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Resumen

Este trabajo se centra en el mantenimiento predictivo. Más concretamente, se pretende
predecir si las piezas producidas por determinada maquinaria van a ser satisfactorias o de-
fectuosas. Para ello se dispone de una muestra de piezas fabricadas por dicha maquinaria.
Por lo tanto, estamos ante un problema de aprendizaje supervisado para cuya solución se ha
optado por el uso de las técnicas de k Vecinos Más Próximos y el “Support Vector Machine”.
En el trabajo se estudian las propiedades matemáticas de ambas técnicas prestando especial
atención a su consistencia universal. También se incluye un análisis del comportamiento
práctico de las técnicas seleccionadas en el problema que nos ocupa.

Palabras clave: Aprendizaje supervisado, k Vecinos Más Cercanos,“Support Vector Ma-

chine”, Consistencia universal.
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Abstract

This work focuses on predictive maintenance. More specifically, the aim is to predict whether
the pieces produced by certain machines are going to be satisfactory or defective. For this
purpose, a sample of pieces produced by this machine is available. Therefore, we are dealing
with a supervised learning problem for whose solution we have decided to use the techniques
of k-Nearest Neighbours and the Support Vector Machine. The paper studies the mathemat-
ical properties of both techniques, paying special attention to their universal consistency. An
analysis of the practical behaviour of the selected techniques on the problem at hand is also
included.

Keywords: Supervised learning, k Nearest Neighbours, Support Vector Machine, Universal

consistency.
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1 Introduction

1.1 Motivation

Industrialisation is a significant period in history that has had a profound impact on pro-
duction and the economy. It is characterised by the transition from handmade methods to
mechanical and automated processes in the production of goods. During the 18th century
Industrial Revolution, the introduction of machinery, automation of processes, and energy us-
age drove a significant increase in efficiency and production, transforming economic activities.

The impact of industrialisation has been deep, with advanced technologies boosting pro-
duction capacity, lowering costs, and improving product quality. Despite the benefits, indus-
trialisation has also brought challenges such as labour automation, changes in the workforce,
and environmental concerns. The relationship between industrialisation and industry is dy-
namic, marked by constant technological advances that require continuous adaptation to
maintain competitiveness and address emerging issues.

The field of statistical learning, better known as Machine Learning, is a branch of artifi-
cial intelligence that focuses on developing algorithms and models that allow machines to
learn patterns and perform tasks without being explicitly programmed. Instead of following
specific instructions, Machine Learning models can improve their performance as they are
given more data and feedback. The central idea is that machines can learn from experience,
identify patterns and make intelligent decisions without direct human intervention.

The concept of Machine Learning has its roots in the 19th century, and pioneers such as Alan
Turing and Marvin Minsky contributed significantly to its development. Arthur Samuel first
coined the term “Machine Learning” and defined it as the field of study that gives comput-
ers the ability to learn without being explicitly programmed. Since then, Machine Learning
has experienced rapid progress, especially with the increase in computational power and the
availability of large data sets.

There are different approaches in Machine Learning, mainly classified into four types: super-
vised, unsupervised, reinforced and semi-supervised learning. In supervised learning, labelled
data are used to train the model, while in unsupervised learning, unlabelled data are used
to discover patterns. Reinforcement learning involves learning through trial and error, with
the model receiving feedback in the form of reinforcement signals. Finally, semi-supervised
learning is a combination of the supervised and unsupervised approaches, leveraging both
labelled and unlabelled datasets to train models more efficiently.
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Machine learning has had a significant impact on industry, enabling process optimization,
product customization, and real-time data analysis. It is important to consider these chal-
lenges alongside the benefits of this technological breakthrough. While it has opened new
doors for innovation and reduced costs, there are also ethical and security challenges that
require careful attention. The convergence of industrialisation and machine learning defines
this new era of production, where human dexterity and computational potential come to-
gether in a unique way.

Predictive maintenance is a direct application of statistical learning in industry. It involves
studying variables measured by sensors, such as temperature, pressure, and vibration, to
determine when a machine is likely to fail. This work aims to predict whether the pieces
produced by a plastic moulding machine will be defective or not based on the selected values
by the operator. If the pieces are predicted to be defective, the operator can adjust the
parameters to find a combination that yields a satisfactory result.

1.2 Objectives

The objective of this work is the in-depth study of the mathematical bases and the universal
consistency of two supervised algorithms that are the k-nearest neighbors (kNN) and the
support vector machine (SVM). Its actual application in a plastic molding machine is done
to improve the process, the pieces quality and savings in both raw material and cost.

More specifically, the main objectives of this work are:

• To introduce the kNN including the analysis of its main characteristics and the obten-
tion of its universal consistency.

• To introduce the SVM including the analysis of its main characteristics and the obten-
tion of its universal consistency.

• The application of both procedures to a real data set and the analysis of the obtained
results.

• Propose some possibles improvements on both procedures.

7



1.3 Organisation and structure of the document

This report consists of an introduction to the supervised classification problem along three
chapters that will examine the kNN and support vector machine algorithms both theoreti-
cally and practically.

The distribution will be as follows:

• Chapter 1: a mathematical introduction to the problem and to the supervised classi-
fication will be described.

• Chapter 2: the mathematical development and universal consistency of both models
will be analysed.

• Chapter 3: the study of the results obtained with kNN and SVM when applied to a
real dataset from a molding machine.

• Chapter 4: the final conclusions of the project will be discussed and suggestions for
improvement will be made.
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2 Introduction to supervised classification

This chapter introduces basic and essential concepts and some results on the study of uni-
versal consistency.

2.1 Basic ideas

The material in this subsection is taken from [3], pages 1 to 4.

In that follows, given M ∈ N, we will assume that we have a sample (X1, Y1), ..., (Xn, Yn),
where Xi ∈ Rd and Yi ∈ {1, ...,M}, for i = 1, ..., n, and an observation (X, Y ) from which
we know X and want to guess Y , what we call a class.
A classifier is any map g(X) : Rd → {1, ...,M}; where the value g(x) represents the guess
of Y given X = x.
The most common scenario is when M = 2. For instance, this occurs when determining if a
person is healthy or infected, or if a piece is defective or correct.

Usually, the observation does not fully describe the underlying process (Y is not a deter-
ministic function of X), then it is possible for the same X to produce two different Y at
different times. Thus all classifiers are imperfect, so we cannot discard a classifier because
it misclassifies a particular X. Therefore we introduce a probabilistic setting and let (X, Y )
be a Rd ×{1, ...,M}-valued random pair. The distribution of (X, Y ) describes the frequency
with which certain pairs occur in practice. It is implied that the distribution of X given
Y = i is different from that obtained if Y = j for some j ̸= i.

The classifier errs if g(X) ̸= Y , where the probability of error for a classifier g is

L(g) = P{g(X) ̸= Y }.

There exits a best possible classifier, g∗, which is defined by

g∗ = argminP{g(X) ̸= Y },

where g varies on the set of measurable maps from Rd to {1, ...,M}. Obviously, g∗ depends
on the distribution of (X, Y ). The problem of finding g∗ is the Bayes’ problem, and the
classifier g∗ is called Bayes rule. The minimal probability of error is called the Bayes error
and is denoted by L∗(L∗ = L(g∗)). In most cases, the distribution of (X, Y ) is unknown, so
g∗ is also unknown.

Unless there is a guarantee that the set of {(Xi, Yi), i = 1, ..., n} is representative of the
distribution (which is mostly unknown), finding a classifier g with a small probability of
error is impossible.
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From this point on, it will be assumed that the set of observations (X1, Y1), ..., (Xn, Yn) is a
sequence of independent identically distributed (i.i.d.) random pairs with the same distribu-
tion as (X, Y ).

We denote by gn to a classifier constructed from the observations (X1, Y1), ..., (Xn, Yn) and
therefore, Y is guessed by gn(X). We call a sequence of classifiers (functions) a classification
rule, i.e., {gn, n ≥ 1} is a classification rule.

The process of constructing gn is called supervised learning. The performance of gn is mea-
sured by the conditional probability of error

Ln = L(gn) = P{gn(X) ̸= Y |(X1, Y1), ..., (Xn, Yn)}

This is a random variable because it depends on the data. Thus, Ln averages over the dis-
tribution of (X, Y ), when the data remain fixed.

On the other hand, the number E{Ln} is a more useful indicator since it measures the
quality on an average sequence of data, not on the sequence of available observations.
A discriminatory rule is considered good if it is consistent, meaning it satisfies the following

lim
n→∞

E{Ln} = L∗

or alternatively, if Ln → L∗ in probability when n → ∞.

The consistency of the rule implies that we can reconstruct the unknown distribution of
(X, Y ) by taking more samples, as Ln can be as close to L∗ as we want. Without this
guarantee, taking more samples would not be of interest. A rule that is consistent for all
distributions of (X, Y ) is referred to as universally consistent.

Note 2.1.1. After this general introduction to the world of classifiers, we will focus on binary
classifiers, where the class Y only takes values on {0, 1}. We make this simplification in order
to avoid some technicalities that are not very relevant, since it is also relatively easy to obtain
the solution for any M ≥ 2 from this case. Finally, the problem that arises in this work of
determining whether the parts are defective or fit for sale belongs to this type.
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2.2 Classifier consistency

This subsection is devoted to the in deep study of the notion of consistency in classifiers
which were introduced in the previous section.

Given a sequence of training data, Dn = ((X1, Y1), ..., (Xn, Yn)), n ∈ N, the best we can
hope from a classification function is to achieve the Bayes error probability, L∗. In general,
it is not possible to achieve the Bayesian error probability exactly, but it is possible to create
a sequence of classification functions, called a classification rule, such as {gn}, that can make
the error probability L(gn) = P{gn(X,Dn) ̸= Y |Dn} approach L∗ with high probability.

Definition 2.2.1 (Weak and strong consistency). (See [3], pages 91-92) A classification
rule is weakly consistent (or asymptotically Bayes-risk efficient) for a certain distribution of
(X, Y ) if

E{Ln} = P{gn(X,Dn) ̸= Y } → L∗ as n → ∞

and strongly consistent if
lim
n→∞

Ln = L∗ with probability 1.

A decision rule can be consistent for certain distributions of (X, Y ), but may not be consistent
for others. It is desirable to have a rule that is consistent for a large class of distributions.
Since there are many situations in which there is no prior information about the distribution,
it is important to have a rule that works well for all the distributions.

Definition 2.2.2 (Universal consistency). (See [3], page 92) A sequence of decision rules is
called universally (strongly) consistent if it is (strongly) consistent for every distribution of
the pair (X, Y ).

Proving universal consistency for a classification rule {gn} does not guarantee that gn works
well for a particular classification task and a fixed n. In fact, for every rule and every
decreasing null sequence {an} ⊂

(
0, 1

16

]
there exists a distribution P with L∗ = 0 and

E{L(gn)} ≥ an for all n ≥ 1

It can be deduced that there is no classifier for which a positive, increasing, and unbounded
sequence {αn} and a real number p > 0 exist such that

P{|L(gn)− L∗| ≥ ϵ} ≤ e−cϵpαn

holds for all distributions P on Rd × {0, 1} and all n ≥ 1 even if c > 0 depends on P , i.e.,
although there is universal consistency, this consistency is not uniform in P .
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Therefore, any study on the rate of convergence of a specific classifier must limit the class of
distributions considered. [11]

2.3 The Bayes classifier

In this subsection we characterize the Bayes classifier and its plug in situations. These results
will be used later in the study of the universal consistency of the kNN rule.

Let (X, Y ) be a pair of random variables with values in Rd × {0, 1}.
The random pair (X, Y ) is determined by the pair (µ, η), where µ represents the probability
distribution of X, and η stands for the regression of Y on X. More precisely, for a Borel-
measurable set A ⊆ Rd,

µ(A) = P{X ∈ A}

and for any x ∈ Rd,
η(x) = P{Y = 1|X = x} = E{Y |X = x}.

If C ⊆ Rd × {0, 1} is a Borel set, we have that

C = (C0 × {0}) ∪ (C1 × {1})

and so

P{(X, Y ) ∈ C} = P{X ∈ C0, Y = 0}+ P{X ∈ C1, Y = 1}

=

∫
C0

(1− η(x))µ(dx) +

∫
C1

η(x)µ(dx).

A classifier has been defined as a function g : Rd → {0, 1}. We will see that the Bayes
classifier (or decision function) is:

g∗(x) =

{
1 if η(x) > 1/2

0 otherwise
(1)

which is the function that minimizes the probability of error.

Theorem 2.3.1. (See [3], pages 9-11) For any decision function g : Rd → {0, 1}, the clas-
sifier g∗ as defined in (1) satisfies

P{g∗(X) ̸= Y } ≤ P{g(X) ̸= Y }

that is, g∗(x) is the optimal decision.
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Proof. Given X = x, the conditional probability of error for any decision g is

P{g(X) ̸= Y |X = x} = P{Y = 1, g(X) = 0|X = x}+ P{Y = 0, g(X) = 1|X = x}
= 1− P{g(X) = Y |X = x}
= 1− (P{Y = 1, g(X) = 1|X = x}+ P{Y = 0, g(X) = 0|X = x})
= 1− (I{g(x)=1}P{Y = 1|X = x}+ I{g(x)=0}P{Y = 0|X = x})
= 1− (I{g(x)=1}η(x) + I{g(x)=0}(1− η(x)))

where IA denotes the indicator of the set A. Consequently, for every x ∈ Rd,

P{g(X) ̸= Y |X = x} − P{g∗(X) ̸= Y |X = x}
= η(x)(I{g∗(x)=1} − I{g(x)=1}) + (1− η(x))(I{g∗(x)=0} − I{g(x)=0})

= (2η(x)− 1)(I{g∗(x)=1} − I{g(x)=1}) ≥ 0,

(2)

by the definition of g∗. Integrating on both sides with respect µ(dx) gives the desired result.

The function η is usually unknown. Suppose then that a function η̃ ∈ [0, 1] approximating
η can be calculated. In this case, it would be logical to use the plug-in decision function to
approximate the Bayes decision. The plug-in function is defined as

g̃(x) =

{
0 if η̃(x) ≤ 1/2

1 otherwise

If η̃(x) is close to η(X) in the L1-sense, then the error probability of the decision g̃ is near
the optimal decision g∗ (see [3], pages 15-16):

Theorem 2.3.2. For the error probability of the plug-in decision g̃ defined above, we have

P{g̃(X) ̸= Y } − L∗ = 2

∫
Rd

|η(x)− 1/2|I{g∗(x)̸=g̃(x)}µ(dx)

and

P{g̃(X) ̸= Y } − L∗ ≤ 2

∫
Rd

|η(x)− η̃(x)|µ(dx) = 2E{|η(X)− η̃(X)|}.

Proof. Notice that if x ∈ Rd satisfies that g̃(x) ̸= g∗(x), then (I{g∗(x)=1}−I{g̃(x)=1}) ∈ {−1, 1}.
Thus, (2) gives

P{g̃(X) ̸= Y |X = x} − P{g∗(X) ̸= Y |X = x} = |2η(x)− 1|I{g̃(x)̸=g∗(x)}

Since g̃(x) ̸= g∗(x) implies |η(x)− 1/2| ≤ |η(x)− η̃(x)| we finally have that

P{g̃(X) ̸= Y }−P{g∗(X) ̸= Y } =

∫
Rd

2|η(x)−1/2|I{g̃(x)̸=g∗(x)}µ(dx) ≤
∫
Rd

2|η(x)−η̃(x)|µ(dx).
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The following corollary is a direct result of Theorem 2.3.2 (see [3], page 93 ).

Corollary 2.3.2.1. The error probability of the classifier

gn(x) =

{
0 if ηn(x) ≤ 1/2

1 otherwise,

satisfies the inequality

L(gn)− L∗ ≤ 2

∫
Rd

|η(x)− ηn(x)|µ(dx) = 2E{|η(X)− ηn(x)||Dn}.

Applying the Cauchy-Schwarz inequality we obtain the following result.

Corollary 2.3.2.2. The error probability of gn satisfies

P{gn(X) ̸= Y |Dn} − L∗ ≤ 2

√∫
Rd

|η(x)− ηn(x)|2µ(dx).

14



3 Theoretical basis of mathematical models

This chapter provides the definitions of the kNN and SVM classifiers and an in-depth analysis
of their universal consistency.

3.1 k-Nearest Neighbors

The kNN is a non parametric classification algorithm developed by Evelyn Fix and Joseph
Hodges in 1951 [5]. It is a supervised learning algorithm which is known for its effectiveness,
in addition to its simplicity of execution and low computation time [15].

Note 3.1.1. Despite the asymptotic properties remain valid to a wide variety of metrics, the
neighbors are defined in terms of the euclidean distance.

Be x ∈ Rd the point whose label is to be predicted. The data (X1, Y1), ..., (Xn, Yn) are to be
sorted with respect to the increasing values of ||x − Xi||, where || · || denotes the euclidean
distance. The reordered data sequences is denoted by

(X(1)(x), Y(1)(x)), ..., (X(n)(x), Y(n)(x))

where X(k)(x) is the k-th nearest neighbor of x (see [3], page 63).

Definition 3.1.2 (k-Nearest-Neighbors). (See [3], page 170) The k-Nearest-Neighbors rule
is defined by the classifier

gn(x) =

0 if
k∑

i=1

I{Y(i)(x)=1} ≤
k∑

i=1

I{Y(i)(x)=0}

1 otherwise

.

In other words, gn(x) is a majority vote among the labels of the k nearest neighbors of x.

To study the universal consistency of this method, we must first examine some auxiliary re-
sults that will aid in understanding and proving the main theorem. Let us begin by defining
a cone (see [3], page 66).
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Definition 3.1.3. (See [3], page 66) For θ ∈ (0, π/2) and x ∈ Rd, the cone C(x, θ) is defined
as the collection of all the y ∈ Rd for which angle(x, y) ≤ θ, or equivalently :

C(x, θ) =

{
y ∈ Rd :

xTy

||x||||y||
≥ cos(θ)

}
.

In addition, the set s+ C(x, θ) is the translation of C(x, θ) by s, so

s+ C(x, θ) =
{
y ∈ Rd : y = s or angle(y − s, x) ≤ θ

}
.

Lemma 3.1.4. If y, y′ ∈ s+ C(x, π/6), and ||y − s|| < ||y′ − s||, then ||y − y′|| < ||y′ − s||

Proof. Let y, y′ ∈ s+C(x, π/6) with ||y− s|| < ||y′− s|| and θ be the angle formed by (y− s)
and (y′ − s).

||y − y′||2 = ||(y − s)− (y′ − s)||2

= ||y − s||2 + ||y′ − s||2 − 2 ||y − s|| ||y′ − s|| cos(θ)
≤ ||y − s||2 + ||y′ − s||2 − 2 ||y − s|| ||y′ − s|| cos(π/3)

= ||y′ − s||2
(
1 +

||y − s||2

||y′ − s||2
− ||y − s||

||y′ − s||

)
< ||y′ − s||2.

Lemma 3.1.5. (See [3], pages 67-68) Let θ ∈ (0, π/2) be fixed. Then there exists a set
{x1, ..., xγd} ⊂ Rd such that

Rd =

γd⋃
i=1

C(xi, θ).

Furthermore, it is always possible to take

γd ≤
(
1 +

1

sin(θ/2)

)d

− 1.

Proof. Let θ ∈ (0, π/2) and let Sd
1 be the unit d-dimensional sphere.

Without loss of generality, let Sd
i be the sphere with centre xi ∈ Sd

1 and radius r = sin(θ/2).
We have that

Sd
1 ∩ Sd

i = Sd
1 ∩ C(xi, θ)

Given γd ∈ N we take the set {x1, ..., xγd} ⊂ Sd
1 with the property ||xi − xj|| ≥ r for all

j ̸= i. We see that it is true that
⋃

C(xi, θ) = Rd if and only if Sd
1 ⊂ ∪Sd

i . We have then that
the spheres Sd′

i with radius r/2 and centres xi are disjoint and furthermore
⋃
Sd′
i ⊆ Sd

1+ r
2
\Sd

r
2
.
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Call vd to the volume of Sd
1 . Then

γdvd

(r
2

)d
≤ vd

(
1 +

r

2

)d
− vd

(r
2

)d
and, then,

γd ≤
(
1 +

2

r

)d

− 1 =

(
1 +

1

sin(θ/2)

)d

− 1.

Note 3.1.6. In particular, if θ = π/6 then γd ≤
(
1 + 2√

2−
√
3

)d

− 1.

Lemma 3.1.7 (Stone 1977). (See [3], pages 65-69) If X1, ..., Xn and X are i.i.d random
vectors , then for every integrable function f , n ∈ N and k ≤ n

k∑
i=1

E{|f(X(i)(X))|} ≤ kγdE{|f(X)|}

where γd ≤
(
1 + 2√

2−
√
3

)d

− 1 depends upon the dimension only.

Proof. Let θ = π/6, by the Lemma 3.1.5 we can cover Rd with γd cones of the form
X + C(xj, π/6), 1 ≤ j ≤ γd.
For each j, we can mark the k nearest neighbours of X in the set {X1, ..., Xn} ∩ C(xj, π/6),
and if there are less than k points in a cone, we mark all of them. IfXi ∈ X+C(xj, π/6) is not
marked, thenX cannot be among the k nearest neighbours ofXi in {X1, ..., Xi−1, X,Xi+1, ..., Xn}
due to the property appearing in the Lemma 3.1.4. So if f is a non-negative function,

k∑
i=1

E{|f(X(i)(X))|} = E

{
n∑

i=1

I{Xi is among the k nearest neighbors of X in {X1,...,Xn}}f(Xi)

}

= E

{
f(X)

n∑
i=1

I{X is among the k nearest neighbors of Xi in {X1,...,Xi−1,X,Xi+1,...,Xn}}

}

≤ E

{
f(X)

n∑
i=1

I{Xi is marked}

}
≤ kγdE{f(X)}

where the second equality holds because X1, ..., Xn and X are i.i.d random vectors and
consequently, we can permute X and Xi in each summand. The last inequality comes from
the fact that at most k Xi have been marked in every cone C(xj, π/6).

17



A general theorem by Stone allows us to deduce universal consistency for several classification
rules. Consider a rule based on an estimate of the regression function η of the form

ηn(x) =
n∑

i=1

I{Yi=1}Wni(x) =
n∑

i=1

YiWni(x)

where the weights Wni(x) = Wni(x,X1, ..., Xn) are non-negative and add to one.

Thus, ηn might be viewed as a local average estimator, and gn a local (weighted) major-
ity vote.

Notice that ηn is a weighted average estimator of η. It is intuitively clear that the pairs
(Xi, Yi) such that Xi is close to x should provide more information about η(x) than those far
form x. Thus, the weights should be much larger in the neighborhood of x, so ηn is roughly a
(weighted) relative frequency of the Xi’s that have label 1 among points in the neighborhood
of x (see [3], pages 97-98).

The classification rule is defined as

gn(x) =

{
0 if ηn(x) ≤ 1/2

1 otherwise
. (3)

Theorem 3.1.8 (Stone (1977)). (See [3], pages 98-100) Assume that for any distribution of
X, the weights satisfy the following three conditions:

1. There exists a constant c such that, for every non-negative measurable function f satis-
fying E{f(X)} < ∞,

E

{
n∑

i=1

Wni(X)f(Xi)

}
≤ cE{f(X)}.

2. For every a > 0

lim
n→∞

E

{
n∑

i=1

Wni(X)I{∥Xi−X∥>a}

}
= 0.

3.

lim
n→∞

E

{
max
1≤i≤n

Wni(X)

}
= 0.

Then the classifier gn, as defined in (3), is universally consistent.
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Proof. By Corollary 2.3.2.2 it suffices to show that for every distribution of (X, Y )

lim
n→∞

E{(η(X)− ηn(X))2} = 0.

Introduce the notation

η̂n(x) =
n∑

i=1

η(Xi)Wni(x).

Then by the simple inequality (a+ b)2 ≤ 2(a2 + b2) we have

E{(η(X)− ηn(X))2} = E{((η(X)− η̂n(X)) + (η̂n(X)− ηn(X)))2}
≤ 2(E{(η(X)− η̂n(X))2}+ E{(η̂n(X)− ηn(X))2}).

(4)

It is therefore sufficient to show that both terms on the right-hand side go to zero.
Since the Wni‘s are non-negative and add one, by Jensen‘s inequality, the first term is

E{(η(X)− η̂n(X))2} ≤ E

{
n∑

i=1

Wni(X)(η(X)− η(Xi))
2

}
.

Let C1
B denote the set of the continuous, [0, 1]-valued, with bounded support functions. If

η∗ ∈ C1
B it is also uniformly continuous and given ϵ > 0, there exists a > 0 such that for

∥x1 − x∥ < a, |η∗(x1)− η∗(x)|2 < ϵ (recall that ∥x∥ denotes the Euclidean norm of x ∈ Rd).
Thus, since |η∗(x1)− η∗(x)| ≤ 1,

E

{
n∑

i=1

Wni(X)(η∗(X)− η∗(Xi))
2

}

≤ E

{
n∑

i=1

Wni(X)I{∥X−Xi∥≥a}

}
+ E

{
n∑

i=1

Wni(X)ϵ

}
→ ϵ,

by Assumption 2. Since the set of continuous functions with bounded support is dense in
L2(µ), there exists η∗ ∈ C1

B such that E{(η(X)− η∗(X))2} < ϵ; and from here:

E{(η(X)− η̂n(X))2}

≤ E

{
n∑

i=1

Wni(X)(η(X)− η(Xi))
2

}

≤ 3E

{
n∑

i=1

Wni(X)((η(X)− η∗(X))2 + (η∗(X)− η∗(Xi))
2 + (η∗(Xi)− η(Xi))

2

}

≤ 3E{(η(X)− η∗(X))2}+ 3E

{
n∑

i=1

Wni(X)(η∗(X)− η∗(Xi))
2

}
+ 3cE{(η(X)− η∗(X))2}
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where we have used the Cauchy-Schwarz inequality, the fact (a + b + c)2 ≤ 3(a2 + b2 + c2) ,
and Assumption 1. Therefore,

lim sup
n→∞

E{(η(X)− η̂n(X))2} ≤ 3ϵ(1 + 1 + c).

To handle the second term on the right-hand side of (4), observe that

E{(Yi − η(Xi))(Yj − η(Xj))} = 0 for all i ̸= j

by independence. Therefore,

E{(η̂n(X)− ηn(X))2} = E


(

n∑
i=1

Wni(X)(η(Xi)− Yi

)2


=
n∑

i,j=1

E{Wni(X)(η(Xi)− Yi)Wnj(X)(η(Xj)− Yj)}

=
n∑

i=1

E{W 2
ni(X)(η(Xi)− Yi)

2}

≤ E

{
n∑

i=1

W 2
ni(X)

}
≤ E

{
max
1≤i≤n

Wni(X)
n∑

j=1

Wnj(X)

}

= E

{
max
1≤i≤n

Wni(X)

}
which converges to zero by Assumption 3

Now we are going to show that if kn → ∞ with kn/n → 0, the kNN classification rule is
weakly universally consistent. The proof is a very simple application of Stone’s theorem.
This result, appearing in Stone’s paper (1977) [12], was the first universal consistency result
for any rule (see [3], pages 100-101).

In order to simplify the notation we will omit the dependence of k on n.

Theorem 3.1.9 (Stone (1977)). (See [3], page 101) If k → ∞ with k/n → 0, then for every
distribution of (X, Y ) we have that E{Ln} → L∗.

Proof. First, we check the conditions of Stone’s weak convergence Theorem 3.1.8. Let us
define the weight Wni as

Wni =

{
1/k if Xi is among the k nearest neighbors of X

0 otherwise
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Let us check the assumptions in Theorem 3.1.8. Assumption 3 is obvious since k → ∞.
Observe that Assumption 2 holds when

P
{
||X(k)(X)−X|| > ϵ

}
→ 0

But in Lemma .0.2 from the Appendix 1 we show that this is true for all ϵ > 0 whenever
k/n → 0.
Finally, Assumption 3 was shown in Lemma 3.1.7 with c = γd.

To prove the desired theorem, we require a generalisation of Lemma 3.1.7. Let us examine
the following outcome.

Lemma 3.1.10 (Devroye and Györfi (1985)). (See [3], page 171) If Ba(x
′) = {x : µ(Sd

x,||x−x′||)) ≤
a}, where Sd

x,||x−x′|| is the d-dimensional sphere with centre x and radius ||x − x′||, then for

all x′ ∈ Rd

µ(Ba(x
′)) ≤ γda.

Proof. For x ∈ Rd let us consider the cone x+ C(s, π/6) ⊂ Rd.

Due to Lemma 3.1.4 we have that if y, y′ ∈ x + C(s, π/6), and ||x − y|| < ||x − y′||, then
||y − y′|| < ||x− y′||.

By Lemma 3.1.5 there exists C1, ..., Cγd a collection of cones centered at x′ with different
central directions covering Rd. Then

µ(Ba(x
′)) ≤

γd∑
i=1

µ(Ci ∩Ba(x
′)).

Let x∗ ∈ Ci ∩Ba(x
′). Then by the property of the cones mentioned above we have

µ(Ci ∩ Sd
x′,||x′−x∗|| ∩Ba(x

′)) ≤ µ(Sd
x∗,||x′−x∗||) ≤ a

where we use the fact that x∗ ∈ Ba(x
′). Since x∗ is arbitrary.

µ(Ci ∩Ba(x
′)) ≤ a

which completes the proof of the lemma.

Lemma 3.1.10 implies that the number of points among X1, ..., Xn for which X is one of their
k-nearest neighbors is at most a constant multiple of k.
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Corollary 3.1.10.1. (See [3], page 171) It happens that

n∑
i=1

I{X is among the kNN‘s of Xi{X1,...,Xn,X}−{Xi}} ≤ kγd

Proof. Apply Lemma 3.1.10 with a = k/n and let µ be the empirical measure µn ofX1, ..., Xn,
that is, for each Borel set A ⊆ Rd, µn(A) = (1/n)

∑n
i=1 I{Xi∈A}.

Next we introduce without proof the well known McDiarmid inequality for further reference.
The interested reader can find the proof of this inequality in [3], pages 136 and 137.

Theorem 3.1.11 (McDiarmid (1989)). Let X1, ..., Xn be independent random variables tak-
ing values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn

x′
i
∈A

|f(x1, ..., xn)− f(x1, ..., xi−1, x
′
i, xi+1, ..., xn)| ≤ ci, 1 ≤ i ≤ n, (5)

for any xi, X
′
i ∈ A, i = 1, ..., n.

Then for all ϵ > 0

P{|f(X1, ..., Xn)− E{f(X1, ..., Xn)}| ≥ ϵ} ≤ e−2ϵ2/
∑n

i=1 c
2
i

Finally, the strong universal consistency for the kNN rule is shown in the following result.

Theorem 3.1.12 (Devroye and Györfi (1985), Zhao (1987)). (See [3], pages 170-174) As-
sume that µ has a density. If k → ∞ and k/n → 0 then for every ϵ > 0, there exists n0 ∈ N
such that for n > n0

P{Ln − L∗ > ϵ} ≤ 2e−nϵ2/(72γ2
d),

where γd is the minimal number of cones centered at the origin of angle π/6 that cover Rd.
Thus, the kNN rule is strongly consistent.

Proof. Let us remember that the decision rule is written as

gn(x) =

{
0 if ηn(x) ≤ 1/2

1 otherwise,

where ηn is the corresponding regression function estimate ηn = 1
k

∑k
i=1 Y(i)(x).

The result follows from Theorem 2.3.2 if we show that for sufficiently large n

P

{∫
|η(x)− ηn(x)|µ(dx) >

ϵ

2

}
≤ 2e−nϵ2/(72γ2

d).

Define ρn(x) as any solution of the equation

k

n
= µ(Sd

x,ρn(x)).
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Note that the absolute continuity of µ implies that a solution always exists. Also define

η∗n(x) =
1

k

n∑
j=1

YjI{||Xj−x||<ρn(x)}.

The basis of the proof is the following decomposition:

|η(x)− ηn(x)| ≤ |ηn(x)− η∗n(x)|+ |η∗n(x)− η(x)|. (6)

For the first term on the right-hand side, observe that denoting Rn(x) = ||X(k)(x)− x||,

|ηn(x)− η∗n(x)| =
1

k

∣∣∣∣∣
n∑

j=1

YjI
d
{Xj∈Sx,ρn(x)} −

n∑
j=1

YjI
d
{Xj∈Sx,Rn(x)}

∣∣∣∣∣
≤ 1

k

n∑
j=1

∣∣∣Id{Xj∈Sx,ρn(x)} − Id{Xj∈Sx,Rn(x)}

∣∣∣
=

∣∣∣∣∣1k
n∑

j=1

Id{Xj∈Sx,ρn(x)} − 1

∣∣∣∣∣ = |η̂∗n(x)− η̂(x)|,

(7)

where η̂∗n(x) is defined as η∗n with Y replaced by the constant random variable Ŷ = 1, and
η̂ = 1 is the corresponding regression function.

Let us examine the first summand of (6). From (7) and using the Cauchy-Schwarz inequality,
we have

E

{∫
|η∗n(x)− ηn(x)|µ(dx)

}
≤
{∫

E|η̂∗n(x)− η̂(x)|µ(dx)
}

≤
∫ √

E{|η̂∗n(x)− η̂(x)|2}µ(dx)

=

∫ √
1

k2
nVar{I{X∈Sd

x,ρn(x)
}}µ(dx)

≤
∫ √

1

k2
nµ(Sd

x,ρn(x)
)µ(dx)

=

∫ √
n

k2

k

n
µ(dx) =

1√
k

which converges to zero.

For the expected value of the second term on the right-hand side of (6), note that in the
proof of Theorems 3.1.8 and 3.1.9 we already showed that

lim
n→∞

E

{∫
|η(x)− ηn(x)|µ(dx)

}
= 0;
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and, consequently

E

{∫
|η∗n(x)− η(x)|µ(dx)

}
→ 0.

Assume now that n is so large that

E

{∫
|η̂∗n(x)− η̂(x)|µ(dx)

}
+ E

{∫
|η∗n(x)− η(x)|µ(dx)

}
<

ϵ

6
.

Then, by (6) and (7), we have

P

{∫
|η(x)− ηn(x)|µ(dx) >

ϵ

2

}
≤P

{∫
|η∗n(x)− η(x)|µ(dx)− E

{∫
|η∗n(x)− η(x)|µ(dx)

}
>

ϵ

6

}
+ P

{∫
|η̂∗n(x)− η̂(x)|µ(dx)− E

{∫
|η̂∗n(x)− η̂(x)|µ(dx)

}
>

ϵ

6

}
.

(8)

Next we get an exponential bound for the first probability on the right-hand side of (8) by
using McDiarmid’s inequality.
Fix an arbitrary realization of the data Dn = (x1, y1), ..., (xn, yn), and replace (xi, yi) by
(x̂i, ŷi), changing the value of η∗n(x) to η∗ni(x). Then∣∣∣∣∫ |η∗n(x)− η(x)|µ(dx)−

∫
|η∗ni(x)− η(x)|µ(dx)

∣∣∣∣ ≤ ∫ |η∗n(x)− η∗ni(x)|µ(dx).

But |η∗n(x)− η∗ni(x)| is bounded by 2/k and can differ from zero only if ∥x− xi∥ < ρn(x) or
∥x− x̂i∥ < ρn(x) if and only if µ(Sd

x,||x−xi||) < k/n. But the measure of such x’s is bounded

by γdk/n by Lemma 3.1.10. Therefore,

sup
x1,y1,...,xn,yn,x̂i,ŷi

∫
|η∗n(x)− η∗ni(x)|µ(dx) ≤

2

k

γdk

n
=

2γd
n

and by McDiarmid’s inequality

P

{∣∣∣∣∫ |η(x)− η∗n(x)|µ(dx)− E

{∫
|η(x)− η∗n(x)|µ(dx)

}∣∣∣∣ > ϵ

6

}
≤ e−nϵ2/(72γ2

d).

Finally, we need a bound for the second term on the right-hand side of (8). This probability
may be bound by McDiarmid’s inequality exactly the same way as for the first term, obtaining

P

{∣∣∣∣∫ |η̂∗n(x)− η̂(x)|µ(dx)− E

{∫
|η̂∗n(x)− η̂(x)|µ(dx)

}∣∣∣∣ > ϵ

6

}
≤ e−nϵ2/(72γ2

d).
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3.2 Support Vector Machine

The SVM is a supervised learning algorithm used in many classification and regression prob-
lems, such as signal and natural language processing or image and speech recognition [14].
The SVM algorithm has its origins in statistical learning theory and was introduced in the
90s by Vapnik and his collaborators Boser et al. (1992) [13].

The material in this section is taken from [11] and [10].

The SVM is a mathematical algorithm that aims to find a hyperplane with a d-dimensional
band around it as wide as possible, with no points in it, and all points of one category on one
side of the band and those of the other category on the other one. The points that determine
the direction of the hyperplane and the width of the band are called support vectors.

In classification problems, finding a linear separator between the two classes involved is
usually impossible. Instead, a transformation is constructed, denoted as h:

h : Rd → H, (9)

where H is a high-dimensional or even infinite-dimensional Hilbert space.

This transformation allows complicated curves in Rd to become hyperplanes in H. How-
ever, when making this change, it is expected that both H and h would be complex objects.
The inverse by h of the corresponding half-spaces must be calculated to determine what is
being dealt with in the original space [7].

For the description of the algorithm we assume that we have the training set Dn = (x1, y1), ...,
(xn, yn) ∈ Rd × {1, 1} and we are going to suppose that the two classes for Y are 1 and -1.

We recover the probability of error for a classifier of fn from the task of thinking about
consistency as

L(fn) = P{fn(X) ̸= Y }

and we reconstruct the definition of the Bayes classifier for this algorithm as

f ∗(x) =

{
1 if x ∈ η(x) ≥ 1/2

−1 if x ∈ η(x) < 1/2
.

So, now, the Bayes’ error is

L∗ = L(f ∗) = inf
f :Rd→{−1,1}

L(f).
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Suppose that we have a linearly separable data Dn, i.e, assume that there exist elements
w ∈ Sd

1 and a real number b ∈ R with

⟨w, xi⟩+ b > 0 for all i with yi = 1

⟨w, xi⟩+ b < 0 for all i with yi = −1

In other words, Dn can be correctly separated by the affine linear hyperplane determined by
w and b.

In this case the generalized portrait algorithm constructs the correctly separating hyperplane
(wn, bn) that has maximal distance to the training points. The resulting decision function is
defined by

fn(x) := sign(⟨wn, x⟩+ bn) for all x ∈ Rd.

Until normalisation, (wn, bn) is the unique solution of the optimisation problem

{
min
b,w

||w||

subject to yi(⟨w, xi⟩+ b) ≥ 1 i = 1, ..., n

We can clearly see that this approach has two shortcomings: in the first term, a linear deci-
sion function may be inappropriate to discriminate between the two classes because it may
happen that they are not linearly separable and so (wn, bn) may not exist.

Second, even if we have linearly separable data, in the presence of noise it may happen
that any good decision function will misclassify some cases.

To try to fix the first problem, the SVM maps the input data x1, ..., xn into a (possibly
infinite dimensional) Hilbert space, H, called the feature space, using a non-linear function
ϕ : X → H. Now, the approach of the generalised portrait algorithm is implemented in H
instead of X, i.e. we simply replace x and the xi’s in the decision function and optimisation
problem by ϕ(x) and the ϕ(xi)’s, and the vector w in the optimisation problem is chosen
in H. The corresponding algorithm is called Maximal Margin Classifier and was the first
classifier of the SVM type.

To avoid the second problem, the linear constraints in the optimisation problem are re-
laxed to yi(⟨w, xi⟩ + b) ≥ 1 − ξi with ξi ≥ 0. Then, to avoid trivial solutions, the objective
function must also take into account the slack variables ξi. Combining both modifications
can lead to the following quadratic optimisation problem.
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
min
b,w

⟨w,w⟩+ c
∑n

i=1 ξi

subject to yi(⟨w, ϕ(xi)⟩+ b) ≥ 1− ξi i = 1, ..., n

ξi ≥ 0 i = 1, ..., n

where c > 0 is a free parameter that is usually set heuristically and is called regularisa-

tion parameter. Hereafter we denote a solution of this quadratic optimisation problem by
(wϕ,c

n , bϕ,cn ) ∈ H × R.

Since the objective function of the quadratic optimisation problem remains convex, we can
consider the Wolf Dual

max
c

∑n
i=1 αi − 1

4

∑n
j,i=1 yiyjαiαj⟨ϕ(xi), ϕ(xj)⟩ i = 1, ..., n

subject to
∑n

i=1 yiαi = 0 i = 1, ..., n

0 ≤ αi ≤ c

If (α∗
1, ..., α

∗
n) denotes a solution of the previous problem, then the solution vector wϕ,c

n is

wϕ,c
n =

1

2

n∑
i=1

yiα
∗
iϕ(xi)

and the corresponding bias bϕ,cT by

bϕ,cn = yj −
1

2

n∑
i=1

yiα
∗
iϕ(xi)⟨ϕ(xi), ϕ(xj)⟩

for every α∗
j with 0 < α∗

j < c.

An algorithm that provides the decision function

fn(x) := sign(⟨wϕ,c
n , ϕ(x)⟩+ bϕ,cn )

for every data Dn is called 1-norm soft margin classifier (1-SMC) with feature map ϕ and
parameter c.

Note that only inner products of ϕ with itself occur, both in the optimisation problem and
in the evaluation of the resulting decision function. Therefore, it is sufficient to know the
function ⟨ϕ(·), ϕ(·)⟩ : X̃ × X̃ → R where X̃ ⊂ R, and, it happens that it is not needed to
compute the feature map. Even more, it is neither needed to know H.
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Having proved that the kNN classifier is universally consistent, it remains an open question
whether the SVM is universally consistent for a particular choice of parameters. The universal
consistency of the 1-SMC is achieved by selecting the regularisation parameter in a distinctive
way and using a kernel (see Definition 3.2.1) from a specific class, known as universal kernels.

Definition 3.2.1. Let (X̃, d) be a metric space. A function k : X̃ × X̃ → R is said to be a
kernel on X̃ if there exists a Hilbert space H and a map ϕ : X̃ → H with

k(x, y) = ⟨ϕ(x), ϕ(y)⟩

for all x, y ∈ X̃. We call ϕ a feature map and H a feature space of k.

Notably, both H and ϕ are not at all unique, but for a given kernel there is a canonical
feature space (with associated feature map), which is, in fact, a so-called reproducing kernel
Hilbert space (RKHS). However, the use of these spaces will be unnecessary in this problem.

Definition 3.2.2. Let k be a kernel on X̃ and ϕ : X̃ → H be a feature map of k. A function
f : X̃ → R is induced by k if there exists an element w ∈ H such that f(·) = ⟨w, ϕ(·)⟩.

The next lemma shows that this definition is independent of ϕ and H.

Lemma 3.2.3. Let k : X̃ × X̃ → R be a kernel and ϕ1 : X̃ → H1, ϕ2 : X̃ → H2 be two
feature maps of k. Then for all w1 ∈ H1 there exist w2 ∈ H2 with ||w2|| ≤ ||w1|| and

⟨w1, ϕ1(x)⟩ = ⟨w2, ϕ2(x)⟩, for all x ∈ X̃.

Proof. Let H∗
1 :=

〈
ϕ1

(
X̃
)〉

and H̃1 its orthogonal complement in H1. Then w1 ∈ H1

can be written as w1 = w∗
1 + w̃1 with w∗

1 ∈ H∗
1 and w̃1 ∈ H̃1. Given an x ∈ X̃ we have

⟨w̃1, ϕ1(x)⟩ = 0 and therefore we obtain ⟨w∗
1, ϕ1(x)⟩ = ⟨w1, ϕ1(x)⟩ for all x ∈ X̃. Now by the

definition of H∗
1 there exists a sequence

{
w

(1)
n

}
⊂ ⟨ϕ1(X̃)⟩ with w

(1)
n =

∑mn

m=1 λ
(n)
m ϕ1

(
x
(n)
m

)
and w∗

1 =
∑∞

n=1w
(1)
n . Then for w

(2)
n =

∑mn

m=1 λ
(n)
m ϕ2

(
x
(n)
m

)
and l2 ≥ l1 ≥ 1, from the kernel

definition we obtain

∣∣∣∣∣
∣∣∣∣∣

l2∑
n=l1

w(1)
n

∣∣∣∣∣
∣∣∣∣∣
2

=

l2∑
n=l1

mn∑
m=1

l2∑
i=l1

mi∑
j=1

λ(n)
m λ

(i)
j

〈
ϕ1

(
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Therefore,
{∑m

n=1w
(2)
n

}
m≥1

is a Cauchy sequence and therefore converges to w2 =
∑∞

n=1 w
(2)
n ∈

H2. Obviously we then have ||w2|| = ||w∗
1|| ≤ ||w1||. Also, a simple calculation similar to the

one above shows that ⟨w1, ϕ1(x)⟩ = ⟨w2, ϕ2(x)⟩ for all x ∈ X̃.

We introduce the space C(X̃) of all continuous functions f : X̃ → R on the compact metric
space (X̃, d) endowed with the usual supremum norm:

||f ||∞ := sup
x∈X̃

|f(x)|

which is a classic example of an algebra.

Definition 3.2.4. A continuous kernel k : X̃ × X̃ → R on a compact metric space (X̃, d)
is called universal if the space of all functions induced by k is dense in C(X̃), i.e., for all
g ∈ C(X̃) and all ϵ > 0 there exits a function f induced by k with ||f − g||∞ ≤ ϵ.

Examples of universal kernels are :

1. The polynomial kernel, k(x, y) := (⟨x, y⟩+ 1)p for all p > 1.

2. The sigmoid kernel, k(x, y) := tanh(α⟨x, y⟩+ β) for all α, β ∈ R.

3. The Gaussian RBF kernel, k(x, y) := exp(−σ2||x−y||22) for all σ > 0 and all compact
X̃ ⊂ Rd.

4. The kernel k(x, y) := exp(⟨x, y⟩) for all compact subsets X̃ ⊂ Rd.

5. Vovk’s real infinite polynomial, k(x, y) := (1−⟨x, y⟩)−α for all α > 0 and all compact
subsets X̃ ⊂ {x ∈ Rd : ||x||2 < 1}.

6. The stronger regularized Fourier kernel, k(x, y) :=
∏d

i=1
1−q2

2(1−2q cos(xi−yi)+q2)
for all

0 < q < 1 and all compact X̃ ⊂ [0, 2π)d.

7. The weaker regularized Fourier kernel k(x, y) :=
∏d

i=1
π

2q sinh(π/q)
cosh(π−|xi−yi|

q
) for all

0 < q < ∞ and all compact X̃ ⊂ [0, 2π)d.
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The result where the universal consistency of the 1-SMC classifier is proven requires the use
of covering numbers and outer probability.

Let us define the first concept.

Definition 3.2.5. Assume we have a metric space (X̃, d). For ϵ > 0, we define the covering
numbers of this metric space as

N((X̃, d), ϵ) := inf
{
n ∈ N : there exists x1, ..., xn with X̃ ⊂

n⋃
i=1

Bd(xi, ϵ)
}

We have that the space (X̃, d) is precompact if and only if N((X̃, d), ϵ) for all ϵ > 0.

We also need the following result.

Lemma 3.2.6. Let k : X̃ × X̃ → R be a universal kernel on a compact subset X̃ of Rd and
ϕ : X̃ → H be a feature map of k. Then ϕ is continuous and the map

dk(x, y) := ||ϕ(x)− ϕ(y)||k
defines a metric on X̃ such that id : (X̃, d) → (X̃, dk) is continuous.

Proof. By definition of dk and k

dk(x, y) =
√

k(x, x)− 2k(x, y) + k(y, y)

we observe that dk(x, .) : (X̃, d) → R is continuous for every x ∈ X̃. In particular, {y ∈
X̃ : dk(x, y) < ϵ} is open with respect to d and consequently, id : (X̃, d) → (X̃, dk) is
continuous.

Next, we introduce the concept of outer probability.

Definition 3.2.7. For a probability space (Ω,A, P ), the outer probability of an arbitrary
B ⊂ Ω, denoted P ∗(B), is the infimum over all P (A) such that B ⊂ A and A ∈ A [16].

Outer probabilities can be used for statistical inference instead of probability measures to
provide flexibility in model specification [8].

Finally, the following theorem shows the strong universal consistency of the 1-norm soft
margin classifier. The proof of this theorem is beyond the contents of this report but can be
found at [11].

Theorem 3.2.8. Let X̃ ⊂ Rd be compact and k be a universal kernel on X̃ with N((X̃, d), ϵ) ∈
O(ϵ−α) for some α > 0. Suppose that we have a positive sequence {cn} with ncn → ∞ and
cn ∈ O(nβ−1) for some 0 < β < 1

α
. Then for all Borel probability measures P on Rd×{−1, 1}

and all ϵ > 0 we have

lim
n→∞

P ∗ ({Dn ∈ (Rd × {−1, 1}) : L(fk,cn
n ) ≤ L∗ + ϵ

})
= 1

where P ∗ is the outer probability of P .
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4 Results and analysis

In this section, the kNN and SVM classifiers are studied when applied to the particular case
of the plastic moulding machine. Both algorithms are going to be compared using different
statistical values.

The Python language was chosen for this study due to its ease of use, clear and concise
syntax, and wide ecosystem of tools and libraries for data analysis and visualization. Addi-
tionally, it integrates easily with other technologies [17].

The kNN and SVM algorithms are included in the Scikit-learn library, which offers a wide
range of machine learning algorithms. Let us explain the way in which we handle both algo-
rithms.

Among the possibilities that Scikit-learn offers, we have chosen the Euclidean metric to
compute distances between points in the kNN. We will employ the linear, polynomial (grade
three by default), radial (rbf) and sigmoid kernels with the SVM algorithm (they are intro-
duced theoretically in page 29).

In the binary case of SVM algorithm, the classifier gives a score for each sample and then
probabilities are calibrated using logistic regression on the SVM’s scores. This is then fit by
a cross validation (see Subsection 4.2) on the training data. Details on this process can be
seen in [9].

4.1 Statistical Parameters

In both cases, to study the quality of the classifier we compute the confusion matrix and
three statistical parameters which are the accuracy, the precision and the recall.

We start by explaining the confusion matrix, since the parameters are derived from it.

The basic idea of the confusion matrix is to count the number of times a record entry of
class A is classified as class A or B, where A and B can both be 0 or 1 (or in our case bad
part and good part) [6].
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Furthermore, there are four possibilities which are described below and that are represented
in Figure 1:

• True Negatives (TN): is the number of instances that the algorithm correctly classified
as negative. In this specific case, these are the damaged pieces class entries that have
been classified as damaged.

• False Negatives (FN): is the number of instances that the algorithm incorrectly classified
as negative. In this case, these are the entries of the good pieces class that have been
classified as damaged.

• False Positives (FP): is the number of instances that the algorithm incorrectly classified
as positive. In this specific case, these are the damaged pieces class entries that have
been classified as good.

• True Positives (TP): is the number of instances that the algorithm correctly classified
as positive. In this case these are the good pieces class entries that have been classified
as good.

Figure 1: Confusion Matrix [4]
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From here we consider the following statistical parameters [6]:

1. Accuracy: calculates the proportion of correct predictions.

accuracy :=
TN + TP

TN + TP + FN + FP

2. Precision: refers to the number of true positives divided by the total number of posi-
tive predictions.

precision :=
TP

TP + FP

3. Recall: is the proportion of positive inputs that are correctly classified by the model.

recall :=
TP

TP + FN

As in this specific problem we are interesting in choosing the right parameters to be sure the
piece we are due to produce would be good, the most important statistical parameter is the
precision.

Finally, we need to measure the quality of every possible combination of classifiers and pa-

rameters. In order to avoid overfitting problems we will use the Cross Validation procedure,
which is explained in Subsection 4.2.

4.2 Cross Validation

Usually, the hyperparameters for classifiers, such as the c value for an SVM, are fitted mea-
suring the performance on the training set. Quite often this produce some overfitting on the
training set. This is because the parameters can be adjusted until the classifier performs
optimally on this set, which can cause the knowledge of the training set to filter into the
model and the evaluation metrics to lose their generalisation performance.

To address this issue, a validation set can be created by holding out a portion of the training
set. The model is trained on the training set and evaluated on the validation set. If the
results are satisfactory, the final evaluation is performed on a third subset, the test set.

However, partitioning the available data into three sets drastically reduces the number of
data available for model learning, and the results can depend on a particular random choice
for the pair of train and validation sets. To deal with this problem, a procedure called cross-
validation (CV) is used.

33



There are different ways of CVs, in this work a variation of the k-fold CV has been used.
The k-fold CV approach involves splitting the dataset into training and test sets. Then it
makes another partition to the training set into k smaller sets, called folds, with equal sizes.

For each of the k-folds, a model is trained using the other k − 1 of the folds as training
data and the selected fold as validation (often also referred to as a test). Each of these
iterations are called splits. The resulting model is then evaluated on the remaining part of
the data, using it as a test set to compute a performance measure such as accuracy [2]. To
better understand the k-fold process, see Figure 2.

Figure 2: K-fold Cross Validation process [2].

In this work, as the parameters are not adjusted within the CV, this process is used for a
better evaluation of the performance of the chosen parameters.

Instead of initially dividing the dataset into test and train, we apply the k-folds directly
on the complete set, i.e. we divide the dataset into k folds. For each split, the three statisti-
cal parameters are measured on the fold that corresponds to the training data. The average
of the values computed in the loop is the performance measure reported by k-fold CV for the
selected parameters.

For the case of the confusion matrix of the k-fold process it is the sum of each confusion
matrix obtained in each of the splits.

4.3 Data analysis

We have a dataset with 4889 entries and 27 variables, where 4600 entries are of good pieces
and 289 are of defective pieces. The Good Bad Piece variable indicates whether the piece
was good or defective. The dataset contains numerical and categorical values, which can be
in text form. Excluding the type of material, all variables are numerical, including temper-
ature, heating time and humidity. All the variables available in the dataset are explained in
Appendix 2.
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To enable machine learning algorithms to process the categorical variable, the material type
must be converted from text to numerical values. We do this using dummy variables. Dummy
variables involve creating a binary column for each unique value in the categorical variable
being coded. The column corresponding to the value present in each record is marked with
a 1, while the other columns are marked with a 0.

In this case, the variables category abs and category ps have been created, which are the
two types of material for which data is available. Additionally, we have normalised the vari-
ables between 0 and 1, as the procedures may give more weight to certain variables, such as
temperatures, due to their larger dispersion.

The studies of both methods are totally different. While the kNN algorithm works worse
when the number of variables is large due to the curse of dimensionality (when the dimension
is increased, under rather general conditions the probability of finding a point nearby to the
point to be classified tends to zero) the SVM works nicely with high dimensions and does
not need to reduce the number of variables used.

Furthermore, we are working with unbalanced data, because the amount of data in one class
is much higher than in the other one. In this case, the percentage of bad pieces is around
6% of the data; this means that if we classify all the pieces as good, we would achieve an
accuracy of 94%. Obviously, the classifiers’ efficiency could been affected by this unbalancing.

For this reason, we propose two ways to solve this problem. First of all, we are going to
try to raise the threshold for the decision of classify a data as good, making easiest to say a
piece is defective.

These algorithms work calculating the probability for the SVM or the proportion of in-
stances of class 0 among the k nearest neighbors, good piece, or to the class 1, bad piece.
The SVM (respectively the kNN) decides that the piece is good when the probability of be
good is larger than 0.5 (respectively the proportion of one class is equal or higher than 0.5).
The main idea is to replace 0.5 by a higher value in order to reduce dominance.

If we observe that the imbalance is still large in the results of the algorithm, we can ap-
ply oversampling or under sampling techniques. These techniques multiply the instances of
the minority class or remove some instances of the majority class respectively.
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4.3.1 k-Nearest Neighbors

With the kNN algorithm the largest the dimension (more variables are used) the worst the
results, so we are going to study which are the variables that have more relevance in this
problem and we are going to select the better ones to apply the algorithm.

A scikit learn function called mutual info classif has been used to measure the dependency
between each variable and the target variable (Good Bad Piece).

The mutual information between two random variables is a non-negative value that mea-
sures the information between two variables. It is equal to zero only if the variables are
independent and higher values indicate higher dependence. The values can be between zero
and infinity.

The function is based on non-parametric methods that estimate entropy from distances to
the kNN (note that this is different from the classification made above with kNN). See [1]
for more information.

Figure 3: Variables available in the data set ordered by their relevance
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We can see that the characteristics that have more information for this case are undoubt-
edly the lower and upper heating times. As we must find a balance between the amount
of information we store and the amount of variables we use, taking into account that the
information between the target and the two most important variables is around 0.07, we will
take the characteristics that have 0.023 or more (1/3 of the information that the first two
characteristics have). With this criterion we find that the number of characteristics to use is
18, since the nineteenth characteristic has 0.02 of the information.

For the issue of sample imbalance the two ways considered above become necessary, rais-
ing the threshold and using oversampling techniques.

There are two reasons for increasing the threshold. Firstly, if the threshold remains at
0.5, the algorithm will classify practically all the instances as good pieces due to the high
proportion of good pieces in our data. Secondly, to prevent the production of defective pieces,
the algorithm should only classify a piece as good if it is highly confident in its classification.

The threshold will be set at 0.95, because we obtained the same results using 0.95 and
higher rates, but the algorithm still remains biased due to the low proportion of defective
pieces (the precision is around 0.94). To address this issue, the oversample function is uti-
lized to balance the number of entries for each class within the dataset, obtaining the same
number of defective pieces as the number of good pieces in the training set.

After these initial adjustments, we continue with the study of the optimal number of neigh-
bours to obtain the best classifier with this algorithm.

With this aim in mind, in Figure 4 we represent the three statistical parameters versus
the number of neighbours and make a decision based first of all in the precision and if some
values of k have equal or very similar precision we select the best by using the other param-
eters.

It is important to clarify that we are using odd number of neighbours due to the fact that
we are choosing between two groups and we want to avoid ties (although after increasing the
threshold for decisions this fact should not be decisive).

Figure 4 shows the precision, accuracy and recall of the CV procedure versus the number of
neighbours used to create the algorithm.
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Figure 4: Statistical parameters for the kNN algorithm

Looking at Figure 4 we can see that for a number of neighbours of 17 to 29 the precision
is almost identical and close to 100%. The other two parameters decrease as the number
of neighbours increases. So we choose k = 17 as the number of neighbours with the best
parameters.

4.3.2 Support Vector Machine

As mentioned above the SVM algorithm still works well with high dimensions so we will use
all the variables available.

For the issue of sample imbalance we will only raise the threshold to 0.95, because, as well
as before, we obtained the same results using 0.95 than higher rates.

For this method we have the possibility of using four type of kernels, already discussed
in page 29: the linear, the polynomial, the radial and the sigmoid kernels. In order to deter-
mine the best SVM algorithm for this specific case we are studying eight possibilities for the
regulation parameter for the four kernels.
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Figures 5, 6, 7 and 8 show the precision, accuracy and recall of the CV procedure versus the
regularisation parameter for each of the selected kernels. The regularisation parameter is the
power of ten of the minus number on the x-axis, i.e. where the x-axis marks a one we have
a regularisation parameter of c = 1e-1.

In Figure 5 we can see how the precision increases slowly until the regularisation param-
eter with a value of 1e-3. Moreover, for this same value we can see a increase of the other
two statistical parameters. This is why we choose 1e-3 as the regularisation parameter.

Figure 5: Statistical parameters for SVM with linear kernel

In Figure 6 we observe a trend opposite to the one in Figure 5. It is noticeable that the
precision tends to decrease as we decrease the regularisation parameter. Among the first
three values, 1, 1e-1 and 1e-2, we can see that in addition to the precision, the accuracy and
recall are higher for the first one. For this reason, we choose the value 1 as the regularisation
parameter with the best statistical parameters for the polynomial kernel (remember that by
default, the degree of the polynomial of the kernel is 3).
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Figure 6: Statistical parameters for SVM with polynomial kernel

Figure 7: Statistical parameters for SVM with radial kernel

In Figure 7 we can observe that we have obtained almost the same precision for the two first
regulation parameters 1 and 1e-1. Also, looking the rest of the parameters we realise that
they are basically the same in both.
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As the main objective of the SVM algorithm is to maximize the margin between classes,
due to the fact that the two regulation parameters have obtained the same parameters, we
choose the one that has a regulation parameter of 1e-1 because is the one with higher margin.

Finally, in Figure 8 we observe a clear trend of increasing precision as we decrease the
regularisation parameter. However, for the value 1e-4 we observe a noticeable decrease in
the precision although the accuracy and the recall have slightly grown. For the same reason
as in the previous graph, we will choose the regularisation parameter equal to 1e-3 as the
parameter with the best statistical values.

Figure 8: Statistical parameters for SVM with sigmoid kernel

Now we are going to compare the statistical parameters for the kernels of them selecting the
best regulation parameter for each one.

Kernel C Accuracy Precision Recall
lineal 1e-3 0.4971 0.9656 0.4857
poly. 1 0.4052 0.9865 0.3728
radial 1e-1 0.3637 0.9835 0.3294
sigmoid 1e-3 0.1487 0.7352 0.1012

Table 1: Comparison of statistical parameters between the different kernels of the SVM
algorithm
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Focusing on the precision value, we observe that the radial and polynomial kernel obtain
similar and higher values. But, as the accuracy and the recall are higher for the polynomial
kernel we conclude that the polynomial kernel is the best option for the SVM algorithm on
the dataset at hand.

4.4 The results

Once both methods have been studied separately and the best intrinsic parameters for each
have been selected, it remains to compare both methods to determine which one most accu-
rately predicts our data.

To compare the two methods we will first use the confusion matrix obtained for each one.
Then, Table 2 shows with the three statistical criteria used in the selection of the parameters
to consolidate the observations.

Figure 9: Confusion matrix for the kNN algorithm with 17 neighbours
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Figure 10: Confusion matrix for the SVM algorithm with polynomial kernel and a regulari-
sation parameter c =1

The first thing we notice in these figures is that the total number of classified data is the
same. Although it has been mentioned that for the implementation of the kNN algorithm it
has been necessary to oversample the dataset, this has been done in the training set and not
in the test set, where the statistical parameters have been calculated.

Leaving this aside, another notable aspect of these graphs is the rate of falsely classified
good pieces, i.e. the number of pieces that were classified as good but were actually bad (top
right box in both graphs). It can be observed that this number is 34 for the kNN algorithm
and only 23 for the SVM. However, the kNN has almost classify 2 times more good pieces
correctly than the SVM.
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After the initial impression, we will compile the three statistical parameters used in this work
for the kNN and the SVM with polynomial kernel in the following table.

Algorithm Accuracy Precision Recall
kNN 0.6983 0.9996 0.6870

SVM poly. 0.4052 0.9865 0.3728

Table 2: Comparison of statistical parameters between the two algorithms

Table 2 confirms that kNN has a higher percentage of true positives compared to SVM.
However, upon examining the remaining parameters, it becomes apparent that they are con-
siderably higher for the kNN algorithm. As a result, we have selected this algorithm as the
optimal classifier for this specific problem with these training data.

This algorithm can be implemented to reduce the number of defective pieces produced by the
moulding machines. When the operator enters the parameter values: the different tempera-
tures, the heating times or the properties of the plastic used (the humidity, for example, is
measured directly by the machine from the ambient) this algorithm makes a quick classifica-
tion and informs the operator if with those characteristics the piece will be good or defective.
If the piece is defective, the operator must adjust the parameters again to increase the chance
of obtaining good piece.
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5 Conclusions

We have shown that the kNN algorithm has universal consistency for continuous distribu-
tions, which means that if we increase the number of observations the algorithm will improve
the classification rates approaching the optimal Bayes error. This is very important as it
ensures that as more pieces are made and the database records more entries (which will be
mostly good pieces as we are trying not to make damaged pieces) the model is giving us more
accurate information on whether the values chosen for the parameters are good or need to
be adjusted.

In addition, we have seen that the SVM algorithm is not universally consistent for all possible
distributions and kernels. However, we have shown that using universal kernels on distribu-
tions with compact support the algorithm is universally consistent.

In the practical implementation, the Scikit-learn library only implements the lineal, poly-
nomial, radial and sigmoid kernels. These four kernels are universal kernels, so it would
still be true that the more time passes and the more observations we have, the more correct
classifications the SVM will make.

On the other hand, due to the high computational cost of increasing the number of in-
puts for the SVM we would have to make sure that it classifies well and fast for a limited
number of observations.

By applying both models to a data set with variables measured by sensors on a real moulding
machine we have obtained interesting results.

Following the objective of minimising raw material waste and reducing costs and energy,
it is obvious that what we are trying to achieve is a reliable algorithm that tells us that the
piece is going to be ready for sale.

In the case of the kNN algorithm, its precision is 0.9996 and for the SVM it is 0.9865.
Both precisions are very high but the proportions of false negative is almost two times higher
for the SVM than for the kNN . Additionally, the other statistical parameters were much
higher for the kNN.

With respect to improvements or future work on the practical side, there are several ways
that can be explored to try to improve the results.
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In addition to the classification algorithms used, kNN and SVM, there are many others such
as boosting, random forest or trees whose use could be interesting in certain parts of the
process followed in this project.

First, instead of using the mutual info classif function, which measures the entropy depen-
dence between the features and the dependent variable, we can use the powerful XGBoost
algorithm (Extreme Gradient Boost). This supervised algorithm is based on decision trees.
As the model is trained, XGBoost evaluates the importance of each feature to the classifica-
tion problem. You can then extract the importance of the features and use that information
to select the most relevant features. This algorithm is useful when you are working with
complex models and large datasets.

Another approach can be to combine the two methods, for example you could use XG-
Boost to obtain an initial list of important features and then apply mutual information to
refine the selection.

Secondly, you could implement the function GridSearchCV. This is a CV technique that
when run searches through the different parameters you enter in the parameter grid and
extracts the best values and combinations of parameters for the problem you present to it.
In this case it could be used to calculate the best number of neighbours in the kNN (among
a larger number of possibilities), to find the regularisation parameter and the kernel in the
SVM or even to determine the number of relevant features that make the model perform
better.

On the other hand, to keep as much information as possible by decreasing the dimension
for the kNN algorithm, the Principal Components Analysis can be used, which creates new
variables by making linear combinations of the original ones with minimal loss of information.

Finally, it could be very interesting to create an algorithm that, based on the environmental
data and the characteristics of the plastic to be used, would indicate the best values for the
machine parameters and thus increase the proportion of pieces suitable for sale.
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Tutorial sobre Máquinas de Vectores Soporte (SVM) 1 (Nov. 2016), pp. 1–12.

[14] Support Vector Machine (SVM). Jan. 2024. url: https : / / es . mathworks . com /

discovery/support-vector-machine.html.

[15] Kashvi Taunk et al. A Brief Review of Nearest Neighbor Algorithm for Learning and
Classification. 2019, pp. 1255–1260. doi: 10.1109/ICCS45141.2019.9065747.

[16] Aad W. van der Vaart and Jon A. Wellner. “Outer Integrals and Measurable Majo-
rants”. In: Weak Convergence and Empirical Processes: With Applications to Statistics.
Springer New York, 1996, pp. 6–15. isbn: 978-1-4757-2545-2. doi: 10.1007/978-1-
4757-2545-2_2. url: https://doi.org/10.1007/978-1-4757-2545-2_2.

[17] Why Python for Machine Learning? Jan. 2024. url: https://pythonbasics.org/
why-python-for-machine-learning/.

48



Appendixes

Appendix 1

In this appendix we employ the condition presented in Section 3.1.

Lemma .0.1 (Cover and Hart). (See [3], page 579)
Let µ be a probability measure on Rd, and define its support set by

A = Supp(µ) = {x : for all r > 0, µ(Sd
x,r) > 0}

Then µ(A) = 1.

Proof. By the definition of A,

Ac = {x : µ(Sd
x,rx) = 0 for some rx > 0}.

Let Q denote the set of vectors in Rd with rational components. Then for each x ∈ Ac, there
exists yx ∈ Q with ||x− yx|| ≤ rx/3. This implies Sd

yx,rx/2
⊂ Sd

x,rx . Therefore, µ(S
d
x,rx/2

) = 0,
and

Ac ⊂
⋃
x∈Ac

Sd
yx,rx/2

The right hand side of this expression is a union of countably many sets of zero measure, and
therefore
µ(Ac) = 1.

Lemma .0.2. (See [3], pages 63-64 )
Let us assume that limn→∞

k
n
= 0. If x ∈ supp(µ), then ||X(k)(x) − x|| → 0 with probability

one. If X is independent of the data and has probability measure µ, then ||X(k)(X)−X|| → 0
whenever k/n → 0.

Proof. Take ϵ > 0. Let x ∈ supp(µ). Then µ(Sd
x,ϵ) > 0. Observe that ||X(k)(x) − x|| > ϵ if

and only if

1

n

n∑
i=1

I{Xi∈Sd
x,ϵ} <

k

n
.

By the strong law of large numbers, the left-handed side converges to µ(Sx, ϵ) > 0 with prob-
ability one, while, by assumption, the right-hand side tends to zero. Therefore, ||X(k)(x) −
x|| → 0 with probability one.
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The second statement follows from the previous argument as well. First note that by Lemma
.0.1, P{X ∈ supp(µ)} = 1, therefore for every ϵ > 0,

P{||X(k)(X)−X|| > ϵ} = E
[
I{X∈supp(µ)}P{||X(k)(X)−X|| > ϵ|X}

]
,

which converges to zero by the dominated convergence theorem, proving convergence in
probability. If k does not change with n, then ||X(k)(X) − X|| is monotone decreasing for
n ≥ k; therefore, it converges with probability one as well. If k = kn is allowed to grow
with n such that k/n → 0, then using the notation X(kn,n)(X) = X(k), we see by a similar
argument that the sequence of monotone decreasing random variables

sup
m≥n

||X(km,m)(X)−X|| ≥ ||X(kn,n)(X)−X||

converges to zero in probability, and therefore, with probability one as well.

50



Appendix 2

This appendix explains the information contained in the dataset variables used for both mod-
els, the kNN and the SVM.

• Preblow Delay: measures the time from the start of the cycle until pre-blowing is
applied.

• Lower Heat T ime: measures the time of heat application in the lower area of the
material.

• Upper Heat T ime: measures the time of heat application in the upper area of the
material.

• Material Width: measures the width of the plastic sheeting used.

• Material Thickness: measures the thickness of the plastic sheeting used.

• Material Length: measures the length of the plastic sheeting used.

• Intensity Preblow: measures the intensity of the pre-blow air. Proper pre-blowing can
help to preform the material before the main blowing.

• Lower Temperature 1 a Lower Temperature 7: these variables measure the temper-
atures at different sections or points on the bottom of the mould during the moulding
process.

• Upper Temperature 1 a Upper Temperature 7: these variables measure the temper-
atures at different sections or points on the top of the mould during the moulding
process.

• V acuum Pressure: measures the vacuum pressure applied during the blow moulding
process. Vacuum helps to remove air bubbles and improve the quality of the moulded
part.

• Good Bad Piece: indicates whether the moulded piece is acceptable (good) or defective
(bad). It is based on predefined quality criteria.

• humidity, refrigerant and temperature: these variables measure the environmental
conditions of the work area, such as the relative humidity, the temperature of the
refrigerant used in the cooling system and the ambient temperature.

• category ABS and category ps: indicate the type of plastic used in the moulding
process, such as ABS or polystyrene. If in the category ABS variable there is a 1 in
an entry then it means that ABS is being used in the production of the part.
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