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Abstract
The concept of depth has proved very important formultivariate and functional data analysis, as it essentially acts as a surrogate
for the notion of ranking of observations which is absent in more than one dimension. Motivated by the rapid development
of technology, in particular the advent of ‘Big Data’, we extend here that concept to general metric spaces, propose a natural
depth measure and explore its properties as a statistical depth function. Working in a general metric space allows the depth to
be tailored to the data at hand and to the ultimate goal of the analysis, a very desirable property given the polymorphic nature
of modern data sets. This flexibility is thoroughly illustrated by several real data analyses.

Keywords Statistical depth · Metric space · Functional Data Analysis · Lens depth · Symbolic data analysis

1 Introduction

Huge parts of statistical theory, especially its nonparamet-
ric side, heavily rely on the notion of ranks, see for instance
Gibbons andChakraborti (2010).However, ranks are notwell
defined in a multivariate framework as there exists no natu-
ral ordering in more than one dimension. This fact motivated
Tukey (1975) to introduce the notion of statistical depth as
a surrogate for ‘multivariate ranks’. Concretely, a depth is a
measure of how central (or how outlying) a given point is
with respect to a multivariate probability distribution. Zuo
and Serfling (2000), following some earlier considerations
in Liu (1990), formulated the properties that a valid depth
measure should satisfy. Since then, depth-based procedures
have proved very important tools for robust multivariate sta-
tistical analyses, e.g. see Liu et al. (1999), Li and Liu (2004,
2008) or Zuo (2021). Serfling (2006) andMosler (2013) offer
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excellent short reviews of the ideas surrounding the concept
of depth, while Hallin et al. (2021) recently shed new light
on the problem of ‘multivariate ranks’.

The early 21st century has also seen such technological
progress in recording devices and memory capacity, that any
spatio-temporal phenomenon can now be recorded essen-
tially in continuous time or space, giving rise to ‘functional’
random objects. As a result, a solid theory for Functional
Data Analysis (FDA) has been developed as well, allow-
ing the extension of most of the classical problems of
statistical inference from the multivariate context to the
inherently infinite-dimensional functional case. In particular,
functional versions of statistical depth have been investigated
(Fraiman andMuniz 2001;Cuevas et al. 2007;López-Pintado
and Romo 2009; Dutta et al. 2011; López-Pintado and
Romo 2011; Sguera et al. 2014; Chakraborty and Chaud-
huri 2014; Hlubinka et al. 2015; Nieto-Reyes and Battey
2021; Nieto-Reyes et al. 2021). It is worth noting that an
infinite-dimensional environment implies specific theoretical
and practical challenges, making the extension from ‘multi-
variate’ to ‘functional’ a non-trivial one (Nieto-Reyes and
Battey 2016).

In this paper, we carry on with this gradual extension pro-
cess by defining the statistical depth for complex random
objects living in abstract metric spaces. Again, this exten-
sion is motivated by the rapid development of technology.
Indeed, this is the ‘Big Data’ era, in which digital data is
recorded everywhere, all the time. The information that this
huge amount of data contain may enable next-generation
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scientific breakthroughs, drive business forward or hold gov-
ernments accountable. However, this is conditional on the
existence of a statistical toolbox suitable for such Big Data,
the profusion and nature of which inducing commensurate
challenges. Indeed those data consist of objects as various as
high-dimensional/infinite-dimensional vectors, matrices or
functions representing images, shapes, movies, texts, hand-
writing or speech (to cite a few); and live streaming series
thereof—this is often summarised as ‘3V’ (Volume, Variety
and Velocity).

Mainstream statistical techniques often fall short for
analysing such complexmathematical objects.Yet, it remains
true that any statistical analysis requires a sense of how close
two instances of the object of interest are to one another.
It is then only natural to assume that they live in a space
where distances can be defined—that is, in a certain met-
ric space (Snášel et al. 2017). This motivates the need for
a statistical depth defined in an abstract metric space, as
recently acknowledged by Dai and Lopez-Pintado (2022),
who extended Tukey’s halfspace depth to such general set-
ting. Our proposal of a ‘metric depth’ continues that line of
research.

The idea that the concept of multivariate statistical depth
could be extended to general non-Euclidean settings can
be traced back to Carrizosa (1996, section 3.1). Later, Li
et al. (2011) were considering a depth-based procedure
for analysing abundance data, which are typically high-
dimensional discrete data with many observed 0’s. Because
of that particular structure, the classical Euclidean distance is
not optimal for quantifying (dis)similarities between obser-
vations, and analysts in the field usually prefer more specific
metrics such as the Bray-Curtis distance1 (Bray and Curtis
1957). In consequence, inspired by earlierworks byMaa et al.
(1996) andBartoszynski et al. (1997), Li et al. (2011) devised
a depth measure which could allow the proximity between
observations to be quantified by a specific, user-chosen dis-
tance/dissimilarity measure.

This flexibility appears even more desirable when dealing
with the polymorphous objects commonly found in mod-
ern data sets, as described above. For instance, functional
objects are much richer than just infinite-dimensional vec-
tors, and they can be compared on many different grounds:
general appearance, short- or long-range variation, oscillat-
ing behaviour, etc.; whichmakes the choice of the ‘proximity
measure’ between two such objects a very crucial one (Fer-
raty and Vieu 2006, Chapter 3). On a more theoretical basis,
an appropriate choice of such ‘proximity measure’ some-
times allows one to get around issues caused by the ‘Curse
of Dimensionality’ (Geenens 2011a).

1 The Bray-Curtis ‘distance’ does not satisfy triangle inequality, hence
it is rather a semi-distance.

Quantifying (dis)similarities betweennon-numeric objects
is even more subject to discretionary choice. As an example,
for comparing pieces of texts, the literature in text mining,
linguistics and natural language processing proposed numer-
ous metrics such as the Levenshtein distance, the Hamming
distance, the Jaccard index or the Dice coefficient—each tar-
getting different dimensions of words, sentences or texts,
such as similarity in spelling or similarity in meaning (Wang
and Dong 2020). It is, therefore, paramount to have access
to statistical procedures which allow a free choice of metric,
and may be tailored to the kind of data at hand and to the
ultimate purpose of the analysis.

Indeed, our proposed ‘metric depth’ (μD), defined in
Sect. 2, enables such flexible analyses. Its main properties
are explored in Sect. 3 and an empirical version (computable
from a sample) is described in Sect. 4. Section5 illustrates its
capabilities on several real data sets, including an application
in ‘text mining’ (Sect. 5.5). Section6 concludes.

2 Statistical depth inmetric spaces:
definition

Assume that the random object of interest, say X , lives in a
certain spaceMwhich can be equipped with a distance d. To
avoid dispensable technical complications, it will be assumed
throughout that (M, d) is a complete and separable metric
space. Let A be the σ -algebra on M generated by the open
d-metric balls andP be the space of all probability measures
defined on the Borel sets of A.2 This makes (M,A, P) a
proper probability space for any P ∈ P . In particular, it will
be assumed that the distribution ofX belongs toP . Note that
the cartesian product space (M×M,A×A, P× P) is then
also a valid probability space (Parthasarathy 1967, Theorem
I.1.10). We denote:

P(S(X1,X2))
.=

∫∫
M×M

S(χ1, χ2) d(P × P)(χ1, χ2)

for any measurable statement S : M × M → {0, 1}—the
statement returns the value 1 if it is true, and 0 otherwise. So,
P(S(X1,X2)) returns the probability that S is true if X1,X2

are two independent replications of X , whose distribution is
P .

Then we give the following definition:

Definition 2.1 The ‘metric depth’ (‘μD’) of the pointχ in the
metric space (M, d) with respect to the probability measure
P ∈ P is defined as:

μD(χ, P) = P
(
d(X1,X2) > max {d(X1, χ), d(X2, χ)} )

. (2.1)

2 In a separable metric space, the Borel σ -algebra is generated by the
open balls.
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For each fixed χ ∈ M, the set
{
(χ1, χ2) ∈ M × M :

d(χ1, χ2) > max{d(χ1, χ), d(χ2, χ)}} belongs to the σ -
algebraA×A,withA defined above, making the probability
statement P in (2.1) a well-defined one for any P ∈ P .

The interpretation of (2.1) in terms of depth is clear: a
point χ ∈ M is deep with respect to the distribution P if
it is likely to find it ‘between’ two objects X1 and X2 in M
randomly generated from P . ‘Between’ here means that the
side joiningX1 andX2 is the longest in a ‘triangle’ ofMwith
vertices X1, X2 and χ , or, in other words, that χ belongs to
the intersection of the two open d-balls Bd(X1, d(X1,X2))

and Bd(X2, d(X1,X2)), where Bd(X1, d(X1,X2)) is the ball
with center X1 and radius d(X1,X2). In this sense, (2.1) is
an extension of the vectorial ‘lens depth’ (Liu and Modar-
res 2011), as they both coincide when (M, d) = (Rp, d2),
where d2 is the Euclidean distance over Rp, p ≥ 1. If we
define

Ld (X1,X2) := Bd (X1, d(X1,X2)) ∩ Bd (X2, d(X1,X2)), (2.2)

the ‘lens’ defined byX1 andX2 in (M, d), thenμD(χ, P) =
P(Ld(X1,X2) � χ). This is the probability that a random set
contains a certain element χ , and interesting parallels can be
drawn with the theory of random sets, in particular Cho-
quet capacities and related ideas (Molchanov 2005, Chapter
1). Note that, independently of this work, Cholaquidis et al.
(2022) recently explored the extension of the ‘lens depth’ to
general metric spaces as well while Cholaquidis et al. (2021)
studied the associated level sets. Their focus and the con-
tent of their papers are, however, much different to what is
investigated here.

Finally, it is interesting to verify that, in the particular case
whereM = R and d is the usual distance d(χ, ξ) = |χ −ξ |,
the metric depth μD exactly coincides with the simplicial
depth DS of Liu (1990) (defined using open simplices):

μD(χ, P) = P(|X1 − X2| > max(|X1 − χ |, |X2 − χ |))
= P(χ ∈ (min(X1,X2),max((X1,X2))) = DS(χ, P).

Note that the same occurs for the ‘lens depth’—in R, where
the notion of rank is unequivocally defined, it is expected that
all reasonable depth measures are in agreement, indeed.

3 Main properties

The fact that the distance d is left free reallymakes themetric
depth μD a very flexible tool, as any meaningful d equip-
ping M can be used in (2.1) without altering the theoretical
properties which we explore below.

In addition, we note that no-where in the developments, it
is used explicitly the fact that d(χ, ξ) = 0 ⇐⇒ χ = ξ for
any two χ, ξ ∈ M (identity of indiscernibles). A proximity

measure which satisfies all the properties of a distance (non-
negativity, symmetry and triangle inequality) but not ‘identity
of indiscernibles’ is called a pseudo-distance. Hence, the
metric depth (2.1) can be used in conjunction with a pseudo-
distance, while keeping its essential features. We can, for
instance, assess the proximity between two objects by com-
paring the coefficients of their leading terms when expanded
in certain bases, such as a spline basis in the case of functional
data when smoothing the original data is necessary (Ramsay
and Silverman 2005, Chapter 3). Other examples are given
in Sect. 5.

3.1 Elasticity invariance

(P1) Let ϕ : M → M be an ‘elastic’ map in the
sense that for any χ, ξ, χ ′, ξ ′ ∈ M, d(χ, ξ) <

d(χ ′, ξ ′) ⇐⇒ d(ϕ(χ), ϕ(ξ)) < d(ϕ(χ ′), ϕ(ξ ′)).
Then, μD(ϕ(χ), Pϕ) = μD(χ, P), where Pϕ is the
push-forward distribution of the image through ϕ of a
random object of M having distribution P .

This follows from the fact that d(ϕ(X1), ϕ(X2)) >

max {d(ϕ(X1), ϕ(χ)), d(ϕ(X2), ϕ(χ))} ⇐⇒ d(X1,X2) >

max {d(X1, χ), d(X2, χ)} for such amapϕ. These obviously
include any isometry, such that d(χ, ξ) = d(ϕ(χ), ϕ(ξ)),
or other dilation-type transformations such that d(χ, ξ) =
aϕd(ϕ(χ), ϕ(ξ)), for some positive scalar constant aϕ , but
not only. Clearly, (P1) establishesμD as a purely topological
concept. On another note, (P1)may be thought of as an exten-
sion of property P1 in Zuo and Serfling (2000, p. 463)—that
a depth measure in R

d ‘should not depend on the underly-
ing coordinate system or, in particular, on the scales of the
underlying measurements’.

3.2 Vanishing at infinity

Assume that (M, d) is an unbounded metric space, i.e.,
supχ,ξ∈M d(χ, ξ) = ∞. Then:

(P2) For any P ∈ P and χ ∈ M, limR→∞ supξ /∈Bd (χ,R) μ

D(ξ, P) = 0.

This follows from Proposition 1(a) in Cholaquidis et al.
(2022). It is obviously the analogue to Zuo and Serfling
(2000)’s P4: ‘The depth of a point x should approach 0 as
‖x‖ approaches infinity’.

Now suppose that, ∀χ ∈ M,

P
(
d(X1,X2) = max {d(X1, χ), d(X2, χ)} ) = 0. (3.1)

This kind of continuity condition guarantees that, with prob-
ability 1, a given χ ∈ Mwill not lie exactly on the boundary
of a random lens such as (2.2)—in fact, for M = R, this
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condition exactly amounts to the continuity of the distribu-
tion P . Then, we can prove the following properties (P3) and
(P4).

3.3 Continuity in �

(P3) For any P ∈ P such that (3.1) holds, ∀χ ∈ M and
∀ε > 0, there exists δ > 0 such that

sup
ξ :d(χ,ξ)<δ

|μD(ξ, P) − μD(χ, P)| < ε.

Indeed, for any χ ∈ M, take ξ ∈ M such that d(χ, ξ) <

δ, for some δ > 0. Then, by the triangle inequality, for any
X1,X2 ∈ M,

max {d(X1, χ), d(X2, χ)} − δ < max {d(X1, ξ), d(X2, ξ)}
< max {d(X1, χ), d(X2, χ)} + δ.

Hence,μD(ξ, P) = P
(
d(X1,X2) > max {d(X1, ξ), d(X2, ξ)} )

is such that

P
(
d(X1,X2) > max {d(X1, χ), d(X2, χ)} + δ

)
≤ μD(ξ, P) ≤ P

(
d(X1,X2) > max {d(X1, χ), d(X2, χ)} − δ

)
.

Now, see that �(x)
.= P (max {d(X1, χ), d(X2, χ)}

−d(X1,X2) ≤ x) is a cumulative distribution function assumed
to be continuous at x = 0 by (3.1). This means that, for any
ε > 0, we can find a δ > 0 such that |�(|δ|) − �(0)| < ε.
As �(0) = μD(χ, P), the claim follows.

A similar result appears inCholaquidis et al. (2022, Propo-
sition2 inSupplementaryMaterial) under a condition slightly
stronger than (3.1).

3.4 Continuity in P

(P4) For any P ∈ P such that (3.1) holds, ∀χ ∈ M and
∀ε > 0, there exists δ > 0 such that |μD(χ, Q) −
μD(χ, P)| < ε P-almost surely for all Q ∈ P with
dP (P, Q) < δ P-almost surely, where dP metricises
the topology of weak convergence on P .

This follows directly from classical results on conver-
gence of probability measures on separable metric spaces—
e.g. Dudley (2002,Theorem 11.1.1)—as μD(χ, P) and
μD(χ, Q) in (2.1) are simple probability statements on ele-
ments of A × A. Note that (3.1) guarantees that the ‘lens’
(2.2) is a continuity set in the sense of Dudley (2002, section
11.1).

3.5 Further comments

Zuo and Serfling (2000) listed two more desirable prop-
erties for a depth measure on R

d : ‘Maximality at centre’
and ‘Monotonicity relative to deepest point’ (their properties
P2 and P3). Similar features are difficult to investigate here
for μD without giving a stronger structure to (M, d), such
as some sort of convexity, or d to satisfy a parallelogram
inequality, for example. As illustration, Zuo and Serfling
(2000)’s P2 ‘Maximality at centre’ requires the depth to
be maximum at a uniquely defined ‘centre’ with respect to
somenotion of symmetry.Without assuming a stronger struc-
ture (M, d), even the very definition of symmetry in M is
unclear. As our aim here is to stay as flexible as possible
with the proposed metric depth, we do not investigate further
in that direction. Those properties of μD may (or may not)
be established on specific applications when M and d are
precisely defined, though.

On a side note, even if Liu and Modarres (2011) sup-
posedly showed (their Theorem 6) that their Euclidean
‘lens depth’ in R

d—of which (2.1) can be thought of as
an extension—satisfies ‘Maximality at centre’ for centrally
symmetric distributions, their proof appearswrong as pointed
out in Kleindessner and von Luxburg (2017). Yet, Kleindess-
ner and von Luxburg (2017) conceded that they believe that
the statement is true. In Appendix, we give three counter-
examples, establishing that the statement is actually not true:
Liu and Modarres (2011)’s ‘lens depth’ does not generally
satisfy neither ‘Maximality at centre’ nor ‘Monotonicity rel-
ative to deepest point’ (Zuo and Serfling 2000’s P2 and P3)
for centrally symmetric distributions on R

d .3

A last important point is the following. Suppose that the
balls Bd(·, ·) are convex in (M, d). Then it can easily be
checked that, for any non-degenerate distribution P ∈ P
(i.e., not a unit point mass at some χ ∈ M), μD cannot be
degenerated in the sense that μD(χ, P) ≡ 0 for all χ ∈ M.
Indeed, by convexity, the intersection Bd(X1, d(X1,X2)) ∩
Bd(X2, d(X1,X2)) is non-empty as soon as X1 �= X2, so,
there always exists some χ ∈ Mwhich gets a positive depth
by (2.1). It is known that some instances of statistical depth
admit such a degenerate behaviour. For instance, that is the
case of López-Pintado and Romo (2009, 2011)’s band and
half-region depths for a wide class of distributions on com-
mon functional spaces (Chakraborty and Chaudhuri 2014,
Theorems 3 and 4).

3 Kleindessner and von Luxburg (2017) noticed that analogous proofs
for the spherical depth (Elmore et al. 2006) and the β-skeleton depth
(Yang and Modarres 2017) are mistaken as well. Furthermore, we have
found that the proof of a similar property for the band depth given in
López-Pintado and Romo (2009, Theorem 1(2)) is likewise erroneous.
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4 Empirical metric depth

4.1 Definition andmain statistical properties

Assume now that we have a random sample {χi ; i =
1, . . . , n} drawn from the unknown distribution P on M.
Then the depth of some point χ ∈ M with respect to P
must actually be estimated. The empirical analogue of (2.1)
is naturally μD(χ, P̂n), where P̂n is the empirical measure
associated to {χi ; i = 1, . . . , n}, i.e., the collection of 1/n-
weighted point masses at χ1, . . . , χn . This yields

μD(χ, P̂n) = 1(n
2

) ∑
i< j

1I{d(χi ,χ j )>max{d(χi ,χ),d(χ j ,χ)}}. (4.1)

Obviously, P̂n
P-a.s.−→ P , which guarantees under (3.1) the

strong pointwise consistency of the estimator μD(χ, P̂n),
that is

μD(χ, P̂n)
P-a.s.−→ μD(χ, P), (4.2)

for allχ ∈ M. This easily follows fromProperty (P4). Under
stronger assumptions, Cholaquidis et al. (2021, Theorem 4)
established the uniform strong consistency of μD on com-
pact subsets of M; viz.

sup
χ∈


|μD(χ, P̂n) − μD(χ, P)| a.s.−→ 0, n → ∞, (4.3)

for any compact set 
 ⊂ M.
Finally, the obvious U -statistics structure of (4.1) allows

us to easily deduce, through an appropriate Central Limit
Theorem, the asymptotic normality of μD(χ, P̂n), as a
straightforward consequence of (Arcones and Giné 1993,
Theorem 4.10) and (Giné 1996, Proposition 10); see also
(Cholaquidis et al. 2021,Theorem 6). This result can be used
for inference, for instance to build a confidence region for the
‘true’median element, i.e. the deepest elementwith respect to
the population distribution P (Serfling andWijesuriya 2017).
Note that this median need not be unique, and careful treat-
ment is necessary in that case. Indeed, as discussed above, the
depth is not guaranteed to bemonotonically decreasingwhen
moving away from the deepest point, making sets of deepest
points not necessarily convex. In such cases, we may make
use of the level sets of maximum depths, following results of
Cholaquidis et al. (2021).

4.2 Computational aspects

The practical computation of the empirical metric depth (4.1)
involves obtaining all pairwise distances between the ele-
ments of the set {χ} ∪ {χi ; i = 1, . . . , n}; and checking
d(χi , χ j ) > max{d(χi , χ), d(χ j , χ)} for 1 ≤ i < j ≤ n.

0 100 200 300

−3
0

−2
0

−1
0

0
10

20

day

te
m

pe
ra

tu
re

Fig. 1 Canadian weather data—average daily temperatures at 35 sta-
tions

A simple (if not naive) implementation of this would be car-
ried out in maximum O(n2) flops. Thus, the computational
cost for computing the metric depth is in general lower than
the simplicial depth, which requires O(n p+1) operations in
R

p, and Tukey depth, which involves infinite unidimensional
projections. The above observation assumes that the dimen-
sion of the objects of interest is fixed; e.g., functional data
are represented by vector of a certain length which does not
vary with n. Now, even in such cases, the objects of interest
may be complex and have dimension close to or larger than
the sample size n—this may have to be taken into account
when computing the distance d. For example, an Lr -distance,
1 ≤ r ≤ ∞, between functional data represented by a vector
of size N , is computed in O(N ) operations. If N is compa-
rable to n, the total computational cost would effectively be
O(Nn2).

5 Data examples

In this section, we illustrate the usefulness of the proposed
metric depth μD on 5 real data sets: two one-dimensional
functional datasets (Sects. 5.1 and 5.2), a bidimensional func-
tional dataset (Sect. 5.3), a symbolic data set (Sect. 5.4) and
a non-numeric data set (text) (Sect. 5.5).

5.1 Canadian weather data

The Canadian temperature data set is a classical functional
data set available from the R package fda. The data give the
daily temperature records of 35 Canadian weather stations
over a year (365 days, day 1 is 1st of January) averaged
over 1960 to 1994, see Fig. 1. First, the depth of the 35
curves with respect to the sample has been computed from
the empirical functional metric depth (4.1) with d being
the usual L2 distance between two square-integrable func-
tions, i.e. d2(χ, ξ) = ∫

(χ(t) − ξ(t))2 dt . The 5 deepest and
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Fig. 2 Five deepest curves (left; the darkest curves are the deepest) and five least deep curves (right; the lightest curves are the least deep) according
to (4.1) with d(χ, ξ) = ‖χ − ξ‖2, the L2 distance

least deep curves are shown in Fig. 2. The suggested depth
measure identifies the Sherbrooke (deepest curve), Thunder
Bay, Fredericton, Quebec and Calgary stations as the most
representative of a median Canadian weather, in terms of
temperature. On the other hand, the most outlying curves are
seen to be Resolute (least deep curve), Victoria, Vancouver,
Inuvik and Iqaluit. It is visually obvious that those curves
are much different to the others: Resolute, Inuvik and Iqaluit
are Arctic stations, with much colder temperatures across the
year than the other stations, while Vancouver and Victoria lie
on the south Pacific coast of Canada and enjoy much milder
winters. We can appreciate that Vancouver and Victoria are
‘shape outliers’, whereas theArctic stations are ‘location out-
liers’. These are equally easily flagged by the metric depth
μD—this has to be stressed, as some functional depths have
been shown to be able to identify one type of outlier but not
the other, or vice-versa (Serfling and Wijesuriya 2017).

Of course, the daily average temperature curves are par-
ticularly noisy, which could heavily affect the L2-distances
computed between pairs of curves, hence the whole calcula-
tion of the depths. One can deal with the roughness of those
curves in different manners: first, one could use smoothed
versions of the initial curves, for instance themonthly average
temperatures as in Serfling and Wijesuriya (2017); second,
one could use for d a distance less affected by such noise
than the L2 one, for instance the supremum (L∞) distance;
finally one can expand the different curves in a certain basis
and focus only on the first terms when assessing the proxim-
ity between them.We achieved that by expanding each curve
in the empirical Principal Components basis (Hall 2011)
and keeping only the first two principal scores: the curves
re-constructed from those two components only are indeed
smooth approximations to the initial, rough curves. So, each
curve is now represented by a point in the 2-dimensional
space of the first two Principal Components, and the proxim-

ity between twocurves quantifiedby the L2-distance between
the corresponding two points. In effect, this defines a pseudo-
distance between the initial curves (see Ferraty and Vieu
2006, section 3.4.1). The depths assigned to each station
according to these 4 methods are shown in Table 1. The four
depth measures are in very good agreement, essentially iden-
tifying the same central and outlying curves. This shows that
the depth measure μD (2.1) and its empirical version (4.1)
are quite robust to any reasonable choice of d.

5.2 Lipmovement data

Malfait and Ramsay (2003) studied the relationship between
lip movement and time of activation of different face mus-
cles, see also (Ramsay and Silverman 2002, Chapter 10)
and Gervini (2008). The study involved a subject saying the
word ‘bob’ 32 times and the movement of their lower lip was
recorded each time. Those trajectories are shown in Fig. 3,
and all share the same pattern: a first peak corresponding to
the firt /b/, then a plateau corresponding to the /o/ and finally
a second peak for the second /b/. These functions being very
smooth (actually, they are smoothed versions of raw data not
publicly available), it seems natural to use again the classi-
cal L2 distance for assessing their relative proximity. Hence,
the respective depth of each curve with respect to the sample
was obtained by (4.1) with d2(χ, ξ) = ∫

(χ(t) − ξ(t))2 dt .
The 5 deepest and 5 least deep curves are shown in the top
row of Fig. 4. In particular, this depth identifies as outliers
the three curves showing a second peak at a much later time
than for the rest of the curves, which were already hived off
by Gervini (2008). The remaining two outlying curves show
two peaks of lower amplitude than the others, with a second
peak occurring earlier than the bunch.

Now, Malfait and Ramsay (2003), in their original study,
were more interested in the acceleration of the lip during
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Table 1 Canadian weather
data—metric depth measures for
4 different (pseudo-)distances d:
μD2: L2 distance; μD∞:
Supremum (L∞) distance;
μDm

2 : L2 distance on the
average monthly temperature
curves; μDPCA: L2 distance in
the plane of the first two
principal components

Station μD2 μD∞ μDm
2 μDPCA Station μD2 μD∞ μDm

2 μDPCA

Sherbrooke 0.514 0.474 0.516 0.506 Thunder B 0.511 0.513 0.504 0.496

Fredericton 0.504 0.479 0.504 0.491 Quebec 0.504 0.513 0.506 0.497

Calgary 0.492 0.375 0.492 0.503 Bagottville 0.482 0.457 0.484 0.476

Edmonton 0.474 0.459 0.472 0.494 Arvida 0.469 0.476 0.472 0.476

Regina 0.429 0.435 0.427 0.420 Charlottvl 0.425 0.435 0.424 0.435

Pr.George 0.422 0.380 0.425 0.469 Ottawa 0.410 0.479 0.408 0.403

Winnipeg 0.403 0.418 0.405 0.398 Pr.Albert 0.400 0.383 0.400 0.390

Montreal 0.383 0.457 0.380 0.375 Halifax 0.380 0.348 0.378 0.368

Whitehorse 0.371 0.378 0.373 0.395 The Pas 0.360 0.358 0.358 0.348

Sydney 0.324 0.284 0.333 0.348 Uranium C. 0.316 0.257 0.319 0.311

Toronto 0.313 0.363 0.309 0.309 Scheffervll 0.294 0.318 0.292 0.291

St.Johns 0.271 0.237 0.272 0.257 London 0.267 0.324 0.267 0.261

Yellowknife 0.227 0.207 0.224 0.200 Yarmouth 0.208 0.195 0.208 0.205

Dawson 0.207 0.138 0.208 0.242 Churchill 0.160 0.242 0.160 0.160

Kamloops 0.150 0.202 0.148 0.148 Pr.Rupert 0.106 0.108 0.106 0.109

Iqaluit 0.096 0.134 0.096 0.096 Inuvik 0.066 0.064 0.066 0.066

Vancouver 0.045 0.050 0.045 0.040 Victoria 0.017 0.002 0.017 0.018

Resolute 0 0 0 0
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Fig. 3 Lip movement data

the process rather than on the lip motion itself. The study
aimed at explaining time of activation of face muscles, and
the acceleration reflects the force applied to tissue by mus-
cle contraction. Hence, in this application, it may be worth
contrasting the lip trajectories in terms of their correspond-
ing accelerations, that is, comparing the second derivatives
of the position curves. The L2 distance between the sec-
ond derivatives of the curves is naturally a pseudo-distance
between the initial curves (Ferraty and Vieu 2006, Section
3.4.3), which can be used in (4.1). The 5 deepest and 5 least
deep curves, according to (4.1) based on the ‘acceleration’
pseudo-distance, are shown in the middle row of Fig. 4 and
differ from those in the first row of Fig. 4. Naturally, the focus
here is no more on the exact position of the curves, but rather

on the more fundamental underlying dynamics. For instance,
the 5 deepest curves show a first peak of distinctly different
heights, but in terms of their second derivatives, they are in
fact quite similar and representative of the sample (bottom
row of Fig. 4), and that is what matters in Malfait and Ram-
say (2003)’s study. As argued in Sect. 1, the flexibility ofμD
(2.1) in terms of the choice of d allows the analyst to tailor
the depth measure to the given factors and the goal of the
analysis.

5.3 Handwriting data

The ‘handwriting’ data set consists of twenty replications of
the printing of the three letters ‘fda’ by a single individual.
The position of the tip of the pen has been sampled 200 times
per second. The data, available in the R package fda, have
already been pre-processed so that the printed characters are
scaled and oriented appropriately, see Fig. 5.

Thesedata are essentially bivariate functional data. Indeed,
each instance χ of the word ‘fda’ arises through the simulta-
neous realisation of two components (χX (t), χY (t)), where
χX (t) and χY (t) give the position along the horizontal axis
and the vertical axis, respectively, of the pen at time t . This
is illustrated for one instance of ‘fda’ in Fig. 6. Hence, an
appropriate functional metric space here could be (M, d)

with M = L2(T ) × L2(T ), T = [0, 2.3] (the time interval
on which the position of the pen was recorded) and d being
the Euclidean distance on L2(T ) × L2(T ) whose square is
defined by
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Fig. 4 Top andmiddle row: Five deepest curves (left; the darkest curves
are the deepest) and five least deep curves (right; the lightest curves are
the least deep) according to (4.1) with (i) d(χ, ξ) = ‖χ − ξ‖2, the L2
distance between the curves (top row) and (ii) d(χ, ξ) = ‖χ ′′ − ξ ′′‖2,

the L2 distance between the second derivatives of the curves (middle
row). Bottom row: Five deepest acceleration curves (left; the darkest
curves are the deepest) and five least deep acceleration curves (right;
the lightest curves are the least deep)

d2(χ, ξ) = ‖χX − ξX‖22 + ‖χY − ξY ‖22 =
∫
T

(χX (t) − ξX (t))2 dt +
∫
T

(χY (t) − ξY (t))2 dt . (5.1)

This distance can be used directly in (4.1) to identify the
5 deepest and 5 least deep instances of ‘fda’, see Fig. 7.
The bivariate nature of the data at hand does not cause
any particular complication and the definition (2.1) need
not be re-adapted to this case. Again, the so-defined depth
only focuses on the ‘drawings’ fda themselves, and iden-

tifies the deepest instances. However, it was argued in the
related literature that the tangential acceleration of the pen
during the process was also a key element to analyse for
understanding the writing dynamics, for instance for dis-
criminating between genuine handwritings and forgeries
(Geenens 2011a, b).As inSubsection 5.2, one could therefore
use (4.1) with d a pseudo-distance assessing the proximity
between two instances of fda through their tangential accel-
eration curves only, if that was to be the focus of the analysis.
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Fig. 5 Handwriting data

5.4 Age distribution in European countries

SymbolicDataAnalysis (SDA) has recently grown as a popu-
lar research field in statistics (Billard andDiday 2003, 2007).
Indeed the intractably large ‘Big Data’ sets often need to be
summarised so that the resulting summary datasets are of
a manageable size, and so-called ‘symbolic data’ typically
arise from such a process. No longer formatted as single
values like classical data, they are meant to be ‘aggregated’
variable typically represented by lists, intervals, histograms,
distributions and the like. In this section we give a closer look
at a ‘distribution-valued’ symbolic data set. Specifically, we
analyse the distribution of the age of the population of the 44
european countries (see Table 2).

The 2017 data were obtained from the US Census bureau
(www.census.gov/population/international/data/). Typically,
the population distribution for a given country is presented
under the form of a population pyramid (that is, a histogram),
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Fig. 6 One instance of the handwriting data, and its x- and y-components
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Fig. 7 Five deepest curves (left; the darkest curves are the deepest) and five least deep curves (right; the lightest curves are the least deep) according
to (4.1) with d(χ, ξ) being the L2 distance (5.1) on L2(T ) × L2(T )
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Fig. 8 Age distribution in European countries

from which a proper distribution function for population age
can easily be extracted (Kosmelj and Billard 2011). Hence,
each country (here: ‘individual’, also called ‘concept’ in the
SDA literature) is characterised by a distribution. Figure8
displays the sample of age distributions. Here we will use the
suggested metric depth μD to analyse which countries are
most representative of the ‘European’ age distribution, and
which countries can be regarded as ‘outliers’ in that respect.

The data being here distribution functions of nonnegative
variables, M can be identified with a space of distribution
functions supported on R

+, i.e. a space of nondecreasing
càdlàg functions F with F(0) = 0 and limt→∞ F(t) = 1,
equipped with an appropriate distance. The Wasserstein
distance has proved useful for a wide range of problems
explicitly involving distribution functions (Rachev 1984;
Panaretos and Zemel 2020), hence seems a natural choice
in this setting as well. For some r ≥ 1, the Wasserstein dis-
tance between two distributions F andG whose r thmoments
exist, is defined as

dr (F,G) = inf
(X ,Y )∼(F,G)

{E (|X − Y |r )}1/r ,

where the infimum is taken over the set of all joint bivari-
ate distributions whose marginal distributions are F and
G respectively. Properties of this distance are described in
Major (1978) and Bickel and Freedman (1981). In particular,
it is known that dr (F,G) is essentially the usual Lr -distance
between the quantile functions F−1 and G−1 over [0, 1].
Also, it is known that convergence in the Wasserstein dis-
tance is equivalent to convergence in distribution together
with convergence of the first r moments. Hence, the dis-
tance dr quantifies the proximity between two distributions
through both their general appearance and the values of their
moments. In what follows, we take r = 2, hence we con-
sider functional data in (M2, d2),M2 being the space of all
probability distribution functions with finite secondmoment.

The flexibility of (2.1) allows us to base μD on the
Wasserstein distance so as to define a depth measure spe-

cific to distribution functions without any difficulty. The
‘Wasserstein-depths’ of the 44 countries are given in Table
2. The 5 deepest and least deep age distributions are shown
in Fig. 9. The deepest distribution, hence the most represen-
tative of the age distributions in Europe, appears to be that of
Switzerland, a country located at the very heart of Europe, in-
between the Western and Eastern countries, and in-between
the Northern countries and the Southern countries, at the
meeting point between the ‘Germanic’ world (Germany,
Austria) and the ‘Latin’ world (France, Italy). From that per-
spective, Switzerland can be regarded as really representative
of a ‘median’ European country on many aspects. On the
other hand, the Wasserstein-metric depth is null for Kosovo
andMonaco, and indeed, the distributions for those two coun-
tries clearly lie outside the bunch of the other distributions.
Monaco is amicro,mild-climate (and incidentally, tax haven)
state which attracts a large amount of rich retirees from all
over the continent (if not the world), hence its population is
globally much older than for other countries and its age dis-
tribution is below the others. Monaco set aside, Germany and
Italy show globally the oldest population of Europe. Kosovo
was still recently at the heart of an armed conflict in the
Balkans, which explains the low proportion of older people
in that country and the position of its age distribution above
all the others. To some extent, this also explains the outlying-
ness of Albania’s curve. In any case, this example illustrates
that one can readily define a depthmeasure tailored for distri-
bution curves, which paves the way for developing rank-like
procedures in Symbolic Data Analysis as well.

5.5 Authorship attribution by intertextual distance

Author identification on an unknown or doubtful text is one
of the oldest statistical problems applied to literature. Here
the capability of the proposed metric depth is illustrated
within that framework. William Shakespeare and Thomas
Middleton were contemporaries (late 16th-early 17th cen-
turies), and their oeuvre are often compared. In that aim,
Merriam (2003) examined 9 Middleton plays and 37 Shake-
speare texts, and computed between each pair of them the
so-called ‘inter-textual distance’ proposed by Labbé and
Labbé (2001).4 Although the entities of interest are here
purely non-numerical (famous literary pieces), the obtained
matrix of distances allows us to outline the relative position
of each text—and this is essentially all what is needed for
μD to come into play.

As an example, Table 3 (recovered from Appendix 2 in
Merriam (2003)) reports the ‘inter-textual’ distances between

4 It is not the purpose of this paper to describe how this index is com-
puted or what it represents; neither do we imply that it is the panacea for
the considered problem—for that matter, it has been criticised (Viprey
and Ledoux 2006). Here we use it in an illustrative purpose only.
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Table 2 Age distribution in
European countries—metric
depth for the age distributions of
the 44 European countries,
based on the Wasserstein
distance

Switzerland 0.59 Liechtenstein 0.52 Hungary 0.519 Malta 0.508

Czech Republic 0.503 Ukraine 0.498 Netherlands 0.488 Croatia 0.478

Portugal 0.477 Poland 0.474 Belgium 0.451 Serbia 0.449

Denmark 0.434 Romania 0.422 UK 0.421 Belarus 0.406

Spain 0.406 Estonia 0.401 Bulgaria 0.36 Montenegro 0.36

Slovakia 0.349 Latvia 0.348 Sweden 0.322 Lithuania 0.319

Luxembourg 0.318 Russia 0.292 Norway 0.28 Austria 0.277

Bosnia-Herz 0.276 France 0.27 Finland 0.261 San Marino 0.228

Andorra 0.221 Macedonia 0.201 Slovenia 0.178 Moldova 0.151

Greece 0.141 Iceland 0.14 Ireland 0.088 Italy 0.087

Albania 0.044 Germany 0.044 Kosovo 0 Monaco 0
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Fig. 9 Five deepest age distributions (left; the darkest curves are the deepest) and five least deep age distributions (right; the lightest curves are the
least deep) according to (4.1) with d being the Wasserstein distance d2 between distributions

Table 3 Matrix of
‘inter-textual’ distances between
9 essential plays by Thomas
Middleton: Phn: ‘The Phoenix’;
Mad: ‘A Mad World, My
Masters’; Trk: ‘A Trick to Catch
the Old One’; Pur: ‘The
Puritan’; Alm: ‘The Almanac’;
CMC: ‘A Chaste Maid in
Cheapside’; Dis: ‘More
Dissemblers Besides Women’;
Val: ‘The Nice Valour’; WBW:
‘Women Beware Women’

Phn Mad Trk Pur Alm CMC Dis Val WBW

Phn 0.000 0.312 0.301 0.315 0.335 0.343 0.319 0.330 0.322

Mad 0.312 0.000 0.314 0.344 0.319 0.328 0.326 0.339 0.325

Trk 0.301 0.314 0.000 0.310 0.314 0.326 0.335 0.338 0.330

Pur 0.315 0.344 0.310 0.000 0.338 0.340 0.337 0.346 0.338

Alm 0.335 0.319 0.314 0.338 0.000 0.314 0.313 0.333 0.344

CMC 0.343 0.328 0.326 0.340 0.314 0.000 0.339 0.349 0.311

Dis 0.319 0.326 0.335 0.337 0.313 0.339 0.000 0.318 0.284

Val 0.330 0.339 0.338 0.346 0.333 0.349 0.318 0.000 0.320

WBW 0.322 0.325 0.330 0.338 0.344 0.311 0.284 0.320 0.000
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Table 4 37 Shakespeare’s plays
(shown in chronological
order)—empirical μD in the
sample of Shakespeare’s plays
only (left column) and in the
sample of combined
Shakespeare’s and Middleton’s
works (right column)

μD - Shakespeare μD - combined

The Two Gentlemen of Verona 0.3784 0.5072

The Taming of the Shrew 0.2192 0.4396

Henry VI - Part II 0.2508 0.2097

Henry VI - Part III 0.0526 0.0425

Henry VI - Part I 0.1532 0.1227

Titus Andronicus 0.1937 0.1594

Richard III 0.4760 0.4570

The Comedy of Errors 0.4595 0.5353

Love’s Labour’s Lost 0.4910 0.4889

A Midsummer Night’s Dream 0.3859 0.3691

Romeo and Juliet 0.5015 0.5227

Richard II 0.1006 0.0841

King John 0.2267 0.2048

The Merchant of Venice 0.4189 0.5179

Henry IV, Part I 0.4129 0.4058

The Merry Wives of Windsor 0.3829 0.4483

Henry IV, Part II 0.3619 0.4744

Much Ado about Nothing 0.2252 0.4444

Henry V (prose part) 0.3078 0.2870

Henry V (verset part) 0.0000 0.0000

Julius Caesar 0.4294 0.3990

As You Like It 0.2763 0.4792

Hamlet 0.4715 0.4473

Twelfth Night 0.0075 0.3488

Troilus and Cressida 0.3333 0.2850

Measure for Measure 0.3378 0.5063

Othello 0.5030 0.5585

All’s Well that Ends Well 0.0450 0.3710

Timon of Athens 0.1141 0.3971

King Lear 0.4640 0.5478

Macbeth 0.3649 0.3121

Antony and Cleopatra 0.5255 0.5401

Coriolanus 0.4655 0.4309

The Winter’s Tale 0.2462 0.4261

Cymbeline 0.1607 0.4184

The Tempest 0.5135 0.5246

Henry VIII 0.4099 0.5024

the 9 essential plays of Middleton. Computing the empirical
metric-depth (4.1) on each of this entry in the ‘Middleton
sample’ reveals that the two deepest observations are ‘More
Dissemblers Besides Women’ and ‘A Trick to Catch the Old
One’ (both get a depth of 0.4167). They may, therefore, be
considered as the most typical Middleton plays (as long as
the ‘inter-textual’ distance is the relevant metric).

This time focusing on the 37 Shakespeare texts only,
‘Antony and Cleopatra’ is identified as Shakespeare’s most
typical text; i.e., the deepest among the considered sample

(depth: 0.5255)—see Table 4 (left column). The following
most representative of Shakespeare plays are ‘The Tem-
pest’ (0.5135), ‘Othello’ (0.5030) and ‘Romeo and Juliet’
(0.5015). The most outlying piece of work is the verset part
of ‘Henry V’ (depth: 0), which tends to confirm a common
conjecture hold by many experts on Shakespeare’s oeuvre:
the verset part of ‘Henry V’ was not written by Shakespeare
himself, but by Christopher Marlowe (Merriam 2002).

Now, if we computed the metric depth of the 9 Middle-
ton’s plays in Shakespeare’s sample, all would receive depth
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Fig. 10 Top row: Example A.1; Central row: Example A.2; Bottom
row: Example A.3. From left to right, density function (first column),
sample lens depth constructed with n = 5, 000 sample draws from P

(second column), corresponding heat-map (third column) and its sec-
tion along the line x2 = 0 (top-right panel), x1 = x2 (central-right
panel) and x1 = 0 (bottom-right panel)

0—all are ‘outlying’ in Shakespeare’s oeuvre. This clearly
indicates that Middleton’s work cannot be confused with
Shakespeare’s, and it should be easy to assign a new piece of
text to one or the other based onμD. Further, it is interesting
to analyse the depth of each text in a combined sample made
up both the works of Middleton and Shakespeare. In partic-
ular, some of Shakespeare’s texts which have a low depth
in the ‘Shakespeare’s only’ sample, see their depth increase
by large in the combined sample. This indicates that these
pieces may have a strong Middleton flavour, to some extent.
This hypothesis is confirmed for at least one of those plays:
‘Timon of Athens’ sees its depth increase from 0.1141 to
0.3971 if one includes Middleton’s works in the reference
sample; and indeed, extensive research on the topic has pro-
vided ample evidence that Middleton wrote approximately
one third of that play (Taylor 1987).

Note that computing and comparing the depth of certain
observations in two different samples is the spirit of the

DD-plot and the DD-classifier proposed by Li et al. (2012).
These procedures can naturally be used in conjunction with
the metric depth μD, enabling similar powerful depth-based
analyses in abstract metric spaces.

6 Conclusion

In this paper, we have proposed a new statistical depth func-
tion, called ‘metric depth’ or just μD, defined in an abstract
metric space. It is explicitly constructed on a certain distance
d thatmust be chosenby the analyst,which allows them to tai-
lor the depth to the data at hand and to the ultimate goal of the
analysis. This offers an unmatched flexibility about the range
of problems and applications that can be addressed using the
said depth measure. The usefulness of μD has been illus-
trated on several real data sets, including one in the emergent
field of Symbolic Data Analysis and an application in text
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mining (authorship attribution). Rejuvenating an old idea of
Bartoszynski et al. (1997), its definition is very intuitive: the
depth of a functional point χ with respect to a distribution P
is the probability to find it ‘between’ two functional objects
X1 and X2 randomly generated from P , ‘between’ meaning
here that χ belongs to the intersection of the two open d-balls
Bd(X1, d(X1,X2)) and Bd(X2, d(X1,X2)). This definition
is natural and enjoys many pleasant properties.
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A Appendix

Here we give three counter-examples for illustrating that Liu
and Modarres (2011)’s Euclidean ‘lens depth’ does not sat-
isfy Zuo and Serfling (2000)’s properties P2 ‘Maximality at
centre’ and P3 ‘Monotonicity relative to deepest point’ for
centrally symmetric distributions—indeed, these two prop-
erties are related. For simplicity, we work in R2.

Example A.1 (Mixture of two normal distributions)
Let P be a mixture of two bivariate normal distributions

with respective means (−3, 0), (3, 0), identity covariance
matrices and equal weights—viz., the density of P is
f (x1, x2) = 1

2φ(x1 − 3, x2) + 1
2φ(x1 + 3, x2), for φ the

standard bivariate normal density.

Example A.2 (Bivariate normal distribution truncated to 4
squares) Let P be the distribution whose density function
is

f (x1, x2) = φ(x1, x2)/
(∫

A φ(x1, x2) dx1dx2
)
1I{(x1,x2)∈A},

where φ is the standard bivariate normal density, A
.=

A1 ∪ A2 ∪ A3 ∪ A4 with A1 = [−2,−1] × [−2,−1],
A2 = [−3,−2] × [2, 3], A3 = [1, 2] × [1, 2] and A4 =
[2, 3] × [−3,−2].

Example A.3 (Bivariate normal distribution truncated to a
frame)Let P be as inExampleA.2 butwith A1 = [−4,−3]×
[−1, 1], A2 = [−4, 4] × [1, 2], A3 = [3, 4] × [−1, 1] and
A4 = [−4, 4] × [−2,−1].

The distribution P is clearly centrally symmetric about (0, 0)
in each case: in Example A.1 as f (−x1,−x2) = f (x1, x2),
and in Examples A.2–A.3 because the standard bivariate nor-
mal distribution is centrally symmetric about (0, 0) and the
region A is symmetric with respect to the origin. However,
Fig. 10 reveals that Liu andModarres (2011)’s Euclidean lens
depth function with respect to any of these three distributions
is not maximum at the centre (0, 0), nor is monotonic away
from the deepest point(s)—see that the depth function admits
a local maximum at (0, 0) for Example A.2.
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