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A B S T R A C T   

This paper presents a novel method to select the optimal combination of grid resolution and number of 
Lagrangian elements (LEs) required in numerical modelling of oil concentrations at sea. A sensitivity analysis in 
terms of grid resolution and the number of LEs, was carried out to understand the uncertainty that these user- 
dependent parameters introduce in the numerical results. A dataset of 211,200 simulations performed under 
400 metocean patterns, 6 initial volumes, 11 grid resolutions, and different numbers of LEs (100 to 500,000), was 
used to analyze the sensitivity of the model along different Thresholds of Concern. Results show the importance 
of a correct selection of the number of LEs and the grid resolution in Lagrangian modelling of surface oil con
centrations. The method proposed will allow selecting the optimal combination of these parameters to find an 
optimal balance between the accuracy and the computational cost of the simulation.   

1. Introduction 

Oil and gas exploration, production and transport occur all over the 
world, from rivers and estuaries to seas and oceans. Accidental spills as a 
consequence of these activities know no borders, and the pollution 
caused by them poses a great risk to the coastline and marine environ
ments. Decision-makers need technical and methodological tools, 
including the results of numerical models, to examine the potential 
impacts and the necessary response equipment in areas dedicated to oil 
exploration, extraction or production, and transport. At a national or 
regional level, knowing the sources from which a spill can originate and 
the potential area of affection, as well as forecasting oil transport and 
fate in case of an accident is essential to improve oil spill prevention and 
response. Thus, oil spill numerical models are a key element of the risk 
assessment required in planning and preparedness, as well as for the spill 
prediction required in response operations. 

Nowadays, there are a large number of mathematical models that 
simulate the transport and fate of oil slicks (e.g. Daniel et al., 2003; 
Abascal et al., 2007; Beegle-Krause, 2001; Mínguez et al., 2012; De 
Dominicis et al., 2013a; Fernandes et al., 2013; Dagestad et al., 2018; 
Chiri et al., 2020). Oil spill models' capabilities range from the predic
tion of surface transport (winds, currents, and oil drift) to full 3-D pro
cesses that include oil fate and environmental effects (Barker et al., 
2020; Keramea et al., 2021). Most of the state-of-the-art oil spill models 

use Lagrangian formulation to compute oil transport (advection and 
dispersion) and individual formulations to compute oil weathering 
processes. The Lagrangian approach involves representing oil slicks by 
Lagrangian elements (LEs) or particles that are transported by advection 
and dispersion. The oil spill is also affected by weathering processes, 
such as spreading, evaporation, emulsification, dispersion, dissolution, 
biodegradation, photo-oxidation, and sedimentation that impact the oil 
mass balance and the oil concentrations in the marine environment. 

As a result, Lagrangian models provide the transport and dispersion 
of oil slicks over time, represented by a cloud of points or particles on a 
map. However, for response needs and other analyses, it is desirable to 
obtain the results in a Eulerian framework, i.e. the oil concentration 
(mass per unit area or volume) over the region of interest, at a scale 
appropriate to that of the incident. Oil spill concentration maps, espe
cially over a Threshold of Concern (ToC), provide important information 
for oil spill responders to assess the consequences and potential impacts 
of oil spills. The threshold for toxic effects is highly variable depending 
on the impact and consequences of the spill. For example, effects on 
socioeconomic resources may occur (e.g., fishing may be prohibited) if 
oil is visible on the water surface (≥0.1 g/m2). Effects on wildlife (birds, 
mammals, and reptiles) may occur if the density of oil on the water 
surface is ≥10 g/m2 (French-McCay, 2016; French-McCay et al., 2018; 
French-McCay et al., 2022). Modelling oil concentrations requires the 
projection of the mass transported by Lagrangian elements onto a 
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Eulerian grid (Barker et al., 2020). Although some methods have been 
developed to provide this information without dependence on grid size 
(Galt, 1994; Björnham et al., 2015), most of the methods to calculate 
gridded concentrations depend on the choice of the number of LEs (or 
particles) used and on the desired horizontal or vertical grid resolution 
(D'Amours et al., 2015; Barker et al., 2020). Thus, most oil spill nu
merical models nowadays calculate the concentration of oil from the 
number of particles within each grid cell, hereafter called the box- 
counting method (Korotenko et al., 2004; De Dominicis et al., 2013a, 
2013b; Gonçalves et al., 2016; Periáñez, 2020; Calzada et al., 2021; 
French-McCay et al., 2021; Abascal et al., 2022). 

This transformation from a Lagrangian to a Eulerian approach is 
identified as an important uncertainty source in oil spill modelling 
(Barker et al., 2020; Keramea et al., 2021). The selection of the grid size 
and the number of LEs is user-dependent and arbitrary and must be done 
with care to avoid biased results, especially in the numerical modelling 
of oil concentrations. 

Besides its relevance for the accuracy of the modelling results, the 
number of LEs has also an important influence on the computational cost 
of the Lagrangian modelling. The higher the number of particles, the 
higher the computational costs required for oil spill modelling. This cost 
can be particularly high, and even a limiting factor, in medium and long- 
term simulations and for stochastic modelling, such as that required to 
assess the risk associated with deep-sea offshore oil spills (Chiri et al., 
2019, 2020). Typically, uncertainty quantification in oil spill modelling 
is mainly focused on the impact of inputs, especially wind, waves, and 
current fields, as well as model coefficients in the trajectory and 
dispersion of the oil slick (Abascal et al., 2009a, 2009b, 2012, 2017a, 
2017b; French-McCay et al., 2021; De Dominicis et al., 2013b; Gon
çalves et al., 2016; Kampouris et al., 2021). There are a limited number 
of studies focused on the uncertainty of Lagrangian oil spill simulations 
associated with model configuration in terms of grid resolution and the 
number of LEs used to represent the oil slick, and especially, to simulate 
oil concentrations. De Dominicis et al. (2013b) analysed the sensitivity 
of oil concentration to uncertain input parameters, number of particles, 
and grid resolution. The authors compared the simulations with the area 
occupied by two slicks observed by satellite images on August 6th and 
7th, 2008. Since the analysis was focused on a specific date, metocean 
and spill conditions, the results may not be applied to other metocean 
and spill scenarios. French-McCay et al. (2021) used satellite imagery to 
estimate the amount and distribution of floating oil over time for com
parison with model's predictions carried out during the Deepwater Ho
rizon Oil Spill. Although numerical concentration distributions were 
compared to observations, their work focused on the influence of 
physical forcing data (currents and winds) on distributions of surface 
and shoreline oil. 

To further advance in the numerical modelling of oil concentrations, 
the main goal of this study was to analyze the optimal configuration of 
Lagrangian oil spill modelling in terms of grid resolution and the number 
of particles with a twofold objective: i) to provide accurate simulations 
of surface oil concentrations and ii) to optimize the computational cost. 
A dataset of 211,200 oil spill simulations carried out in the North Sea, 
under different metocean conditions (400 scenarios), oil spill volumes 
(50 m3 to 5000 m3), grid resolutions (0.005◦ to 0.1◦), and number of 
particles (100 to 500,000) were used to analyze the sensitivity of oil 
concentration over different ToC (no threshold, 0.1 g/m2, 1 g/m2) to the 
number of particles and grid resolution. Based on this analysis, this study 
provides a novel and simple method to obtain the optimal number of 
particles required for a specific grid size to simulate an oil spill volume, 
and achieve accurate oil concentration results while preserving 
computational efforts. 

2. Data and methods 

2.1. General overview 

To achieve the aforementioned objectives, the methodology applied 
for the analysis was based on: i) long-term hindcast metocean databases, 
to consider a high number of metocean conditions; ii) oil spill numerical 
modelling of a high number of scenarios defined as the combination of 
grid resolution, number of Lagrangian elements (or particles), and oil 
spill volume and iii) an analysis of the results for different ToC. Fig. 1 
shows a flow chart with the stages of the analysis. 

The analysis was carried out in the North Sea (Fig. 2), which is a very 
active sea in terms of exploration, production, and transportation of oil 
and gas. The North Sea is a shelf sea bounded by the British Isles, Nor
way, and the European Continent. It has a mean depth of 74 m, two- 
thirds having depths shallower than 100 m (ICES, 1983). Since 
approximately 1960, >7800 wells have been drilled, and 44 billion 
barrels of crude oil extracted, on the United Kingdom's Continental Shelf 
alone (UKCS) (OGA, 2018). This intense activity involves a risk in terms 
of oil spill accidents. In 2017, for example, 253 accidental oil releases 
occurred on the UK's continental shelf, with a total of 23 t of crude oil 
spilled to the marine environment (Chiri et al., 2020). This activity and 
the associated oil spill risk motivated the study site selection. 

As shown in Fig. 1, the analysis involved the following steps:  

1. Metocean data. The first step of the methodology was to select the 
metocean conditions that will represent the forcings for the oil spill 
simulations. For this purpose, long-term reanalysis databases (27 
years) of wind and surface currents are used to obtain a represen
tative set of metocean (wind and currents) patterns in the study site. 
Note that given the spatial scale of application of the model, the 
Stoke's drift was discarded with respect to the effect of winds and 
currents on the oil spill transport (Abascal et al., 2017b; Chiri et al., 
2020). Following Chiri et al. (2020), the k-means technique was 
applied to extract the k most relevant spatio-temporal patterns of 
coincident wind and surface currents during a 30-day period from 
the reanalysis dataset, each one of them with a specific probability of 
occurrence. These k metocean patterns (wind and surface currents) 
represented the forcings for the oil spill simulations.  

2. Modelling methodology. Once the metocean patterns were selected, 
a set of spill modelling scenarios based on the combination of spatial 
resolution values of the grid (i), number of Lagragian elements or 
particles (m), and oil spill volumes (n) were established. Each spill 
modelling scenario was run for the k metocean patterns for a 30 day 
period using a Lagrangian oil spill numerical model. Based on Chiri 
et al. (2020), a hypothetical spill point located at 3.55◦N, 56.187◦E 
was selected as the initial location of the spill simulations (see Fig. 2). 
As a result, a dataset of N = k x i x m x n oil spill simulations that 
provided the evolution of the surface oil concentration of the spilled 
oil was provided. In order to have a reference framework to evaluate 
the differences observed in the numerical modelling of the different 
scenarios, a high-quality and demanding configuration was estab
lished based on a high-resolution grid (0.005◦) and a high number of 
particles (500000). The use of high-resolution grids and a large 
number of particles usually provide more accurate numerical simu
lations than coarse grids and a low number of LEs (e.g. Nagheeby and 
Kolahdoozan, 2010; De Dominicis et al., 2013b). Based on this hy
pothesis, this configuration was considered the best approach from 
the numerical point of view and used as reference (benchmark) to 
compare the results of the different model configurations. The 
benchmark configuration as well as each spill scenario combination 
(defined by volume, grid resolution, and number of LEs) were 
simulated for the k metocean patterns.  

3. Results. For each spill scenario, the relative error (Er) between the 
modelled spill scenarios and the benchmark simulation (same vol
ume, 0.005◦ grid resolution, 500,000 LEs) was calculated for all the 
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metocean scenarios. This comparison was carried out without ToC 
and considering ToCs of 0.1 g/m2 and 1 gr/m2, respectively (French- 
McCay et al., 2014). As a result, a relative error for each combination 
of spill volume, grid resolution, number of particles, and ToC was 

provided and used to identify the optimal combination of grid res
olution and number of particles to simulate the surface oil 
concentration. 

2.2. Metocean data 

Surface currents were obtained from the Copernicus Marine Envi
ronment Monitoring Service (CMEMS) ocean physics reanalysis for the 
North-West European Shelf «NORTHWESTSHELF_REANALYSI
S_PHY_004_009» product (https://marine.copernicus.eu/). The product 
is provided as daily, de-tied, averages. It has a vertical coverage from 
− 5000 m to 0 m (24 z-levels). Surface currents were extracted at a 
nominal depth of 0 m. Data are available with a horizontal resolution of 
0.111◦ x 0.067◦, a daily mean temporal resolution, and a temporal 
coverage ranging from 1992 to 2018. 

Wind data at a height of ten meters above ground level were obtained 
from the ERA 5 dataset (Hersbach et al., 2020), available at the 
Copernicus Climate Change Service (C3S) Climate Data Store. ERA5 is 
the fifth-generation European Centre for Medium-Range Weather 
Forecasts (ECMWF) global weather and climate reanalysis and replaces 
ERA-Interim reanalysis (Dee et al., 2011). It provides a wide range of 
atmospheric, land-surface, and sea-state parameters. Data are available 
with a horizontal spatial resolution of 0.25◦ x 0.25◦, an hourly temporal 
resolution, and a temporal coverage spanning from 1979 to date. 

All datasets were extracted for the same domain (shown in Fig. 2) 
and temporal coverage, spanning from 1992 to 2018 (27 years). 24-hour 
averages of wind data were calculated to have the same temporal res
olution as the current data. 

2.3. Spatio-temporal wind and current patterns selection 

The met-ocean variability of a specific study area based on historical 
reanalysis databases is usually obtained using the Monte Carlo method 
(Abascal et al., 2010; Liubartseva et al., 2015) or by extracting metocean 
fields from the databases every specific time (Canu et al., 2015; 
Androulidakis et al., 2020). These methods are based on the selection of 
a high number of metocean scenarios and, consequently on a high 
number of oil spill simulations, which increases with the temporal 
length of the historical database. As an example, Canu et al. (2015) 
calculated hazard maps for the island of Sicily (Italy) by performing an 
ensemble of 730 oil spill simulations, each driven by a slightly different 
(1-day shifted) circulation field extracted from a 2-year period met- 
ocean database. 

Given the high temporal coverage (27 years) of the historical 

Fig. 1. Flow chart of the methodology applied for the analysis.  

Fig. 2. Map of the study area showing the location of offshore platforms in the 
area (orange circles) (Source: https://odims.ospar.org/en/maps/map-inven 
tory-of-offshore-installations-2017/). The red circle represents the spill loca
tion considered in this study. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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databases used in this work, the application of this approach would 
involve a large number of oil spill simulations. To optimize the number 
of simulations, the selection of the most relevant environmental condi
tions at the study site has been carried out following the methodology 
developed by Chiri et al., 2020. This methodology, based on the appli
cation of data mining techniques, allows considering and managing very 
extensive historical met-ocean databases and optimizes the computa
tional efforts of the oil spill modelling by only considering those specific 
met-ocean scenarios characteristic of the study domain. 

Therefore, a set of patterns of simultaneous evolution of wind and 
surface currents representative of the 27-year dataset were selected 
following the methodology developed by Chiri et al. (2020). Based on 
this work, the k-means algorithm was applied to select spatio-temporal 
patterns of coincident wind and surface currents during a 30-day period, 
which is the simulation period of the oil spill model. As a first step, a 
single matrix (M0) merging the reanalysis data was created (see 
Table 1). Thus, if nw and nc are the number of elements of the wind and 
surface current arrays-matrices (daily data), respectively, and T is the 
number of time steps of reanalysis data, the raw data matrix M0 will 
have dimensions (T× (2nw + 2nc)). The u and v components of the wind 
are expressed as uw,i

t , vw,i
t, where i = 1,…, nw and t = 1, …, T, while 

those of the current are expressed as uc,j
t, vc,j

t, where j = 1, …, nc. As 
result, M0, is a 9860 × 77,544 matrix, where the number of rows equals 
the number of time steps (number of days in the 27-year data period 
considered) and the number of columns equals the number of elements 
of the wind and surface current array-matrices (8480 wind array ele
ments +69,064 surface current array elements). 

The Principal Component Analysis (PCA) technique was used to 
reduce the dimension of M0 while minimizing the loss of information. As 
shown by Chiri et al. (2020), the application of PCA facilitates subse
quent steps of the analysis and improves the performance of the k-means 
algorithm. PCA projects the raw data onto a series of Principal Com
ponents (PCs). Each PC is a unit vector whose direction maximizes the 
variance of the projected data. The direction of the i-th PC is orthogonal 
to that of the i-1. The PCA is sensitive to the variance of the raw data. 
Therefore, each column of M0 must be standardized before applying the 
PCA. The z-score was used for its standardization so that each column in 
the data matrix had a mean equal to 0 and a standard deviation of 1. As a 
result of applying PCA to matrix M0, if N is the number of PCs obtained 
to explain a percentage of the original data variance, then M0 is reduced 
to a new matrix M1 of dimensions (T × N) (Table 2). Therefore, the raw 
data matrix was reduced to 9859 PCs. Based on previous studies 
(Antolínez et al., 2016; Camus et al., 2016; Chiri et al., 2019, 2020), the 
PCs that explained 95 % of the variance of the original data were 
considered. The dimensionality of the raw data matrix was reduced to 
676 PCs. M0 was reduced to a new matrix M1 of dimensions 9860 × 676. 

As previously mentioned, the simulation period was 30 days. Before 
applying the k-means algorithm, the sliding window method with a 
window duration of 30 days was applied to M1. To do so, if the temporal 
evolution of the spatio-temporal patterns that want to be obtained cor
responds to D (30 days) time steps, then a new matrix M2 must be 
created by rearranging M1 to the dimensions (T − D) × (N × D)
(Table 3). Consequently, the data (M1) was reorganized into a new 
matrix, M2, 9831 × 20,280 in size, which was the input matrix for the 
cluster analysis. The clusters that resulted from applying the k-means 
algorithm to M2 represented the most relevant spatio-temporal patterns, 
with 30 days of temporal coverage, from the available dataset. 

The k-means algorithm clustering technique divides the high 
dimensional data space into k clusters or patterns, each defined by a 
centroid and containing the data for which the centroid is the nearest 
(Camus et al., 2011). To select the optimal number of patterns (k), a 
comparison was made between the synthetic data series created from 
the k clusters and the original series, for an increasing number of values 
of k. The agreement between both series was calculated based on the d- 
index (d) proposed by Willmott (1981), which is defined as: 

d = 1 −
∑k

i=1|Pi − Oi|
2

∑k
i=1(|Pi − Oi| + |Oi − Oi| )

2 (1)  

where O is the original time series, and P is the synthetic data series. 
d varies between 0 and 1 where a computed value of 1 indicates a perfect 
agreement between the observed and predicted observations, and 
0 connotes one of a variety of complete disagreements. 

In order to optimize the number of oil spill numerical simulations to 
be computed, which is highly dependent on the number of metocean 
patterns, an optimal balance between the number of patterns and the d- 
index value has to be considered. Fig. 3 shows the evolution of the d- 
index for a number of patterns ranging from 0 to 5000. As observed in 
this figure, the index of agreement has a value near 0.65 for 400 pat
terns, indicating the good performance of the clustering technique 
(Willmott et al., 1985). There is no significant improvement from this 
point onwards, indicating that the benefit of using a higher number of 
patterns may not be significant. Based on this analysis, the k-means al
gorithm was applied to M2 to obtain the k (400) metocean spatio- 
temporal patterns from the reanalysis dataset. 

It is worth noting that the obtained patterns are expressed in terms of 
the standardized PCs from matrix M2. Thus, these patterns need to be 
reconstructed as per the original space and by destandardizing the re
sults. By doing so the obtained pattern can be reconstructed in the 
original space of matrix M0. The original data series can be recon
structed in accordance with the obtained patterns by considering, in 
each case, the closest pattern or best matching unit (BMU). Then, a 
probability of occurrence Pi can be calculated for each of the k patterns 
obtained. More details regarding the methodology can be found in Chiri 
et al. (2020). 

As an example, Fig. 4 shows one of the patterns obtained. Each panel 
corresponds to one day, showing surface currents (black arrows) and 
wind (red arrows). 

2.4. Oil spill model setup 

The spatio-temporal patterns of wind and surface currents obtained 
in the previous section were used to run a state of-the-art Lagrangian oil 
spill model to simulate the evolution of the oil spill under different 
metocean conditions and to analyze the effect of grid resolution and the 
number of particles in the accuracy of the model's results, in terms of oil 
concentration. 

Table 1 
Raw data matrix of concurrent winds and currents (for pattern selection).  

10 m u-components of wind 10 m v-components of wind u-components of current v-components of current 

uw,1
1 uw,2

1 ⋯ uw,nw
1 vw,1

1 vw,2
1 ⋯ vw,nw

1 uc,1
1 uc,2

1 ⋯ uc,nc
1 vc,1

1 vc,2
1 ⋯ vc,nc

1 

uw,1
2 uw,2

2 ⋯ uw,nw
2 vw,1

2 vw,2
2 ⋯ vw,nw

2 uc,1
2 uc,2

2 ⋯ uc,nc
2 vc,1

2 vc,2
2 ⋯ vc,nc

2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
uw,1

T uw,2
T ⋯ uw,nw

T vw,1
T vw,2

T ⋯ vw,nw
T uc,1

T uc,2
T ⋯ uc,nc

T vc,1
T vc,2

T ⋯ vc,nc
T  

Table 2 
Matrix M1 obtained as a result of applying PCA to M0.  

PC1
1 PC1

2 … PC1
N 

PC2
1 PC2

2 … PC2
N 

⋮ ⋮ ⋮ ⋮ 
PCT

1 PCT
2 … PCT

N  
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To do so, a set of spill scenarios defined by volume, grid resolution, 
and number of LEs was proposed, as shown in Table 4. The simulations 
were carried out considering a hypothetical spill located at coordinates 
3.55◦E, 56.187◦N (see Fig. 2). A Brent product with a density of 832.8 
kgm− 3 and a kinematic viscosity of 3.72 cSt, was selected as represen
tative of the type of oil that can be found in the North Sea. Therefore, the 
oil spill was simulated for the 400 spatio-temporal patterns of coincident 
wind and current data, and each of the input parameter combinations 
(Table 4). As result, 211,200 model runs were performed, which con
formed the dataset used for the statistical analyses. 

The simulations were performed with the oil spill numerical model 
TESEO (Abascal et al., 2007; Chiri et al., 2020). TESEO is a three- 
dimensional Lagrangian oil spill model to simulate the transport and 
weathering of oil spills as well as the drift of floating objects in marine 
environments. The model computes oil slick transport, diffusion, 
entrainment into the water column, beaching, and the weathering pro
cesses of evaporation, emulsification, and sedimentation. TESEO has 
been used during major real oil spill incidents, such as the Prestige 
(Spanish coast, 2002) and the Grande America oil spills (Bay of Biscay, 
2019) and is currently implemented in operational oil risk management 
systems for oil and gas companies. The model has been validated with 
drifting buoys at regional and local scales (Abascal et al., 2007; Sotillo 
et al., 2008; Abascal et al., 2009a, 2009b, 2012, 2017a), and, in 
particular, in the North-West European Continental Shelf (Cárdenas 
et al., 2015; Abascal et al., 2017b). 

The oil spill motion was computed by means of the transport induced 
by surface currents, winds, and turbulent diffusion. Given the regional 
scale of this study, the wave-induced Stokes drift was considered 
negligible. A wind drag coefficient (CD) of 3 % and a diffusion coefficient 
(D) of 50 m2s− 1 were set according to the state-of-the-art (ASCE, 1996). 

The surface oil concentration (in water) can be expressed as: 

CS(k, t) =
ρ

ΔxΔy
∑

nk
v(nk, t) (2)  

where CS is the surface concentration (kgm− 2) in the k-element of the 
grid, t is the time, nk is the number of particles in the k-element of the 
grid, v(nk, t) are the oil particle volumes (m3) in the k-element of the 
grid, and Δx, Δy are the grid resolutions in the x- and y- axes, 
respectively. 

To ensure model stability, the time step Δt was assumed to vary with 

the horizontal resolution of the model grid so that an element did not 
travel more than one cell at each time step. Thus, Δt varied between 300 
(finer grid) and 900(coarser grid) seconds (s). These parameters were 
kept constant and each trajectory was initialized as a single, instanta
neous release of N elements (according to Table 4) and run for 30 days. 
Finally, the surface oil concentration in the water was stored hourly. 

2.5. Sensitivity analysis of the model configuration 

Based on the results of the 211,200 oil spill modelling runs, the in
fluence of the grid's resolution and the number of particles in the 
modelling of oil surface concentration was analysed considering as 
thresholds of concern: 0 (no ToC), 0.1, and 1 g/m2. 

Note that in the calculation of surface concentrations by the box- 
counting method, there is a minimum number of particles required to 
represent values below a given ToC. Once the threshold to be used in the 
analysis has been decided, the minimum number of particles can be 
obtained as: 

Nmin =
VS(t0)

CS
maxΔxΔy

ρ (3)  

where Nmin is the minimum number of particles required, Vs is the initial 
oil volume released, and Cmax

s is the surface concentration corresponding 
to the ToC. If this minimum number is not met, all concentrations 
calculated would be above the ToC. 

In order to conduct the analysis, it would be desirable to compare the 
results of the numerical modelling with real measurements or observa
tions of surface oil concentration to analyze the best model configura
tion. However, given the lack of measurements for these comparisons, a 
high-quality and demanding simulation was performed based on a high- 
resolution grid (0.005◦) and a high number of particles (500000). Pre
vious tests for an oil spill of 5000 m3, specific metocean scenarios, and 
different ToC (0.1, 1, 10, and 100 g/m2) were carried out to analyze the 
convergence of the model solution (Martínez et al., 2021). This analysis 
shows that the differences in the numerical solutions for the lower and 
more restrictive ToC tend to be reduced for a high number of particles 
(>50,000) and high-resolution grids (>0.02◦). Based on this analysis, 
the characteristics of the benchmark simulation were selected to guar
antee the convergence of the simulation results. This simulation, 
considered to be optimal from the numerical point of view, was used as 

Table 3 
Matrix M2 obtained by reshaping M0 to consider the temporal evolution of the PCs.  

PC1
1 PC2

1 … PCD
1 PC1

2 PC2
2 … PCD

2 … PC1
N PC2

N … PCD
N 

PC2
1 PC3

1 … PCD+1
1 PC2

2 PC3
2 … PCD+1

2 … PC2
N PC3

N … PCD+1
N 

PC3
1 PC4

1 … PCD+2
1 PC3

2 PC4
2 … PCD+2

2 … PC3
N PC4

N … PCD+2
N 

… … … … … … … … … … … … … 
PCT− D+1

1 PCT− D+2
1 … PCT

1 PCT− D+1
2 PCT− D+2

2 … PCT
2 … PCT− D+1

N PCT− D+2
N … PCT

N  

Fig. 3. Evolution of Willmott's index of agreement d with the number of patterns considered.  
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reference (benchmark simulation) to compare the results of the different 
model configurations. 

To illustrate it, Fig. 5 presents a comparison between the surface oil 
concentration maps obtained for the different configurations of the 
model and the benchmark simulation for an oil spill of 5000 m3, carried 
out for one of the metocean patterns. The results correspond to a 
snapshot after 360 h of spill drift. As can be observed, a higher hori
zontal spatial resolution of the grid combined with a high number of 
particles results in a more reliable representation of the surface con
centration of the pollutant in terms of continuity and smoothness of the 
oil slick. Therefore, the optimal result is considered to be achieved for 
the highest possible horizontal spatial resolution and number of LEs, in 
our case, a horizontal resolution of 0.005◦ and 500,000 LEs (upper left 
corner in Fig. 5). 

For each spill scenario (defined by volume, grid resolution, and 

Fig. 4. Daily representation of one of the 400 spatio-temporal 30-day wind and surface current evolution patterns in the North Sea (for the purpose of clarity only the 
first 15 days are represented). Each snapshot corresponds to one day. Black arrows with background color maps (units in m/s) represent surface currents, red arrows 
refer to wind. Distances among vectors do not represent the actual resolution of the data: for clarity's sake only data of one in every five grid points, for both wind and 
surface currents, are represented. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Summary of model input parameters used for the definition of the oil spill 
scenarios.  

Pollutant volume 
(m3) 

Grid resolution 
(◦) 

Number of LEs 
(− )  

50  0.005  100  
100  0.010  500  
500  0.020  1000  
1000  0.030  5000  
2500  0.040  10,000  
5000  0.050  50,000   

0.060  100,000   
0.070  500,000   
0.080    
0.090    
0.100   
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number of LEs), the relative error (Er) between the modelled scenario 
and the benchmark simulation (same volume, 0.005◦ grid resolution, 
500,000 LEs) was calculated based on the following procedure:  

1) Estimation of the relative error for a snapshot (Es): for each time step, 
the relative surface concentration error for each grid cell (Eg) was 
calculated as follows: 

Eg =
|Cesc − Cbm|

Cbm
(4)  

where Cesc is the oil surface concentration for the analysed scenario, Cbm 
is the oil surface concentration for the benchmark simulation, g = 1, …, 
Ng, and Ng is the number of grid nodes of the benchmark simulation grid. 
Note that for the comparison of the results, Cesc is interpolated to the 

Fig. 5. Example of oil concentration obtained for different combinations of grid resolutions and number of particles. The result for the benchmark configuration is 
shown on the upper left corner. 
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benchmark simulation grid and only the grids with concentrations 
values are considered in the analysis. The result of this calculation was a 
grid of relative errors, with a dimension corresponding to that of the 
finest grid. The median of the values of the grid was calculated as a 
representative error of the map, i.e. Es = median (Eg).  

2) Estimation of the relative error for a 30-days simulation (Et): the 
same procedure was repeated over the entire simulated period (T =
30 days), with a daily frequency. For each metocean pattern, this 
analysis resulted in a time series representing the temporal evolution 
of the relative error for the 30-day simulation period, Esi, where i:1, 
…T. As in the previous step, the median value was obtained as a 
representative value of the error in the temporal series: 

Et = median(Esi) (5)    

3) Estimation of the relative error for all metocean patterns (Er): finally, 
the same procedure was repeated for each pattern of metocean 
conditions (k = 400). A series of 400 relative error data was thus 
obtained, each associated with the probability of occurrence of its 
forcing pattern (Pi): 

Er =
∑k

i=1
EtPi (6) 

Note that to carry out this analysis, the relative error associated with 
the 211,200 model runs (minus those excluded by the minimum number 
of particles) was obtained. The final result is a global relative error value 
(Er) associated with each spill scenario of model input parameters 
(defined by volume, grid resolution, and number of LEs). These results 
provide a general approximation to the uncertainty expected in the 
modelling when these combinations of input parameters are used. 

3. Results 

This section presents the results of the comparison between the spill 
scenarios and the benchmark simulation. Section 3.1 describes the re
sults obtained without considering a surface concentration threshold 
and Section 3.2 describes the result of the analysis for thresholds of 0.1 
and 1 g/m2, respectively. 

3.1. Sensitivity analysis without ToC 

Fig. 6 presents the relative error obtained for the different combi
nations of the number of particles (x-axis), grid resolution (y-axis) and 
volumes of 50 m3 (left panel) and 5000 m3 (right panel). Note that 50 m3 

and 5000 m3 are the minimum and the maximum oil released volumes 
analysed. Note that when no threshold was considered in the analysis 
the relative error was similar for both volumes. Similar results (not 
shown) were obtained for the rest of the oil volumes considered, 
showing that the relative error was similar despite the initial volume of 
oil released. 

Regarding the number of particles, high errors were observed when 
the number of particles used was low (≤ 500). In these cases, the relative 
error was ≥90 % regardless of the grid resolution adopted. Note that the 
simulation carried out with 1000 particles, a common practice in state- 
of-the-art Lagrangian trajectory modelling, leads to high relative errors 
(≥ 75 %), suggesting that 1000 particles are not enough to accurately 
simulate oil spill concentrations. Fig. 6 shows that for any given grid 
resolution there is an optimal number of particles for which the relative 
error is minimum. The relative error decreases as the number of particles 
increases until this optimum is reached. Once this optimum has been 
exceeded, the error increases with the number of particles. This is 
explained by the combination of the small values of Cbm near the edges, 
as previously mentioned, and the additional area caused by the coarser 
grid. Note that the uncertainty in Lagrangian oil particle modelling is 
higher in the area where the particles become sparse (Björnham et al., 
2015; Chen, 2022), which is more evident near the edges of the main 
contaminated area. Thus, the relative error may provide large values if 
no ToC is used to exclude the edge area where Cbm is very low and great 
uncertainty exists in the modelled particle distribution. In these cases, 
increasing the number of particles contributes to an increase in the 
relative error. 

Regarding grid resolution, in general, a finer grid promotes smaller 
errors but requires a larger number of particles to achieve it. Thus, for a 
grid resolution of 0.01◦, the minimum relative error is 29.21 %. How
ever, 100,000 particles are necessary to reach this value. It is worth 
mentioning again that to increase the number of particles, for a 0.01◦

grid resolution, or to use a finer grid with the same number of particles, 
does not improve the accuracy in the simulation, but does increase the 
computational cost. 

This analysis shows: i) the relevance of the selection of the appro
priate combination of particles and grid resolution, both to obtain an 
accurate simulation as well as to optimize the computational effort, and, 
ii) increasing the number of particles does not necessarily improve the 
simulation when no ToC is considered. 

3.2. Sensitivity analysis with ToC 

Fig. 7 and Fig. 8 present the relative error obtained in the numerical 
modelling of surface oil concentration for different oil spill volumes and 
considering two thresholds, 0.1 and 1 g/m2, respectively. Regarding the 
number of particles, on the one hand, Lagrangian modelling becomes 
more demanding to simulate concentrations exceeding the ToC. There is 
a minimum number of particles (Nmin) required to represent the surface 
concentration below a given ToC (see Eq. (3)). This number depends on 
the ToC being analysed, the volume of product spilled, and the resolu
tion of the selected grid. Thus, in Figs. 7 and 8, cells with no data (NaN) 
represent a combination of these parameters in which the number of 
particles is lower than the minimum required. On the other hand, and as 
observed without ToC, although high errors were obtained when the 
number of particles used was low, for any given resolution of the grid, 
the relative error decreased down to an optimum number of particles 

Fig. 6. Relative error in the numerical modelling of surface concentrations, depending on the horizontal resolution of the tracer grid and the number of LEs. Results 
for a spill volume of 50 m3 (left panel) and 5000 m3 (right panel) are displayed. 
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from which its value stabilized or its decrease was negligible. For 
instance, in Fig. 7, for a volume of 1000 m3 and a grid size of 0.05◦, the 
relative error stabilized as of 5000 particles. Using a higher than the 
optimal number of particles increases the computational cost but does 
not improve the representation of the surface oil concentration. 

Regarding grid resolution, a finer grid allows obtaining smaller er
rors but a larger number of particles is needed. If the number of particles 
is not appropriate for a specific grid resolution, it may occur that with 
the same number of particles a smaller error is obtained for a coarser 
grid. For instance, in Fig. 8, for a volume of 1000 m3 and 50,000 

particles, a larger error was obtained with a 0.005◦ grid (30.21 %) than 
with a 0.02◦ grid (15.53 %). This analysis shows that a high-resolution 
grid requires a high number of particles to obtain accurate simulations 
and highlights the relevance of selecting an appropriate number of 
particles for a specific grid size. 

These findings were consistent for the two ToC analysed (0.1 and 1 
g/m2). However, the comparison of Fig. 7 (0.01 g/m2) and Fig. 8 (1 g/ 
m2) shows that the relative error for the same configuration (volume, 
grid resolution, number of LEs) increases for lower ToCs, and when the 
initial oil volume released increases. 

Fig. 7. Relative error in the numerical modelling of surface concentrations, depending on the horizontal resolution of the tracer grid, the number of LEs and the 
volume of oil spilled considering a ToC of 0.1 g/m2. 

Fig. 8. Relative error in the numerical modelling of surface concentrations, depending on the horizontal resolution of the tracer grid, the number of LEs and the 
volume of oil spilled considering a ToC of 1 g/m2. 
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3.3. Method for the selection of model parameters 

These results show that there is no specific number of particles that 
should be used for oil spill modelling. It depends on the initially released 
volume, the grid size and the ToC. Therefore, the optimal combination of 
grid size and number of particles should be defined according to the 
characteristics of the simulation. Based on the analysis carried out here, 
a simple and novel method is proposed for the selection of these 
parameters:  

i) Step 1: Setting the oil spill volume;  
ii) Step 2: Setting the ToC;  

iii) Step 3: Setting the grid size;  
iv) Step 4: Once the oil volume, ToC, and grid size are established, 

the number of particles that minimize the errors in the simula
tions is selected based on the Tables provided in Fig. 7 and Fig. 8.  

v) Step 5: If computational limitations impede the use of the number 
of particles identified in Step 4, the user can select the appro
priate combination of both parameters (based on the 
Tables provided in Fig. 7 and Fig. 8) to obtain the highest possible 
accuracy according to the computational effort that can be un
dertaken in the simulation. 

4. Discussion 

The results of this study provide new information to understand the 
uncertainty in Lagrangian modelling of oil concentrations at sea and a 
novel method to help modellers in the selection of the number of par
ticles and grid resolution required for oil spill modelling. These pa
rameters, required in order to represent the surface concentration in a 
Eulerian context, are user dependent and therefore introduce a source of 
uncertainty in the model's output. 

Previous studies analyzing the uncertainty of Lagrangian oil spill 
simulations associated with the model's configuration, in terms of grid 
resolution and the number of LEs used to represent the oil slick, were 
limited and focused on specific dates, and metocean and oil spill sce
narios. The analysis presented in this work is based on a comprehensive 
dataset of metocean conditions and numerical model's configuration, 
which leads to a total of 211,000 simulations that will allow establishing 
a reference framework for future simulations. 

This section presents a discussion of the main results of the study as 
well as the limitations and future research required to complement the 
conducted analyses. 

4.1. Numerical modelling of oil spill scenarios 

The analysis of the 211,200 oil spill simulations shows the relevance 
of the selection of the appropriate number of particles for a specific grid 
size to optimize the accuracy of the numerical modelling as well as to 
optimize the computational cost of the simulation. 

Leaving aside all the parameters that influence the numerical 
modelling of the surface oil concentration, the box-counting method 
performs poorly when only a few particles are used, regardless of the 
horizontal resolution of the grid chosen by the user, the volume of oil 
spilled, or the threshold of concern. Relative errors higher than 75 % 
were observed when no ToC was considered and the number of particles 
was ≤1000. Note that Lagrangian simulations of oil spills (Barker and 
Galt, 2000; Abascal et al., 2010; Keramea et al., 2022) or even of marine 
litter (Núñez et al., 2019; Ruiz et al., 2022a, 2022b) usually involve 
1000 particles or even a lower number for longer (weeks to months) or 
continuous release simulations (Drouin et al., 2019; Androulidakis et al., 
2020). Although previous studies (e.g. Barker and Galt, 2000; Abascal 
et al., 2010) have shown that 1000 particles are suitable to represent the 
oil slick in terms of the number of particles (or probability) that may 
impact a particular site, when the comparison is in terms of oil con
centration the number of particles required is higher. Nagheeby and 

Kolahdoozan (2010) compared the concentrations provided by an oil 
spill model with analytical solutions using 10,000 and 100,000 particles, 
obtaining that accuracy increased with particle number. De Dominicis 
et al. (2013b) validated the results of an oil spill model with two satellite 
images, one for August 6th 2008 and the other observed 25 h later. They 
conducted a sensitivity experiment on particle number (1000, 90,000, 
300,000) and grid resolution (50 m, 150 m, and 1000 m). The authors 
found that an oil tracer grid of about 100 m and a number of particles 
around 100,000 gave the best results in terms of smoothness and con
sistency of the simulation with the area of a satellite-detected oil slick. 

Our findings agree with these studies and show that for the same 
initial oil volume and grid resolution, the accuracy increases with the 
number of LEs. However, our work also shows that this improvement is 
only up to a point beyond which the increase in accuracy remains 
constant, is negligible for concentrations above a specific threshold, or 
even increases when ToC is not considered in the analysis. Note that the 
relative error is large near the edges where Cbm could be very small, 
especially in the cases without ToC. These high Er values near the edges, 
where the particles become sparse, contribute to the increase of the error 
with the number of particles after exceeding the optimal value. This 
result shows the relevance of using a ToC when modelling oil concen
trations, to avoid the uncertainty caused by the scarcity of particles near 
the edges. 

Moreover, from this point on, the use of more LEs leads to a greater 
computational cost, with no measurable improvement in the represen
tation of the oil concentrations. The optimal number of LEs to achieve 
this maximum improvement will depend on the initial volume of oil 
released, the grid resolution, and the threshold of concern (see Figs. 6, 7, 
and 8). Our findings also show that when no ToC is considered, isolated 
particles can generate grid concentration values that are not realistic, 
even leading to an increase in simulation errors as the number of par
ticles increases. This result suggests that to model oil concentrations, it is 
advisable to establish a ToC, otherwise increasing the number of parti
cles does not necessarily improve the simulation. 

Regarding the grid size, increasing the resolution generally offers a 
more accurate representation of the surface oil concentration. However, 
a finer grid does not necessarily translate into better results. When using 
a high-resolution grid, a large number of particles is required to avoid 
discontinuities in surface oil concentration values and in consequence, 
to provide an accurate simulation. If the number of LEs is not appro
priate for a certain grid size, more accurate results can be achieved by 
using a coarser grid. This result is also in agreement with De Dominicis 
et al. (2013b), who found that the best model configuration was not 
associated with the maximum number of particles or the highest grid 
resolution, but was obtained by the right combination of both 
parameters. 

Note that the computational cost of Lagrangian modelling increases 
with the number of LEs and grid resolution, and for very demanding 
simulations, a high number of LEs or even a finer grid size may not be 
computationally affordable. Thus, the results presented in Figs. 6, 7, and 
8, allow the selection of the appropriate combination of grid resolution 
and number of particles for oil spill Lagrangian modelling by finding a 
balance between the accuracy required and the computational cost of 
the simulation. 

4.2. Statistical analysis limitations 

The numerical modelling of oil concentrations at sea is a highly 
complex process that depends on a wide variety of factors, from the 
properties of the oil to the formulations implemented in the numerical 
model. The validation of the results and more specifically, of the con
centration outputs is also a complicated task, mainly due to the lack of 
measurements or observations available. This section analyses how 
these aspects influenced the analyses conducted in this study. 
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4.2.1. Model inputs 
The oil spilled into the sea is transported by a combination of winds, 

currents, and waves and is affected by several physicochemical pro
cesses that depend on the oil's properties and environmental conditions. 
Thus, oil surface concentrations will depend on the metocean condi
tions, the type of product, and other model parameters, such as the wind 
drag coefficient CD and the diffusion coefficient (D), not considered in 
this analysis. 

Regarding metocean conditions, they are site-dependent. However, 
the use of long-term databases and the 400 30-day metocean patterns 
used as forcings, ensured that the modelling was carried out taking into 
account a wide range of metocean conditions (wind and current speed 
and directions), providing robustness to the analyses and allowing to 
establish a reference framework for other simulations. 

Besides metocean conditions, oil concentrations depend to a large 
extent on the type of oil. An oil with a large percentage of light and 
volatile compounds will evaporate more readily than one with a larger 
amount of heavier compounds. Accordingly, light products will evapo
rate quicker than heavy oils, reducing the amount of oil at sea, and 
consequently, the oil surface concentration. Model parameters such as 
CD or D also affect the transport and dispersion of the slick, and in 
consequence, the oil concentration. Note that to replicate the number of 
scenarios for the N type of oils and M combinations of other model pa
rameters considering these issues in this study would have dramatically 
increased the number of simulations (N x M x 211,200), which was not 
feasible from the computational point of view. Therefore, further 
research is required to extend this analysis to other types or products (e. 
g. heavily or lightly refined products), and to analyze the sensitivity of 
the results to the model parameters. Nevertheless, the optimal combi
nation of grid resolution and LEs provided in this study can be used as an 
approximation if more detailed information is not available. 

4.2.2. Uncertainty estimation 
As previously mentioned, the modelling scenarios have been 

compared with a high-quality simulation considered the benchmark 
simulation. This numerical comparison does not replace the validation 
of numerical models with oil observations and further research is 
required to compare the numerical results with measurements or ob
servations, such as aerial images, remote sensing data, and field mea
surements. However, given the lack of observations and measurements 
of surface oil concentrations at sea, obtaining actual data for the 400 30- 
day metocean patterns analysed was not feasible. For this reason, this 
analysis was carried out using a numerical approach. 

Note also that the relative error (Er) associated with the various 
model runs represents a global value that integrates the spatial and 
temporal differences obtained in the simulation. For example, the grid 
resolution and number of particles may also depend on the sparsity of 
particles which usually increases with modelling time. Thus, some dif
ferences could be found in the optimal combination of grid resolution 
and LEs for specific periods or metocean patterns. However, the use of an 
aggregated index allowed us to obtain the combination of grid resolu
tion and number of LEs to optimize the oil spill model performance as a 
whole. 

5. Conclusions 

This study presents a novel method to select the optimal combination 
of grid resolution and number of LEs required in numerical modelling of 
oil concentrations at sea, based on a dataset of 211,200 oil spill 
simulations. 

The results of the present study show that to model oil concentra
tions, it is advisable to establish a ToC, otherwise increasing the number 
of particles does not necessarily improve the accuracy of the numerical 
results. 

The use of few Lagrangian elements leads to noisy results, with high 
discontinuities in the representation of the oil concentration. In general, 

the use of a larger number of LEs results in a better representation of the 
concentration, but only up to a certain point, beyond which the 
improvement is reduced until it becomes negligible. 

A finer grid generally offers a more accurate representation of the 
surface concentration. However, a large number of particles is necessary 
to represent surface concentration in these cases, especially below a 
given ToC, which translates into higher computational costs. If the 
number of particles is not appropriate for the grid resolution, a better 
representation of the surface concentration is obtained with a coarse 
grid than with a fine grid. 

Based on these analyses, a novel and simple method for the selection 
of the optimal configuration of the grid and number of particles for 
Lagrangian modelling of oil surface concentrations is proposed in Sec
tion 3.3. For any specific oil spill simulation, this method will allow the 
user to: 1) be aware of the relative error incurred in the representation of 
the surface concentration from the number of particles and the grid 
resolution used in the Lagrangian modelling and, therefore, 2) select the 
optimal combination of these parameters so that the smallest possible 
error is made, depending on the computational cost that can be assumed. 
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