
Facultad de Ciencias

Implementación de un Intérprete de Programación
Lógica en Scheme y Estrategias de Resolución de

Cláusulas de Horn
Implementation of a Logic Programming Interpreter in

Scheme and Horn Clause Resolution Strategies

Trabajo de fin de grado
para acceder al

GRADO EN MATEMÁTICAS

Autor: Fernando Frías García-Lago
Director: Domingo Gómez Pérez

Febrero de 2024

Implementación de un Intérprete de Programación Lógica en Scheme y Estrategias de
Resolución de Cláusulas de Horn

Resumen palabras clave: intérprete, programación, lógica, Scheme, cláusulas de Horn

En el presente Trabajo de Fin de Grado (TFG) se ha explorado la equivalencia entre los paradig-
mas de programación imperativa y funcional, usando como lenguaje conductor Scheme, y el paradigma
de la programación lógica, tomando como referencia el lenguaje PROLOG.

Como objetivo final del mismo, se ha implementado un intérprete de programación lógica en
Scheme, incluyendo la programación de algoritmos para trabajar con la resolución SLD de cláusulas
de Horn, un método que ha sido ampliamente examinado.

Por lo tanto, la parte fundamental del trabajo desarrollado ha sido el estudio y la comprensión en
profundidad de los conceptos y bases de la programación lógica, así como la resolución de una amplia
variedad de problemas de programación funcional e imperativa para poder implementar el intérprete
final.

Acompañando a esta memoria se adjunta un archivo con el código que genera el intérprete junto
a una base de conocimiento que recoge una variedad de ejercicios de programación lógica resueltos
mediante dicho intérprete. Además, se indica el enlace a un directorio de GitHub con toda la colección
de problemas resueltos: https://github.com/ffriaslago/lambda.

Implementation of a Logic Programming Interpreter in Scheme and Horn Clause Resolution
Strategies

Abstract keywords: interpreter, programming, logic, Scheme, Horn clauses

In the present Bachelor’s Thesis, it has been explored the equivalence between imperative and
functional programming paradigms, using Scheme as the guiding language, and the logic program-
ming paradigm, using as reference the PROLOG language.

The ultimate objective was the implementation in Scheme of a logic programming interpreter,
including the development of algorithms to work with SLD resolution of Horn clauses. a method that
has been examined in detail.

Therefore, the fundamental part of the work developed has been the in-depth study and under-
standing of logical programming concepts and foundations, as well as the resolution of a wide variety
of functional and imperative programming problems in order to implement the final interpreter.

Accompanying this report, a file containing the code that generates the interpreter is attached along
with a database that includes a variety of logic programming exercises solved using the mentioned
interpreter. Additionally, the link to a GitHub directory with the entire collection of solved problems
is provided: https://github.com/ffriaslago/lambda.

https://github.com/ffriaslago/lambda
https://github.com/ffriaslago/lambda

Contents

1 Introduction 1
1.1 Logical Programming . 1

1.1.1 First programming language . 2
1.1.2 Horn Clauses and SLD Resolution . 4
1.1.3 Examples . 5
1.1.4 Improvements over the algorithm . 9
1.1.5 Expert Systems . 10
1.1.6 Conflict Resolution . 10

1.2 Lisp language . 11
1.3 Contents of the bachelor thesis . 12

1.3.1 Objectives . 12
1.3.2 Results . 12
1.3.3 Document Organization . 13

2 Procedures with Lisp language: a first level of abstraction 15
2.1 A computational model: λ-calculus . 15

2.1.1 Turing completeness of λ-calculus . 16
2.2 The practical implementation: Scheme . 17

2.2.1 Computational complexity . 18
2.2.2 Recursion vs Iteration . 19

3 Techniques on Scheme: Approaches to Solving Problems 23
3.1 List structures . 23

3.1.1 Quote operator . 24
3.1.2 Structures present in imperative languages . 24
3.1.3 Mutable Lists . 26
3.1.4 Streams . 27

3.2 Selection of problems . 28
3.2.1 Adjacency relation within a graph . 28
3.2.2 8-queens problem . 29

3.3 Message passing and Data-Directed: The data as a program and the use of quote. . . . 34

4 Interpretation of Languages in Functional Programming 37
4.1 The core of the evaluator . 37

4.1.1 The Halting Problem . 39
4.2 Logical programming interpreter . 40

4.2.1 Details of the implementation . 40
4.2.2 User guide . 43

5 Conclusions and Future Work 45

Bibliography 47

1 Introduction

Artificial Intelligence (AI) is in the epicentre of one of the most intense debates about technology. It is
being questioned how it should be used and what it is behind it. Although this discussion is recent, AI
is not a new concept, as its formal foundations can be considered in the work of Alan Turing during
the 40s and 50s of the last century. However, over the last years, the fast deployment of AI has become
essential for many applications in industry and entertainment, raising a question about the quality of
it and how to audit the results.

There is a broad shared ground between AI and logical programming, being the latter known
for its ability to efficiently handle logical inference and knowledge representation. Some common key
concepts are their declarative nature and how both are designed for solving problems. In the next
section, Logical Programming is reviewed, focusing on the advantages, components and theoretical
background of logical programming.

1.1 Logical Programming
Logical programming is a programming paradigm that is characterised by being directed to solve prob-
lems from a declarative perspective instead of an imperative one. In other words, stating the objective
that has to be achieved is the main focus in logical programming, rather than giving the computer
precise instructions of how to approach a problem, typical from an imperative view, which involves a
strong planning and requires a deep understanding of knowing how to transmit the solving method
to the computer. Hence, in logical programming, the problem is expressed as a set of facts and rules,
defining logical relationship. For this reason, it is said to be based on First-order logic, including all
its helpful features.

its declarative nature is one of the key advantages of logical programming. This often means having
smaller and easier to understand codes because they are better defined. Therefore, it improves their
readability. From the user’s point of view, it allows more flexibility, as one of the most important
characteristics is dynamic typing, a concept it will be expounded later in the section.

Because of the main focus of logical programming being the description of the problem, it is nec-
essary to define certain methods that will be used during the resolution of problem instances. The
two most important ones are SLD resolution and backward chaining. Therefore, when doing the im-
plementation of an interpreter for a logical programming language, a user has to be aware of how
these methods work in order to describe meticulously the problem to solve. All this structure gives
an advantage for the user: by implementing these pieces the focus of logical programming shifts to
the expressive power and flexibility. Also, as it uses First-order logic, it can be easier to discern the
reasoning behind some solutions. In summary, logical programming is a modern topic nowadays as it
is one of the foundations of data analysis or, as it has already been mentioned, AI, where the compre-
hension of the solution given by this tool is crucial.

Going now into technical details for implementing First-order logic, its components can be classi-
fied in: statements, predicates, variables, quantifiers (∀, ∃) and logic operators AND (∧), OR (∨) and

2 Scheme Logic Programming Interpreter

NOT (¬). The idea is to combine these elements to form sentences (complex statements), which can
also be expressed as a fact (other used names for this concept are assertion or statement) and rules (or
formulas). After establishing this set of facts and rules, other facts can be inferred from the defined
ones in different ways. This can be achieved when giving an input to an interpreter, that through and
automated reasoning returns an answer. These inputs can be referred as queries and, depending on
the form and structure of the query, the kind of answers are very different, starting from just checking
if the given statement is true or not. This is because of the mentioned flexibility, that it is highly
present in logical programming.

Next, it will be used an elementary example to see how it can be represented the evaluation of an
statement in First-order logic. Using the logical operators, it is built the formula given by expression 1.
Besides, it is assembled the truth table that is defined by it, reconstructing all the sub-formulas involved
in the final one. Finally, in Figure 1 it is represented a tree diagram that is related to the formula 1.

(A ∨B) ∧ (A ∨ (A ∧B)) (1)

A B A ∨B A ∧B A ∨ (A ∧B) (A ∨B) ∧ (A ∨ (A ∧B))

1 1 1 1 1 1
1 0 1 0 1 1
0 1 1 0 0 0
0 0 0 0 0 0

When evaluating the formula in equation (1), certain paths of the tree diagram of Figure 1 are
travelled through as it is indicated by the arrows. This type of diagrams are very useful when wanting
to track the evaluation process of an interpreter for a given program.

Figure 1: Tree diagram of (A ∨B) ∧ (A ∨ (A ∧B))

1.1.1 First programming language
From the idea of using logic as a programming language, Prolog was originated in the early 70s of the
20th century by Alain Colmerauer in Marseille as it is featured in Colmerauer and Roussel [1996]. It

1 Introduction 3

was initially conceived for natural language processing and symbolic reasoning, although it has expe-
rienced a continuous evolution until reaching areas such as expert systems (Section 1.1.5) or formal
verification: a field where the focus is on verifying the correct behaviour of logic circuits, protocols or
software programs. Other areas where Prolog can be found are bioinformatics or data analysis.

In despite of its multiple and different applications and its progression, Prolog has kept its name
during the last 50 years. For this reason, Körner et al. [2022] distinguishes a Prolog implementation
from other systems that have enough differences to be considered a separate language. One of this
common properties is the capacity to support SLD resolution and Horn Clauses, which will be key
concepts to be discussed in subsection 1.1.2.

There is an important test to check whether a logic solver can be considered as a Prolog system
or not. This test is based on the append function, which is used to concatenate lists, and it is created
with two rules:

1. For any list X, the empty list and X append to form the list X.

2. For any elements H, X, Y and Z. The list formed by concatenating H and X append with Y to form
a list formed by concatenating H and Z is X and Y append to form Z.

Now, it is displayed how these two rules look in Prolog, first block in Code 1.1, and Scheme,
second block in Code 1.2. The differences are notorious, specially when implementing the recursion in
the second rule and breaking the first list in two parts. In Prolog, these parts are usually named head
and tail, while in Scheme it is used the concept of car and cdr, two primitive procedures that refer to
the first element of a list (car) and to the rest of them (cdr), as it will be explained in Section 3.1,
since none of them are necessary to implement the append predicate.

append([], X, X).

append([H | X], Y, [H | Z]) :-
append(X, Y, Z).

Code 1.1: append predicate in Prolog

(rule (append () ?x ?x))

(rule (append (?h . ?x) ?y (?h . ?z))
(append ?x ?y ?z))

Code 1.2: append predicate in Scheme

This just serves as a glimpse of the differences between Scheme, which is a dialect of Lisp, and
Prolog, that, at the same time, has a relation with Lisp. By Körner et al. [2022], this connection
comes from the fact that the motivation of Prolog comes from three different areas of research: AI
programming, automatic theorem proving and language processing. The first of those three had been
present for about 15 years before the appearing of Prolog and it had already lead to the creation of
Lisp, having some important features such as abstraction.

Before entering the next subsection with the explanations of the two most important concepts
behind the implementation of a logical programming language and using the append test, it is worth
mentioning here a good illustration of the flexibility present in logical programming. For almost every
language, there is an append function that manipulates lists adding elements or other lists to them. It
is very useful and widely used. From an imperative perspective, this normally translates into giving
two arguments, being the first one usually a list and the second one a list or element and the function

4 Scheme Logic Programming Interpreter

returns one list integrating them. Usually, there are not more options. However, the flexibility in logical
programming allows the user in, either the Prolog or Scheme implementation of the function append,
answer more questions. For example, if one gives an interpreter the query (append (1 2 3) ?y (1
2 3 4 5)), the result will be (append (1 2 3) (4 5) (1 2 3 4 5)), as it has enough information
and capacity for knowing which list has to be appended to the first argument to give the third one.
Even more, if given (append ?x ?y (1 2 3 4 5)), it would produce all the possible combinations of
?x and ?y that engender the list of the third argument.

1.1.2 Horn Clauses and SLD Resolution
Introduced by the mathematician Alfred Horn in 1951 [Horn, 1951], Horn clauses were designed to
limit the language in First-order logic. One way to define a Horn Clause is: a clause where, at most,
one of its literals is positive. From this first definition, it comes a classification of the Horn Clauses into
two types: positive (or definite), when there is one positive literal, and negative, when there is none.
A first general expression of these kinds can be found at 2, where the symbols ¬pi or q represent the
literals, the basic building blocks of Horn clauses, which can be understood as an atomic proposition
in logic, i.e., either a predicate (q) or the negation of a predicate (¬pi).

¬p1 ∨ · · · ∨ ¬pn ∨ q (A positive Horn Clause)
¬p1 ∨ · · · ∨ ¬pn ∨ ¬q (A negative Horn Clause) (2)

However, when defining rules, the most practical way is to do it following the next structure:
if p1 and p2 and ... and pn, then it implies q. This can be satisfied easily using the logical equivalence
¬A ∨B ≡ A =⇒ B 1. Consequently, the two kinds of Horn Clauses can also be written as they appear
in equation (3). This notation is more helpful to navigate through the examples that will be explained
later, although both ways of writing the clauses will be used along the text.

p1 ∧ · · · ∧ pn → q (positive)
p1 ∧ · · · ∧ pn → ¬q (negative). (3)

In First-order logic, there is a subset called quantifier-free Horn Clause Logic, where the quantifiers,
such as ∃ (existential) or ∀ (universal) are treated in a particular way. As the name hints, there are
not any quantifiers. The universal ones are assumed to be implicit in the logic and for the existential
ones it can be performed a process called Skolemization [Beyene et al., 2013].

Once all the objects in the data base are expressed in the form of a Horn clause, it can be per-
formed the process called Horn Clause resolution, which is the basis for a logic programming language
as Prolog. Two of these clauses can generate a resolvent clause, with the condition that one of them
has to be positive. The type of the resolvent one will be determined by the other clause. Examples of
the two different cases can be found at 4 and 5 respectively.

¬p1 ∨ · · · ∨ ¬pn ∨ q +
¬p1 ∨ · · · ∨ ¬pn ∨ ¬q −

¬p1 ∨ · · · ∨ ¬pn −
(4)

¬p1 ∨ · · · ∨ ¬pn ∨ q +
¬q ∨ s +

¬p1 ∨ · · · ∨ ¬pn ∨ s +

(5)

This resolution method is called SLD (selected literals, linear pattern, over definite clauses). It was
first described by Robert Kowalski in 1974 [Kowalski, 1974] and then named that way in 1982 by van

1It is a straightforward equivalence, it can be seen by building the following truth table:

A B ¬A ¬A ∨B A =⇒ B

1 1 0 1 1
1 0 0 0 0
0 1 1 1 1
0 0 1 1 1

1 Introduction 5

Emden and Apt [Apt and van Emden, 1982]. Then, if a problem can be enunciated in way that all
the clauses within its database are Horn Clauses, then SLD resolution is a valid method to solve it.

It is worth mentioning that there exists a general resolution method, which is more extensively
explained in chapter 4 by Brachman and Levesque [2004]. Similarly to the SLD resolution, there is
one rule of inference, stating what formulas can be inferred from other formulas. This single rule can
be synthesised in:

Given two clauses, the first one of the form p1 ∨ q and the second one containing the comple-
ment of q, p1 ∨¬q. The clause p1 ∨ p2 is inferred, including the literals other than q of the first
clause and the ones other than its complement of the second one. The clause p1 ∨ p2 is called
a resolvent of the two input clauses with respect to the literal q.

Hence, a set of clauses can have more than one different resolvent. The clauses r ∨ s and ¬r ∨ ¬s
have two resolvents, one with respect to r, s∨¬s and other with respect to s, r∨¬r. The resolvent of
two complementary unit clauses is the empty clause. The process where a clause p is derivated from a
set of clauses S through a sequence of clauses which are resolvents of two earlier clauses in the process
is called Resolution derivation.

Now, some examples will be used to show the explained concepts, but before that, it is important
to remark that, although this bachelor thesis is outlined from a logical programming point of view and
the student, as it will be shown during the document, got familiarised with the former concepts and
learn the principles of logic programming, all the code included in these examples will be written in
Scheme, a Lisp dialect, that is, indeed, a language created for functional programming. Nonetheless,
as the title indicates, the ultimate goal is to understand the basis of logic programming and, at the
same time, learning how to implement this structures in Scheme, ending in the implementation of a
logic programming interpreter in this language. Additionally, as it will be indicated in the final part of
the Introduction, two folders with exercises written in Prolog from the book by Bratko [2001] can be
found in the working directory, demonstrating that in order to better understand the basis of logical
programming is also important to work with a suited programming language.

1.1.3 Examples

Example 1

Let the first data base contain the following facts (or assertions) and rules. It can be highlighted as
the rule found in the database Code 1.3 could be understood as, ∀x, if x is a man, then x is mortal,
it is one way to check why the universal quantifier is assumed to be implicit in the logic.

; 1. Fact
(man Socrates)
; 2. Rule
(rule (mortal ?person)

(man ?person))

Code 1.3: Example 1 database

The query, that is the question it has to be asked, i.e., a way to formulate the problem, is if Socrates
is mortal. In the Scheme interpreter, this would be done using the following order as an input to the
interpreter: (mortal Socrates). If this would be done in the interpreter that has been implemented,
the output would be (mortal Socrates), confirming that the fact could be deduced from the database
and that it is true. If it were not true, it would no return anything.

6 Scheme Logic Programming Interpreter

Using the SLD resolution explained above, it is going to be shown the deductive process that it
is performed in the diagram of Figure 2. We start from the negated goal, that it is a negative clause
expressing the opposite to the goal, (not (mortal Socrates)). The rule present in the database is
a positive Horn Clause, then, it can be written (in Scheme), as (or (not (man ?person)) (mortal
?person)). Together with the fact that Socrates is a man, it can be deducted that Socrates is mortal2.

(not (mortal Socrates)) (−)

(or (not (man ?person)) (mortal ?person)) (+)

(man Socrates) (+)

(not (man Socrates)) (−)

(−)

Figure 2: SLD resolution process detailed for Example 1

Example 2

The following example is to show that First-order logic is semi-decidable. This can be seen finding a
case where the SLD resolution does not guarantee an ending. Hence, there will be an infinite loop. In
this case, the database Code 1.4 only consists on one rule3.

(rule (lastname ?person ?name)
(lastname (father ?person ?father) ?name))

Code 1.4: Example 2 database

If it is tried to guess if a person called Jim has as lastname Halpert, the following query would be
submitted to the interpreter: (lastname Jim Halpert). If it was true, the same as in the previous
example would happen, it would be returned the same fact. If not, nothing would be returned. Applying
the SLD resolution once, this would be the result:

(or (not (lastname (father ?person ?name) ?name)) (lastname ?person ?name))
(not (lastname Jim Halpert))
(not (lastname (father Jim Halpert) Halpert))

It leaves as a resolvent a negative clause in which it can be applied the same SLD resolution again,
giving:

(or (not (lastname (father ?person ?name) ?name)) (lastname ?person ?name))
(not (lastname (father Jim Halpert) Halpert))
(not (lastname (father (father Jim Halpert) Halpert) Halpert))

The method has not been able to end yet, and, as it can be already inferred, it could go on and on
infinite times, in an endless recursion. The next iteration would return as a resolvent the clause:

(not (lastname (father (father (father Jim Halpert) Halpert) Halpert) Halpert))

2The null clause, that is the consequence of the presence of two clauses opposite to each other, lies within the negative
clauses. It will be denoted with the symbol #, although it can be found also as ⊥ in the related literature.

3As it can be noted, the father relation is not a predefined rule, although it will be assumed it is. From how it is
used. In [Abelson and Sussman, 1996, exercise 4.63], that can be found in the file ExercisesLogicProgramming.rkt, it is
built a father rule using the condition that one person is the father of other person if the latter has been defined as the
son of the other person or if there exists a wife of the former who has a son.

1 Introduction 7

This example shows that it is important to define a good database in order to work with it. It
does not mean that a database can not be useful with only one rule because our interpreter contains
more rules that are added implicitly. For example, there is a rule to define the relation of two objects
being the same, which is very useful in cases where it is wanted to distinguish between two different
objects that have the same properties, but are different. The rule is defined by (rule (same ?x ?x)).
If there was a query of the form (same Fernando Fernando), the output would be (same Fernando
Fernando), as it is true and no other fact or assertion is necessary.

Example 3

In this example it will be introduced the concept of goal tree. A goal tree is just another way of rep-
resenting the process of the SLD resolution showing the objectives of each step. For the Example 1
(1.1.3), the goal tree is very simple. Firstly, it was wanted to check is Socrates was mortal, then, the
next aim was to verify is Socrates was a man, and as it is was a fact in the original database, the
process was terminated successfully. Its correspondent diagram can be found at Figure 3a.

Now, it will be analysed a more complex problem. The idea is to produce soap and to achieve it,
it will be needed a first ingredient, which is tallow and a supply of potash. At the same time, potash
is not directly available, it needs two ingredients: water and ashes. It is displayed the goal tree that
describes the list of objectives for the example at Figure 3b.

Commenting on a first version of the database Code 1.5, the facts are different to the one in
Example 1, as they describe a relation between two objects instead of a property of one. This was
made with the aim of specifying that those three ingredients combine give soap. This is more clearly
explained with an alternative database Code 1.6.

One would be tempted to think that both databases are equivalent, as they generate the same
output to the query (production soap), which is (production soap), as it can be produced soap.
However, what would be the output in the case the query was (production steel)?

The first database Code 1.5 would not return anything, as it is defined that tallow is an ingredient
only for soap and that water and ashes are only for making potash. Nonetheless, the output for the
second database Code 1.6 would be (production steel)! This is because the argument ?soap in
the second rule (so does ?potash in the first one) does not represent anything, although it has been
written in that way for a clearer understanding of the database. Hence, as it is defined the second
database Code 1.6, any product can be made, as the three ingredients have been created as generic

(mortal Socrates)

(man Socrates)

✓
(a) Example 1

(production soap)

tallow (supply potash)

ashes water

✓

✓ ✓
(b) Example 3

Figure 3: Goal Trees for Examples 1 (left) and 3 (right)

8 Scheme Logic Programming Interpreter

ingredients, instead of ones related to certain product. This reasoning was the one behind the election
of the first database Code 1.5 as the definite one, where the process of making soap is a concrete one.
A final remark would be that, if this database was to be expanded and include other products to
be manufactured, it could be the case where, for example water, will be used for other thing. Then,
two options arise: one is to create one fact for each product that needs water; a second one would
be to declare water as a generic product, as it is in the second database. The election is up to the
programmer, as the key is to elaborate a non confusing database.

; 1. Facts
(ingredient tallow soap)
(ingredient water potash)
(ingredient ashes potash)
; 2. Rules
(rule (supply ?potash)

(and (ingredient water ?potash)
(ingredient ashes ?potash)))

(rule (production ?soap)
(and (ingredient tallow ?soap)

(supply potash)))

Code 1.5: Example 3 first database

; 1. Facts
(ingredient tallow)
(ingredient water)
(ingredient ashes)
; 2. Rules
(rule (supply ?potash)

(and (ingredient water)
(ingredient ashes)))

(rule (production ?soap)
(and (ingredient tallow)

(supply potash)))

Code 1.6: Example 3 second database

Example 4

A last brief example will be used to illustrate another case and stress how implementing a database
is highly user dependent. The fictional situation is that if a person is able to arrive home or not, with
up to four means of transportation: bus, taxi, foot or bike. The goal tree diagram, in Figure 4, is very
simple, as each form of transportation is independent from the others and only one is sufficient to
arrive to the destination desired. Then, having one available is enough. In the example, only the bus is
a valid option. This is represented in the database with the fact (transport bus home). As discussed
in the previous example, it is obvious that by bus a person can reach multiple destinations, yet the
interest of this database 1.7 is to guarantee to the user if he or she can arrive home. The rest of the
options are coded, but commented.4

home

bus

✓

home

taxi

%

home

walk

%

home

bike

%

Figure 4: Goal Tree for Example 4

; 1. Facts
(transport bus home)
;(transport taxi home)
;(transport walk home)
;(transport bike home)
; 2. Rule
(rule (arrive ?home)

(or (transport bus ?home)
(transport taxi ?home)
(transport bike ?home)
(transport walk ?home)))

))

Code 1.7: Example 4 database

4In Scheme, the semicolon serves as the comment symbol, as it could be inferred from previous databases.

1 Introduction 9

1.1.4 Improvements over the algorithm
Two possibilities are contemplated to improve the SLD resolution: forward chaining, which is con-
sidered to be data-directed and backward chaining, goal-directed. One typical example to distinguish
between these two concepts is a situation where a supermarket’s owner wants to find out some patterns
based on the behaviour of its clients, whose purchasing data is available. If forward chaining is applied,
the patterns are extracted from the data itself, without making any assumptions, the data is analysed
and conclusions are drawn. Backward chaining is useful when the goal is to know who is more likely
to buy frozen food, that is when we have a defined goal. After the goal is set, data is studied to solve
the problem.

Prolog is a language that it is based on SLD resolution and backward chaining. Example 1 can be
an easy example where backward chaining is used, as a query can be understood as a goal. Then, in
that case, knowing if Socrates was mortal can is the goal. From here, it is applied the method it was
explained. It is reasoned backwards until, in this case, found a fact from the database that generates
the null clause. Forward chaining is not considered a resolution method, although, as it can be found
in [Bratko, 2001, section 15.3.2], it can be implemented an interpreter in Prolog that uses a forward
chaining reasoning.

Indeed, there is a tool called CLIPS (C Language Integrated Production Building), which is very
powerful for building and developing of expert systems, that uses forward chaining to solve the prob-
lems. CLIPS syntax is based on Lisp, which makes it easier to understand from the functional pro-
gramming reference. As it relies on forward chaining for reasoning, it looks for facts that match the
conditions of the rules given, expanding its knowledge base. If the Example 1 is tried to replicate using
CLIPS, the code from Code 1.8 would be needed.

; A rule is defined in a database that will be called 'rules'
(defrule mortality

(man ?x)
=>
(assert (mortal ?x)))

; Working now in the console, the database is loaded
(load <rules >)
; A fact is defined in the working memory (temporary)
(assert (man Socrates))
; Now it is checked the facts in the current working memory
(facts)
f-0 (initial-fact)
f-1 (man Socrates)
; (run) command for using the rules from the database
(facts)
f-0 (initial-fact)
f-1 (man Socrates)
f-2 (mortal Socrates)

Code 1.8: Example 1 implemented in CLIPS

In Code 1.8, it is presented how, using forward chaining, the facts are extracted from the database
without the need of using queries or assumptions. One remark is that the database is only composed
by rules, the facts are stored in a temporary working memory. Some facts are defined by the user and
then more facts are triggered by the loaded rules. More about CLIPS can be found in the reference
manual T.X.N. [1993].

10 Scheme Logic Programming Interpreter

1.1.5 Expert Systems

In the context of logical programming it is necessary to define what is an Expert System. The idea
is to create a program that, in a specific domain of application, is able to behave like an expert, i.e.,
solving problems that demand specialised knowledge in an area of expertise. It uses logical rules and
facts as the ones defined before.

There are three fundamental components an Expert System should have: database (or knowledge
base); inference engine, that is the one who know how to use the facts and rules of the database
and a user interface. This last one is vital, as an Expert System must have the ability of explaining
its decision and transmit the reasoning behind them, especially necessary in some areas as medical
diagnosis. This is a common use, and this implies that it is usually requires that an Expert System has
to be able to handle incomplete or uncertain data. Other examples of application of Expert Systems
apart from medical diagnosis can be financial analysis or environmental monitoring.

1.1.6 Conflict Resolution

In modern systems, the databases (or knowledge bases) are usually composed of many facts and rules.
This leads to some redundancies that generate inefficiencies. For this reason, the solutions to some
problems or answers given to some questions, although correct, could be absurd. A ridiculous example
could be that, when it rains, some system who tracks the environment of a garden could inform us
that there are four leaves of a certain tree that are getting wet instead of giving relevant information
about the ambient humidity of other important factors for the well-being of the plants.

This kind of conflict can be resolved too, paying special attention to repeated rules that try to
express the same relations in a different way of, in a more basic level, how the statements or rules
are ordered within the database or within a rule itself. In order to clarify this situation, a simple case
will be described in where it is tried to calculate the greatest common divisor of two numbers. This
procedure (Code 1.9) is decomposed in two rules. The first one states that, if the second number is 0,
the gcd is the absolute value of the first one. The second one implements Euclid’s algorithm. Seeing
Code 1.9 one could think that the goal is achieved by this implementation.

However, the order of the two calls inside the second rule provokes an error, as it will be warned
that the arguments are not sufficiently instantiated because R is has not been instantiated when calling
gcd(B, R, D). Thus, the correct order would be having R is mod(A,B). before doing the recursion
on the gcd function. Still, this is not enough, as it is necessary to include the control predicate cut
(!) in the first rule before of D is abs(A).. If not, Prolog would continue searching for alternative
solutions even is one is found. This would lead to an error, as when dividing by zero in the second
rule would not be possible. In other words, the control predicate cut (!) limits backtracking and end
it when it is no longer necessary. The final version of the correct implementation of the gcd predicate
would be the one in Code 1.10.

gcd(A, 0, D) :-
D is abs(A).

gcd(A, B, D) :-
gcd(B, R, D),
R is mod(A, B).

Code 1.9: First try of implementing gcd
predicate in Prolog.

gcd(A, 0, D) :-
!,
D is abs(A).

gcd(A, B, D) :-
R is mod(A, B),
gcd(B, R, D).

Code 1.10: Second try of implementing
gcd predicate in Prolog.

1 Introduction 11

Now, defining the same gcd predicate in an Scheme syntax offers some differences with respect to
the Prolog one. The code is shown at Code 1.11.

(rule (gcd ?a 0 ?c)
(cut)
(gcd ?a 0 abs(?a)))

(rule (gcd ?a ?b ?c)
(gcd ?b (remainder ?a ?b) ?c))

Code 1.11: Implementation of gcd predicate in Scheme.

Using Scheme over Prolog for this particular case implies one advantage and one disadvantage. The
beneficial aspect is that what in Prolog was separated in two lines that had to be ordered in a precise
way, here it is integrated. In the next chapter it will be explained how evaluation works in Scheme in a
more extensive way, but because of how it is done, (remainder ?a ?b) is a subexpression of (gcd ?b
(remainder ?a ?b) ?c) and it will be evaluated earlier. The detrimental part comes from the fact
that, as it will be also cover later, it needs the implementation and importation of a library containing
the information of how to deal with the primitive procedure remainder in the logical programming
interpreter. In the same way, it would be needed to incorporate in the same library, or a different one,
the operator cut (!), defined here as a procedure with no arguments and reproduce the same process
as it is done in Prolog.

1.2 Lisp language

This bachelor thesis was decided to be done using the programming language Lisp, that stands as
an acronym for LISt Processing. It was conceived by John McCarthy, based on his paper McCarthy
[1960]. It has various dialects and, in particular, Scheme is the selected one for the present work, which
is popular because of being a powerful educational tool.

Visually, the most recognisable characteristic is its syntax being parenthesis-based. It reminds to
the Polish notation (also known as prefix notation), where operators precede operands, instead of
between them, typical of the infix notation. For example, in Polish notation, the addition of 1 and
2 is expressed as + 1 2. As in Lisp, primitive procedures do not have a fixed number of arguments,
it cannot be achieved the full simplification of Polish notation in more complex combinations. For
example, when wanting to calculate, in infix notation, (3 − 8) ∗ 5, if assumed a given arity of two,
it could be expressed as ∗ − 3 8 5. However, parentheses are used in Lisp for this combinations, as it
would be expressed (∗ (− 3 8) 5), as the arity for the − operator is undefined.

Another important feature is dynamic typing. In languages like C++, variables have to be defined
with a certain type and in the compilation process this is an important factor. However, in Lisp, the
dynamic typing generates a lot of flexibility for the user, as everything is treated as data. A different
advantage of Lisp is that functions can be understood as values too, meaning that they can be passed
as arguments and be returned. This is very valuable for abstraction and it is one of the basis of the
functional programming paradigm, where it can be highlighted the ease to implement interpreters.
Thus, as the name illustrates, in functional programming, functions are what is called a first-class
citizen entities, meaning that support all the operations that can be done to other entities such as
the one already mentioned: being passed as an argument, being the output of a function and being
assigned to a variable. Here it lies the difference with respect to object-oriented programming, where
the focus is on objects, which have data (atributes) and functions (methods).

12 Scheme Logic Programming Interpreter

1.3 Contents of the bachelor thesis

1.3.1 Objectives

The main goal of this bachelor thesis was the implementation of a logic programming interpreter as a
basis for a way to understand logic programming. Having established that, it was decided that the best
approach to achieve it was to follow the book Structure and Interpretation of Computer Programs,
by Harold Abelson and Gerald Jay Sussman with Julie Sussman, usually named just SICP, Abelson
and Sussman [1996]. This book is considered one of the bibles of computer science and it was used
at MIT from 1984 until 2007 within the introductory programming course 6.001. This book covers a
lot of advanced topics related to computer science, a lot of them necessary to gain a better insight
about this project. Other of them are included in the studied exercises, although they are not relevant
enough with respect to the implementation of the interpreter to be commented in this report.

Due to the set goal, it was required to become familiarised with the fundamentals of computer
science such as recursion of abstraction. Hence, the most vital phase of the bachelor thesis was to
read through the book and do as many proposed exercises as possible in order to understand the
basis behind computer program in order to make our interpreter efficient. That is why the language
selected in the book is Scheme, as it has been explained, is very simple and it requires to build almost
everything from scratch, allowing the user to understand better the programs.

At the same time, as it was noted before, when facing the second phase of the thesis, that is,
when learning about the elements of logic programming in order to implement the interpreter and
the exercises derived from it, it was used the book Prolog. Programming for Artificial Intelligence by
Bratko [2001].

Lastly, from a mathematical point of view, this bachelor thesis has the humble goal of exploring one
of the ideas behind the thesis of Church-Turing, that is, all the computing paradigms are equivalents.
This objective has been achieved through the implementation of a logical programming interpreter
using programs defined from a imperative paradigm. Of course it does not mean that the user has the
same experience or that the same efficiency is reached. Nevertheless, it proves how the same problems
can be solved in different paradigms, involving less or more effort.

1.3.2 Results

The main effort of this thesis is reflected in the exercises, especially those from the Abelson and
Sussman [1996], in order to programme a full production system. All of them can be found at
https://github.com/ffriaslago/lambda. The reader is more than welcome to look through them.
Here it will be given a little guide of the content of each folder to navigate through them5.

The difference between the extension rkt and bak files is that the former ones contain the proper
exercise while the latter contain a recovery version of it, usually not a full one, so there is no point of
paying attention to them, as they normally contain an incomplete or more simple version of the same
exercises. It can be noticed too that, although it was tried to do most of them with the DrRacket
editor, some of the exercises are in a PDF format for a better visualisation.

• Interpreter: it is composed by the two main files of the thesis.

– The one named ExercisesLogicProgramming.rkt contains a set of problems of [Abelson and
Sussman, 1996, section 4.4]. It serves as a preparation for composing a generous database
to test the interpreter and to learn how to implement the Horn Clauses in Scheme.

5This same guide is the content of the README file of the repository.

https://github.com/ffriaslago/lambda

1 Introduction 13

– The one named LogicProgramming_Interpreter.rkt contains the main goal of the bachelor
thesis, it can be separated into three parts. The first one is all the definitions of the proce-
dures necessary for the interpreter. The second one is the proper interpreter and the third
one is a big database containing all the facts and rules derived from the exercises and the
examples showed in the introduction.

• Bratko. Chapter 1: All the exercises from the first chapter of Bratko [2001], separated by sections.
The format is .txt, although they were made using the platform https://swish.swi-Prolog.
org/ that creates files with extension .pl and can be used to run the code given.

• Bratko. Chapter 2: Same as previous folder, but for the second chapter of the book.

• SICP. Chapter 1: It consists of all the exercises from the first chapter of Abelson and Sussman
[1996]. As it is an introductory one thought to learn the basis of Lisp, it was done completely.

• SICP. Chapter 2: It does not include all the exercises from chapter 2 of Abelson and Sussman
[1996], albeit the majority of them. The ones from the last section of the chapter were discarded
because it needed implementations explained in chapter 3 and it seemed ineffective to solve
exercises that could not be run.

• SICP. Chapter 3: roughly 80% of the exercises were made. [Abelson and Sussman, 1996, section
3.4] was skipped, as concurrency was not a relevant topic for the interpreter. Finally, the last
two subsections of Streams were omitted too.

• SICP. Chapter 4: It encloses most of the exercises from [Abelson and Sussman, 1996, section
4.1], where the book shows how to build the evaluator that the user had been using until there.
It serves as a good exercise of decomposition and abstraction. Besides, it generates the basis
to define a programming language from scratch and helps to understand how to implement an
interpreter.

Lastly, it is worth mentioning that, because of how the exercises are proposed in the book, not all
of them can be run correctly. This does not mean that they are wrong. However, with the intention
of a clearer presentation of the main structure, some necessary procedures were omitted. The book
introduces plenty of procedures that later are required for some exercises. In some of them, those
procedures are present. It was not followed a certain criteria, but some of the reasons behind writing a
complete script or not were finding the equilibrium between presenting the contribution made to the
exercise and the reader being able to interact with the proposed solution. For this reason, some of the
exercises can be difficult to understand if a reader has not gone through some sections of the original
book.

1.3.3 Document Organization
It is important to emphasise again that, although being the ultimate goal of this bachelor thesis was
the implementation of the interpreter, the main part was focusing on abstraction and extensibility,
researching on the best possible techniques to deliver an extensible functional interpreter. This implies
that a significant part of the work was the resolution of the exercises that lead to that objective. This
document serves as a report of it and, at the same time, it tries to synthesise the process developed
to reach that target. At the same time, it can set a starting point for other bachelor theses or future
works. It can serve as a benchmark, The implemented interpreter has some basic features and it is
enough to reproduce some simple examples. However, there is enough room to explore the explained
concepts of logical programming in a more profound way.

To that end, this extensive introduction explains the logical basis behind the interpreter and il-
lustrates with several simple examples how it works depending on different scenarios. The following

https://swish.swi-Prolog.org/
https://swish.swi-Prolog.org/

14 Scheme Logic Programming Interpreter

chapters are related to the chapters of Abelson and Sussman [1996] in the way that they try to sum-
marise the most important concepts seen in each of them that are crucial to the implementation of
the interpreter.

In Chapter 2, it is covered the linear recursion and its differences with respect to iteration.
Chapter 2 of Abelson and Sussman [1996] involves a wide range of concepts, as it introduces how
to build abstractions with data. A couple of complex exercises such as the 8 queens problem will be
explained and it will be compared the distinction between data directed and message passing pro-
gramming. Chapter 3 will address streams, a very useful tool in terms of efficiency.

Finally, last chapter will detail the logic programming interpreter, paying special attention to the
highlighted components of the previous chapters, explaining the database that was implemented and
offering the user a quick guide on how to use it and what to expect from it.

2 Procedures with Lisp language: a first level
of abstraction

2.1 A computational model: λ-calculus

One of the fundamental question in Computer Science, is how to define a computation. One of the
first computation models is λ-calculus, proposed by Alonzo Church, an American mathematician and
logician that was a collaborator of Alan Turing. His idea was to provide meticulous basis for analysing
the concepts of a function and its application. Indeed, λ-calculus is a programming language that was
created as a mean to represent all possible computations. It has only three different objects: variables,
functions and applications.

A notable observation is the absence of integer numbers within the components of λ-calculus.
However, as seen in Exercise2.6.rkt, they can be defined through Church numerals, that can be imple-
mented in Scheme because λ-calculus had a big influence in designing Lisp, and the same structures
are present nowadays. For this reason, it will be showed how a computation in λ-calculus using the
Scheme notation, as examples in the introduction were written. The biggest difference is that, as it
was firstly defined, λ-calculus did only support single parameter functions, although this was improved
later by Haskell Curry with a composing technique named currying after him. In Scheme, this is not
a problem, as lambda expressions can have as many parameters as required. Nonetheless, for this
explanation, although using Scheme language, single parameter functions will be used.

The general expression for a function1 is (lambda (〈parameter(s)〉) 〈body〉), then, the most
basic one, the identity, will be expressed as (lambda (x) x). For evaluating this function, the correct
syntax is ((lambda (x) x) 1), that gives 1. The process of evaluation of a lambda abstraction is
named β-reduction and it is just substitution. If it is wanted to define a higher order function, i.e.,
one that would be able to work with more than one parameter, it is possible, the input variable
of a function can be another function, as in (lambda (〈par. 1〉) (lambda (〈par. 2〉) 〈body〉)).
An easy example of how to sum two numbers is (((lambda (x) (lambda (y) (+ x y))) 2) 1),
that returns 3, assigning 2 to x and 1 to y. Functions may be arguments too, one example of this
can be ((lambda (f) (f 3)) (lambda (x) (+ x 1))), which gives 4. In the Code 2.1 it is given a
glimpse of the first Church Numerals next to a function to add 1 (this was the followed process to
generate the definitions of one, two and three from zero. For a general addition procedure, consult
Exercise2.6.rkt).

1The name of λ-calculus comes from the definition of the function

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.6.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.6.rkt

16 Scheme Logic Programming Interpreter

(define zero (lambda (f) (lambda (x) x)))

(define one (lambda (f) (lambda (x) (f x))))

(define two (lambda (f) (lambda (x) (f (f x)))))

(define three (lambda (f) (lambda (x) (f (f (f x))))))

(define (add-1 n) (lambda (f) (lambda (x) (f ((n f) x)))))

Code 2.1: Implementation of the first Church numerals and the add-1 function.

2.1.1 Turing completeness of λ-calculus
λ-calculus is a language of theoretical interest, not practical, although it has a great influence in the
creation of most of common languages such as Scheme, that will be covered in the next section. Apart
from being important for the foundation of computer science, a major advantage in λ-calculus lies
in its ease of expressing algorithms and, at the same time, implementing a machine-level interpreter.
These features were ported into Lisp (Scheme is a dialect of Lisp). Before discussing in detail the tech-
nical features, it is going to be briefly explained what makes a programming language being Turing
complete and showed why λ-calculus fulfills those requirements. Actually, it was Turing himself who
proved that the two models were equivalent.

The most straightforward way of defining the property of being Turing complete for a programming
language is the capacity of representing any computation possible on a Turing machine. It is important
to remark that Turing completeness is a theoretical concept, as an ideal Turing machine would have
an infinite tape and, in reality, memory is finite. Focusing on three concepts, it can be shown why
λ-calculus is Turing complete:

1. Controlling the flow of execution based on conditions. In a Turing machine, the read-write head
has the ability to move to any part of the tape depending on the instructions, that is, certain
conditions that also depend on the read value. λ-calculus can replicate conditional behaviour.
Although there are not true or false boolean values, they can be represented by the following
definitions

• True by (lambda (x) (lambda (y) x)), two arguments are passed (one to each lambda
function) and the first one is selected.

• False by (lambda (x) (lambda (y) x)), same as above, but the second one is selected.

Generating the capacity of expressing if statements,i.e., conditional behaviour, such as:
((((lambda (cond) cond) (lambda (x) (lambda (y) x))) 1) 0), that will return 1 and
((((lambda (cond) cond) (lambda (x) (lambda (y) y))) 1) 0), that will return 0.
Recursion can be achieved too Church [1941].

2. Manipulating data. In a Turing machine, the read-write head was able to read data, like 1 and 0.
It has been showed two different of data than can be built inside λ-calculus, like boolean values
or numbers (Church numerals).

3. Expressing computations as data. This has already seen and explained, as functions can be the
arguments of other functions and outputs too. This property is the one behind the construction
of higher order procedures, enabling more powerful and complex techniques.

As a final commentary, there is not the possibility to ‘storage’ a function, in the sense a function
cannot have a name or tag in order to use it later. Fortunately, Scheme implements a naming function,
being much friendlier for the user.

2 Procedures with Lisp language: a first level of abstraction 17

2.2 The practical implementation: Scheme
Scheme was developed in the 1970s and it is conceived as a cleaner, more elegant Lisp dialect. It has
key improvements like the performance for recursive functions. The main use of Scheme is educational
because of its clarity and expressiveness, which made it a easy choice for the development of this
bachelor’s thesis, as a Lisp program usually consists of a large number of relatively simple procedures.

Some of the code displayed so far in this document was written in Scheme even though it has not
been explained yet the basis of this programming language, a reader familiarised with reading code has
already checked that is a simple language and easy to understand. The most elementary expressions
are a combination of parenthesis, numbers (in base 10) and symbols such as + or * that represent
primitive procedures. This combinations can be nested, i.e, combined operations and there is not limit
to the depth of the nesting. Indexing (pretty-printing format) is used to clarify the hierarchy of the
code, aligning subexpressions that are operated using the same operand2. An easy example is the one
from Exercise1.2.rkt, represented in this document in the Expression 6 and in the Code 2.2.

5 + 4 +

(
2−

(
3−

(
6 +

4

5

)))
3(6− 2)(2− 7)

(6)

(/ (+ 5
4
(- 2

(- 3
(+ 6

(/ 4 5)))))
(* 3

(- 6 2)
(- 2 7)))

Code 2.2: Expression 6 in Scheme.

Having presented this, before explaining how the evaluation of a combination is done, in contrast
to λ-calculus, Scheme allows the user to name variables (〈body〉 is empty) and functions in order to
refer to them using their names. Define is Scheme’s simplest means of abstraction and the general
form of a procedure definition is (define (〈name〉 〈formal parameters〉) 〈body〉). Along with
this, Scheme has some special forms for conditional expressions and logical operators. The general
form of a conditional expression, which is often more useful than a if statement (it can also be im-
plemented in Scheme with the structure (if 〈predicate〉〈consequent〉〈alternative〉) because it
allows to have consequent clauses of more than one line is (cond (〈p1〉〈c1〉) ... (〈pn〉〈cn〉)). A
more detailed description can be found at [Abelson and Sussman, 1996, section 1.1.6].

It is now crucial to explain how the evaluation is done, as there are some options. The one used is
applicative-order evaluation, although in some exercises it has been compared to the normal-order eval-
uation. The interpreter that is implemented by default in the software used, DrRacket uses applicative-
order evaluation and follows this rules when evaluating a combination such as the one in the above
code (Exercise1.2.rkt):

1. Evaluate the subexpressions of the combination. This means starting in the deepest nested ex-
pressions. In the example, if it is wanted to calculate the innermost parentheses of the numerator,
before summing 6 and the fraction, the operation (/ 4 5) has to be performed before, as it is a
subexpression of that addition. Here, the subexpressions are simple combinations (the numbers
do not need to be evaluated), in more complex procedures, the subexpressions can be calls to
other procedures and a proper evaluation is required. This will be seen in more detail when
explaining linear recursion with the factorial procedure.

2Revising the examples from the introduction, an example of this can be found in the third one. In both rules, it is
used the and logic operator, and the two clauses that have to be checked to know the value of the operator are aligned.

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.2.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.2.rkt

18 Scheme Logic Programming Interpreter

2. Apply the procedure, that is the value of the leftmost subexpression to the arguments. In the
example, all the procedures are primitive procedures, as they are arithmetic operations.

From these two rules, it is straightforwardly concluded that the evaluation process is recursive, as
when evaluating the subexpressions, the same steps have to be applied again. An alternative evaluation
process is the normal-order evaluation, where the subexpressions are not evaluated until needed. This
process would reduce the evaluation into more basic procedures until reaching primitive operators and
then it would perform the operation. In Exercise1.5.rkt, whose code is shown in Code 2.3, there is a
very simple example that shows how different the two approaches are.

When using applicative-order evaluation, it evaluates the two subexpressions present in the call to
the test procedure. 0 is a number, so it does not require evaluation. Conversely (p) is a procedure
whose body is (p) too, the same procedure. This implies the evaluation results in an infinite loop as
(p) gives (p) again and again. On the other hand, when normal-order evaluation is applied, the test
procedure is expanded before evaluating the subexpressions. As the first argument is 0, when using it
in the predicate of the if statement, it returns the consequent clause, which is the value 0, ending the
process without evaluating the subexpression (p), not entering an infinite loop.

(define (p) (p))

(define (test x y)
(if (= x 0)

0
y))

(test 0 (p))

Code 2.3: Exercise1.5.rkt

2.2.1 Computational complexity
In computer science is always important to be aware of the computational cost of the programmes
designed. Although it is true that efficiency has not been present in all the proposed solutions, it was an
important factor in some of them, searching for the most efficient way taking into account two different
measurements of complexity. For both of them it is critical to be able to find the parameter (most
solved problems could be defined by only one) that determines the size of the problem. A function
S(n) has an order of growth Θ(f(n)) if there are two positives constants k1, k2 > 0 independent of n
such that it is fulfilled the relation from Equation 7.

k1f(n) ≤ S(n) ≤ k2f(n) (7)

The first measure contemplated refers to temporal complexity, i.e., the number of steps or op-
erations needed to be done. While the second one refers to the spatial complexity, i.e., the memory
necessary to evaluate a process. One of the most useful aspects of knowing these complexities is that
it allows the user to predict how the process is going to behave when solving a much bigger problem
with the same code.

As every beginner coder has experienced, the first stages of learning a new language involve eval-
uating line by line a given code to understand how it works and the internal steps. Often, this is
accompanied by simple tries with a very small size. Sometimes this lead to a wrong conclusion and the
code does not provide successful results when subjected to a normal size problem, it has a very high
computational cost. Exercises such as Exercise1.22.rkt, Exercise1.23.rkt or Exercise1.24.rkt explore
this topic computing the running time when testing for primality in increasing orders of magnitude for

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.5.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.22.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.23.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.24.rkt

2 Procedures with Lisp language: a first level of abstraction 19

different variations of programmes. Besides, Exercise1.14.txt offers a great example of how, computing
temporal and spatial complexity demands different efforts.

2.2.2 Recursion vs Iteration

When thinking about recursion, one the simplest mathematical examples that comes to mind is the
computation of the factorial of a number. Through it, it will be illustrated the difference between lin-
ear recursion and iteration. As well, the same function will be used to explain the differences between
the substitution model and the evaluation model, both serve to visualise the internal order followed
by the procedure, although the first one becomes useless once more complex programming is developed.

Next, it can be found the code responsible for each version of the factorial procedure. Usually,
the recursive procedure, Code 2.4, is much easier to programmed and to understand, as it express the
function with the most elementary ideas. Although it can not be said that the iterative procedure,
Code 2.5, is difficult, it requires a more sophisticated idea, especially when stipulating the new ar-
guments for the call to the iterative function. However, Exercise1.37.rkt proved to be the opposite.
From a human angle, it is easier to think recursively, so it comes more naturally to write a recursive
code. In contrast, from a computational viewpoint, it is better to use a iterative structure, especially
considering efficiency and optimisation. While recursion offers a conceptual simplicity for the user,
pragmatism leads user to find iterative solutions.

(define (factorial n)
(if (= n 1)

1
(* n (factorial (- n 1)))))

Code 2.4: Recursive definition of factorial.

(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter
product
counter max-count)

(if (> counter max-count)
product
(fact-iter (* counter product)

(+ counter 1)
max-count)))

Code 2.5: Iterative definition of factorial.

A recursive process can be interpreted as an expansive one, where the operations are delayed un-
til only primitive procedures are left, resulting in a contraction. This expansion takes a toll, as the
pending operations need to be tracked. Both the number of operations (temporal complexity) and the
number of steps (spatial complexity) grow linearly with n, being n the number the factorial is wanted
to be calculated.

On the other hand, in an iterative process there are no delayed operations. Hence, the spatial
complexity does not grow with n. The values that determine the final result are kept in each step.
These are called state variables. In this particular case, product, counter and max-count are those
variables. Regarding the temporal complexity, it is the same one as in the recursive one, Θ(n).

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.14.txt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.37.rkt

20 Scheme Logic Programming Interpreter

(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
720

Code 2.6: Recursive substitution of factorial.

(factorial 6)
(fact-iter 1 1 6)
(fact-iter 1 2 6)
(fact-iter 2 3 6)
(fact-iter 6 4 6)
(fact-iter 24 5 6)
(fact-iter 120 6 6)
(fact-iter 720 7 6)
720

Code 2.7: Iterative
substitution of factorial.

It has been displayed the substitution model for the two analysed options for computing a factorial:
in Code 2.6, the recursive definition and in in Code 2.7, the recursive definition. Unfortunately, this
model does not represent faithfully the process that is made by the computer. It is very useful as
a didactic tool and to help the user to gain knowledge about the computation details. As a matter
of fact, a lot of commented ideas have been purposely left in some exercises to show the reader how
to approach some of the most complex problems and the substitution model was used plenty of times 1.

In chapter 3 of SICP, as a consequence of introducing assignment as another tool to incorporate to
the computer science knowledge, the environmental model was presented. It replaces the substitution
model because it is more specific, expressing in a more realistic way how procedures are applied to
its arguments. In Figure 5 and Figure 6 environment diagrams for the recursive and iterative proce-
dures are represented. It is critical to remark that both figures encapsulate the environment after the
evaluation of (factorial 6), as it could have been also represented the environment after evaluating
the definition of them. An example of such of that diagrams can be found in Exercise3.10.pdf or
Exercise3.11.pdf .

In both diagrams, when the evaluation is made, a new environment E1 is created with the parameter
n linked to the argument 6. In Figure 5, this triggers another call to the same procedure, with the new
argument being 5 instead of 6 and so on. In Figure 6, there is a clear difference after creating E1, as
the body of the factorial procedure is not the same. The values of the state variables are updated
during the iterative process.

1The 8-queen problem (Exercise2.42.rkt) is the best example. In chapter 3, it will be explained, but the code shown
is a reduced final version of the solution.

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.10.pdf
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.11.pdf
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.42.rkt

2 Procedures with Lisp language: a first level of abstraction 21

global
env

(factorial 6)

n : 6 n : 5 n : 4

n : 1 n : 2 n : 3

(if (= n 1)
1
(* n (factorial (- n 1))))

E1 E3E2

E4E5E6

"…"

"…"

"…"

"…"

"…"

Figure 5: Environment structure created by evaluating (factorial 6) for the recursive procedure.

global
env

(factorial 6)

n : 6 product: 1
counter: 1
max-count: 6

(if (> counter max-count)
product
(fact-iter (* counter product)

(+ counter 1)
max-count))

E1

E2

E8

"…"

product: 1
counter: 2
max-count: 6

E3

"…"

(fact-iter 1 1 n)

product: 720
counter: 7
max-count: 6

"…"

product: 2
counter: 3
max-count: 6

E4

E7

"…"

product: 120
counter: 6
max-count: 6

E6

"…"

product: 24
counter: 5
max-count: 6

E5

"…"

product: 6
counter: 4
max-count: 6

Figure 6: Environment structure created by evaluating (factorial 6) for the iterative procedure.

3 Techniques on Scheme: Approaches to Solv-
ing Problems

3.1 List structures
Scheme offers several ways to build lists and sequence structures for both numbers and arbitrary
symbols. For a reader of Abelson and Sussman [1996], the first introduced primitive procedure is called
cons, which serves for building pairs given two arguments. As the data inside the pair should be able
to be extracted and manipulated, two already mentioned primitive procedures appear naturally, car
for obtaining the first element and cdr for the second. Then, (car (cons 1 2)) returns 1 and (cdr
(cons 1 2)) gives 2.

1

2

Figure 7: Box-and-pointer representation of (cons 1 2).

In the Figure 7 there is a representation of the data object created by the procedure cons, this
kind of diagrams are very useful for visualising more complex structures, as the arguments for cons
can be other pairs, enabling the capacity to create hierarchical structures.

If it is wanted to work with longer sequences than pairs, as cons accepts as an argument a pair,
one way to build them would be by concatenating evaluations of the cons procedure such as (cons
1 (cons 2 3)). However, it could also be done (cons (cons 1 2) 3). When evaluating both ex-
pressions, they do not produce the same data object. This is one of the reasons for the use of other
primitive procedure, list, which would be the equivalent to nest calls to the cons procedure in the
way showed in Expression 8.

(list a1 a2 ... an)

≡

(cons a1 (cons a2 (cons ... (cons an nil1) ...)))
(8)

This equivalence between list and cons allows the use of car and cdr with list too, making
them very powerful tools. Indeed, they can be combined to form procedures that are equivalent to
apply them sequentially. For example, the procedure caar corresponds to applying car twice in a row.
Using the same kind of representation as in Figure 7, it will be illustrated in Figure 8 the structure of
the list (list 1 2 3 4).

1In Abelson and Sussman [1996] it is used nil for naming an empty element, if using the names provide by DrRacket
(the used software), it has to be used the word empty. The language used by each script present in the repository of
GitHub is determined by the first line, being #lang sicp when using the same notation as Abelson and Sussman [1996]
and #lang racket when using the one by default in DrRacket.

24 Scheme Logic Programming Interpreter

1 2 3 4

Figure 8: Box-and-pointer representation of (list 1 2 3 4).

The diagram from Figure 8 permits to visualise better the outputs when using car, cdr and their
combinations. Evaluating (car (list 1 2 3 4)) gives 1, which is the expected product. In the case
of (cdr (list 1 2 3 4)), it is returned the data object (2 3 4), i.e., a list formed by three elements.
For extracting the element 2 it is necessary to apply car to the list generated by cdr in the original
one. Then, (cadr (list 1 2 3 4)) satisfies the question.

3.1.1 Quote operator

Up to this point, only numbers have been used to form sequences. If it had been used an arbitrary
symbol, it would have lead to an error, since it would have been interpreted as an undefined variable.
Nevertheless, it can be possible to build sequences of arbitrary symbols utilising the quote operator '.
A relevant observation is that, by doing this, it is sacrificed the syntax followed until now with the
use of parentheses to delimit compound expressions. When evaluating the primitive procedure list
in (list 'a 'b), the quote operator is a single-character abbreviation for the procedure quote. It is
analogous to build the defined list using (list (quote a) (quote b)).

Another useful application of ' is the ability of writing lists. When using the syntax from the
language present by default in the software DrRacket (#lang racket), and a list is the object returned
from an evaluation, that list is preceded by the quote operator2. Thus, by writing '(1 2 3), this will
be interpreted as (list 1 2 3).

The power of the quote operator is explored along [Abelson and Sussman, 1996, section 2.3]. For
example, in the trio of problems Exercise2.56.rkt, Exercise2.57.rkt and Exercise2.58.rkt it is examined
how to represent algebraic expressions and implement symbolic differentiation, culminating in being
able to evaluate expressions such as (deriv '(* x y (+ x 3)) 'x).

3.1.2 Structures present in imperative languages

The introduction of sequences gives rise to multiple procedures that operate with them. Learning how
to manipulate them allows the user to gain much flexibility and creativity when facing the resolution of
some problems as the 8-queens puzzle presented in subsection 3.2.2. It can be started from very simple
tasks such as defining a procedure for returning the last element of a list or reversing the order of them.

Just using the few tools explained together with the special form let, which allows the user to bind
variables locally, often easing the readability of the code, and using linear recursion, the procedures
of Code 3.1 and Code 3.2 are built.

It is worth mentioning that in Code 3.2 it is used the primitive procedure append, but the one
defined from an imperative perspective. So, the rules from Code 1.2 are not used. Instead of it, the
Code 3.3 is the definition employed here.

2When using #lang sicp, ' does not appear before the parenthesis, but the quote operator can still be used to do the
same construction as the one explained.

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.56.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.57.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.58.rkt

3 Techniques on Scheme: Approaches to Solving Problems 25

(define (last-element l)
(let ((f (cdr l)))
(if (null? f)

l
(last-element f))))

Code 3.1: Procedure for obtaining the last
element of a list.

(define (reverse l)
(if (null? l)

nil
(append (reverse (cdr l))

(list (car l)))))

Code 3.2: Procedure for reversing the order
of a list.

(define (append list1 list2)
(if (null? list1)

list2
(cons (car list1)

(append (cdr list1) list2))))

Code 3.3: Definition of append procedure

Multiple higher-order procedures can be defined to abstract common operations that are usually
done with sequences. The most basic one is map, whose arguments are a function and a list and it
applies the function to all the elements in the list. Then, when using map, it is important to use a
procedure that needs as many arguments as the variables passed to it.

Nested loops in Scheme

There are some frequent structures present in imperative languages that have not explicitly appeared
yet, as the loops. Now it will be shortly expounded how this idea can be implemented operating with
sequences. Using the map function it can be done a simple loop over a list. In order to get closer
to a for loop, one option is to use a function to generate a list that contains all the integer num-
bers in a given interval. This is achieved with the procedure enumerate-interval from Code 3.4.
Once done it, it can be used map with the wanted procedure to be applied over each number. A simple
example is displayed in Code 3.5, where using a lambda function, it is cubed every number from 1 to 20.

(define (enumerate-interval low high)
(if (> low high)

nil
(cons low

(enumerate-interval
(+ low 1)
high))))

Code 3.4: Procedure for obtaining a sequence of
integers in a given range.

(map (lambda (i) (* i i i))
(enumerate-interval 1 20))

Code 3.5: Example of a simple for loop
structure in Scheme.

It will be used another new higher-order procedure named accumulate that, given a list, an op-
eration and an initial value (depending on the operation), it will apply the same operation over the
elements of the list, accumulating the result in one variable. One instance of its use is (accumulate
cons nil (list 1 2 3 4 5)), resulting in the sequence (1 2 3 4 5). Some of this higher-order
procedures can be redefined using other of them in the definition, some examples can be found at
Exercise2.33.rkt, where map is defined using accumulate. To see other applications of accumulate
Exercise2.34.rkt or Exercise2.37.rkt can be examined.

A very popular construction is the combination of the procedures accumulate and map. This is
very useful when generating sequences that order pairs of numbers. From Exercise2.41.rkt it is taken
the procedure unique-triples to show, in Code 3.6, a more complicated nested structure. The aim

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.33.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.34.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.37.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.41.rkt

26 Scheme Logic Programming Interpreter

of this procedure is to create a sequence of triples (i, j, k) (it is a list of lists) that fulfil being positive,
distinct and being less or equal than n. Besides, the pairs are ordered, so i < j < k. The trivial case
would be evaluating (unique-triples 3), that would return ((1 2 3)). It is pertinent noting here
that, as the procedure is built to construct a sequence of triples, if only one triple can be generated,
as it is in the trivial case, it is still preserved the structure of list of lists.

(define (unique-triples n)
(accumulate append

nil
(map
(lambda (i)

(accumulate append
nil
(map
(lambda (j)

(map (lambda (k)
(list k j i))

(enumerate-interval 1 (- j 1))))
(enumerate-interval 1 (- i 1)))))

(enumerate-interval 1 n))))

Code 3.6: Example of a combination of mapping and accumulating.

The frequency of the combination of mapping and accumulating results in the definition of another
higher-procedure, flatmap, displayed in Code 3.7, very useful when wanting to condense the code and
avoid multiple nesting, as it will be the proven in Code 3.13.

(define (flatmap proc seq)
(accumulate append nil (map proc seq)))

Code 3.7: Definition of flatmap.

3.1.3 Mutable Lists

In the previous subsection it has been explained how to construct list structures and several higher-
order procedures have been analysed to understand operations that can be employed when working
with sequences. The next step would be how to modify those structures. Two primitive procedures,
set-car! and set-cdr! are used for this purpose. Both of them take two arguments and the first one
has to be a pair (or a list, from the equivalence 8). Using Figure 7 and Figure 8 it can be visualise
better the modification done. It is implemented as a replacement of the pointer of the car or cdr,
setting it to the second argument proportioned to the function.

The ability to mutate lists allows the user to work with the concepts of queue and table. The latter
one is one of the basic concepts behind the implementation of the logical programming interpreter. In
a two dimensional table, the used one, information is saved inside it making use of two keys. For this,
it is utilised the procedure put, whose general form is (put key1 key2 item). For extracting it, the
procedure get, (get key1 key2), is the one employed.

[Abelson and Sussman, 1996, section 3.3.3] contains a comprehensive presentation and explica-
tion of this concept and all its possible features, culminated with the exercises Exercise3.24.rkt,
Exercise3.25.rkt, Exercise3.26.rkt and Exercise3.27.rkt (accompanied by its environment diagram
Exercise3.27_Diagram.pdf).

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.24.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.25.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.26.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.27.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.27_Diagram.pdf

3 Techniques on Scheme: Approaches to Solving Problems 27

3.1.4 Streams
Although being similar to a list, the data structure called stream gives solution to some problems when
working with the data objects presented until this point. This new object grants the representation of
very large or even infinite sequences without incurring in memory problems. Then, from an efficiency
point of view, streams are a much more powerful tool.

When using the higher-order procedures seen along this section, the programs are obliged to fully
build and manipulate the data structures at every step of the followed process. For a large size, this
supposes a very high cost in time and space. An example of this situation is when trying to find
a number that fulfils certain property in an interval. In Exercise1.27.rkt it was defined a predicate
procedure to check if a given number is a Carmichael number3 or not. If it is tried to evaluate the
expression from Code 3.8, it is needed to construct a list of almost one million elements. Depending
on the memory capacity, this instruction can be computed. The reason is that it needs to store the
whole interval in memory.

(caddr (filter charmicael?
(enumerate-interval 10000 1000000)))

Code 3.8: Expression for finding the third Carmichael number in the
interval from 10,000 to 1,000,000.

It would be much adequate to be able to treat each number one by one and stop computing after
the desired number is founded, which is 29,341. This is one of the motivations of defining streams.
The idea is that it is a sequence partially constructed and it is only extended if needed. Streams have
their own building procedures, although the idea with the respect to the ones explained remains. The
constructor is called cons-stream and the two selectors, stream-car and stream-cdr. From here,
extensions of other higher-order procedures can be implemented too such as stream-map.

The key of the stream definition is the use of the special form delay, which is accompanied by
another special form named force. If the expression (delay ⟨subexp⟩) is evaluated, the ⟨subexp⟩ is
not evaluated. Instead, it is created a delayed object that will be evaluated in an undefined moment
of the future, because it might not even be necessary to evaluate it. Then, if force is used with the
delayed object, the evaluation is performed at that moment.

The constructor cons-stream is not really a procedure, but a special form, as it uses delay to build
a stream. Actually, the expression (cons-stream 1 2) is equivalent to (cons 1 (delay 2)). The se-
lector stream-car has the same definition as in the lists context, however, when using stream-cdr,
force appears, evaluating the delayed object that was pending in the construction of the stream. In
Code 3.9 it is displayed how to solve the same problem it was attempted in Code 3.8 using streams
instead of lists.

(stream-car
(stream-cdr
(stream-cdr
(stream-filter charmicael?

(stream-enumerate-interval 10000 1000000)))

Code 3.9: Expression for finding the third Carmichael number in the interval from
10,000 to 1,000,000 using streams.

3A Carmichael number is a number that fools the Fermat test for primality.

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%201/Exercise1.27.rkt

28 Scheme Logic Programming Interpreter

Taking a closer look to what happens in Code 3.9, the procedure stream-enumerate-interval
returns a stream whose car is 10,000 and the cdr is a delayed object that is not evaluated, i.e., it is not
created a sequence of almost a million elements as it was done earlier. Then, when filtering4 the stream
and finding the Charmicael numbers, firstly it is only tested the stream-car. Since 10,000 is not a
Charmicael number, stream-filter tries to analyse then the numbers contained in the stream-cdr
of the input stream. This results in generating the next number of the interval, 10,001 and the same
process will be repeated. 10,585 is the first Charmicael number greater than 10,000. When 10,585 is
reached, as it fulfils the set condition, an stream will be built, being 10,585 its stream-car and its
stream-cdr will be a delayed object where the filtering of the original interval will continue following
the same process until the integer 29,341 is reached. The structure of the final stream returned is shown
in Code 3.10. For a more exhaustive explanation of the implementation of streams and the details
of all the definitions of the mentioned and used procedures, the reader is encouraged to go through
[Abelson and Sussman, 1996, section 3.5] as well as all the set of exercises from Exercise3.50.rkt to
Exercise3.76.rkt, where more advanced topic on streams are covered.

(cons 10585
(cons 15841

(cons 29341
(delay

(stream-filter
charmicael?
(cons 29342

(delay
(stream-enumerate-interval 29343

1000000))))))))

Code 3.10: Structure of the stream generated by Code 3.9.

3.2 Selection of problems

3.2.1 Adjacency relation within a graph

Here it is presented a graph, the one in Figure 9, with 9 nodes and a set of edges between some of
them. Code 3.11 tries to implement a database with a fact for each edge present in the graph and a
rule to know if two nodes are adjacent or not.

The concept explored with this problem is how to deal with symmetric relations. If the graph is
not an oriented one, the adjacency relation between two nodes is symmetric. That is what the rule
defined in Code 3.11 is trying to define, in a very straightforward way.

However, when passing some very simple queries, several conflicts arise. As the adjacency relation
should be symmetric, one expects that, if the query (adjacent 7 5) is passed to the interpreter,
it returns that is true. For the logical programming Scheme interpreter, this would be expressed by
returning (adjacent 7 5) too. Although it recognises the query and its truthiness, it enters in an
infinite loop showing (adjacent 7 5) without stopping.

The conflict resides in that, when querying (adjacent 7 5), first it is checked if there is any fact
that matches that. As it is not any, it applies the rule. When doing this, within the rule, it is tried to
satisfy (adjacent 5 7). As it is a fact in the database, the successful return is given, but the rule is
applied again, entering in the recursive loop. It would happen the same loop if the first query was a

4An implementation of the procedure stream-filter can be found in [Abelson and Sussman, 1996, section 3.5.1].

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.50.rkt
https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.76.rkt

3 Techniques on Scheme: Approaches to Solving Problems 29

simple checking of one of the defined edges such as (adjacent 4 5).

1 2 3

4 5 6

7 8 9

Figure 9: Graph representing the database from
Code 3.11.

(adjacent 1 4)
(adjacent 2 4)
(adjacent 3 6)
(adjacent 4 5)
(adjacent 4 7)
(adjacent 5 7)
(adjacent 6 8)
(adjacent 6 9)
(adjacent 8 9)

(rule (adjacent ?x ?y)
(adjacent ?y ?x))

Code 3.11: First version of the
adjacent database

Trying a different form of a query with (adjacent 4 ?y) will be generated an infinite loop,
going through the outputs (adjacent 4 7), (adjacent 4 5), (adjacent 4 2) and (adjacent 4
1). Another flaw is that is unable of reaching a false answer when querying about two nodes that are
not adjacent, as (adjacent 2 5). In a Prolog interpreter, it would result a indefinitely running by
recursively searching for (adjacent 5 2). In the logical programming interpreter implemented, this
will be noted differently, as the interpreter would request to the user itself to give the results, but no
response is given after that.

All in all, a redefinition is necessary. There can be more than one option to solve that, the one
chosen has been to include a restriction in the definition of the rule to stop the recursion. Maintaining
the same facts, the only change in the database Code 3.11 would be the one in the Code 3.12. In a later
chapter it will be explained the role of lisp-value with more details, but it allows the application of
a predicate to some arguments. In this case, it forces ?y to be smaller than ?x, introducing the order
of the natural numbers in the adjacent relation.

(rule (adjacent ?x ?y)
(and (lisp-value < ?y ?x)

(adjacent ?y ?x)))

Code 3.12: Alternative definition for adjacent rule.

Another option would have been to use a different definition for the facts and rules, like inserting the
concept of orientation to the graph. This would need to build the facts being aware of the orientation
of the edge, being able to define the adjacent relation as two nodes that have two opposite oriented
edges between them.

3.2.2 8-queens problem

The 8-queens puzzle is a classical mathematical and computer science’s problem. The objective is to
place eight queens on a chessboard (8×8 squares) in a way that no queen is in check from any other.
It implies that no two queens are in the same row, column or diagonal. One possible solution is in
the Figure 10. This problem was quickly extended to an arbitrary dimension n and with in the codes
presented in these section have as an argument the dimension of the chessboard (same as the number
of queens to be placed), having the capacity to generate solutions to smaller and larger chessboards

30 Scheme Logic Programming Interpreter

♕

♕

♕

♕

♕

♕

♕

♕

Figure 10: A solution to the eight-queens problem.

than the traditional one.

For the conventional puzzle, there is a total of 4,426,165,368 possible arrangements, as it is the
result of the possible combinations of choosing 8 squares out of 64, C(64, 8) =

64!

8!56!
. Taking into

account all possible symmetries, there are 92 solutions, although only 12 of them are considered fun-
damental, i.e., solutions that are different to the rest even if operating with rotations and reflections
of the board. Just as a curiosity, the solution in Figure 10 is the only fundamental one that has no
three queens in a straight line.

This puzzle is going to be used to exemplified the differences between imperative and logical
programming paradigms. Firstly, it will be explained the core of the code that was designed in Scheme
to solve this problem. This served as a very good exercise to get used to manipulating numerical
data from an abstract perspective and setting more basis to gaining a deeper understanding of how
to handle sequences in this language. At the same time, it is very useful to compare it to the logical
programming solving method, as it can be seen the differences between how the instructions have to
be very precise in Scheme, having high-order procedures and a more complex code, while in Prolog
(using the CLPFD library), a much easier commands are needed.

Scheme implementation

The Code 3.13 contains a reduced version from the code of the Exercise2.42.rkt, maintaining only
the procedures that were written for solving the problem. It also uses the procedures accumulate,
enumerate-interval, filter and flatmap given by Abelson and Sussman [1996] that appear in the script
of the indicated exercise.

The solution given by the main procedure queens is a list of all the different solutions, for n = 8,
it returns the 92 different combinations, being each solution a list of the positions of the 8 queens,
indicating pairs with the row first and then the column. The solution displayed in Figure 10 is given
by the list ((3 8) (6 7) (8 6) (2 5) (4 4) (1 3) (7 2) (5 1)).

There is a very detailed description of all the internal processes that are done inside each of the
three procedures in order to reach the desired solution that serves as a guide of the followed steps to

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.42.rkt

3 Techniques on Scheme: Approaches to Solving Problems 31

first understand the idea proposed in Abelson and Sussman [1996] to solve it and then to implemented.
The aim here is to express all that mechanism in a more concise way so that the reader is able to
comprehend the ideas behind Code 3.13.

The general strategy consists in solving the problem by placing one queen in each column of the
board and checking for every new queen that it does not check any of the queens already on the board.
This can be achieved in a recursive way: using the assumption that it has been already generated all
the possible successful sequences for the earlier columns.

; Adjoins a new row-column position to a set of positions
(define (adjoin-position new-row new-col rest-positions)

(cons (list new-row new-col) rest-positions))
; Determines for a set of positions , whether the queen in the
; kth column is safe with respect to the others
(define (safe? newcol positions)

(define (length items)
(if (null? items)

0
(+ 1 (length (cdr items)))))

(let ((newrow (caar positions)))
(let ((listrows (filter

(lambda (checked-queens)
(not (= newrow (car checked-queens))))

(cdr positions)))
(listdiag (filter

(lambda (checked-queens)
(not (= (abs

(- newrow (car checked-queens)))
(abs
(- newcol (cadr checked-queens))))))

(cdr positions))))
(and (= (length (cdr positions)) (length listrows))

(= (length (cdr positions)) (length listdiag))))))
; Returns a sequence of all solutions to the problem of placing
; n queens on a n×n chessboard (n is board-size)
(define (queens board-size)

(define (queen-cols k)
(if (= k 0)

(list empty)
(filter
(lambda (positions) (safe? k positions))
(flatmap
(lambda (rest-of-queens)

(map
(lambda (new-row) (adjoin-position new-row k rest-of-queens))
(enumerate-interval 1 board-size)
))

(queen-cols (- k 1))))))
(queen-cols board-size))

Code 3.13: Reduce version of the 8-queen problem in Scheme.

Therefore, it will be produce an extension of each preexisting sequence by adding a potential po-

32 Scheme Logic Programming Interpreter

sition for the new queen. This is where the procedure adjoin-position is used. In the n = 8 case,
every time this is done, the number of existing sequences will be multiplied by eight, as there are eight
different positions in each column, one for each row. Looking into the internal procedure queens-cols,
this described process is computed in the most nested part of the code, with the second lambda func-
tion, that has as an input (enumerate-interval 1 board-size), containing the different values of
the rows.

Due to how the evaluation is performed in Scheme, the instruction (queen-cols (- k 1)) will be
needed to be evaluated before applying the different functions that use it. In particular, the procedure
flatmap has two arguments, a procedure and a list, being the second in this case the list is the one
generated in the call to (queen-cols (- k 1)). Here it resides the recursive behaviour and it is the
reason behind in the procedure safe? it is only needed to check the coordinates of the last added
queen with respect to the rest. If the safe? procedure is well implemented, (queen-cols (- k 1))
only returns list of queens’ positions that are valid.

So far, it has been seen how, out of the three procedures of Code 3.13, the first one, adjoin-position
is almost trivial and the main one, queens, requires a deep understanding of the developed procedures
in Abelson and Sussman [1996] to manipulate structures and how the relations between are imple-
mented in this case in the nested lines. If a reader of the book has been doing, as it has been the case,
all the exercises until this point, it has already gotten familiar with the functioning of this procedures.
Hence, the most challenging one to implement is safe, specially in an efficient way, i.e., without doing
more calculations than the necessary ones, as the required tests only involve the new queen.

By construction, when it is evaluated the predicate safe? within queens, it is easy to verify that,
in the sequence parameter, the position of the new queen is the first one on the sequence. Besides, as
it is the main strategy, it is already known that the new queen is placed in a new column, so that is
not necessary to check, only the rows and diagonals. Inside safe? it is defined a simple procedure to
calculate the length of a list. This is done because the idea that it’s going to be employed is to filter
the list of the positions of the already placed queens. If any of them is checked by the queen in the new
position, it will be deleted from the list. This is done for both the rows and diagonals, represented in
the temporary variables listrows and listdiag. Finally, to inspect if all the already placed queens
survive, the length of the lists before and after the filter are compared, meaning that, if they are equal,
the configuration is a valid one!

As indicated, a much more exhaustive and accurate description of all the details involve in this
strategy and implementation can be found at Exercise2.42.rkt, where it was started to understand the
task with the n = 4 case and then extended the idea for an arbitrary dimension. In the last 92 lines of
the file, all the solutions for the n = 8 are shown, which it helps to gain awareness of how the different
possibilities are built.

Prolog implementation

Code 3.14 encases the solution for the N-queens problem implemented in Prolog. In the first line it is
imported a library CLPFD, from which the predicates between, all_distinct and length are used.
In contrast to the Scheme’s version, all the necessary procedures are defined and contained within
the displayed lines. As this problem has been widely studied, there are also many solutions. In the
section 4.5 of Bratko [2001] there can be found other three different alternatives to the proposed one,
exploring diverse ways to display the positions of the final solutions.

When reading the Code 3.14, even a non Prolog user would be able to understand the process
followed to find the solutions, as the predicates are simpler and the names involved are much more
intuitive. In comparison to all the intricate instructions of the Scheme version, it can be highlighted

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%202/Exercise2.42.rkt

3 Techniques on Scheme: Approaches to Solving Problems 33

how uncomplicated the rules established are.

The strategy followed by this implementation to solve the puzzle is to generate all the possible
list of positions which are valid, forcing that all rows, columns and diagonals in both direction are
different.

:- use_module(library(clpfd)).
; Checks if a queen's position is valid on a n×n chessboard
valid_queen((Row, Col), N) :-
between(1, N, Col),
between(1, N, Row).

; Ensures that all queens in the list have valid positions
valid_board([], _).
valid_board([Head|Tail], N) :-
valid_queen(Head, N),
valid_board(Tail, N).

; 4 predicates that extract information from a list of queen positions
; Row numbers
rows([], []).
rows([(Row, _)|QueensTail], [Row|RowsTail]) :-
rows(QueensTail , RowsTail).

; Column numbers
cols([], []).
cols([(_, Col)|QueensTail], [Col|ColsTail]) :-
cols(QueensTail , ColsTail).

; One diagonal
diags1([], []).
diags1([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-
Diagonal is Col - Row,
diags1(QueensTail , DiagonalsTail).

; Other diagonal
diags2([], []).
diags2([(Row, Col)|QueensTail], [Diagonal|DiagonalsTail]) :-
Diagonal is Col + Row,
diags2(QueensTail , DiagonalsTail).

; Main predicate
queens(Board, N) :-
length(Board, N),
valid_board(Board, N),

rows(Board, Rows),
cols(Board, Cols),
diags1(Board, Diags1),
diags2(Board, Diags2),

all_distinct(Rows),
all_distinct(Cols),
all_distinct(Diags1),
all_distinct(Diags2).

Code 3.14: Reduce version of the 8-queen problem in Prolog.

In order to do it, first it ensures, using the predicates, valid_queen and valid_board, that the

34 Scheme Logic Programming Interpreter

positions of the queens are valid with respect to the chessboard’s dimension. In the second one it is
used recursion, as it checks one by one the validity of each queen. The next four predicates (rows,
cols, diags1 and diags2) have the aim of obtaining the information of the positions of a list of
queens, considering four different coordinates: rows, columns, diagonals in one direction and diagonals
in the other direction. This is done with two rules, in a similar way to the append predicate from 1.1.
One for the empty case and a recursive one for a non empty list.

Finally, in the main predicate is queens, the solutions are generated and stored in the Board
variable. In the last four lines, it can be seen how the strategy is assembled. The query for getting the
solutions for the n = 8 case would be ?- queens(Board,8)., receiving as an output the 92 possibilities
too, with the form Board = [(1, 5), (2, 7), (3, 1), (4, 4), (5, 2), (6, 8), (7, 6), (8,
3)], which express the solution displayed in Figure 10.

Implementation attempt in Scheme’s logical programming interpreter

The limitations of the interpreter and the potential will be covered in more detail in Chapter 5, al-
though it is relevant to comment here some of them as it was done an effort to adapt the Code 3.14 to
a Scheme syntax as done in previous example to obtain valid solutions. This topic was first addressed
in 1.1.6 when talking about the gcd predicate and it will be fully explained when analysing the inter-
preter and the constructed database in Chapter 4.

In Code 3.15 it is displayed how it was tried to write the two first predicates from Code 3.14. In
valid-queen, as the library CLPFD is from Prolog, instead of using between, it was tried to generate
the same conditions by means of the lisp-value form. This was not the problem, but the use of
primitive procedures car and cdr. When implementing the logical programming interpreter it was lost
the ability of dealing with primitive procedures and list structures. However, it was still useful as an
exercise the attempt to implement it, having in total three different perspectives of the same puzzle:
from a functional paradigm in Scheme, from a logical paradigm in Prolog and from a logical paradigm
in Scheme.

(rule (valid-queen ?queen ?n)
(and (and (lisp-value <= 1 (cadr ?queen))

(lisp-value >= ?n (cadr ?queen)))
(and (lisp-value <= 1 (car ?queen))

(lisp-value >= ?n (car ?queen)))))

(rule (valid-board ?board ?n)
(or (null? ?board)

(and (valid-queen (car ?board) n)
(valid-board (cdr ?board) n))))

Code 3.15: Attempt to implement the first two predicates from
Code 3.14 in a Scheme syntax.

3.3 Message passing and Data-Directed: The data as a program and
the use of quote.

Many of the examples showed in this bachelor’s thesis and many of the exercises that can be found in
the GitHub repository present just a few procedures. However, if added all the related procedures of
some of them, it can be constructed a system. For a correct understanding and use of a programming
system, it is needed to develop some tools in order to navigate through it and manage its different
component easily. Two different techniques for organising and managing the code can be found in

3 Techniques on Scheme: Approaches to Solving Problems 35

Scheme: data-directed programming and message passing.

Data-directed programming is the one that it has been used to implement the logical programming
interpreter and it needs the construction of a two dimensional table. This technique relies on modu-
larity, as the idea is to use a pertinent procedure depending on the type of data. When a procedure
has to be applied, the idea is to look for the appropriate one depending on the type of the data object
that will be the argument, as there will be more than one procedure for doing the same operation.
This is very useful to handle data structures that can have more than one representation. Depending
on the operation, it can be easier to use one representation or another.

For instance, when manipulating complex numbers, rectangular form is more suited to add or
subtracting them, while polar form is more adequate to multiply or dividing, although all four oper-
ations can be implemented in both forms. To identify the procedures with the type they are able to
handle, they are tagged, using the quote operator '. Using that, whole packages can be defined for
each representation. The packages usually consist in a set of definitions of procedures together with
inserting the procedures to the table with the procedure put and the correct keys.

Message-passing is a way to manage the code that can remind to the philosophy in object-oriented
programming. Here, the focus is on individual objects or identities, where the procedures are defined
within them, recalling the way methods are defined in object-oriented programming. For achieving
this, it is usually defined a procedure named dispatch, which accepts one argument, containing a
tag that triggers one of the procedures defined within the object. To see more clearly how this works,
it is going to be used already explained procedures, the constructor cons and the selectors car and
cdr. Code 3.16 reflects a slight variation of the way this primitive procedures are defined in Scheme
is by means of message-passing. In reality, instead of using the predicates (eq? m 'car) and (eq? m
'cdr), these are replaced by (= m 0) and (= m 1). However, for showing a more general yet basic
use of message-passing, it has been adapted the cons definition.

; Constructor cons is defined
(define (cons x y)

(define (dispatch m)
(cond ((eq? m 'car) x)

((eq? m 'cdr) y)
(else (error "Argument␣not␣0␣or␣1␣--␣CONS" m))))

dispatch)
; If it is constructed an object z with cons
(define z (cons 1 2))
; Now, selectors are defined
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))
(car z) ; Returns 1
(cdr z) ; Returns 2

Code 3.16: Definition of cons procedure using message-passing.

Detailing the implementation of Code 3.16, when defining the object z as (cons 1 2), z is now a
procedure, because in the definition of (cons x y), the output is the function dispatch. Then, when
specifying how car and cdr work, this is done by passing to z the corresponding argument for each
selector.

4 Interpretation of Languages in Functional Pro-
gramming

If a programmer starts to dissect the programming language that he/she is using, it can end up leading
to question how the language itself processes and evaluates the expressions that are being created.
Thus, the programmer would finally check that almost every programming language has an evaluator
or interpreter written in its own language that has the capacity of performing all the required actions
when evaluating an expression of the same language.

The reason behind this strategy is to achieve, among others, two mean objectives:

1. Developing the programming language. This is accomplished by extending the functionalities
present in the interpreter. So, if the computer programmer wants the language he/she is design-
ing to incorporate a wider range of capabilities, the interpreter is first modified, allowing new
expressions to be evaluated and expanding the language.

2. Proving the usefulness of the programming language. Usually, when presenting a new program-
ming language to the computer science community, it should be done by exhibiting a big project.
An interpreter is an example of such a project.

In the following section, it will first be seen some details of how it is built the interpreter for
imperative programming in Scheme, focusing on how different expressions are handled and the core
of the evaluator. Finally, it will be explained the elements of the logical programming interpreter and
a description of the database implemented, as well as a guide of how to use it.

4.1 The core of the evaluator
The interpreter built in [Abelson and Sussman, 1996, section 4.1] receives the name of Metacircular
evaluator, as it is written in the same language that it evaluates. To understand the method for
constructing this interpreter is very useful to gain a deep knowledge about how the environment
diagrams, such as the ones from Figure 5 and Figure 6, are designed. In the environment model, the
evaluation of a combination is done following the same rules as the ones explained in Section 2.2. Now,
there are another two rules, that refer to the application of procedures:

1. A procedure is created by evaluating a lambda expression relative to a given environment. Then,
it is generated an object related to the procedure that is a pair of two elements: the body of the
lambda function and a pointer directed to the environment in where the procedure was defined.

2. When applying the procedure to a set of arguments, it is constructed a frame, creating a binding
between the parameters and the arguments. Then, the body is evaluated in the context of the
new environment.

In conclusion, the evaluation process of an expression is a cycle where the input expression is firstly
reduced to a procedure with a given set of arguments, which are also reduced to other expressions
in different environments until it is reached a level of reduction where everything left are symbols or

38 Scheme Logic Programming Interpreter

primitive procedures. In Exercise3.10.pdf there is a good example of a more detailed process involving
different environments that evolve with different calls.

The mentioned cycle is described in [Abelson and Sussman, 1996, section 4.1.1] with the procedures
eval and apply. Focusing on the first one, when receiving an expression and an environment, the eval
procedure first classifies it depending on the type. For doing this, there are several predicates such as
if? or lambda?. The idea behind this implementation is similar to the one explained when talking
about data-directed style in the sense that each function has a label or tag identifying it. Indeed,
this tag is the name of the procedure. The key function for developing this method is tagged-list?,
presented in Code 4.1. Its purpose is to read the label of each procedure.

(define (tagged-list? exp tag)
(if (pair? exp)

(eq? (car exp) tag)
false))

Code 4.1: Definition of the procedure
tagged-list?.

Then, the predicates such as if? or lambda? are defined simply by using tagged-list?. Apart
from this, it is necessary to process each part of the expression given to the evaluator. Later, for each
component of a special form or procedure represented in the evaluator, it is constructed a selector.
The idea is that every expression can be handled as a list. For example, if it is evaluated the following
expression (lambda (x) (x+1)), if thought as a list, its car is 'lambda. Developing this idea, every
procedure can be divided in several parts. For both predicates if? and lambda?, this implementation
is captured in Code 4.2.

(define (lambda? exp) (tagged-list? exp 'lambda))
(define (lambda-parameters exp) (cadr exp))
(define (lambda-body exp) (cddr exp))

(define (if? exp) (tagged-list? exp 'if))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)

(if (not (null? (cdddr exp)))
(cadddr exp)
'false))

Code 4.2: Syntax specification for procedures lambda? and if?.

One interesting aspect here is that there are less contemplated options than an user could expect,
since some special forms that have been used until now such as cond or let do not appear explicitly.
These are called derived expressions because they can be defined in terms of other special forms. In
the case of cond, in [Abelson and Sussman, 1996, section 4.1.2] it is defined an auxiliary procedure to
convert it into an if expression.

It will be seen now with more detail how the evaluation of a let expression is transformed in a
way that it can be interpreted as a lambda function by the implemented metacircular evaluator. The
general form of a let expression is represented in 9, but the idea is to generate the same bindings by
means of a lambda expression, as reflected in 10. Then, if having to evaluate an expression with the

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%203/Exercise3.10.pdf

4 Interpretation of Languages in Functional Programming 39

structure represented in 9, the first step is to identify the components of it and determine which list
selector is needed for each case. The idea is to generate an analogous decomposition as in Code 4.2
and end it with a procedure that uses those parts and assembles them in a different way to build
a lambda function with the structure displayed in 10, this procedure is called let->combination.
The necessary code for extracting the pieces of information needed to process a special form let is
presented in Code 4.3, taken from Exercise4.6.rkt.

(let ((⟨var1⟩ ⟨exp1⟩)
(⟨var2⟩ ⟨exp2⟩)
.
. (9)
.
(⟨varn⟩ ⟨expn⟩)

⟨body⟩)

((lambda (⟨var1⟩ ... ⟨varn⟩)
⟨body⟩)

⟨exp1⟩
. (10)
.
.
⟨expn⟩)

; First procedure to identify the special form let
(define (let? exp) (tagged-list? exp 'let))
; Selectors
(define (let-body exp) (cddr exp))
(define (let-varexps exp) (cadr exp))
(define (let-variables exp) (map car (let-varexps exp)))
(define (let-expressions exp) (map cadr (let-varexps exp)))
; Final procedure to construct a lambda function
(define (let->combination exp)

(cons (make-lambda (let-variables exp)
(let-body exp))

(let-expressions exp)))
; Auxiliar procedure
(define (make-lambda parameters body)

(cons 'lambda (cons parameters body)))

Code 4.3: Syntax specification for procedure let.

After this complex classification inside eval, depending on the type, it is done the evaluation and,
when needed, it is done a call to the apply function, that has as arguments a procedure and a set of
arguments. Along the section 4.1 of Abelson and Sussman [1996] there is a profound explanation of
how all the evaluator is built, and the complemented exercises to fully understand it are located in
the folder SICP. Chapter 4 of the GitHub repository.

Lastly, when building an evaluator, even though it is not necessary to address the halting problem,
being able to understand it allows the user to learn more about the theoretical limitations of any
computing system. Hence, it will next be briefly covered.

4.1.1 The Halting Problem
The first formulation and proof of the halting problem is attributed to Alan Turing, based on a paper
that was published in 1936, although its name appears to come from a 1958 book written by Martin
David [Lucas, 2021]. The halting problem is a decision problem in computer science and it is based
on whether an algorithm can determine if, given an arbitrary program and an input, the program
will terminate (or halt) or if it will keep running forever. The halting problem has been proven to be

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%204/Exercise4.6.rkt
https://github.com/ffriaslago/lambda/tree/main/SICP.%20Chapter%204

40 Scheme Logic Programming Interpreter

undecidable, this means that it doesn’t exists such algorithm.

To show that the halting problem is not solvable, it is constructed a proof by contradiction, as
it is motivated in Exercise4.15.rkt. The code used in Scheme to construct this proof is displayed in
Code 4.4. There, it is defined first a procedure under the assumption that there is already a predicate
halts? that correctly determines if a one-argument procedure terminates when given an input. In
the comments of Code 4.4 it is explained how the contradiction is reached for any possible outcome,
proving how the assumed predicate halts? cannot exist.

; Definition of procedure named try to test the predicate halts?
(define (try p)

(if (halts? p p)
(run-forever)
'halted))

; It is evaluated the following expression
(try try)

; Using the substitution model it is analysed every possible outcome
(if (halts? try try)

; if (halts? try try) is true,
; -> by definition of halts?, (try try) halts, i.e., terminates
(run-forever)
; (run-forever) is triggered by definition of try -> contradiction

; if (halts? try try) is false,
; -> by definition of halts?, (try try) runs forever
'halted)
; 'halted is triggered by definition of try -> contradiction

Code 4.4: Proof by contradiction of the undecidability of the halting problem.

4.2 Logical programming interpreter
The only script that accompanies this document contains the implementation of the logical program-
ming interpreter, together with a complete database in where it can be found the examples showed
along the chapters and a set of exercises from [Abelson and Sussman, 1996, section 4.4]. The same
script can also be found in the GitHub repository, at LogicProgramming_Interpreter.rkt.

4.2.1 Details of the implementation
Three different parts can be distinguished within the presented script. Firstly, it was needed to use
old procedures that had been previously studied. As explained in different sections of the document,
several of the analysed procedures and data objects are used in the implementation of the interpreter.
The most relevant ones are the procedures to make tables and then a set of shorter procedures to
incorporate all the tools related to streams.

Secondly, starting with the query-driver-loop, it begins the proper implementation of the logical
programming interpreter. For that, it was followed [Abelson and Sussman, 1996, section 4.4.4]. This
first procedure is the one in charge of reading the input queries. It also allows the user to add new
rules and assertions to the previously set database for quick examples and exercises.

https://github.com/ffriaslago/lambda/blob/main/SICP.%20Chapter%204/Exercise4.15.rkt
https://github.com/ffriaslago/lambda/blob/main/Interpreter/LogicProgramming_Interpreter.rkt

4 Interpretation of Languages in Functional Programming 41

The evaluator in this interpreter is formed by the qeval procedure, where it is used data-directed
dispatch with the procedures get and put and it differentiates between special form queries, the ones
that use the logical operators AND, OR and NOT and lisp-value, and simple queries, having all
their related procedures defined afterwards.

Pattern matching and unification

The following functions of the interpreter implement all the necessary procedures to put into action
the operations of pattern matching and unification. The former one is the mechanism that it is needed
for simple and compound queries. When a simple query is given as input, in order to process it and
determine if it is true or not, all database facts (or assertions) present are scanned to select the ones
that match the input. As this is very costly, it is usually performed an indexing of the database, which
is also implemented in the interpreter. If the match is produced, it is created a binding between the
input and the information in the database, if needed to match again, for example in a compound query
that uses the logical operator AND, those bindings can not be broken, if so, the match requirements
are not fulfilled. All the process of creating frames and bindings is organised by the use of streams.

In order to handle the rules, it is needed to generalise the operations of pattern matching and use
the concept of unification. This is the most technical part of the implementation and it can be similar
to solve a system of equations, as deduction is required. An example will be shown step-by-step to
complete the explanation. It is attempted to unify (?x ?x) and ((a ?y c) (a b ?z)). The unifica-
tion process should be able to make the following bindings: ?x with (a b c), ?y with b and ?z with c.
This could also serve as an example of pattern matching, as all the variables become bound. However,
the way unification generalises pattern matching is that it allows undetermined variable values. If it is
tried to unify (?x a) and ((b ?y) ?z), the furthest bindings that can be made are ?x with (b ?y)
and ?z with a. Then, the value of ?y is not restricted, but the value of ?x is, when ?y is given a value,
then the value of ?x will be known.

Finally, it will be analysed how these two operations are used with some examples of the con-
structed database. In the first part of the database, there is general information about the workers of
a company, including address, position, salary or supervisors. For each worker, a set of facts are used
to describe this information, for example, for Louis Reasoner, his personal information is displayed in
Code 4.5. If the input was a simple query such as (job (Reasoner Louis) ?pos), pattern matching
would be applied, and it would be tried to match the query with all the facts that have the same
pattern. In the implemented database, as said, there are several people and, for each of them, it is
defined its position, by an assertion with the pattern (job (lastname name) (position)), where
(position) can be formed by one or more words. Seeing the given simple query, is the database is well
implemented and assuming that Louis Reasoner occupies only one position in the company, a match
is found, and there would be an output query giving the information of the position of Louis Reasoner.

(address (Reasoner Louis) (Slumerville (Pine Tree Road) 80))
(job (Reasoner Louis) (computer programmer trainee))
(salary (Reasoner Louis) 30000)
(supervisor (Reasoner Louis) (Hacker Alyssa P))

Code 4.5: Example of a set of facts of the used database.

In order to determine if it is worth sharing a car to go to the office together, it can be implemented
a rule to know if two people live near enough, stating that they do if they share the same town. The
rule lives-near? can be found at Code 4.6, where the procedure (same ?x ?x) is the same one from
Example 1.1.3. So, in this query, the employee Louis Reasoner is interested in knowing who lives near
him and gives the following query to the interpreter (lives-near ?person (Reasoner Louis)).

42 Scheme Logic Programming Interpreter

(rule (lives-near ?person-1 ?person-2)
(and (address ?person-1 (?town . ?rest-1))

(address ?person-2 (?town . ?rest-2))
(not (same ?person-1 ?person-2))))

Code 4.6: Example of a rule of the used database.

As there are not any assertions for this relation, the pattern matching operation will fail and
unification is necessary, as it will be worked with a rule. The conclusion of the rule from Code 4.6 has
a match with the given query, binding ?person with ?person-1 (still undetermined) and Reasoner
Louis with ?person-2. Then, it is passed to the conditions required to achieve the conclusion of the
rule. If a value is found for ?person-1, then the variable ?person is also determined.

Indexing the database

After implementing all the procedures for the described operations of pattern matching and unifica-
tion, there is a set of functions with the aim of providing a more efficient way of searching matches.
If it is constructed a database with information as the one displayed in Code 4.5 for a big company,
there will be so many employees, resulting in an immense amount of facts. If a person is interested in
finding out who is the supervisor of an employee, it is convenient to avoid pattern matching in all the
pieces of information that are irrelevant in this case.

The idea is to separate the assertions that give the same type of information in different streams.
Each stream would be characterised by the first word of each fact, and then, when doing pattern
matching, it will be first checked the key that characterises the input query with the one of each
stream. For rules it is done a similar indexation, but the key is given by the name of the conclusion.
In the case of the rule from Code 4.6, it would be lives-near.

Final procedures

After implementing the indexing in both facts and rules, there are still some procedures left, a few of
them are for adding more streams operations, others are related to the syntax of the queries, involving
predicate procedures similar to the ones explained in the Section 4.1. Then, some simple procedures
are defined for working with bindings and frames, which is a list of bindings.

Initialising the database

Once all the procedures to implement the interpreter are constructed, in order to be able to work
with a given database containing the facts and rules to be applied, it is needed a procedure that will
be used together with query-driver-loop to start the interpreter. This procedure has been named
init-data-base and it has one argument that is the name of the database to be initialised. Its code
it is represented in Code 4.7, containing many commented lines in order to understand better the
internal processes of the procedure.

This procedure helps to capture the idea of how all the facts (assertions) and rules from a created
database are incorporated into all the procedures that compose the interpreter. It goes entry by entry
of the database and first it uses the procedure query-syntax-process for passing the query from a
more familiar syntax for the user to an easier syntax for the evaluator. Then, it is performed a clas-
sification between rules and assertions and stored the index of each of them for the efficient pattern
matching. Finally, using the procedures put and get, the table is constructed to use the data-directed
dispatch.

4 Interpretation of Languages in Functional Programming 43

(define (init-data-base rules-and-assertions)
(define (deal-out r-and-a rules assertions)

(cond ((null? r-and-a) ; If the data-base has no rules or assertions
(set! THE-ASSERTIONS assertions)
(set! THE-RULES rules)
'done)

(else ; This goes one by one
(let ((s (query-syntax-process (car r-and-a))))

; query-syntax-process transform pattern variables in the
; expression to the internal format
; For example, a query such as (job ?x ?y) is actually
; represented internally by the system as (job (? x) (? y))
(cond ((rule? s)

; Once is done it, it breaks the process in two
; types: rules and assertions
(store-rule-in-index s)
; It stores the rule
(deal-out (cdr r-and-a) ; It continues with the rest

(cons s rules) ; It updates the rules
assertions)) ; It doesn't update assertions

(else ; If it is not a rule, it is an assertion
(store-assertion-in-index s)
; It stores the assertion
(deal-out (cdr r-and-a) ; It continues with the rest

rules ; It does not update rules
; It updates assertions
(cons s assertions))))))))

; The different options for the qeval procedure are added here
; qeval procedure identifies special forms by a data-directed dispatch
; using get and put
; Any query that is not identified as a special form is assumed to be a
; simple query and it is processed by simple-query
(let ((operation-table (make-table)))

(set! get (operation-table 'lookup-proc))
(set! put (operation-table 'insert-proc!)))

(put 'and 'qeval conjoin)
(put 'or 'qeval disjoin)
(put 'not 'qeval negate)
(put 'lisp-value 'qeval lisp-value)
(put 'always-true 'qeval always-true)
; Final call to finish the initialization
(deal-out rules-and-assertions '() '()))

Code 4.7: Initialisation of the database.

4.2.2 User guide

This final section is intended to be a short guide for the given logical programming interpreter. The
recommended software for running the script LogicProgramming_Interpreter.rkt is DrRacket, very
suitable for Lisp and Scheme languages and it has been the one used during all the bachelor’s thesis,
all the files written in Scheme have the extension .rkt.

https://github.com/ffriaslago/lambda/blob/main/Interpreter/LogicProgramming_Interpreter.rkt

44 Scheme Logic Programming Interpreter

When run, it will appear in the console the message ;;; Query input: followed by a textbox where
it has to be written the wanted query. For this, there are several options:

1. Simple query. It can be understood as a simple question it is asked in order to check if it is true
or not. It can also be viewed as a way to test which objects of the database fulfil a condition
or to gain more information that can be deducted from all the facts and rules present in the
database. An instance can be the one explained in the example 1.1.3, (mortal Socrates).

2. Compound query. Using the logical operators AND, OR and NOT and the special form lisp-value,
more complex questions can be formulated. An example, related to the constructed database,
can be the one from Code 4.8, where it is wanted to find all people whose salary is less than Ben
Bitididdle’s, together with their salary and Ben Bitididdle’s salary.

(and (salary (Bitdiddle Ben) ?number)
(salary ?person ?amount)
(lisp-value < ?amount ?number))

Code 4.8: Example of a compound query.

3. Add a fact to the database. Using the procedure assert! it can be added a new fact to the
database. This fact is a temporary one, as when the script is run again, the fact is no longer
present. This can be useful to have a more interactive experience with the interpreter and add
forgotten data, although altering the database can be achieved easily. It is important to point
that if it is tried to change an already present fact, it will not work. Looking at the Code 4.5,
if it is wanted to change the salary of Louis Reasoner from $30,000 to $40,000, it would not
be useful to write (assert! (salary (Reasoner Louis) 40000)). If done so, there would be
two different assertions in the database and it would be considered that Louis Reasoner has two
different salaries, the original fact would not be altered. After using assert!, a message will be
displayed informing that the fact has been successfully added to the database and it will allow
the user to introduce an input again.

4. Add a rule to the database. The procedure assert! can also be applied to introduce whole new
rules to the interpreter.

The name of the built database is logic-programming-data-base and inside it it can be found
multiple of the facts and rules that appear in [Abelson and Sussman, 1996, section 4.4] together with
other facts or rules that were added as a consequence of solving some exercises from that same section.
Multiple comments accompany the exercises in order to give more precise instructions or details of
how those rules work. Besides, the example from Chapter 1 are included. Any reader is encouraged
to modify the database and extend it to make it richer, the syntax for adding more facts or rules,
directly in the console or in the database, is simple.

After introducing a query in the interpreter, if no error message is triggered, it will appear the
message ;;; Query results: with the fact or set of facts deducted from the inquiring input. If there is
more than one answer, there is no need to introduce any command, all of them will be displayed in
the console.

5 Conclusions and Future Work

In this bachelor’s thesis, a logic programming interpreter has been successfully implemented in the
Scheme programming language. In order to achieve this objective, it has been deeply studied the basis
of logical programming, including its first language, PROLOG, which has served as a constant com-
plement to better understand how to approach problem resolution from a logical perspective, specially
when analysing the SLD resolution for Horn clauses, the main feature of the implemented interpreter.

With the help of many examples and constant references to the solved exercises from the book
Abelson and Sussman [1996], it has been showed all the fundamental concepts needed to gain a
strong understanding of the basis of logical programming, revised a theoretical computation model as
λ-calculus, which has a great impact on the development of Lisp (therefore Scheme) language and all
the imperative and functional programming tools that are necessary for the proposed interpreted.

However, at the same time, the limitations of the interpreted are acknowledged, as it could be
verified in some examples. The given implementation is based on the one explained in [Abelson and
Sussman, 1996, section 4.4] and it is a very adequate benchmark. In other words, all the presented
exercises, examples and scripts can serve as a starting point for future work and more profound anal-
yses of the logical programming paradigm.

There are some proposed directions in where a future student or user can progress in order to
generate a more complete interpreter.

• Incorporating libraries. As it could be seen when presenting the 8-queens problem, it was not
possible to solve the puzzle using the designed interpreter. Examining PROLOG’s version, if it
could be found a way of developing some libraries for the interpreter that could be imported in
order to be able to use such procedures within the interpreter implementation, it could be a huge
step. In [Abelson and Sussman, 1996, section 2.4.3] it is described a way to construct packages
for the different forms of expressing complex numbers that could be worth to replicate in some
way.

• Primitive procedures in the interpreter. There is a considerable set of primitive procedures in
Scheme, such as remainder. However, as it was explained in Section 1.1.6, the interpreter is not
able to recognise such primitive procedures. In fact, the message error that appears when trying
to add the rules from Code 1.11 is that the interpreter is unable to process the subexpression
(remainder ?a ?b) because it is expecting a value, not a subexpression, even when ?a and ?b
are substituted by numbers. Revising the rules for evaluation, one expected the evaluator to
behave in a way that the subexpression is evaluated beforehand, but apparently this is not the
case. Therefore, it is recommended a thoroughly examination of the order of evaluation in the
interpreter in order to understand if the problem is located there or if it arises from a different
part.

Anyway, although it is conceded that the presented interpreted has limitations, it can also be
affirmed that it is good enough to explore the equivalences between programming paradigms and
comprehend the ideas behind the thesis of Church-Turing.

46 Scheme Logic Programming Interpreter

Another interesting perspective that this bachelor’s thesis provides for a mathematics or physics
student is the experience of working with logical programming. Usually, the languages that have been
introduced to such student during both of these bachelors are placed within imperative or object-
oriented programming. This is very useful, as the student is able to learn the tools that most often
will use in a future job or research. However, most of them share a common perspective and offer the
user a same approach to problem solving.

On the other hand, logical programming allows the student to develop a completely different
method and way of thinking when trying to find a solution for a given problem. Going beyond, in
the same sense that the Sapir-Whorf hypothesis proposes that the structure of a (linguistic) language
affects the speakers’ cognition and perception of reality, it could be defended the same argument when
talking about programming languages, since the same problem requires absolutely different strategies
when using different programming paradigms.

Bibliography

Alain Colmerauer and Philippe Roussel. The birth of prolog. In History of programming languages—II,
pages 331–367. 1996.

Philipp Körner, Michael Leuschel, João Barbosa, Vítor Santos Costa, Verónica Dahl, Manuel V.
Hermenegildo, Jose F. Morales, Jan Wielemaker, Daniel Diaz, Salvador Abreu, and Giovanni Ciatto.
Fifty years of prolog and beyond, 2022.

Alfred Horn. On sentences which are true of direct unions of algebras. Journal of Symbolic Logic, 16
(1):14–21, 1951. doi: 10.2307/2268661.

Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. Solving existentially quantified
horn clauses. In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, pages
869–882, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Robert Kowalski. Predicate logic as programming language. IFIP Congr., 74:569–574, 01 1974.

Krzysztof R. Apt and M. H. van Emden. Contributions to the theory of logic programming. J. ACM,
29(3):841–862, jul 1982. ISSN 0004-5411. doi: 10.1145/322326.322339.

Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning. The Morgan
Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, Amsterdam, 2004. ISBN 978-1-
55860-932-7.

Ivan Bratko. PROLOG. Programming for Artificial Intelligence. Pearson Education, 3rd editon
edition, 2001.

Harold Abelson and Gerald Jay with Julie Sussman Sussman. Structure and Interpretation of Com-
puter Programs. MIT Press/McGraw-Hill, Cambridge, 2nd editon edition, 1996.

T.X.N. CLIPS Reference Manual, Version 6.0. NASA-Lyndon B. Johnson Space Center, 1993.

John McCarthy. Recursive functions of symbolic expressions and their computation by machine, part
i. Commun. ACM, 3(4):184–195, apr 1960. ISSN 0001-0782.

Alonzo Church. The Calculi of Lambda Conversion. (AM-6). Princeton University Press, 1941.

Salvador Lucas. The origins of the halting problem. Journal of Logical and Algebraic Methods in
Programming, 121:100687, 2021. ISSN 2352-2208.

	Introduction
	Logical Programming
	First programming language
	Horn Clauses and SLD Resolution
	Examples
	Improvements over the algorithm
	Expert Systems
	Conflict Resolution

	Lisp language
	Contents of the bachelor thesis
	Objectives
	Results
	Document Organization

	Procedures with Lisp language: a first level of abstraction
	A computational model: -calculus
	Turing completeness of -calculus

	The practical implementation: Scheme
	Computational complexity
	Recursion vs Iteration

	Techniques on Scheme: Approaches to Solving Problems
	List structures
	Quote operator
	Structures present in imperative languages
	Mutable Lists
	Streams

	Selection of problems
	Adjacency relation within a graph
	8-queens problem

	Message passing and Data-Directed: The data as a program and the use of quote.

	Interpretation of Languages in Functional Programming
	The core of the evaluator
	The Halting Problem

	Logical programming interpreter
	Details of the implementation
	User guide

	Conclusions and Future Work
	Bibliography

