{U}})$ is defined by $(T_i)_{\mathcal{U}}[(x_i)] = [(T_i x_i)]$. When $T_i = T$ for each $i \in I$, we write $T_{\mathcal{U}}$ which is called an ultrapower of T. We refer to [4, Chapter 8] or [16] for additional information on ultraproducts of spaces and operators.

3. Disjointly non-singular operators

We begin with a complement to Theorem 2.2.

Theorem 3.1. Let E be an order continuous Banach lattice with a weak unit. For $T \in L(E, Y)$, the following assertions are equivalent:

- (1) T is disjointly non-singular.
- (2) There exists r > 0 such that for every (x_n) in S_E with $\lim_{n \to \infty} \mu(\operatorname{supp} x_n) = 0$, $\lim_{n \to \infty} ||Tx_n|| > r$.
- (3) For every (x_n) in S_E with $\lim_{n\to\infty} \mu(\operatorname{supp} x_n) = 0$, $\lim \inf_{n\to\infty} ||Tx_n|| > 0$.
- (4) There is r > 0 such that for every $x \in S_E$ with $\mu(\operatorname{supp} x) < r$ we have ||Tx|| > r.

Proof. $(1) \Rightarrow (2)$ Suppose that T is disjointly non-singular. Without loss of generality, we can assume that ||T|| = 1. By Theorem 2.2, there is r > 0 such that for every disjoint sequence (z_n) in S_E , $\liminf_{n\to\infty} ||Tz_n|| > r$.

If (2) fails, then we can find a sequence (x_n) in S_E with $\lim_{n\to\infty} \mu(\operatorname{supp} x_n) = 0$ and $\lim_{n\to\infty} \|Tx_n\| < r/2$. Passing to a subsequence if necessary, we can assume that $\lim_{n\to\infty} \|Tx_n\| < r/2$ and

 $\sum_{n=1}^{\infty} \mu(\operatorname{supp} x_n) < \infty$. We denote $A_n = \bigcup_{k=n}^{\infty} \operatorname{supp} x_n$ and $B_n = \Omega \setminus A_n$. Then $\mu(A_n) \to 0$, (B_n) increases to Ω and, since E is order continuous, $(x\chi_{B_n})$ converges in norm to x for every $x \in E$ [24, Theorem 1.1].

First, we choose $n_1 > 1$ such that $||x_1 - x_1 \chi_{B_{n_1}}|| < 1/2$, and denote $y_1 = x_1 \chi_{B_{n_1}}$. Note that $||Tx_1 - Ty_1|| < 1/2$ and $|y_1| \wedge |x_j| = 0$ for $j \ge n_1$.

Next, we choose $n_2 > n_1$ such that $||x_{n_1} - x_{n_1}\chi_{B_{n_2}}|| < 1/3$, and denote $y_2 = x_{n_1}\chi_{B_{n_2}}$. Note that $||Tx_{n_1} - Ty_2|| < 1/3$ and $|y_i| \wedge |x_j| = 0$ for i = 1, 2 and $j \ge n_2$.

Continuing in this way we obtain a disjoint sequence (y_n) such that $||y_n|| \to 1$ as $n \to \infty$ and $\limsup_{n\to\infty} ||Ty_n|| < r/2$. Thus taking $z_n = y_n/||y_n||$, we obtain a normalized disjoint sequence (z_n) with $\limsup_{n\to\infty} ||Tz_n|| < r/2$, and we get a contradiction.

 $(2) \Rightarrow (3)$ is trivial.

(3) \Rightarrow (4) If (4) fails, we can find a sequence (x_n) in S_E with $\mu(\operatorname{supp} x_n) < 1/n$ and $||Tx_n|| < 1/n$. So (3) also fails.

 $(4) \Rightarrow (1)$ For every disjoint sequence (x_n) in S_E , $\liminf_{n \to \infty} ||Tx_n|| \ge r$. Thus Theorem 2.2 implies that T is disjointly non-singular. \Box

If E is order continuous with a weak unit, for each measurable set A with $\mu(A) > 0$, the set $E_A = \{x \in E : \text{supp } x \subset A\}$ is a closed band in E.

From part (4) of Theorem 3.1 we derive:

Corollary 3.2. If E is order continuous with a weak unit and $T \in DN-S(E, Y)$, then there exists r > 0 such that, when A is a measurable set with $0 < \mu(A) < r$, the restriction of T to E_A is an isomorphism.

Corollary 3.3. Let *E* be an order continuous r.i. function space on [0,1] and suppose that DN- $S(E,Y) \neq \emptyset$. Then *Y* contains a subspace isomorphic to *E*.

Proof. Note that the characteristic function $\chi_{[0,1]}$ is a weak unit in *E*. Moreover, as in [21, Section 2.b], for $0 < s < \infty$ we consider the linear map D_s defined on the space of measurable functions on [0, 1] by

$$(D_s f)(t) = \begin{cases} f(t/s), & t \le \min\{1, s\} \\ 0, & s < t \le 1 \quad (\text{in case } s < 1). \end{cases}$$

Clearly D_s has norm one on $L_{\infty}[0, 1]$ and norm s on $L_1[0, 1]$. Thus, a result of Calderón (see [21, Theorem 2.a.10]) implies that D_s is bounded on E with norm $\leq \max\{1, s\}$.

If $1 < s < \infty$ and $r = s^{-1}$, then D_r is injective and $D_r D_s f = \chi_{[0,r]} f$ (see [21, Section 2.b]); hence D_r is an isomorphism of E onto $E_{[0,r]}$. Moreover, if $T \in \text{DN-S}(E, Y)$ then Corollary 3.2 implies that T is an isomorphism on $E_{[0,r]}$ for r small enough. \Box

4. Push-outs and DN-S operators

Suppose that E is order continuous with a weak unit. We denote by $J: E \longrightarrow L_1(\mu)$ the inclusion of E into $L_1(\mu)$, which is a (continuous) operator.

Given an operator $T: E \longrightarrow Y$, the *push-out diagram* for the pair j, T is

$$\begin{array}{cccc} E & \stackrel{T}{\longrightarrow} & Y \\ \downarrow & & \bar{\downarrow} \\ L_1(\mu) & \stackrel{\overline{T}}{\longrightarrow} & \text{PO} \end{array}$$

where $\Delta = \{(Tx, -jx) : x \in E\}$ is a subspace of $Y \oplus_1 L_1(\mu)$ with closure $\overline{\Delta}$, *PO* is the quotient $(Y \oplus_1 L_1(\mu)) / \overline{\Delta}$, and the operators \overline{j} and \overline{T} are defined by $\overline{j}y = (y, 0) + \overline{\Delta}$ and $\overline{T}f = (0, f) + \overline{\Delta}$. See [2, Section 1.3].

Note that \overline{j} and \overline{T} are continuous because they are restrictions of the quotient map onto PO, and the push-out diagram is commutative: $\overline{j}T = \overline{T}_{j}$.

Proposition 4.1. Let E be an order continuous Banach lattice with a weak unit.

- (1) The inclusion $j: E \to L_1(\mu)$ is disjointly strictly singular $(j \in DSS)$ if and only if for every $(x_n) \in dn(E), \|jx_n\|_1 \to 0 \text{ as } n \to \infty.$
- (2) If E is an r.i. function space on (0,1) different from $L_1(0,1)$ then $j: E \to L_1(0,1)$ is always DSS.

Proof. (1) For the direct implication, suppose that $(x_n) \in dn(E)$ and $C = \inf_n ||Jx_n||_1 > 0$. Note that (x_n) is an unconditional basic sequence and

$$\left\| \mathbf{j} \left(\sum_{i=1}^{\infty} a_i x_i \right) \right\|_1 = \left\| \sum_{i=1}^{\infty} a_i \mathbf{j} x_i \right\|_1 = \sum_{i=1}^{\infty} |a_i| \cdot \| \mathbf{j} x_i \|_1$$

because (jx_i) is a disjoint sequence in $L_1(\mu)$. Therefore,

$$\| \mathbf{j} \left(\sum_{i=1}^{\infty} a_i x_i \right) \|_1 \ge C \sum_{i=1}^{\infty} |a_i| \ge C \| \sum_{i=1}^{\infty} a_i x_i \|$$

and j is an isomorphism on $[x_n]$.

The converse implication is immediate.

(2) is proved in [8, Corollary 4.4]. \Box

The following result is mentioned without proof in [5], Proposition 1.1 and post comment. For the convenience of the reader we will sketch a proof.

Lemma 4.2. Let E be an order continuous Banach lattice with a weak unit.

- (1) For every closed subspace N of E, the restriction of j to N is an isomorphism, or N is not dispersed.
- (2) For every sequence (x_n) in S_E , $\inf ||x_n||_1 > 0$ or there exists a subsequence (x_{n_k}) and a disjoint sequence (z_k) in E such that $||x_{n_k} z_k|| \to 0$ as $k \to \infty$.

Proof. (1) is [21, Proposition 1.c.8] in disguise. Next we include part of the proof in [21] which will be helpful to prove (2).

For $x \in E$ and $\varepsilon > 0$, put $\sigma(x,\varepsilon) = \{\omega \in \Omega : |x(\omega)| \ge \varepsilon ||x||\}$ and consider the set $M(\varepsilon) = \{x \in E : \mu(\sigma(x,\varepsilon)) \ge \varepsilon\}$. If $N \subset M(\varepsilon)$ for some $\varepsilon > 0$ then $||y||_1 \ge \varepsilon^2 ||y||$ for every $y \in N$, hence $j|_N$ is an isomorphism. Otherwise we can find $(z_n) \subset S_N$ such that $z_n \notin M(2^{-n})$ for all n, and there is a subsequence (z_{n_i}) and a disjoint sequence (y_i) in E such that $||z_{n_i} - y_i|| \to 0$ as $i \to \infty$. Hence N is not dispersed.

(2) If (x_n) in S_E and $\inf ||x_n||_{L_1} = 0$, then we can find a subsequence (x_{n_k}) with $||x_{n_k}||_1 < 2^{-2k}$ for each k. Thus $x_{n_k} \notin M(2^{-k})$ and, as in the proof of (1), passing to a further subsequence if necessary, we can find a disjoint sequence (z_k) in E such that $||x_{n_k} - z_k|| \to 0$ as $k \to \infty$. \Box

Remark 4.3. By Proposition 4.1, both alternatives in Lemma 4.2 become dichotomies if and only if $j: E \to L_1(\mu)$ is DSS.

Indeed, if $j \notin DSS$ then j is an isomorphism on the closed subspace generated by a normalized disjoint sequence, which is not dispersed. Conversely, if there exists a closed subspace N which is not dispersed

and $J|_N$ is an isomorphism, then each normalized disjoint sequence (x_n) with $\lim_{n\to\infty} \operatorname{dist}(x_n, N) = 0$ has a subsequence (x_{n_k}) such that J is an isomorphism on $[x_{n_k}]$; hence $J \notin DSS$.

We consider the injective operator $D: E \to Y \oplus_1 L_1(\mu)$ defined by Dx = (Tx, -jx).

Proposition 4.4. Suppose that E is an order continuous Banach lattice with a weak unit, and let $T \in L(E, Y)$.

(1) If $T \in DN$ -S, then Δ is a closed subspace of $Y \oplus_1 L_1(\mu)$ and \overline{j} is injective.

(2) If $j: E \to L_1(\mu)$ is DSS and Δ is closed in $Y \oplus_1 L_1(\mu)$ then $T \in DN$ -S.

Proof. (1) Suppose that $\Delta = R(D)$ is not closed. Then there is a sequence (x_n) in S_E such that $||Dx_n|| = ||Tx_n|| + ||x_n||_1 \to 0$ as $n \to \infty$. By part (2) in Lemma 4.2, there is a subsequence (x_{n_k}) and a disjoint sequence (z_k) in E such that $||x_{n_k} - z_k|| \to 0$. Hence $||Tz_k|| \to 0$, and Theorem 2.1 implies that $T \notin DN$ -S.

Also, $\overline{\jmath}y = 0$ implies $(y, 0) \in \overline{\Delta} = \Delta$; thus $(y, 0) = (Tx, -\jmath x)$ for some $x \in E$. Since \jmath is injective, x = 0 and y = Tx = 0. Hence $\overline{\jmath}$ is injective.

(2) Suppose that $T \notin DN$ -S. Then there exists $(x_n) \in dn(E)$ such that $||Tx_n|| \to 0$. Since $||Jx_n||_1 \to 0$, $R(D) = \Delta$ is non-closed. \Box

When both j and \overline{j} are injective, we can see \overline{T} as an extension of T.

Theorem 4.5. Suppose that E is an order continuous Banach lattice with a weak unit, and let $T \in DN-S(E, Y)$.

(1) $\overline{T} \in DN$ -S(L₁(μ), PO); equivalently, \overline{T} is tauberian.

(2) T is a tauberian operator.

(3) T^{**} is tauberian and T^{co} is an (into) isomorphism.

Proof. Since $T \in \text{DN-S}(E, Y)$, the subspace Δ is closed by Proposition 4.4.

(1) Let (f_n) be a disjoint sequence in $S_{L_1(\mu)}$. Then $\overline{T}f_n = (0, f_n) + \Delta$ and

$$\|\overline{T}f_n\| = \inf_{x \in E} \|Tx\| + \|f_n - \mathbf{j}x\|_{L_1}.$$

Since $\liminf_{n\to\infty} \|f_n - \mathbf{j}x\|_{L_1} \ge 1$ for each $x \in E$, we get $\liminf_{n\to\infty} \|\overline{T}f_n\|_{L_1} \ge 1$, hence $\overline{T} \in \text{DN-S}$ by Theorem 2.1.

(2) Note that $\overline{T}f = 0 \Leftrightarrow (0, f) \in \Delta \Leftrightarrow f = jx$ for some $x \in E$ and Tx = 0. Then $N(\overline{T}) = j(N(T))$, which is closed. Hence $j|_{N(T)}$ is an isomorphism onto $N(\overline{T})$. Since \overline{T} is tauberian, $N(\overline{T})$ is reflexive, hence so is N(T).

Now, if $T \in \text{DN-S}$ and $S \in L(E, F)$ is compact, then $T + S \in \text{DN-S}$ [12, Corollary]. Therefore N(T + S) is reflexive for each compact S, hence T is tauberian by the main result of [14].

(3) The argument we gave in the proof of (2) shows that each $T \in \text{DN-S}(E, Y)$ is supertauberian in the sense of [9], because each reflexive subspace of $L_1(\mu)$ is superreflexive and supertauberian operators admit a perturbative characterization: $T \in L(X, Y)$ is supertauberian if and only if N(T+K) is superreflexive for each compact operator $K \in L(X, Y)$ [9, Theorem 15]. Moreover, if T is supertauberian then T^{co} is an (into) isomorphism [11, Proposition 6.5.3], and the last fact implies T^{**} tauberian because $(T^{co})^{**} \equiv (T^{**})^{co}$ is injective in this case. \Box

Question 1. Suppose that E is an order continuous Banach lattice with a weak unit. Is it true that $\overline{T} \in DN$ - $S(L_1(\mu), PO)$ implies $T \in DN$ -S(E, Y)? We conjecture that, under the hypothesis of Theorem 4.5, $T^{**} \in \text{DN-S}$. Next we prove a special case of this conjecture. Observe that, for E, containing no copies of c_0 is slightly stronger than being order continuous [24, Chapter 7].

Proposition 4.6. Suppose that E is a Banach lattice with a weak unit that contains no copies of c_0 , and let $T \in DN$ -S(E, Y). Then $T^{**} \in DN$ - $S(E^{**}, Y^{**})$.

Proof. Since E contains no copies of c_0 , the canonical copy of E in E^{**} is a projection band [21, Theorem 1.c.4]. Thus, denoting $E^{\perp} = \{z \in E^{**} : |x| \land |z| = 0 \text{ for each } x \in E\}$, we have that $E^{**} = E \oplus E^{\perp}$. Let P denote the projection on E^{**} onto E with kernel E^{\perp} , and let $q : Y^{**} \to Y^{**}/Y$ denote the quotient map.

By part (3) in Theorem 4.5, T^{co} is an isomorphism (into); hence so is qT^{**} on E^{\perp} . Therefore, given a normalized disjoint sequence (z_n) in E^{**} and denoting $x_n = Pz_n$ and $y_n = (I - P)z_n$, the sequence (x_n) is disjoint in E and there exists C > 0 such that $||T^{**}z_n|| \ge C \max\{||Tx_n||, ||qT^{**}y_n||\}$ for each n. Hence $\lim \inf ||T^{**}z_n|| > 0$, and we conclude $T^{**} \in \text{DN-S.}$

5. Ultraproducts of operators

Here we prove the stability of the class of DN-S operators under ultrapowers when E is order continuous with a weak unit. The following local variation of the notion of DN-S operator will be useful.

Definition 5.1. Let $n \in \mathbb{N}$ and r > 0. An operator $T \in L(E, Y)$ is in the class DN-S_{n,r} if for each normalized disjoint $(x_i)_{i=1}^n$ in E we have $\max_{1 \le i \le n} ||Tx_i|| \ge r$.

Next we state a characterization of the class DN-S_{n,r} that was given in the proof of [19, Lemma 2.2] for E = Y a L_1 space. For $x \in E$ we write $x^+ = x \vee 0$ and $x^- = (-x) \vee 0$.

Proposition 5.2. Suppose that E is a Banach lattice and $T \in L(E, Y)$. Then $T \in DN-S_{n,r}$ if and only if for every $\varepsilon > 0$ there is $\delta > 0$ such that if $x_1, \ldots, x_n \in S_E$ and $||x_i| \wedge |x_j||| < \delta$ for $1 \le i < j \le n$ then $\max_{1 \le i < n} ||Tx_i|| > r - \varepsilon$.

Proof. For the direct implication, if $x_1, \ldots, x_n \in S_E$ satisfy $||x_i| \wedge |x_j|| < \delta$ for $i \neq j$, we define $z_i = z_i^+ - z_i^-$ by

$$z_i^+ = x_i^+ - \left(x_i^+ \wedge (\vee_{j \neq i} x_j^+)\right) \quad \text{and} \quad z_i^- = x_i^- - \left(x_i^- \wedge (\vee_{j \neq i} x_j^-)\right).$$

Then the vectors z_i are pairwise disjoint and $1 - 2n\delta \leq ||z_i|| \leq 1$. Applying the DN-S_{n,r} condition to $(z_i/||z_i||)_{i=1}^n$ we get $\max_{1 \leq i \leq n} ||Tx_i|| > r - \varepsilon$ if $\delta = \delta(\varepsilon, n, ||T||)$ is small enough.

The converse implication is immediate. \Box

The next result was proved in [19] for operators acting on a L_1 space using Kakutani's representation theorem.

Proposition 5.3. Suppose that E is order continuous with a weak unit. An operator $T \in L(E, Y)$ is in DN-S if and only if $T \in DN$ - $S_{n,r}$ for some $n \in \mathbb{N}$ and r > 0.

Proof. If $T \in \text{DN-S}_{n,r}$, then for every $(x_n) \in \text{dn}(E)$, $\liminf_{n\to\infty} ||Tx_n|| \ge r$. Thus, by Theorem 2.1, $T \in \text{DN-S}$.

Conversely, suppose that $T \in \text{DN-S}_{n,r}$ for no pair $n \in \mathbb{N}$ and r > 0. Then for each $n \in \mathbb{N}$ we can find a normalized disjoint $(x_i^n)_{i=1}^n$ with $\max_{1 \le i \le n} ||Tx_i^n|| \le 1/n$. This fact contradicts (4) in Theorem 3.1, hence $T \notin \text{DN-S}$. \Box

As a consequence, $DN-S_{n,r}$ is stable under ultraproducts:

Proposition 5.4. Suppose that E_i is order continuous with a weak unit for each $i \in I$. Let \mathcal{U} be a non-trivial ultrafilter on I. If $(T_i)_{i \in I}$ is a bounded family with $T_i \in DN$ - $S_{n,r}(E_i, Y_i)$ for each $i \in I$ then $(T_i)_{\mathcal{U}} \in DN$ - $S_{n,r}$.

Proof. Two vectors $[(x_i)], [(y_i)]$ in $(E_i)_{\mathcal{U}}$ are disjoint if and only if $\lim_{i \to \mathcal{U}} |||x_i| \wedge |y_i||| = 0$. In this case, for each $\delta > 0$, $\{i \in I : |||x_i| \wedge |y_i||| < \delta\} \in \mathcal{U}$; hence we can choose the representatives $(x_i), (y_i)$ so that $|||x_i| \wedge |y_i||| < \delta$ for every $i \in I$. Since $(T_i)_{i \in I}$ is bounded, for each $\varepsilon > 0$ we can choose $\delta = \delta(\varepsilon, n)$ in Proposition 5.2 which is valid for all T_i , and conclude that $(T_i)_{\mathcal{U}} \in \text{DN-S}_{n,r}$. \Box

Corollary 5.5. Suppose that E is order continuous with a weak unit, and let \mathcal{U} be a non-trivial ultrafilter. If $T \in DN-S(E, Y)$ then the ultrapower $T_{\mathcal{U}} \in DN-S$.

As a consequence of the following observation, we shall show that the class of DN-S operators is not stable under ultraproducts, by constructing a sequence $(q_k) \subset$ DN-S such that $(q_k) \subset$ DN-S_{n,r} for no pair (n,r).

Remark 5.6. It follows from [12, Proposition 2.12] that a closed subspace M of E is dispersed if and only if the quotient map $q: E \to E/M$ is a DN-S operator.

Example 5.7. Let \mathcal{U} be a non-trivial ultrafilter on \mathbb{N} . By [21, Corollary 2.f.5], for each $k \in \mathbb{N}$ with $k \geq 2$, there exists a subspace M_k of $L_1 \equiv L_1(0, 1)$ isometric to $L_{1+1/k}$. Since reflexive subspaces of $L_1(0, 1)$ are dispersed, if $q_k : L_1 \to L_1/M_k$ is the quotient map, then $q_k \in \text{DN-S}$ for each $k \in \mathbb{N}$ by Remark 5.6. Let us see that $(q_k)_{\mathcal{U}} \notin \text{DN-S}$.

Since $(q_k)_{\mathcal{U}}$ acts on $(L_1)_{\mathcal{U}}$, which is a $L_1(\mu)$ space [16, Theorem 3.3], it is enough to show that $\ker(q_k)_{\mathcal{U}}$ is not reflexive, and this is true because it is not isomorphic to a subspace of $L_q(\mu)$ for some q > 1, by the main result of [22].

The previous example also shows that the class of dispersed subspaces is not stable under ultraproducts: each ker q_k is dispersed, but ker $(q_k)_{\mathcal{U}}$ is not. However, we can prove the stability for a local variation of the notion of dispersed subspace.

Definition 5.8. Suppose that E is order continuous with a weak unit, and let $n \in \mathbb{N}$ and r > 0. A closed subspace M of E is (n, r)-dispersed if for each disjoint set $\{x_1, \ldots, x_n\}$ in S_E there exists $i \in \{1, \ldots, n\}$ so that $dist(x_i, M) \ge r$.

In the conditions of Definition 5.8, a closed subspace M of E is (n, r)-dispersed if and only if the quotient map onto E/M is a DN-S_{n,r} operator. Therefore, by Proposition 5.3, M is dispersed if and only if it is (n, r)-dispersed for some n and r.

Proposition 5.9. Suppose that E_i is order continuous with a weak unit for each $i \in I$. Let \mathcal{U} be a non-trivial ultrafilter on I. If for each $i \in I$, M_i is a (n, r)-dispersed subspace then $(M_i)_{\mathcal{U}}$ is a (n, r)-dispersed subspace of $(E_i)_{\mathcal{U}}$.

Proof. It is a direct consequence of Proposition 5.4 and Remark 5.6. \Box

Observe that $T \in \text{DN-S}_{n,r}$ and c > 0 implies $cT \in \text{DN-S}_{n,cr}$; hence N(T) is not necessarily (n, r)dispersed, and there is no perturbative characterization for $T \in \text{DN-S}_{n,r}$.

Acknowledgment

We thank the referee for several remarks that improved the paper.

References

- E. Bilokopytov, Disjointly non-singular operators on order continuous Banach lattices complement the unbounded norm topology, J. Math. Anal. Appl. 506 (2022) 125556.
- [2] J.M.F. Castillo, M. Gonzalez, Three-Space Problems in Banach Space Theory, Lecture Notes in Math., vol. 1667, Springer, 1997.
- [3] Y. Deng, M. O'Brien, V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity 21 (2017) 963–974.
- [4] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge Univ. Press, 1995.
- [5] J. Flores, F.L. Hernández, N.J. Kalton, P. Tradacete, Characterizations of strictly singular operators on Banach lattices, J. Lond. Math. Soc. (2) 79 (2009) 612–630.
- [6] J. Flores, J. López-Abad, P. Tradacete, Banach lattice versions of strict singularity, J. Funct. Anal. 270 (2016) 2715–2731.
- [7] D. Freeman, T. Oikhberg, B. Pineau, M.A. Taylor, Stable phase retrieval in function spaces, arXiv:2210.05114.
- [8] A. García Del Amo, F.L. Hernández, V.M. Sánchez, E.M. Semenov, Disjointly strictly-singular inclusions between rearrangement invariant spaces, J. Lond. Math. Soc. 62 (2000) 239–252.
- [9] M. González, A. Martínez-Abejón, Supertauberian operators and perturbations, Arch. Math. 64 (1995) 423–433.
- [10] M. González, A. Martínez-Abejón, Tauberian operators on $L_1(\mu)$ spaces, Stud. Math. 125 (1997) 289–303.
- [11] M. González, A. Martínez-Abejón, Tauberian Operators, Operator Theory: Advances and Applications, vol. 194, Birkhäuser, 2010.
- [12] M. González, A. Martínez-Abejón, A. Martinón, Disjointly non-singular operators on Banach lattices, J. Funct. Anal. 280 (2021) 108944, 14 pp.
- [13] M. González, A. Martinón, A quantitative approach to disjointly non-singular operators, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115 (2021) 185, 12 pp.
- [14] M. González, V.M. Onieva, Characterizations of Tauberian operators and other semigroups of operators, Proc. Am. Math. Soc. 108 (1990) 399–405.
- [15] M. González, E. Saksman, H.-O. Tylli, Representing non-weakly compact operators, Stud. Math. 113 (1995) 289–303.
- [16] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980) 72–104.
- [17] F.L. Hernández, Disjointly strictly-singular operators in Banach lattices, Acta Univ. Carol., Math. Phys. 31 (1990) 35–40.
- [18] F.L. Hernández, B. Rodríguez-Salinas, On ℓ_p complemented copies in Orlicz spaces II, Isr. J. Math. 68 (1989) 27–55.
- [19] W. Johnson, A.B. Nasseri, G. Schechtman, T. Tkocz, Injective Tauberian operators on L_1 and operators with dense range in ℓ_{∞} , Can. Math. Bull. 58 (2015) 276–280.
- [20] N. Kalton, A. Wilansky, Tauberian operators on Banach spaces, Proc. Am. Math. Soc. 57 (1976) 251–255.
- [21] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979.
- [22] H.P. Rosenthal, On subspaces of L^p , Ann. Math. 97 (1973) 344–373.
- [23] V.G. Troitsky, Measures of non-compactness on Banach lattices, Positivity 8 (2004) 165–178.
- [24] W. Wnuk, Banach Lattices with Order Continuous Norms, Polish Scientific Publishers PWN, 1999.