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A. Discussion and additional proofs

A.1. Useful properties of local depth functions

We begin with a brief discussion concerning the properties of local depth func-
tions that are used in the proofs and discussions in the main paper. We first ob-
serve, using (P2), that h(G)

0 (x; ·) = lGI(· ∈ {(x, . . . , x)}), where lG = G(0, . . . , 0).
Also, by Definition 2.1, and by (P1), (P2), h(G)

1 (0; ·) = G(·) and

0 ≤ h(G)
(·) (·; ·) ≤ lG. (A.1)

Furthermore, (P4) ensures that hτ (0; ·) is non-trivial for all τ > 0, since there
is a region including the origin of (Rd)kG and having positive Lebesgue measure
where hτ (0; ·) is positive. We note that (P4) is satisfied whenever lG > 0 and
G(·) is continuous in (0, . . . , 0). We will further suppose without loss of gen-
erality (w.l.o.g.) that G(x1, . . . , xkG) = G(xi1 , . . . , xikG ) for every permutation
(i1, . . . , ikG) of (1, . . . , kG) yielding

h(G)
τ (x;x1, . . . , xkG) = h(G)

τ (x;xi1 , . . . , xikG ); (A.2)

since otherwise, one can replace G(·) by Ḡ(·), where, for (x1, . . . , xkG) ∈ (Rp)kG ,

Ḡ(x1, . . . , xkG) = 1
kG!

∑
G(xi1 , . . . , xikG ),

and the summation is over all kG! permutations (i1, . . . , ikG) of (1, . . . , kG). Also,
notice that

h(G)
τ (x+ v;x1 + v, . . . , xkG + v) = h(G)

τ (x;x1, . . . , xkG), v ∈ Rp (A.3)
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and h(G)
τ (−x;−x1, . . . ,−xkG) = h(G)

τ (x;x1, . . . , xkG). (A.4)

If P is absolutely continuous with respect to the Lebesgue measure on Rp with
density f(·), then, by (A.3) and (A.4), for all x ∈ Rp and τ ∈ [0,∞], it holds
that

LGD(x, τ, P ) =
∫
hτ (0;x− x1, . . . , x− xk)f(x1) . . . f(xk)dx1 . . . dxk

= (hτ (0; ·) ∗ f⊗k(·))(x, . . . , x),
(A.5)

where ∗ is the convolution operator and f⊗k(x1, . . . xk) = f(x1) . . . f(xk). Thus,
(2.5) holds.

A.2. Additional proofs

In the following we will use the following notations: {ei}pi=1 is the standard
basis of Rp and the coordinates of a vector x ∈ Rp are given by x(i) := 〈x, ei〉,
i = 1, . . . , p.
Proof of Proposition 2.1. We start by proving (i). For the monotonicity,
observe that, by Definition 2.1 and (P2), for all x ∈ Rp, (x1, . . . , xk) ∈ (Rp)k
and 0 ≤ τ1 ≤ τ2 ≤ ∞, hτ1(x;x1, . . . , xk) ≤ hτ2(x;x1, . . . , xk) and therefore
LGD(x, τ1) ≤ LGD(x, τ2). Using dominated convergence theorem (DCT) and
Definition 2.1, we get that

lim
τ→0+

LGD(x, τ) =
∫

lim
τ→0+

hτ (x;x1, . . . , xk)dP (x1) . . . dP (xk) = lGP
k({x})

and

lim
τ→∞

LGD(x, τ) =
∫

lim
τ→∞

hτ (x;x1, . . . , xk)dP (x1) . . . dP (xk) = GD(x).

For (ii) let 0 < ε < 1. Using tightness and (P3), let r1, r
∗ > 0 such that

P (Br1(0)) ≥ 1 − ε and hτ (x;x1, . . . , xk) ≤ ε for all x ∈ Rp, x1 ∈ Rp \ Bτr∗(x),
and (x2, . . . , xk) ∈ (Rp)k−1. Since, for r2 > τr∗ and x ∈ Rp \Br1+r2(0), it holds
that Bτr∗(x) ⊂ Rp \Br1(0), using (A.1), we see that for r ≥ r1 + r2

sup
x∈Rp\Br(0)

LGD(x, τ) ≤ l sup
x∈Rp\Br1+r2 (0)

P (Bτr∗(x)) + ε ≤ (l + 1)ε.

We now prove (iii). Let f(·) be the density function of P with respect to λ. By
(A.1), we have that 0 ≤ LGD(x, τ) ≤ l. Furthermore, by (2.5) and (A.3), it
holds that

|LGD(y, τ)− LGD(x, τ)| ≤ l
∫ ∣∣∣∣ k∏

j=1
f(y − xj)−

k∏
j=1

f(x− xj)
∣∣∣∣dx1 . . . dxk.
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By Theorem 8.19 in Wheeden and Zygmund (2015), it follows that |LGD(y, τ)−
LGD(x, τ)| converges to 0 as ‖y − x‖ → 0.

Next, notice that, by (iii) and (2.5), (iv) holds when m = 0. One can show
by induction that for all 0 ≤ j ≤ m, the partial derivatives of LGD(·, τ) up to
order j exist and are given by

∂ij . . . ∂i1LGD(x, τ) = (hτ (0; ·) ∗ (gij ,...,i1(·))(x, . . . , x),

where, for (x1, . . . , xk) ∈ (Rp)k, gij ,...,i1(x1, . . . , xk) := ∂ij . . . ∂i1f(x1) . . . f(xk).
Finally, one observes that ∂im . . . ∂i1LGD(·, τ) is continuous. Details are in Fran-
cisci et al. (2022).

Before we prove Theorem 2.1 we recall the following results on the approxi-
mation of the identity, for the function G(·) (see Section 9.2 in Wheeden and
Zygmund (2015) and Section XIII.2 in Torchinsky (1995)).

Lemma A.1 Let G̃τ (·) := τ−kphτ (0; ·). Then the following hold:

(i)
∫
G̃τ (x1, . . . , xk)dx1 . . . dxk = 1.

(ii) For all δ > 0, lim
τ→0+

∫
(Rp)k\(Bδ(0))k

G̃τ (y1, . . . , yk)dy1 . . . yk = 0.

(iii) Additionally, let f̃ : (Rp)k → Rp and suppose that assumption (2.4) holds
true. Then, at every point (x1, . . . , xk) ∈ (Rp)k of continuity of f̃(·)

lim
τ→0+

(G̃τ ∗ f̃)(x1, . . . , xk) = f̃(x1, . . . , xk). (A.6)

Furthermore, (A.6) holds uniformly on any set A ⊂ (Rp)k where f̃(·) is uni-
formly continuous.

Proof of Theorem 2.1. The proof of (i) follows from Lemma A.1 (iii). Turning
to (ii), we first notice that, since f(·) ∈ L∞(Rp), fq(·) ∈ L∞(Rp). Then, we
compute

|τ−kpLGD(x, τ)− fk(x)| ≤
∫ ∣∣∣∣ k∏

j=1
f(x− xj)− fk(x)

∣∣∣∣G̃τ (x1, . . . , xk)dx1 . . . dxk.

(A.7)
We recursively apply the triangle inequality and obtain∣∣∣∣ k∏

j=1
f(x− xj)− fk(x)

∣∣∣∣ ≤ k∑
i=1

i−1∏
j=1

f(x− xj)|f(x− xi)− f(x)|fk−i(x), (A.8)

thus implying that

|τ−kpLGD(x, τ)−fk(x)| ≤ ck−1
∞

k∑
i=1

∫
|f(x−xi)−f(x)|G̃τ (x1, . . . , xk)dx1 . . . dxk,
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where f(·) ≤ c∞ < ∞ a.e. Now, by Lemma A.1 (ii), for all δ > 0 there exists
τ̃(δ) > 0 such that, for all 0 < τ ≤ τ̃(δ),∫

(Rp)k\(Bδ(0))k
G̃τ (x1, . . . , xk)dx1 . . . xk ≤ ε. (A.9)

If x ∈ Rp is a continuity point for f(·), then for all ε > 0, there exists δ > 0 such
that |f(x− y)− f(x)| ≤ ε for all y ∈ Bδ(0). Using Lemma A.1(i), we conclude
that, for all 0 < τ ≤ τ̃(δ),

|τ−kpLGD(x, τ)− fk(x)| ≤ kck−1
∞ (1 + 2c∞)ε. (A.10)

Finally, if f(·) is uniformly continuous on A ⊂ Rp, then (A.10) holds for all
x ∈ A.

For (iii), notice that, by (A.4) and a change of variable in (2.5),

τ−kpLGD(x, τ)−fk(x) =
∫
h1(0;x1, . . . , xk)

[ k∏
j=1

f(x+τxj)−fk(x)
]
dx1 . . . dxk.

(A.11)
Since f(·) is twice continuously differentiable, by multivariate Taylor’s theorem
with integral remainder, for i = 1, . . . , k,

f(x+ τxi) = f(x) + τ〈∇f(x), xi〉+ τ2
∫ 1

0
(1− z)x>i Hf (x+ τzxi)xidz.

Therefore,

k∏
j=1

f(x+ τxj) = fk(x) + τfk−1(x)〈∇f(x),
k∑
i=1

xi〉

+ τ2fk−1(x)
k∑
i=1

∫ 1

0
(1− z)x>i Hf (x+ zτxi)xidz

+ τ2fk−2(x)
k∑
i=1

k∑
j=i+1

〈∇f(x), xi〉〈∇f(x), xj〉+O(τ2).

(A.12)

The continuity of the second order partial derivatives implies that, for small τ ,
the functions (x1, . . . , xk) 7→

∫ 1
0 (1− z)x>i Hf (x+ zτxi)xidz are continuous with

lim
τ→0+

∫ 1

0
(1− z)x>i Hf (x+ zτxi)xidz = 1

2x
>
i Hf (x)xi. (A.13)
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By substituting (A.12) in (A.11), we see that

τ−kpLGD(x, τ)− fk(x)

=τfk−1(x)
∫
h1(0;x1, . . . , xk)〈∇f(x),

k∑
i=1

xi〉dx1 . . . dxk

+τ2fk−1(x)
∫
h1(0;x1, . . . , xk)

[ k∑
i=1

∫ 1

0
(1− z)x>i Hf (x+ zτxi)xidz

]
dx1 . . . dxk

+τ2fk−2(x)
∫
h1(0;x1, . . . , xk)

[ k∑
i=1

k∑
j=i+1

〈∇f(x), xi〉〈∇f(x), xj〉
]
dx1 . . . dxk

+O(τ2).

Using (A.4), we see that∫
h1(0;x1, . . . , xk)〈∇f(x),

k∑
i=1

xi〉dx1 . . . dxk = 0.

Now, (A.2) implies that∫
h1(0;x1, . . . , xk)

[ k∑
i=1

∫ 1

0
(1− z)x>i Hf (x+ zτxi)xidz

]
dx1 . . . dxk

=k
∫
h1(0;x1, . . . , xk)

[∫ 1

0
(1− z)x>1 Hf (x+ zτx1)x1dz

]
dx1 . . . dxk

and ∫
h1(0;x1, . . . , xk)

[ k∑
i=1

k∑
j=i+1

〈∇f(x), xi〉〈∇f(x), xj〉
]
dx1 . . . dxk

=k(k − 1)
2 fk−2(x)

∫
h1(0;x1, . . . , xk)〈∇f(x), x1〉〈∇f(x), x2〉dx1 . . . dxk.

By (A.13) and DCT, we conclude that

lim
τ→0+

τ−2(τ−kpLGD(x, τ)− fk(x)) = R(x),

where R(x) = R1(x) +R2(x) and

R1(x) := k

2f
k−1(x)

∫
h1(0;x1, . . . , xk)x>1 Hf (x)x1dx1 . . . dxk,

R2(x) := k(k − 1)
2 fk−2(x)

∫
h1(0;x1, . . . , xk)〈∇f(x), x1〉〈∇f(x), x2〉dx1 . . . dxk.

We now prove (iv). We first notice that, since f(·) ∈ L1(Rp) ∩ Lkd(Rp), then
f(·) ∈ Lq(Rp), for all 1 ≤ q ≤ kd. Next, using Hölder inequality, Lemma A.1
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(i), Jensen inequality, and (A.8), we obtain that

|τ−kpLGD(x, τ)−fk(x)|d ≤
∫ ∣∣∣∣ k∏

j=1
f(x− xj)− fk(x)

∣∣∣∣dG̃τ (x1, . . . , xk)dx1 . . . dxk

≤ kd−1
k∑
i=1

Iτ,i,

where Iτ,i is defined to be∫ (∫ (i−1∏
j=1

fd(x−xj)|f(x−xi)−f(x)|df (k−i)d(x)
)
G̃τ (x1, . . . , xk)dx1 . . . dxk

)
dx.

By Fubini’s theorem, we have that

Iτ,i =
∫
Jτ,i(x1, . . . , xk)G̃τ (x1, . . . , xk)dx1 . . . dxk, where

Jτ,i(x1, . . . , xk) :=
∫ i−1∏

j=1
fd(x− xj)|f(x− xi)− f(x)|df (k−i)d(x)dx.

Now, we apply again Hölder inequality with exponents s = k/(k−1) and t = k,
and see that Jτ,i(x1, . . . , xk) ≤ c1K(x1, . . . , xk), where

c1 := max
i=1,...,p

[∫ i−1∏
j=1

fsd(x− xj)f (k−i)sd(x)dx
]1/s

and

K(x1, . . . , xk) := max
i=1,...,p

[∫
|f(x− xi)− f(x)|tddx

]1/t
.

Notice that K(x1, . . . , xk) ≤ c2 := 2d[
∫
f(x)tddx]1/t <∞, and, for all ε > 0, by

Theorem 8.19 in Wheeden and Zygmund (2015), there exists δ > 0 such that
K(x1, . . . , xk) ≤ ε for all (x1, . . . , xk) ∈ (Bδ(0))k. Using Lemma A.1 (i) and
(A.9), we conclude that for all 0 < τ ≤ τ̃(δ)∫
|τ−kpLGD(x, τ)− fk(x)|ddx ≤ c1kd

∫
K(x1, . . . , xk)G̃τ (x1, . . . , xk)dx1 . . . dxk

≤ c1kd(1 + c2)ε.

Before proving Proposition 2.2 we establish useful inequalities in the following
lemma.

Lemma A.2 Let s, t ≥ 0. The following hold: (i) |ta − sa| ≤ |t − s|a, for all
0 < a ≤ 1, and (ii) |ta − sa| ≥ |t− s|a, for all a > 1.
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Proof of Proposition 2.2. We start by proving (i). By Lemma A.2

sup
x∈Rp
|f (G)
τ (x)− f(x)| ≤ sup

x∈Rp
F (G)
τ (x)1/kG = ( sup

x∈Rp
F (G)
τ (x))1/kG , where

F (G)
τ (x) :=

∣∣∣∣∫ h
(G)
1 (0;x1, . . . , xkG)

[ kG∏
j=1

f(x+ τxj)− fkG(x)
]
dx1 . . . dxkG

∣∣∣∣.
We observe that supx∈Rp F

(G)
τ (x) is bounded above by

∫
h

(G)
1 (0;x1, . . . , xkG) sup

x∈Rp

∣∣∣∣ kG∏
j=1

f(x+ τxj)− fkG(x)
∣∣∣∣dx1 . . . dxkG .

Since f(·) is uniformly continuous, for all (x1, . . . , xkG) ∈ (Rp)kG , it holds that

lim
τ→0+

sup
x∈Rp

∣∣∣∣ kG∏
j=1

f(x+ τxj)− fkG(x)
∣∣∣∣ = 0.

The result now follows from DCT, since h(G)
1 (0; ·) ∈ L1((Rp)kG) and the supre-

mum is bounded because f(·) is bounded as it is uniformly continuous.
Since a continuous function is uniformly continuous on a compact set, the proof
of the first part of (ii) follows from the proof of (i) with Rp replaced by K. For
the second part of (ii), notice that

sup
y∈Bε(x)

|f (G)
τ (y)− f(x)| ≤ sup

y∈Bε(x)
|f (G)
τ (y)− f(y)|+ sup

y∈Bε(x)
|f(y)− f(x)|.

The result now follows from the first part of (ii) and continuity of f(·). Finally,
for (iii), notice that, by Lemma A.2 and Theorem 2.1 (iv),∫

|f (G)
τ (y)− f(y)|kGddy ≤

∫
|(f (G)

τ )kG(y)− fkG(y)|ddy −−−−→
τ→0+

0.

Before we prove (iv) we state without proof a result concerning the partial
derivatives of the composition of two functions (Proposition 1 in Hardy (2006)).
For any set R, we denote by #R the cardinality of R.

Claim A.1 Let ϕ : Rp → R and ψ : R → R be m-times continuously dif-
ferentiable in A ⊂ Rp and ϕ(A) ⊂ R, respectively. Then, ψ(ϕ(·)) is m-times
continuously differentiable in A and, for x ∈ A and i1, . . . , im ∈ {1, . . . , p}, it
holds that

∂im . . . ∂i1ψ(ϕ(x)) =
∑
R∈Rm

[∂[#R]ψ](ϕ(x))
∏

{ijl ,...,ij1}∈R

∂ijl . . . ∂ij1ϕ(x),

where Rm is the set of all partitions of {1, . . . ,m} and ∂[l] denotes the (unidi-
mensional) lth derivative.
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The following lemma, which is standard, is required for completing the proof of
the proposition.

Lemma A.3 Let ϕn : Rp → R, φn : Rp → R and A ⊂ Rp. Suppose that ϕn(·)
and φn(·) converge uniformly on A to ϕ(·) and φ(·), respectively. It holds that
(i) (ϕn + φn)(·) converges uniformly on A to (ϕ + φ)(·) and (ii) if ϕn(·) and
φn(·) are bounded on A, then (ϕnφn)(·) converges uniformly on A to (ϕφ)(·).

We now turn to the proof of (iv). We first notice that, by Proposition 2.1 (iv)
and Remark 2.1, LGD(·, τ) and fτ (·) are m-times continuously differentiable
in Sf . Since K ⊂ Sf , c1 := minx∈K fk(x) > 0 and c2 := maxx∈K fk(x) <
∞. By Theorem 2.1 (i), there exists τ∗ > 0 such that, for all 0 < τ ≤ τ∗,
supx∈K |fkτ (x)− fk(x)| ≤ c1/2, implying that fkτ (x) ∈ [c3, c4], where c3 := c1/2
and c4 := c2 + c1/2. Next, we apply Lemma A.1 with ϕ(·) = fk(·) and ψ(·) =
(·)1/k, and obtain that

∂im . . . ∂i1f(x) =
∑
R∈Rm

[∂[#R]ψ](ϕ(x))
∏

{ijl ,...,ij1}∈R

∂ijl . . . ∂ij1ϕ(x). (A.14)

Similarly, with ϕτ (·) := fkτ (·), we have that

∂im . . . ∂i1fτ (x) =
∑
R∈Rm

[∂[#R]ψ](ϕτ (x))
∏

{ijl ,...,ij1}∈R

∂ijl . . . ∂ij1ϕτ (x). (A.15)

By Proposition 2.1 (iv), it holds that

∂ijl . . . ∂ij1ϕτ (x) = (G̃τ (·) ∗ (∂ijl . . . ∂ij1 f
k(·)))(x, . . . , x).

We apply Lemma A.1 (iii) with f̃(·, . . . , ·) = ∂ijl . . . ∂ij1 (f(·) . . . f(·)) and A =
(K)k, and obtain that ∂ijl . . . ∂ij1ϕτ (·) converges uniformly onK to ∂ijl . . . ∂ij1ϕ(·).
Next, notice that, for all j ∈ {1, . . . ,m}, ∂[j]ψ(·) is uniformly continuous on
[c3, c4]: for all ε > 0, there exists δ > 0 such that sups,t∈[c3,c4]:|s−t|≤δ|∂[j]ψ(s)−
∂[j]ψ(t)| ≤ ε. By Theorem 2.1 (i), there exists 0 < τ∗∗ ≤ τ∗, such that, for
all 0 < τ ≤ τ∗∗, supx∈K |fkτ (x) − fk(x)| ≤ δ. Therefore, we have that, for all
0 < τ ≤ τ∗∗, supx∈K |[∂[j]ψ](ϕτ (x)) − [∂[j]ψ](ϕ(x))| ≤ ε; that is, [∂[j]ψ](ϕτ (·))
converges uniformly on K to [∂[j]ψ](ϕ(·)). Now, the result follows from (A.14),
(A.15), and Lemma A.3 with A = K.
We now return to the proof of Theorem 2.2 over an additional parameter space
Θ uniformly over an additional parameter space Θ.

Assumption A.1 for (2.12): We need the following assumptions on Gθ(·).

(A1) Gθ(·) satisfies (P1)-(P4), where kGθ = kGΘ is independent of θ.
(A2) HGΘ = ∪θ∈ΘHGθ is a VC-subgraph class.
(A3) supθ∈ΘGθ(·) ≤ lG,Θ.
(A4) G(·)(·) is jointly Borel measurable.

Proof of (2.12). The proof follows essentially as in Section 4 with minor
changes. We include an argument for completeness. To this end, first note that
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that HGθ = {h(Gθ)
τ (x; ·) : x ∈ Rp, τ ∈ [0,∞]} and HGθ,1 := {h(Gθ,1)

τ (x; ·) : x ∈
Rp, τ ∈ [0,∞]}. We verify (i) and (ii) in the proof of Theorem 2.2 for the class
HGΘ . For (i), notice that, in view of (A3), both supθ∈Θ suph(Gθ)∈HGθ

|h(Gθ)(·)|
and supθ∈Θ suph(Gθ,1)∈HGθ,1

|h(Gθ,1)(·)| are bounded above by lG,Θ. We now turn
to (ii). Let iGΘ : [0,∞]×Θ× Rp × (Rp)kGΘ → R be given by

iGΘ(τ ; θ;x;x1, . . . , xkGΘ
) = h(Gθ)

τ (x;x1, . . . , xkGΘ
)

and FGΘ : (0,∞)×Θ× Rp × (Rp)kGΘ → (Rp)kGΘ be given by

FGΘ(τ ; θ;x;x1, . . . , xkGΘ
) =

(
θ,
x1 − x
τ

, . . . ,
xkGΘ

− x
τ

)>
.

For simplicity, let H(GΘ)
τ (θ; ·, ·) = h

(Gθ)
τ (·; ·), τ ∈ {0,∞}, and G∗(θ; ·) = Gθ(·),

yielding h(Gθ)
τ (·; ·) = G∗(FGΘ(τ ; θ; ·; ·), θ ∈ Θ, τ ∈ (0,∞). It follows from (A4)

that G∗(FGΘ(·; ·; ·; ·)), HGΘ
0 (·; ·, ·), and HGΘ

∞ (·; ·, ·) are Borel measurable. There-
fore, for all A ∈ B(R),

i−1
GΘ

(A) =(F−1
GΘ

(G−1
∗ (A)) ∪ ({0} × (H(GΘ)

0 )−1(A)) ∪ ({∞} × (H(GΘ)
∞ )−1(A))

∈ B([0,∞]×Θ× Rp × (Rp)kGΘ ).

We conclude that iGΘ(·) is Borel measurable and the class HGΘ is image admis-
sible Suslin via eGΘ : [0,∞]×Θ×Rp → HGΘ given by eGΘ(τ ; θ;x) = h

(Gθ)
τ (x; ·).

Before we state Proposition A.1, which is used in the proof of Theorem 2.3, we re-
call that T is a subset of Rp×[0,∞] such that, for (x, τ) ∈ T , E[(h̃(1)

τ (x;X1))2] >
0. For m ≥ 1 and (x1, τ1), . . . , (xm, τm) ∈ T , we also use the notations

LGDn(xl, τl) := (LGDn(x1, τ1), . . . , LGDn(xm, τm))>,

LGD(xl, τl) := (LGD(x1, τ1), . . . , LGD(xm, τm))>,
and, for j = 1, . . . , k and y1, . . . , yj ∈ Rp,

h(j)
τl

(xl; y1, . . . , yj) := (h(j)
τ1 (x1; y1, . . . , yj), . . . , h(j)

τm(xm; y1, . . . , yj))>.

Proposition A.1 For (x1, τ1), . . . , (xm, τm) ∈ T ,
√
n(LGDn(xl, τl)−LGD(xl, τl))

converges in distribution to a m-variate normal distribution with mean 0 and
covariance matrix whose (l1, l2)th element is given by k2γ((xl1 , τl1), (xl2 , τl2)),
where l1, l2 = 1, . . . ,m.

The proof is based on Hoeffding’s decomposition of U-statistics and can be found
in Francisci et al. (2022). An immediate consequence of Proposition A.1 is the
following corollary.

Corollary A.1 If x ∈ Rp and τ ∈ (0,∞] satisfy E[(h̃(1)
τ (x;X1))2] > 0, then

√
n(LGDn(x, τ)− LGD(x, τ)) d−−−−→

n→∞
N(0, k2E[(h̃(1)

τ (x;X1))2]). (A.16)
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Next, we state and prove a result concerning the quantity DG(·, ·) in 2.13 that
will be used for the proof of Proposition 2.3.

Lemma A.4 Let DG(·, ·), σG, and CG,0 be as in Theorem 2.4, {an}∞n=1 be a
sequence of positive scalars converging to zero with limn→∞

n
log(n)a

2
n =∞, b > 0,

and tn :=
√
nanb. Then, there are constants 0 < C̃G <∞ and ñ ∈ N such that,

for all n ≥ ñ, tn ≥ max(23σG, 24CG,0) and

DG(n, tn) ≤ C̃G
n2 .

Proof of Lemma A.4. Since limn→∞ tn = ∞ and limn→∞ an = 0, there is
n1 ∈ N, such that, for all n ≥ n1, tn ≥ max(23σG, 24CG,0) and tn/

√
n = anb ≤ 1.

Then, for all n ≥ n1, it holds that

DG(n, tn) ≤ 8 exp
(
− t2n

215k2
G(σ2

G + lG)

)
+2 exp

(
− t2n

26+kGkkG+1
G lGCG,0(σ2

G + lG)

)
+ 8C2CG,2

G,1 (σ2
G + 2anblG)−CG,2 exp

(
−
(
nσ2

G

2l2G
+
√
ntn

4lG

))
≤ 16 exp

(
− t2n
CG,3

)
+ CG,4a

−CG,2
n exp

(
−
√
ntn

CG,5

)
,

where

CG,3 := (σ2
G + lG) max(215k2

G, 26+kGkkG+1
G lGCG,0),

CG,4 := 8C2CG,2
G,1 (2blG)−CG,2 , and CG,5 := 4lG.

Next, we use that limn→∞
n

log(n)a
2
n =∞ to show that

lim
n→∞

n2 exp
(
− t2n
CG,3

)
= lim
n→∞

exp
(
−
(

log(n)
CG,3

)(
t2n

log(n) − 2CG,3
))

= 0.

In particular, there is n2 ∈ N, such that, for all n ≥ n2, exp
(
− t2n
CG,3

)
≤ 1

n2 .

Next, notice that

n2a−CG,2n exp
(
−
√
ntn

CG,5

)
= exp

(
2 log(n)− nanb

2CG,5

)
exp
(
−CG,2 log(an)− nanb

2CG,5

)
= exp

(
− log(n)

(
b

2CG,5
nan

log(n) − 2
))

exp
(
− b

2CG,5
nan

(
1 + 2CG,2CG,5

b

log(an)
nan

))
.

Now, limn→∞
na2
n

log(n) = ∞ implies that limn→∞
nan

log(n) = ∞ and limn→∞ nan =
∞ yielding that

lim
n→∞

n2a−CG,2n exp
(
−
√
ntn

CG,5

)
= 0.
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This show that there is n3 ∈ N such that a−CG,2n exp
(
−
√
ntn

CG,5

)
≤ 1

n2 for all

n ≥ n3. Let ñ = maxi=1,...,3 ni. Then, for all n ≥ ñ, it holds that

DG(n, tn) ≤ C̃G
n2 , where C̃G := 16 + CG,4.

Proof of Proposition 2.3. For (i), observe that

sup
x∈Rp
|f (G)
τn,n(x)− f(x)| ≤ sup

x∈Rp
|f (G)
τn,n(x)− f (G)

τn (x)|+ sup
x∈Rp
|f (G)
τn (x)− f(x)|

and, by Proposition 2.2 (i), it is enough to show that

lim
n→∞

sup
x∈Rp
|f (G)
τn,n(x)− f (G)

τn (x)| = 0 a.s. (A.17)

Now, using Lemma A.2, we see that

sup
x∈Rp
|f (G)
τn,n(x)− f (G)

τn (x)| ≤ τ−pn sup
x∈Rp
τ∈[0,∞]

|LGDn(x, τ)− LGD(x, τ)|1/kG .

Let ε > 0, tn :=
√
nτkGpn εkG and notice that, since limn→∞ nτ2kGp

n = ∞,
limn→∞ tn =∞. It follows from Theorem 2.4 and Lemma A.4 with an = τkGpn

and b = εkG that there are constants 1 < CG,0 < ∞, 0 < C̃G < ∞, and ñ ∈ N
such that, for all n ≥ ñ, tn ≥ max(23σG, 24CG,0) and

P⊗n
(

sup
x∈Rp
|f (G)
τn,n(x)− f (G)

τn (x)| ≥ ε
)
≤ DG(n, tn) ≤ C̃G

n2 .

Therefore, we obtain that
∞∑
n=1

P⊗n
(

sup
x∈Rp
|f (G)
τn,n(x)− f (G)

τn (x)| ≥ ε
)
≤ ñ− 1 +

∞∑
n=ñ

C̃G
n2 <∞.

Now, (A.17) follows from Borel-Cantelli lemma. The proof of the first part of
(ii) follows from the inequality

sup
x∈K
|f (G)
τn,n(x)− f(x)| ≤ sup

x∈Rp
|f (G)
τn,n(x)− f (G)

τn (x)|+ sup
x∈K
|f (G)
τn (x)− f(x)|,

(A.17), and Proposition 2.2 (ii). For the second part of (ii), let ε∗ > 0 and
n∗ ∈ N such that εn ≤ ε∗ for all n ≥ n∗. Then, for all n ≥ n∗ and x ∈ Rp,

sup
y∈Bεn (x)

|f (G)
τn,n(y)−f(x)| ≤ sup

y∈Bε∗ (x)
|f (G)
τn,n(y)−f (G)

τn (y)|+ sup
y∈Bεn (x)

|f (G)
τn (y)−f(x)|.

Now, using the compactness of Bε∗(x) and the first part of (ii), we have that

lim
n→∞

sup
y∈Bε∗ (x)

|f (G)
τn,n(y)− f (G)

τn (y)| = 0 a.s.
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Finally, Proposition 2.2 (ii) implies that

lim
n→∞

sup
y∈Bεn (x)

|f (G)
τn (y)− f(x)| = 0.

We next turn to the proof of Lemma 3.1.

Proof of Lemma 3.1. We first observe that x ∈ Sfτ if and only if fτ (x) > 0
if and only if LGD(x, τ) > 0. Proposition 2.1 (i) implies that for x ∈ Rp,
LGD(x, τ1) ≤ LGD(x, τ2), from which it follows that Sfτ1 ⊂ Sfτ2 . Next, suppose
that f(·) is continuous and let x ∈ Sf and τ > 0. Since f(·) is continuous, Sf
is open and there exists ε > 0 such that Bτε(x) ⊂ Sf . By (P4), there exist
0 < δ ≤ τε and c > 0 such that λ((Bδ(x))k ∩ Shτ (x;·)) > 0 and hτ (x; ·) ≥ c in
(Bδ(x))k ∩ Shτ (x;·). It follows that

LGD(x, τ) =
∫
hτ (x;x1, . . . , xk)f(x1) . . . f(xk)dx1 . . . dxk

≥ c
∫

(Bδ(x))k∩Shτ (x;·)

f(x1) . . . f(xk)dx1 . . . dxk > 0.

Thus x ∈ Sfτ and Sf ⊂ Sfτ . Since the sets {Sfτ }τ>0 are monotonically decreas-
ing with τ , we have that limτ→0+ Sfτ = ∩τ>0Sfτ ⊃ Sf . For the last part, let
x ∈ Rp \Sf . Since Rp \Sf is open, there exists ε > 0 such that Bε(x) ⊂ Rp \Sf .
Let 0 < τ ≤ ε/ρ. By (2.4) it follows that Shτ (x;·) ⊂ (Bρτ (x))k ⊂ (Bε(x))k
implying that LGD(x, τ) = 0. Therefore, x /∈ ∩τ>0Sfτ and ∩τ>0Sfτ ⊂ Sf .

The next lemma is used in the proof of Theorem 3.1 (iii), Proposition A.2 (ii),
and Lemma 3.2 (i) and provides a uniform approximation of fτ (·) in compact
sets. The proof relies on Theorem 2.1 (iii) and is given in Francisci et al. (2022).

Lemma A.5 Suppose (2.4) holds true and f(·) is three times continuously
differentiable. Let K be a compact subset of Sf . Then, there are constants
τ(K), c1(K), c2(K) > 0 and a continuously differentiable function R̃τ : K → R
such that, for all x ∈ K and 0 < τ ≤ τ(K), |R̃τ (x)| ≤ c1(K), ‖∇R̃τ (x)‖ ≤
c2(K), and

fτ (x) = f(x) + R̃τ (x)τ2.

We now turn to the proof of Theorem 3.1. To this end, we introduce few
additional notations. The norm of a p × p matrix A is given by ‖A‖M :=
supy∈Rp,y 6=0‖Ay‖/‖y‖ and the spectrum of A, that is, the set of all the eigen-
values of A is denoted by σ(A). Finally, the sign function sgn : R→ R is given
by

sgn(t) =


−1 if t < 0
0 if t = 0
1 if t > 0.
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Before the proof, we provide a brief description of the idea. Proof of (i) is stan-
dard and allows for a characterization of the stationary points of fτ (·) when
τ -symmetry prevails. As for the proof part (ii), note that for each stationary
point µ of f(·), first a closed hypercube centered at µ with directions given
by the orthogonal eigenvalues of Hf (µ) is constructed. The side lengths of the
hypercube are such that, for small enough τ and all points in the hypercube
(a) the eigenvalues of Hfτ (·) and Hf (·) corresponding to the same eigenvector
have the same sign and (b) points on opposite “hyperfaces” have directional
derivatives (w.r.t. the eigenvector that is orthogonal to the two “hyperfaces”)
of opposite sign. This follows using the convergence of first and second order
derivatives of fτ (·) to those of f(·). Now, (b) implies that every straight line
connecting the two “hyperfaces” contains a point having zero directional deriva-
tive. Thus, by intersecting all such sets of points along every direction, we find
a point µτ having zero directional derivative w.r.t. all eigenvectors. Since these
are orthogonal, the gradient of µτ is zero, that is, µτ is a stationary point of
fτ (·). Next, using (a), we conclude that µτ and µ are of the same type. Finally,
the convergence µτ → µ follows by letting the side length of the hypercube
converge to zero. For part (iii), we use Lemma A.5 to show that, in a compact
set, |∇fτ (·) −∇f(·)| = o(τ2). We then infer the same order of convergence for
µτ to µ.
Proof of Theorem 3.1. We start by proving (i). Notice that, if f(·) is con-
tinuously differentiable in Bρτ (x) ⊂ Sf , then, for j = 1, . . . , p,

∂jfτ (x) = 1
k

(fτ (x))1−k ∂jLGD(x, τ)
τkp

, (A.18)

where, by Proposition 2.1, (A.2) and (A.4),

∂jLGD(x, τ) = k

∫
hτ (0;x1, . . . , xk)∂jf(x+x1)f(x+x2) . . . f(x+xk)dx1 . . . dxk.

Hence, ∂jfτ (µ) = 0 if and only if∫
hτ (0;x1, . . . , xk)∂jf(µ+ x1)f(µ+ x2) . . . f(µ+ xk)dx1 . . . dxk = 0, (A.19)

and hence (3.5) holds. We next turn to the proof of (ii). Since Hf (µ) is
symmetric, it has orthonormal eigenvectors vi associated with eigenvalues λi,
i = 1, . . . , p. Notice that, since µ is of type l, l eigenvalues are negative and p− l
are positive. In particular,

min
i=1,...,p

|λi| > 0. (A.20)

Let 0 < τ ≤ τ1, where τ1 := δ/(2(1 + ρ)), and x ∈ Bτ1(µ). Since x ∈ Bδ/2(µ),
(Bτ1(x))+ρτ ⊂ Bδ/2(x) ⊂ Bδ(µ). It follows that fτ (·) is twice continuously
differentiable in Bτ1(x) and its first order partial derivatives are given by (A.18).
By uniform continuity of the second order partial derivatives of f(·) in Bδ(µ)
and Proposition 2.2 (iv), it follows that, for i, j = 1, . . . , p,

sup
y∈Bδ(µ)

|∂i∂jf(y)− ∂i∂jf(µ)| −−−−→
δ→0+

0. (A.21)
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and, for 0 < τ̃1, τ̃2 ≤ τ1,

sup
0<τ≤τ̃2

sup
y∈Bτ̃1 (µ)

|∂i∂jfτ (y)− ∂i∂jf(y)| ≤ sup
0<τ≤τ̃2

sup
y∈Bτ1 (µ)

|∂i∂jfτ (y)− ∂i∂jf(y)|

+ sup
y∈Bτ̃1 (µ)

|∂i∂jf(y)− ∂i∂jf(y)|−−−−−−→
τ̃1,τ̃2→0+

0.

(A.22)

For y1, . . . , yp ∈ Bδ(0), let

Hf (µ; y1, . . . , yp) :=

(∇∂1f(x+ y1)))>
...

(∇∂pf(x+ yp))>


>

and, similarly with f replaced by fτ and y1, . . . , yp ∈ Bτ1(0). (A.21) and (A.22)
show that,

sup
y1,...,yp∈Bδ(0)

‖Hf (µ; y1, . . . , yp)−Hf (µ)‖M −−−−→
δ→0+

0, (A.23)

sup
0<τ≤τ̃2

sup
y1,...,yp∈Bτ̃1 (0)

‖Hfτ (µ; y1, . . . , yp)−Hf (µ)‖M −−−−−−→
τ̃1,τ̃2→0+

0. (A.24)

In particular, (A.23) implies that, for i = 1, . . . , p,

sup
y1,...,yp∈Bδ(0)

‖Hf (µ; y1, . . . , yp)vi − λivi‖ −−−−→
δ→0+

0.

and, for ti ∈ R,

sup
y1,...,yp∈Bδ(0)

∣∣∣∣〈Hf (µ; y1, . . . , yp)
(
vi +

p∑
j=1,j 6=i

tjvj

)
, vi〉 − λi

∣∣∣∣ −−−−→δ→0+
0.

By (A.20), there exists 0 < δ2 ≤ δ such that, for i = 1, . . . , p,

sgn
(
〈Hf (µ; y1, . . . , yp)

(
vi +

p∑
j=1,j 6=i

tjvj

)
, vi〉

)
= sgn(λi), (A.25)

for all y1, . . . , yp ∈ Bδ2(0). Similarly, using (A.24), one can show that

sup
0<τ≤τ̃2

sup
y1,...,yp∈Bτ̃1 (0)

|〈Hfτ (µ; y1, . . . , yp)vi, vi〉 − λi| −−−−−−→
τ̃1,τ̃2→0+

0. (A.26)

Moreover, by Bauer–Fike theorem (Theorem 2.1 in Eisenstat and Ipsen (1998)),
for all λ̃τ (µ; y1, . . . , yp) ∈ σ(Hfτ (µ; y1, . . . , yp)), we have that

min
i=1,...,p

|λ̃τ (µ; y1, . . . , yp)− λi| ≤ ‖Hfτ (µ; y1, . . . , yp)−Hf (µ)‖M. (A.27)
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By (A.20), (A.26), (A.27) and (A.24), it follows that, there exists 0 < τ2 ≤ τ1
such that, for all 0 < τ ≤ τ2 and y1, . . . , yp ∈ Bτ2(0),

sgn(〈Hfτ (µ; y1, . . . , yp)vi, vi〉) = sgn(λi) (A.28)

and σ(Hfτ (µ; y1, . . . , yp)) = {λ̃τ,1(µ; y1, . . . , yp), . . . , λ̃τ,p(µ; y1, . . . , yp)} with

sgn(λ̃τ,i(µ; y1, . . . , yp)) = sgn(λi). (A.29)

Now, let 0 < τ ≤ τ2, 0 < h ≤ h∗, where h∗ := min(δ2, τ2)/(2√p), and ti ∈
[−2h, 2h]. By the mean value theorem, there exist 0 ≤ ci,j ≤ 1 such that

∇f(µ± hvi +
∑

j=1,j 6=i
tjvj) = Hf (µ; y1, . . . , yp)

(
±hvi +

p∑
j=1,j 6=i

tjvj

)
,

where yj = ci,j(±hvi +
∑
j=1,j 6=i tjvj), implying that

1
h
〈∇f(µ±hvi+

∑
j=1,j 6=i

tjvj), vi〉 = ±〈Hf (µ; y1, . . . , yp)
(
vi±

p∑
j=1,j 6=i

tj/hvj

)
, vi〉.

Since ‖yj‖ ≤ 2√ph∗ ≤ δ2, by (A.25),

sgn
(
〈∇f(µ± hvi +

∑
j=1,j 6=i

tjvj), vi〉
)

= sgn(±λi). (A.30)

Now, let us define the hypercube Fh∗(µ) with center µ by

Fh∗(µ) :=
{
µ+

p∑
j=1

tjvj , tj ∈ [−3/4h∗, 3/4h∗]
}

and its “hyperfaces” by

F±h∗,i(µ) :=
{
µ± 3/4h∗vi +

p∑
j=1,j 6=i

tjvj , tj ∈ [−3/4h∗, 3/4h∗]
}
.

Since, by (2.4), for 0 < τ ≤ τ∗, where τ∗ := min(τ2, h∗/(4ρ)),

Shτ (0;·,x2,...,xk) ⊂ Bρτ (0) ⊂
{ p∑
j=1

sjvj : sj ∈ [−h∗/4, h∗/4]
}
,

we have that, for µ±i ∈ F
±
h∗,i(µ) and x1 ∈ Shτ (0;·,x2,...,xk),

µ±i + x1 ∈ µ+
{
±hvi +

p∑
j=1,j 6=i

sjvj : h ∈ [h∗/2, h∗], sj ∈ [−h∗, h∗]
}
.
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Now, by (A.30),
sgn(〈∇f(µ±i + x1), vi〉) = sgn(±λi),

for all x1 ∈ Shτ (0;·,x2,...,xk) and tj ∈ [−3/4h∗, 3/4h∗]. It follows from (A.18)
that sgn(〈∇fτ (µ±i ), vi〉) = sgn(±λi). In particular, for all µ+

i ∈ F+
h∗,i(µ) and

µ−i ∈ F
−
h∗,i(µ),

sgn(〈∇fτ (µ+
i ), vi〉) = − sgn(〈∇fτ (µ−i ), vi〉) 6= 0. (A.31)

Notice that µ+
i ∈ F

+
h∗,i(µ) if and only if µ+

i − 3/2h∗vi ∈ F−h∗,i(µ) and let αi :
F+
h∗,i(µ) × [0, 1] → Fh∗(µ) be given by αi(y, t) = y − 3/2h∗tvi. Since ∇fτ (·)

is continuous, by (A.31), for all µ+
i ∈ F+

h∗,i(µ), there exists 0 < t1 < 1 such
that 〈∇fτ (αi(µ+

i , t1)), vi〉 = 0. Next, we show that t1 is unique. To this end, let
0 < t2 < 1 be such that 〈∇fτ (αi(µ+

i , t2)), vi〉 = 0. By the mean value theorem,
there exist 0 ≤ cj ≤ 1 such that

∇fτ (αi(µ+
i , t2))= ∇fτ (αi(µ+

i , t1))+Hfτ (µ; y1, . . . , yp)>(αi(µ+
i , t2)−αi(µ+

i , t1))),

where yj = (1− cj)αi(µ+
i , t2) + cjαi(µ+

i , t1)− µ, implying that

3/2h∗(t2 − t1)〈Hfτ (µ; y1, . . . , yp)vi, vi〉 = 0.

By (A.28), it follows that t2 = t1. Let, for i = 1, . . . , p,

Zτ,i(µ) := {αi(y, t) : 〈∇fτ (αi(y, t)), vi〉 = 0, y ∈ F+
i (µ), t ∈ [0, 1]}.

Notice that Zτ,i(µ) are closed subsets of the hypercube Fh∗(µ) with dimension
p−1 that divide Fh∗(µ) into two parts with only the faces F+

h∗,i(µ) and F−h∗,i(µ)
entirely contained in the same part. It follows that ∩pi=1Zτ,i(µ) = {µτ}, where
µτ satisfies 〈∇fτ (µτ ), vi〉 = 0, for all i = 1, . . . , p, implying that ∇fτ (µτ ) = 0.
Finally, by (A.29) and ‖µτ − µ‖ ≤ 3/4√ph∗ ≤ τ2, it follows that µτ is of type
l. Also, by letting τ2 → 0+, we see that ‖µτ − µ‖ → 0.
Finally, we prove (iii). Since Hf (µ)−1 is symmetric, it holds that

ξ := ‖Hf (µ)−1‖M = max
i=1,...,p

1/|λi| > 0.

By (A.24), there exists 0 < τ3 ≤ τ1, such that, for all 0 < τ ≤ τ3 and yj ∈ Bτ3(0),
j = 1, . . . , p,

‖Hfτ (µ; y1, . . . , yp)−Hf (µ)‖M ≤ 1/(2ξ). (A.32)

It follows from (A.32) and the triangle inequality that, for all v ∈ Rp,

‖v‖ ≤ 2ξ(‖Hf (µ)v‖ − 1/(2ξ)‖v‖) ≤ 2ξ‖Hfτ (µ; y1, . . . , yp)v‖.

By setting w = Hfτ (µ; y1, . . . , yp)v, we see that ‖w‖ is bounded below by
1/(2ξ)‖Hfτ (µ; y1, . . . , yp)w‖ implying that

‖Hfτ (µ; y1, . . . , yp)−1‖M ≤ 2ξ. (A.33)
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Moreover, by the mean value theorem, there exist 0 ≤ c̃j ≤ 1, j = 1, . . . , p, such
that,

∇fτ (µ) = ∇fτ (µ)−∇fτ (µτ ) = Hfτ (µ; y1, . . . , yp)(µ− µτ ),

where yj = (1 − c̃j)(µ − µτ ). Since ‖yj‖ ≤ ‖µ − µτ‖ ≤ τ2, using (A.29) we see
that Hfτ (µ; y1, . . . , yp) is invertible. We now apply Lemma A.5 with K = Bδ(µ)
and get constants τ(K), c2(K) > 0 such that, for all y ∈ K and 0 < τ ≤
min(τ2, τ(K)),

‖∇fτ (y)−∇f(y)‖ ≤ c2(K)τ2. (A.34)

Using (A.33) and (A.34), we conclude that, for all 0 < τ ≤ min(τ2, τ(K)),

‖µ− µτ‖ ≤ ‖Hfτ (µ; y1, . . . , yp)−1‖M‖∇fτ (µ)−∇f(µ)‖ ≤ 2ξc2(K)τ2.

We study next the relationship between the gradient systems (3.4) and (3.2) un-
der extreme localization. To this aim, notice that the sets {Sfτ }τ>0 contain Sf
by Lemma 3.1. Furthermore, because of Remark 2.1 and Proposition 2.2 (iv),
fτ (·) is twice continuously differentiable in Sfτ and its gradient and Hessian
matrix converge to those of f(·) in Sf . The next lemma is used to show the
existence of the solution ux,τ (t) of (3.4) with initial condition ux,τ (0) = x. The
proof involves standard analysis arguments and hence it is omitted. For more
details see also Francisci et al. (2022).

Lemma A.6 Under assumption (2.4), (Rα)−ρτ ⊂ Rατ ⊂ (Rα)+ρτ , for all τ > 0
and α > 0. In particular, if Rα is bounded for α > 0, then Rατ is also bounded
for any τ > 0.

The next proposition is required in the proof of Theorem 3.2 and its proof
is based on Proposition 2.1 (iv), Grönwall’s inequality, and Lemma A.5. The
interested reader can refer to Francisci et al. (2022).

Proposition A.2 Suppose that (2.4) holds true. (i) If f(·) is continuously
differentiable in Rp and, for all α > 0, Rα is compact, then, for all t ≥ 0 and
x ∈ Sf ,

lim
τ→0+

ux,τ (t) = ux(t).

(ii) If, additionally, f(·) is three times continuously differentiable, then, for
x ∈ Sf ,

lim
τ→0+

sup
t∈[0,∞)

‖ux,τ (t)− ux(t)‖ = 0.

We now prove the convergence of clusters based on τ -approximation to that
based on f(·).
Proof of Theorem 3.2. Let α := minν∈Nf f(ν)/2, δ := dist(R2α,Rp\Rα)/(1+
ρ), {αn}∞n=1 be a sequences of positive scalars converging monotonically to 0
with α1 < α and δn := min(dist(R2α,Rp \Rα),dist(Rαn ,Rp \ Sf ))/(1 + ρ). We
see that

Nf ⊂ R2α ⊂ (Rα)−δ ⊂ (Rα)−δn ⊂ (Rαn)−δn , (A.35)
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with

dist(Nf ,Rp \ (Rαn)−δn) ≥ dist(R2α, (Rp \Rα)+δ) ≥ δ ≥ δn. (A.36)

Furthermore, by Lemma A.6, for 0 < τ ≤ δn/ρ,

(Rαn)−δn ⊂ (Rαn)−ρτ ⊂ Rαnτ ⊂ (Rαn)+ρτ ⊂ (Rαn)+δn ⊂ Sf . (A.37)

We notice that, by Assumption 3.1, (Rαn)−δn is bounded. Moreover, by Lemma
3.1 and Remark 2.1, fτ (·) is twice continuously differentiable in Sf ⊂ Sfτ .
Now, by Theorem 3.1 (ii), there exist h∗, τ∗ > 0 and closed hypercubes Fh∗(µ),
µ ∈ Nf , with side length 3/2h∗, such that, for 0 < τj ≤ τ∗, fτj (·) has a
unique stationary point µτj in F̊h∗(µ) and µτj is, for τj ≤ τ∗, of the same type
as µ, and limj→∞‖µτj − µ‖ = 0. We can suppose without loss of generality
that 3/2h∗ ≤ δ/

√
p, that is Fh∗(µ) ⊂ Bδ(µ). By (A.35) and (A.36), it follows

that Fh∗(µ) ⊂ (Rαn)−δn and Kn := (Rαn)+δn \ ∪ν∈Nf F̊h∗(ν) is compact. Let
ηn := miny∈Kn‖∇f(y)‖ > 0. By Proposition 2.2 (iv), there exists 0 < τ∗n ≤
min(τ∗, δn/ρ) such that ‖∇fτ (y) − ∇f(y)‖ < ηn, for all y ∈ (Rαn)+δn and
0 < τ ≤ τ∗n. Hence,

‖∇fτ (y)‖ ≥ ‖∇f(y)‖ − ‖∇fτ (y)−∇f(y)‖ > 0.

It follows that {ντj}ν∈Nf are the only stationary points of fτj (·) in (Rαn)+δn .
Now, by (A.37), (Rαn)−δn ⊂ Rαnτj ⊂ (Rαn)+δn , which implies that the solutions
of (3.4) starting in (Rαn)−δn cannot leave the set to reach another possible
stationary point of fτj (·) outside Rαnτj . Therefore, for 0 < τj ≤ τ∗n, we can
partition (Rαn)−δn as

∪ν∈Nf (C(ν) ∩ (Rαn)−δn) = (Rαn)−δn = ∪ν∈Nf (Cτj (ντj ) ∩ (Rαn)−δn). (A.38)

Next, we show that (Rαn)−δn ↑n→∞ Sf . To this end, let x ∈ Sf . Clearly,
x ∈ Rf(x) ⊂ R̊f(x)/2. Since αn, δn −−−−→

n→∞
0, there exists n∗ such that, for

all n ≥ n∗, αn < f(x)/2 and δn < dist(Rf(x),Rp \ R̊f(x)/2)/2. Then, x ∈
(Rf(x)/2)−δn ⊂ (Rαn)−δn . We recall that the symmetric difference between two
subsets A and B of Rp is A∆B = ((Rp \A) ∩B) ∪ (A ∩ (Rp \B)). For µ ∈ Nf ,
it holds that

lim sup
j→∞

Cτj (µτj )∆C(µ) = ( lim
n→∞

(Rαn)−δn) ∩ (lim sup
j→∞

Cτj (µτj )∆C(µ))

= lim
n→∞

((Rαn)−δn ∩ (lim sup
j→∞

Cτj (µτj )∆C(µ))).

Using (A.38), we have that (Rαn)−δn ∩ (lim supj→∞ Cτj (µτj )∆C(µ)) is a subset
of

(Rαn)−δn ∩ (∩∞j=1,τj≤τ∗n ∪
∞
l=j Cτl(µτj )∆C(µ)),

which is equal to

((Rαn)−δn ∩ (∩∞j=1,τj≤τ∗n ∪
∞
l=j Cτl(µ)) ∩ (∪ν∈Nf ,ν 6=µC(ν)))

∪((Rαn)−δn ∩ C(µ) ∩ (∪ν∈Nf ,ν 6=µ(∩j=1,τj≤τ∗n ∪
∞
l=j Cτl(ντl)))).
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The above union is contained in

(Rαn)−δn ∩ (∪µ∈Nf ∪ν∈Nf ,ν 6=µ C(µ) ∩ (∩j=1,τj≤τ∗n ∪
∞
l=j Cτl(ντl))).

It follows that lim supj→∞ Cτj (µτj )∆C(µ) is contained in

lim
n→∞

(Rαn)−δn ∩ (∪µ∈Nf ∪ν∈Nf ,ν 6=µ C(µ) ∩ (∩j=1,τj≤τ∗n ∪
∞
l=j Cτl(ντl))).

Now, this is equal to

∪µ∈Nf ∪ν∈Nf ,ν 6=µ lim
n→∞

((Rαn)−δn ∩ C(µ) ∩ (∩j=1,τj≤τ∗n ∪
∞
l=j Cτl(ντl))).

Next, let
x ∈ (Rαn)−δn ∩ C(µ) ∩ (∩j=1,τj≤τ∗n ∪

∞
l=j Cτl(ντl)).

Then, there exists a subsequence {τ̃j}∞j=1 of {τj}∞j=1 such that limt→∞ ux,τ̃j (t) =
ντ̃j . In particular, limj→∞ limt→∞ ux,τ̃j (t) = ν. On the other hand, by Proposi-
tion A.2 (ii), ux,τ̃j (·) converges uniformly on [0,∞) to ux(·), as j →∞. There-
fore,

lim
t→∞

lim
j→∞

ux,τ̃j (t) = lim
t→∞

ux(t) = µ.

By Moore-Osgood theorem (see Theorem 7.11 in Rudin (1976)), it follows that
ν = limj→∞ limt→∞ ux,τ̃j (t) = limt→∞ limj→∞ ux,τ̃j (t) = µ. We conclude that

∪µ∈Nf ∪ν∈Nf ,ν 6=µ lim
n→∞

((Rαn)−δn ∩ C(µ) ∩ (∩j=1,τj≤τ∗n ∪
∞
l=j Cτl(ντl))) = ∅,

implying that limj→∞ Cτj (µτj )∆C(µ) = lim supj→∞ Cτj (µτj )∆C(µ) = ∅. Fi-
nally, the equivalence

lim
j→∞

Aj = A if and only if lim
j→∞

(Aj∆A) = ∅,

with Aj = Cτj (µτj ) and A = C(µ) implies that limj→∞ Cτj (µτj ) = C(µ).

Proof of Theorem 3.3. We begin by proving (i). Let h∗, n∗ > 0 be such that
(K)+h∗ ⊂ Sf and 0 < hn ≤ h∗, for all n ≥ n∗. Notice that fτn(·) is continuously
differentiable in (K)+h∗ (see Remark 2.1). By the mean value theorem, there
exist 0 ≤ c1,n, c2,n ≤ 1 such that

f(x+ hnvn)− f(x) = hn〈∇f(x+ c1,nhnvn), vn〉 (A.39)

and
fτn(x+ hnvn)− fτn(x) = hn〈∇fτn(x+ c2,nhnvn), vn〉. (A.40)

Using the triangle inequality, we have that

sup
x∈K
|∇hnvn fτn(x)−∇vf(x)| ≤ sup

x∈K
|∇hnvn fτn(x)−∇hnvn f(x)|+sup

x∈K
|∇hnvn f(x)−∇vf(x)|.
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We show that each term converges to 0 as n→∞. First, by (A.39), the uniform
continuity of ∇f(·) in (K)+h∗ and limn→∞‖vn − v‖ = 0, it can be shown that

lim
n→∞

sup
x∈K
|∇hnvn f(x)−∇vf(x)| ≤ sup

y∈(K)+h∗
‖∇f(y)‖ lim

n→∞
‖vn − v‖

+ lim
n→∞

sup
x∈K
‖∇f(x+ c1,nhnvn)−∇f(x)‖ = 0.

Also, by (A.39) and (A.40), it holds that

sup
x∈K
|∇hnvn fτn(x)−∇hnvn f(x)| ≤ sup

x∈K
‖∇fτn(x+ c2,nhnvn)−∇f(x+ c1,nhnvn)‖.

Finally, Proposition 2.2 (iv) and the uniform continuity of ∇f(·) in (K)+h∗

imply that

lim
n→∞

sup
x∈K
|∇hnvn fτn(x)−∇hnvn f(x)| ≤ lim

n→∞
sup

y∈(K)+h∗
‖∇fτn(y)−∇f(y)‖

+ sup
y∈(K)+h∗

lim
n→∞

sup
z∈Bhn (y)∩(K)+h∗

‖∇f(y)−∇f(z)‖ = 0.

We now prove (ii). By (i) and triangle inequality, it is enough to show that

lim
n→∞

P⊗n
(

sup
x∈K
|∇hnvn fτn,n(x)−∇hnvn fτn(x)| ≥ ε

2

)
= 0.

Notice that, by Lemma A.2, supx∈K |∇hnvn fτn,n(x)−∇hnvn fτn(x)| is bounded above
by

sup
x∈K

∣∣∣∣LGDn(x+ hnvn, τn)− LGD(x+ hnvn, τn)
hknτ

kp
n

∣∣∣∣1/k
+ sup
x∈K

∣∣∣∣LGDn(x, τn)− LGD(x, τn)
hknτ

kp
n

∣∣∣∣1/k.
We now use that limn→∞

√
nhknτ

kp
n =∞ and apply Theorem 2.4 with t = tn :=√

nhknτ
kp
n (ε/4)k. It follows that there are constants σG ≥ 0, 1 < CG,0, CG,1, CG,2 <

∞, and n∗∗ ∈ N such that, for all n ≥ n∗∗, tn ≥ max(23σG, 24CG,0) and

P⊗n
(

sup
x∈K
|∇hnvn fτn,n(x)−∇hnvn fτn(x)| > ε

2

)
≤P⊗n

(√
n sup

x∈Rp
τ∈[0,∞]

|LGDn(x, τ)− LGD(x, τ)| ≥ tn
)
≤ DG(n, tn),

whereDG(·, ·) is defined in 2.13. Now, the result follows from limn→∞DG(n, tn) =
0.

Proof of Lemma 3.2. We begin by proving (i). By Lemma A.5 there are
constants τ((K)+h∗), c2((K)+h∗) > 0 such that, for all y ∈ (K)+h∗ and 0 < τ ≤
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τ((K)+h∗), fτ (y) = f(y) + R̃τ (y)τ2 and ‖∇R̃τ (y)‖ ≤ c2((K)+h∗). Let n∗ ∈ N
such that τn ≤ τ((K)+h∗) for all n ≥ n∗. It holds that, for all n ≥ n∗,

∇hvfτn(x)−∇hvf(x) = R̃τn(x+ hv)− R̃τn(x)
h

τ2
n.

Now, by the mean value theorem, there are constants 0 ≤ c̃n ≤ 1 such that∣∣∣∣ R̃τn(x+ hv)− R̃τn(x)
h

∣∣∣∣ ≤ ‖∇R̃τn(x+ c̃nhv)‖ ≤ c2((K)+h∗).

It follows that

lim
n→∞

sup
h∈[hn,h∗]

sup
v∈Sp−1

sup
x∈K
|∇hvfτn(x)−∇hvf(x)| ≤ c2((K)+h∗) lim

n→∞
τ2
n = 0.

We now prove (ii). By (i), it is enough to show that

lim
n→∞

P⊗n
(

sup
h∈[hn,h∗]

sup
v∈Sp−1

sup
x∈K
|∇hvfτn,n(x)−∇hvfτn(x)| ≥ ε

2

)
= 0.

Notice that, by Lemma A.2,

|∇hvfτn,n(x)−∇hvfτn(x)| ≤ 2 sup
x∈Rp
τ∈[0,∞]

∣∣∣∣LGDn(x, τ)− LGD(x, τ)
hknτ

kp
n

∣∣∣∣1/k.
We apply again Theorem 2.4 with t = tn :=

√
nhknτ

kp
n (ε/4)k. Then, there are

constants 1 < CG,0, CG,1, CG,2 <∞ such that, for large enough n,

P⊗n
(

sup
h∈[hn,h∗]

sup
v∈Sp−1

sup
x∈K
|∇hvfτn,n(x)−∇hvfτn(x)| ≥ ε

2

)
≤P⊗n

(√
n sup

x∈Rp
τ∈[0,∞]

|LGDn(x, τ)− LGD(x, τ)| ≥ tn
)
≤ DG(n, tn),

where DG(·, ·) is defined in 2.13. Since limn→∞ tn = ∞, limn→∞ hn = 0, and
limn→∞ τn = 0, we conclude that limn→∞DG(n, tn) = 0. Finally, for (iii), we
apply Lemma A.4 with an = hknτ

kp
n and b = (ε/4)k and get constants 0 < C̃ <∞

and ñ ∈ N such that, for all n ≥ ñ,

DG(n, tn) ≤ C̃

n2 .

A version of discrete Grönwall lemma (see e.g. Holte (2009)) is needed in Theo-
rem 3.2 to evaluate the difference between the sequence {yn,r,j}j

∗

j=1 (defined in
the proof) and the solution ux(·) of (3.2).
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Lemma A.7 (Discrete Grönwall lemma) Let {an}∞n=0, {bn}∞n=0 and {cn}∞n=0
be non-negative sequences. If a0 = 0 and an ≤ (1 + cn−1)an−1 + bn−1 for all
n ≥ 1, then, an ≤ (

∑n−1
j=0 bj) exp(

∑n−1
j=1 cj).

The next lemma is also used in the proof of Theorem 3.2.

Lemma A.8 Suppose that f(·) is continuously differentiable and K is a com-
pact subset of Sf with K ∩Nf = ∅. Then, there exist r(K), c(K) > 0 such that
(K)+r(K) ⊂ Sf and, for all x ∈ K and (h, v) ∈ (0, r(K)]×(Sp−1∩Br(K)(w(x))),
∇hvf(x) ≥ c(K).

Proof of Lemma A.8. Recall (4.6) and let g : [0,∞)→ R be given by

g(h) = min
y∈K

(f(y + hw(y))− f(y)).

By the mean value theorem, it holds that g(h) = hminy∈K〈∇f(y+chw(y)), w(y)〉,
for some 0 ≤ c ≤ 1. Let h(K) > 0 such that (K)+h(K) ⊂ Sf . Since, by Remark
2.1, ∇f(·) is uniformly continuous in (K)+h(K), we have that

g′(0) = lim
h→0+

g(h)/h = min
y∈K
‖∇f(y)‖. (A.41)

Now, by multivariate Taylor’s theorem with integral remainder, we have that,
for v ∈ Sp−1 and h > 0,

f(x+ hv) = f(x+ hw(x)) + h〈∇f(x+ hw(x)), v − w(x)〉

+ h2
∫ 1

0
(1− s)(v − w(x))>Hf (x+ hs(v − w(x)))(v − w(x))ds.

It follows that, for 0 < h ≤ h(K)/2,

f(x+ hv) ≥ f(x) + g(h)− h‖v − w(x)‖‖∇f(x+ hw(x))‖

− h2‖v − w(x)‖2
∫ 1

0
(1− s)‖Hf (x+ hs(v − w(x))‖Mds

≥ f(x) + g(h)− h‖v − w(x)‖c1 − h2‖v − w(x)‖2c2/2,

where
c1 := max

y∈(K)+h(K)/2
‖∇f(y)‖ and c2 := max

y∈(K)+h(K)
‖Hf (y)‖M.

Therefore, we have that

∇hvf(x) ≥ g̃(h) := g(h)/h− ‖v − w(x)‖c1 − h‖v − w(x)‖2c2/2.

Since f(·) has no stationary points in K, miny∈K‖∇f(y)‖ > 0, and the result
follows from (A.41).

Proof of Corollary 3.1. We show that there exists n∗ ∈ N and {ηn}∞n=1
such that P⊗n(Jn = 1) ≤ ηn for all n ≥ n∗ and

∑∞
n=n∗ ηn < ∞. Then the
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result follows from Borel-Cantelli lemma. To this end, we explicitly express the
constant η in Theorem 3.2 as a function of n and observe the convergence of
the series. We first notice that, for n ≥ n1, we can choose ηn/2 ≥ k(1− α0Λ∗)n
in (4.23). Next, we apply in (4.16) Lemma 3.2 (iii) with K = K̃, h∗ = r, and
ε = d∗ν and get constants 0 < C̃ <∞ and ñ ∈ N such that, for all n ≥ ñ,

P⊗n
(

sup
h∈[hn,r]

sup
v∈Sp−1

sup
x∈K̃
|∇hvfτn,n(x)−∇hvf(x)| < d∗ν

)
≤ 1− C̃

n2 .

Therefore, for all n ≥ n∗ := max(n1, ñ), we can choose

ηn/2 = max(k(1− α0Λ∗)n, C̃/n2),

yielding
∑∞
n=n∗ ηn <∞.

B. Central limit results for sample τ -approximations

It is well known that extreme localization is an important concept in depth
analysis, however, the fluctuations of fτ,n(·) are unknown. Our main result in
this section characterizes the asymptotic variance and establishes a related limit
distribution. To this end, we let

Λ∗21 :=
∫

Λ2
1(x1)dx1,

where, for x1 ∈ Rp,

Λ1(x1) :=
∫
h1(0;x1, . . . , xp)dx2 . . . dxp.

Theorem B.1 Let P be absolutely continuous with respect to the Lebesgue mea-
sure on Rp with continuous density f(·). Let x ∈ Sf and {τn}∞n=1 be a sequence
of positive scalars converging to zero. Suppose (2.4) and E[(h̃(1)

τ (x;X1))2] > 0
hold true. If

√
nτ

((2k−1)p)/2
n −−−−→

n→∞
∞, then

√
nτp/2n (fτn,n(x)− fτn(x)) d−−−−→

n→∞
N(0,Λ∗21 f(x)).

Remark B.1 We notice that, for k > 1, the limit distribution in Theorem
B.1 with fτn(·) replaced by f(·) cannot hold. In fact, the deterministic term
fτn(x) − f(x) is, by Lemma A.5, of order O(τ2

n), while the term fτn,n(x) −
fτn(x) converges to a normal distribution at rate 1/(

√
nτ

p/2
n ). Since, necessarily,√

nτ
((2k−1)p)/2
n →∞, fτn(x)−f(x) is the dominant term. On the other hand, if

k = 1,
√
nτ

p/2
n →∞ and

√
nτ

p/2+2
n → 0, then, by Lemma A.5,

√
nτ

p/2
n (fτn(x)−

f(x))→ 0. Hence,
√
nτp/2n (fτn,n(x)− f(x)) d−−−−→

n→∞
N(0,Λ∗21 f(x)).
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An alternative form for Theorem B.1 without the factor f(x) in the variance
term is given in the following corollary. Before proving Theorem B.1, we provide
a lemma concerning the order of convergence of E[(h̃(1)

τ (x;X1))2] to 0, as τ →
0+.

Lemma B.1 Suppose (2.4) holds true. If f(·) is continuous, then

lim
τ→0+

E[(h̃(1)
τ (x;X1))2]
τ (2k−1)p = Λ∗21 f

2k−1(x),

where
Λ∗21 =

∫
(
∫
h1(0;x1, . . . , xk)dx2 . . . dxk)2dx1.

The proof of Lemma (B.1) follows using Theorem 2.1 (i), continuity of f(·),
boundedness of h1(·; ·), (2.4), and DCT. Details are in Francisci et al. (2022).

Proof of Theorem B.1. Using Hoeffding’s decomposition of U-statistics (see
(1.1.22) in Korolyuk and Borovskich (2013)), it follows that

LGDn(x, τn)− LGD(x, τn) = k

n

n∑
i=1

(h(1)
τn (x;Xi)− LGD(x, τn))

+
k∑
j=2

(
k

j

)(
n

j

)−1 ∑
1≤i1<···<ij≤n

g(j)
τn (x;Xi1 , . . . , Xij ).

(B.1)

Now, applying Lindeberg-Levy Theorem for triangular arrays (Billingsley, 2012,
Theorem 27.2) with

rn = n, sn =
√
n(E[(h̃(1)

τn (x;X1))2])1/2, and Sn =
n∑
i=1

(h(1)
τn (x;Xi)−LGD(x, τn)),

it follows that

√
n

1
n

n∑
i=1

(h(1)
τn (x;Xi)− LGD(x, τn))/(E[(h̃(1)

τn (x;X1))2])1/2 d−−−−→
n→∞

N(0, 1),

(B.2)
provided the Lindeberg condition (Billingsley, 2012, Equation (27.8))

lim
n→∞

1
E[(h̃(1)

τn (x;X1))2]

∫
An,ε

(hτn(x;x1)− LGD(x, τn))2f(x1)dx1 = 0 (B.3)

holds for all ε > 0, where

An,ε := {x1 ∈ Rp : (hτn(x;x1)− LGD(x, τn))2 ≥ ε2nE[(h̃(1)
τn (x;X1))2]}.

Using (A.1), it holds that (hτn(x;x1) − LGD(x, τn)2 ≤ l2, for all x, x1 ∈
Rp. Also, due to x ∈ Sf and nτ

(2k−1)p
n −−−−→

n→∞
∞, Lemma B.1 implies that
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nE[(h̃(1)
τn (x;X1))2] −−−−→

n→∞
∞. Let n∗ ∈ N be such that for all n ≥ n∗, l2 <

ε2nE[(h̃(1)
τn (x;X1))2]. It follows that An,ε = ∅ for all n ≥ n∗. Thus, (B.3) holds

true and we obtain (B.2). Finally, for j = 2, . . . , k, let

R(j)
n = R(j)

n (X1, . . . , Xn) :=
(
k

j

)(
n

j

)−1 ∑
1≤i1<···<ij≤n

g(j)
τn (x;Xi1 , . . . , Xij ).

Using Markov inequality and E[g(j)
τn (x;x1, . . . , xj−1, Xj)] = 0 (see (1.1.22) in

Korolyuk and Borovskich (2013)), we obtain that

P⊗n(
√
n|R(j)

n | > ε) ≤ n

ε2

(
k

j

)2(
n

j

)−1
E

[(
g(j)
τn (x;X1, . . . , Xj)

)2]
,

which implies that

P⊗n
( √

n|R(j)
n |

(E[(h̃(1)
τn (x;X1))2])1/2

>ε

)
≤

n
(
k
j

)2(n
j

)−1

ε2E[(h̃(1)
τn (x;X1))2]

E

[(
g(j)
τn (x;X1, . . . , Xj)

)2]
.

Since j ≥ 2 and nE[(h̃(1)
τn (x;X1))2] −−−−→

n→∞
∞,

P⊗n(
√
n|R(j)

n |/(E[(h̃(1)
τn (x;X1))2])1/2 > ε) −−−−→

n→∞
0. (B.4)

From (B.1), (B.2), and (B.4), it follows that

√
n
LGDn(x, τn)− LGD(x, τn)
k(E[(h̃(1)

τn (x;X1))2])1/2

d−−−−→
n→∞

N(0, 1). (B.5)

Now, using the delta method we obtain

√
n

(LGD(x, τn))1−1/k

(E[(h̃(1)
τn (x;X1))2])1/2

((LGDn(x, τn))1/k − (LGD(x, τn))1/k) d−−−−→
n→∞

N(0, 1);

equivalently,

Zn :=
√
n

τkpn fk−1
τn (x)

(E[(h̃(1)
τn (x;X1))2])1/2

(fτn,n(x)− fτn(x)) d−−−−→
n→∞

N(0, 1). (B.6)

To complete the proof, since x ∈ Sf and τn > 0, it holds, by Theorem 2.1 (i),
that

fkτn(x)
fk(x) = LGD(x, τn)

τkpn fk(x)
−−−−→
n→∞

1 (B.7)

and, by Lemma B.1,

(E[(h̃(1)
τn (x;X1))2])1/2

τ
(k−1/2)p
n

−−−−→
n→∞

Λ∗1fk−1/2(x) > 0. (B.8)
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(B.7) and (B.8) imply that

Yn := (E[(h̃(1)
τn (x;X1))2])1/2

τ
(k−1/2)p
n fk−1

τn (x)
· 1

Λ∗1f
1
2 (x)

= (E[(h̃(1)
τn (x;X1))2])1/2

τ
(k−1/2)p
n

· 1
Λ∗1fk−1/2(x)

· f
k−1(x)
fk−1
τn (x)

−−−−→
n→∞

1.

From (B.6) and Slutsky’s Theorem it follows that

YnZn
d−−−−→

n→∞
N(0, 1),

completing the proof.

Corollary B.1 Under the hypothesis of Theorem B.1,

√
nτ

1
2p
n (
√
fτn,n(x)−

√
fτn(x)) d−−−−→

n→∞
N(0,Λ∗21 /4).

The proof of Corollary B.1 follows from Theorem B.1, Proposition 2.2, and
Slutsky’s Theorem. For the details see Francisci et al. (2022). An extension of
Theorem B.1 uniformly over Sf , namely,

√
nτ

1
2p
n (fτn,n(·)− fτn(·)) d−−−−→

n→∞
Λ∗1W (·) in `∞(Sf ),

where {W (x)}x∈Sf is a centered Gaussian process with the covariance function
γ : Sf × Sf → R given by γ(x, y) =

√
f(x)f(y), requires an extension of the

results of Arcones and Giné (1993) to triangular arrays and it is beyond the scope
of the present paper. A result in this direction, when the kernel is uniform, is
given by Schneemeier (1989), but this is not sufficient in this context since the
sets {ZGτn(x)}∞n=1 depend on n and x.

C. Examples

In this section of the appendix, we provide additional examples of LDFs and
verify that they satisfy the VC-subgraph property.

Example C.1 As in the introduction, let G(·) = I(· ∈ ZG1 (0)), for some k ≥ 1.
Then, as before, for G = L,B, S,Kβ, we obtain local lens (Kleindessner and
Von Luxburg, 2017), spherical, simplicial (Agostinelli and Romanazzi, 2008),
and β-skeleton depth. In particular, K1 = B and K2 = L. We will now verify
that these class of depth functions satisfy the VC-subgraph property. Let B :=
{Br(x) : x ∈ Rp, r > 0} be the class of balls in Rp and, for β ≥ 1, Kβ :=
{B β

2 ‖x1−x2‖(
β
2x1 + (1− β

2 )x2) ∩ B β
2 ‖x1−x2‖((1−

β
2 )x1 + β

2x2) : x1, x2 ∈ Rp} be
the class of all β-skeleton sets. By Theorem 1 in Dudley (1979), B is a VC-class
of sets. Applying Proposition 3.6.7 (ii) of Giné and Nickl (2016), it follows that
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also the intersection B ∩ B is a VC-class of sets. Since a subset of a VC-class
of sets is still a VC-class (see Proposition 3.6.7 (iv) in Giné and Nickl (2016)),
it holds that, for all β ≥ 1, Kβ ⊂ B ∩ B is a VC-class. We finally notice that
the function I(· ∈ ZK(·)

1 (0)) is jointly Borel measurable. Similarly, the class of
simplices in Rp, which are given by the intersections of p + 1 half-spaces, is a
VC-class (see Corollary 6.7 of Arcones and Giné (1993)).

Example C.2 We turn to the uniform kernel (Devroye and Györfi, 1985) in
this example. Again, in this case, k = 1 and

G(·) := I(· ∈ B1(0)).

Since closed balls in Rp form a VC-class of sets by Theorem 1 in Dudley (1979),
it follows that G(·) belongs to the VC-subgraph class.

Example C.3 Local depth functions can also be developed using kernel density
techniques. In this case, let k = 1 and G(·) be a radially symmetric integrable
function with unit integral (Chacón and Duong, 2018).

D. Supplementary results

In this section we use local depth functions for density level set estimation and
identification of stationary points and derive supplementary results complement-
ing Theorem 3.2. Additional details are provided in Francisci et al. (2022).

D.1. Density level set estimation

In this subsection, we provide an application of the theory and methods of the
paper to estimate the upper level sets. We briefly describe another application
to divergence based inference. We begin with the definition of level sets and
upper level sets.

Definition D.1 For α > 0, the level sets of f(·) and fτ (·) are Lα = {x ∈ Rp :
f(x) = α} and Lατ = {x ∈ Rp : fτ (x) = α}, respectively. The upper level sets of
f(·), fτ (·) and fτ,n(·) are Rα := {x ∈ Rp : f(x) ≥ α}, Rατ := {x ∈ Rp : fτ (x) ≥
α} and Rατ,n := {x ∈ Rp : fτ,n(x) ≥ α}, respectively.

The next proposition shows that in the limit the upper level sets induced by
fτ (·) and fτ,n(·) coincide with those induced by f(·). We use the notation Å for
the interior of a set A.

Proposition D.1 Suppose that f(·) is uniformly continuous. Let {αn}∞n=1 and
{τn}∞n=1 be sequences of positive scalars converging to α > 0 and 0, respectively.
It holds that

R̊α ⊂ lim inf
n→∞

Rαnτn ⊂ lim sup
n→∞

Rαnτn ⊂ R
α, (D.1)

and, if λ(Lα) = 0, then
lim
n→∞

Rαnτn = Rα a.e. (D.2)
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Suppose additionally that HG is a VC-subgraph class of functions and
limn→∞

n
log(n)τ

2kp
n =∞. It holds that

R̊α ⊂ lim inf
n→∞

Rαnτn,n ⊂ lim sup
n→∞

Rαnτn,n ⊂ R
αa.s., (D.3)

and, if λ(Lα) = 0, then
lim
n→∞

Rαnτn,n = Rα a.s. (D.4)

The proof of Proposition D.1 involves standard arguments on set convergence
and can be found in Francisci et al. (2022). A common approach in modal
clustering is to define clusters as the connected components of the upper level
sets Rα for some α > 0 (Menardi, 2016). Once the connected components are
computed, the remaining points may be allocated to one of the clusters by using
supervised classification techniques. A common approach is then to study how
the clusters change as the parameter α varies, yielding cluster trees.

D.2. Exact identification of stationary points and modes

In this subsection, we further develop the results of Section 3.1 by providing
some conditions under which the stationary points (resp. modes, antimodes) of
f(·) are exactly the stationary points (resp. modes, antimodes) of fτ (·) for τ > 0.
The key criteria for the identification of the modes is the notion of symmetry
proposed below.

Definition D.2 Given τ > 0, a density function f(·) is said to be τ -centrally
symmetric about µ ∈ Sf if, for all x ∈ Rp with ‖x‖ ≤ τ , f(µ+ x) = f(µ− x).

In particular, for p = 1, f(·) is τ -centrally symmetric about µ ∈ R if f(µ−x) =
f(µ+x) for all x ∈ [0, τ ]. If f(·) has a continuous derivative, a direct computation
shows that, for G = L, S,B,Kβ , f

′

τ (µ) = 0. Indeed, we see that

fτ (x) = 1
τ

√
LGD(x, τ)

where
LGD(x, τ) = 2

∫
T τ++

f(x+ x1)f(x− x2)dx1dx2

and
T τ++ = {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ τ}.

In particular, if f(·) has a continuous derivative, it follows that

f
′

τ (x) = 1
τ
√
LGD(x, τ)

∫
T τ++

f
′
(x+ x1)f(x− x2) + f(x+ x1)f

′
(x− x2)dx1dx2.

Therefore, the sign of fτ (x) depends on the sign of f ′(·) in the interval (x −
τ, x+ τ). In particular, if µ ∈ R satisfies f(µ− x) = f(µ+ x) for all x ∈ (0, τ),
it follows that f ′(µ− x) = −f ′(µ+ x), yielding f ′τ (µ) = 0.
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Our next result, which is about the Hessian matrix, gives sufficient conditions
for a stationary point µ and a mode m of f(·) to be a stationary point and a
mode of fτ (·).

Theorem D.1 Suppose (2.4) holds true and let τ > 0. Then the following
hold:
(i) If f(·) has continuous first order partial derivatives in Bτ (µ) ⊂ Sf and f(·)
is τ -centrally symmetric about the stationary point µ, then µ is a stationary
point for fτ (·).
(ii) Suppose that f(·) is τ -centrally symmetric about a mode (resp. an antimode)
m and has continuous second order partial derivatives in Bτ (m). If, for all
x1, . . . , xk ∈ Bτ (m), the matrix

Jf (x1, . . . , xk) := Hf (x1)f(x2) . . . f(xk)+(k−1)∇f(x1)∇f(x2)>f(x3) . . . f(xk)

is negative (resp. positive) definite, then m is also a mode (resp. an antimode)
for fτ (·).

Notice that Jf (m, . . . ,m) = Hf (m)fk−1(m) is negative (resp. positive) definite
and therefore the last condition of Theorem D.1 is satisfied by f(·), for τ small.

Proof of Theorem D.1. For (i) notice that if f(·) is τ -centrally symmetric
about µ, then, for all y ∈ Rp with ‖y‖ ≤ τ , f(µ+y) = f(µ−y) and ∂jf(µ−y) =
−∂jf(µ+y). By the change of variable −(x1, . . . , xk) for (x1, . . . , xk) on the LHS
of (3.5) and (A.4) it follows that, for all 1 ≤ j ≤ p,∫

hτ (0;x1, . . . , xk)∇f(µ+ x1)f(µ+ x2) . . . f(µ+ xk)dx1 . . . dxk

=−
∫
hτ (0;x1, . . . , xk)∇f(µ+ x1)f(µ+ x2) . . . f(µ+ xk)dx1 . . . dxk,

and therefore (3.5) and ∇fτ (µ) = 0.
We now prove (ii). Since f(·) is τ -centrally symmetric about m, by (i),

∂jfτ (m) = 0 for j = 1, . . . , p (D.5)

and hence m is a stationary point for fτ (·). Moreover, (D.5) implies that, for
i, j = 1, . . . , p,

∂i∂jfτ (m) = 1
k

(fτ (m))1−k(∂i∂jfkτ (m)),

where, by Proposition 2.1, (A.2) and (A.4),

∂i∂jf
k
τ (m) = k

∫
hτ (0;x1, . . . , xk)

τkp

[
∂i∂jf(m+ x1)

k∏
l=2

f(m+ xl)

+ (k − 1)∂jf(m+ x1)∂if(m+ x2)
k∏
l=3

f(m+ xl)
]
dx1 . . . dxk.
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Noticing that the integral of a matrix is the matrix of the integrals, we get that

Hfτ (m) = 1
k

(fτ (m))k−1
∫
hτ (0;x1, . . . , xk)

τkp
Jf (m+ x1, . . . ,m+ xk)dx1 . . . dxk.

Since the Hessian is symmetric, there exists an orthogonal matrix Q such that

D = Q>Hfτ (m)Q

= 1
k

(fτ (m))k−1
∫
hτ (0;x1, . . . , xk)

τkp
Q>Jf (m+ x1, . . . ,m+ xk)Qdx1 . . . dxk

is a diagonal matrix. Now, since Jf (m+ x1, . . . ,m+ xk) is negative (resp. pos-
itive) definite, for all y ∈ Rp \ {0}, y>Jf (m+ x1, . . . ,m+ xk)y < 0 (resp. > 0),
and therefore the diagonal elements of Q>Jf (m + x1, . . . ,m + xk)Q are neg-
ative (resp. positive). It follows that the diagonal elements of D (that is, the
eigenvalues of Hfτ (m)) are negative (resp. positive) and m is a mode (resp. an
antimode) for fτ (·).

D.3. Supplementary results related to Theorem 3.2

As the next Lemma shows, in Theorem 3.2, the minimum distance between all
data points and a point x ∈ Sf (denoted as h̃n below) is positive a.s. for all
n ∈ N and converges to zero a.s. as n→∞. However, p ≥ 6k + 1 is needed for
nh̃2k

n τ
2kp
n −−−−→

n→∞
∞ a.s., for some sequence of positive scalars {τn}∞n=1 converging

to zero (by Lemma D.1 (iii) we can take τ2kp
n = n−δ, for some 0 < δ < 1− 6k

d ,
that is τn = n−δ/(2kp)). This shows that, for p ≥ 6k + 1, by choosing a suitable
sequence {τn}∞n=1, we can replace hn by h̃n in Theorem 3.2. In turn, this allows
replacement of the set Xn,r(x) = {X ∈ Xn : hn ≤ ‖X − x‖ ≤ r} by X̃n,r(x) =
{X ∈ Xn : ‖X − x‖ ≤ r, X 6= x}.

Lemma D.1 Let Xn := {X1, . . . , Xn} a sample of i.i.d. random variables from
a probability distribution P with continuous and bounded density f(·), x ∈ Sf ,
and h̃n = miny,z∈Xn∪{x},y 6=z‖y− z‖. Then, (i) h̃n > 0 a.s., (ii) h̃n −−−−→

n→∞
0 a.s.

and (iii) for p ≥ 6k + 1 and 0 < δ < 1− 6k
δ , n

1−δh̃2k
n −−−−→

n→∞
∞ a.s.

Proof of Lemma D.1. We first prove (i). Since P is absolutely continuous
w.r.t. the Lebesgue measure, it holds that

P⊗n(h̃n = 0) = P⊗n(∪ni=1[‖Xi − x‖ = 0] ∪ ∪ni=1 ∪nj=i+1 [‖Xi −Xj‖ = 0])

≤ nP (‖X1 − x‖ = 0) + n(n− 1)
2

∫
P (‖X1 − y‖ = 0)f(y)dy = 0.

For (ii), observe that, for all ε > 0,

P⊗n(h̃n ≥ ε) ≤ P⊗n( min
i=1,...,n

‖Xi − x‖ ≥ ε) = P (‖X1 − x‖ ≥ ε)n.
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Since x ∈ Sf and f(·) is continuous, it holds that P (‖X1 − x‖ ≥ ε) < 1 and

∞∑
n=1

P⊗n(h̃n ≥ ε) ≤
∞∑
n=1

P (‖X1 − x‖ ≥ ε)n <∞.

By Borel-Cantelli lemma, it follows that h̃n −−−−→
n→∞

0 a.s. We now prove (iii). To
this end, let M > 0 and notice that P⊗n(n1−δh̃2k

n ≤M2k) is equal to

P⊗n(∪ni=1[‖Xi−x‖ ≤Mn−(1−δ)/(2k)]∪∪ni=1∪nj=i+1[‖Xi−Xj‖ ≤Mn−(1−δ)/(2k)]),

which is bounded above by

nP (BMn−(1−δ)/(2k)(x)) + n(n− 1)
2

∫
P (BMn−(1−δ)/(2k)(y))f(y)dy. (D.6)

Now, since f(·) is bounded, we have that α := supy∈Rp f(y) < ∞. For y ∈ Rp,
it holds that

P (BMn−(1−δ)/(2k)(y)) ≤ αλ(BMn−(1−δ)/(2k)(x)) = αCn−p(1−δ)/(2k), (D.7)

where C = Mpπp/2/Γ(p/2 + 1). Using (D.7) in (D.6), we obtain that

P⊗n(n1−δh̃2k
n ≤M2k) ≤ αCn2−p(1−δ)/(2k).

Therefore, using p ≥ 6k + 1 and 0 < δ < 1− 6k
p , we have that

∞∑
n=1

P⊗n(n1−δh̃2k
n ≤M2k) ≤ αC

∞∑
n=1

n2−p(1−δ)/(2k) <∞.

By another application of Borel-Cantelli lemma, we conclude that n1−δh̃2k
n −−−−→

n→∞∞ a.s.

E. Clustering Algorithm

In this section, we provide a detailed description of the algorithm for clus-
tering. As a first step, starting from a point x ∈ Rp, we search, in a given
neighborhood of x, for the point y that yields the largest directional derivative
∇hv (LGDn(·, τ))1/k with h = ‖y − x‖ and v = (y − x)/‖y − x‖, that is,

dτ,n(x; y) := (LGDn(y, τ))1/k − (LGDn(x, τ))1/k

‖y − x‖
. (E.1)

Next, given n data points x1, . . . , xn, the localization parameter τ used for the
clustering procedure is chosen as the quantile of order q, 0 ≤ q ≤ 1, of the
empirical distribution of the

(
n
2
)
distances ‖xi − xj‖, i > j, i, j ∈ {1, 2, . . . , n}

for lens depth, spherical depth, and β-skeleton depth. Detailed methodology
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Algorithm 1: Clustering with local general depth
Input: {x1, . . . , xn}, {y1, . . . , yo} (optional), q, s, r
Output: Local maxima for input points: {z1, . . . , zn+o}

1 Compute the quantile τ of order q of all pairwise distances: ‖xi − xj‖, i > j,
i, j ∈ {1, 2, . . . , n}

2 Store {x1, . . . , xn}, {y1, . . . , yo} in new variables
for i = 1 to n do

z∗i := xi
end
for i = 1 to o do

z∗i+n := yi
end

3 Compute the local general depth with localization parameter τ of {z∗1 , . . . , z∗n+o}
w.r.t. {x1, . . . , xn}

4 For all points, compute the corresponding local maxima
for i = 1 to n+ o do

repeat
5 zi := z∗i
6 Store the data points (different from zi) at distance from zi smaller than r or

the s closest data points if they are less than s in new variables w1, . . . , wl
(l ≥ s)

7 z∗i := argmaxv∈{w1,...,wl} dτ,n(zi; v)
until LGDn(z∗i , τ) > LGDn(zi, τ)

end

for simplicial depth is provided below. We now summarize the procedure for
computing the clusters in Algorithm 1.

The algorithm requires as input, data points {x1, . . . , xn}, quantile q, and
two additional parameters, r and s. Additional points {y1, . . . , yo} may also
be provided as input. Starting from any point x ∈ {x1, . . . , xn} ∪ {y1, . . . , yo},
based on the finite difference (E.1), the algorithm moves to another data point
y ∈ {x1, . . . , xn} (hence, except for the initial step, only data points are involved
in (E.1)). The parameter r gives a bound on the norm ‖y−x‖ in (E.1) in order
to choose only those points that are close to each other. The parameter s,
representing the minimal number of directions at each step of the algorithm, is
exploited to ensure that the number of directional derivatives taken into account
is not too small. Based on these choices, the steps 5, 6 and 7 of Algorithm 1
are repeated until the local maximum is achieved. The resulting data points are
returned as output.

We now turn to the choice of the parameters r, s, and q. We notice that
for a good approximation to the directional derivative, the parameter r cannot
be too large. Several exploratory analyses show that, under this condition, the
parameter r does not significantly influence the output of Algorithm 1. Hence,
we fix r = 0.05 in all our numerical work.

Turning to s, it is a good idea to consider a large number of various directions.
The parameter s ensures that a sufficient number of directions are evaluated to
get close to the maximum (over v ∈ Sp−1) of the directional derivative. This
is particularly important in regions where data are sparse. The quantity s can



G. Francisci et al./Local depth and clustering 33

also play the role of a smoothing parameter. If q is small with a small sample
size n, then the sample local depth can be noisy and have local peaks with a
small basin of attraction that were not present in the original distribution. In
this case, the choice of a larger s helps to avoid these local maxima. A general
method for the choice of s is described in Francisci et al. (2022). We now turn
to the parameter q. We notice that choosing q is equivalent to choosing τ .
Thus typical values of τ correspond to typical values of q. Now, convergence of
the clustering algorithm (cf. Theorem 3.4) requires that limn→∞ nτ2kp

n = ∞.
Thus, we can take τn = n(−1+δ)/(2kp), for some δ > 0. While for the class of
β-skeleton depths q can be taken as the quantile of pairwise distances ‖xi−xj‖,
i > j, i, j ∈ {1, 2, . . . , n}, for the simplicial depth, q can be chosen as a quantile
of the

(
n
p+1
)
maxima of the form maxj,l=1,...,p+1,j>l‖xij − xil‖ for all

(
n
p+1
)

combinations of indices i1, . . . , ip+1 from {1, 2, . . . , n}. Alternatively, we could
choose τ as described in Theorem 3.2 for all depths, that is, τn such that
limn→∞ nh2k

n τ
2kp
n =∞.

We now turn to the computational complexity of β-skeleton and simplicial
depth. To this end, we recall that LKβDn is a U-statistics of order 2, while
LSDn is a U-statistics of order (p + 1). This means that the computational
complexity of LKβDn is of order O(

(
n
2
)
), while the computational complexity

of the LSDn is of order O(
(
n
p+1
)
), which makes a significant difference, especially

in high dimensions. In dimension 2 an optimal algorithm for LKβDn requires
O(n 3

2 +ε) operations for β > 1 and O(n log(n)) operations for β = 1 (Bremner
and Shahsavarifar, 2017; Shahsavarifar and Bremner, 2018; Shahsavarifar, 2019).
In general, the computational complexity of both LKβDn and LSDn can be
reduced by random subsampling Yuan (2018); in our simulations with p ≥ 5
and LSDn (see Appendix F) we sample uniformly 108 simplices to reduce the
computational cost.

F. Simulations and data analysis

F.1. Numerical experiments

In this subsection, we describe additional simulation results of our method for
identification of clusters. For the sake of completeness and ease of comparisons,
we retain the results described in the main paper. Specifically, we evaluate the
performance using empirical Hausdorff distance and empirical probability dis-
tance between the “true” cluster and the estimated cluster (see Chacón (2015),
for instance). If the estimated clusters coincide with the true clusters, then both
these distances, viz. the clustering errors, are zero. Thus, small values of these
distances suggest a good performance. We consider the mixtures of bivariate
normal distributions investigated in Wand and Jones (1993) and Chacón (2009)
referred to as (H) Bimodal IV and #10 Fountain. Their analytical expression and
the associated true clusters are given in Appendix F.3. To test the performance
of our methodology in multivariate models, we consider a quadrimodal density
in dimension five. We refer to this distribution as Mult. Quadrimodal. Addition-
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ally, we also study a circular distribution, which we refer to Circular Bimodal II.
These is also described in Appendix F.3. Additional analyses for several other
distributions are provided in Francisci et al. (2022). Our simulation results are
based on a sample size of 1000 and 100 numerical experiments and we choose τ so
that the corresponding quantiles q are given by 0.01, 0.05 and 0.1 (see Algorithm
1). For more details about the numerical implementation and the quantiles for
LSD we refer to Appendix E. We compare our results based on LLD and LSD,
with hierarchical clustering (Hclust) and Kernel density estimator (KDE) using
both Algorithm 1 and mean shift algorithm (Fukunaga and Hostetler, 1975).
For mean shift algorithm we use the function kms in the R package ks (Duong,
2018). We set maximum number of iterations to 5000 and tolerance to 10−8.
The plug-in estimator of the bandwidth matrix is given by the function Hpi with
pilot options "dunconstr" or "dscalar", and derivatives of order one. In the
first case, the starting matrix is obtained via minimization of the asymptotic
mean integrated squared error (AMISE) of the gradient of the estimated density,
while, in the second case, a diagonal pilot bandwidth matrix is used to estimate
the final (full) bandwidth matrix. For more details on the bandwidth matrix
selection procedure see Sections 3.6 and 5.6.4 in Chacón and Duong (2018). For
more details on the mean shift clustering algorithm see Section 6.2.2 of Chacón
and Duong (2018). The hierarchical clustering requires a pre-specification of
the number of clusters while the other methods do not, and it is reported here
since it is one of the widely used methods for clustering. Thus, we compute
it making use of the true number of clusters, which implies that the obtained
results are not comparable with those of the other methodologies. Specifically,
we use the R function hclust based on the Euclidean distance between the
observations and the default complete linkage method, i.e. the clusters distance
is the maximum distance between the points in each cluster. Next, we apply the
function cutree, based on the true number of clusters, to the output of hclust,
yielding the final clusters. We also apply two other recent clustering algorithms
(Chacón, 2019), which are a combination of mixture model clustering (Fraley
and Raftery, 2002) and modal clustering (Chacón, 2015) procedures. Both al-
gorithms start by fitting a normal mixture density f̂(x) =

∑T̂
t=1 π̂tφ(x|µ̂t, Σ̂t),

where π̂t ≥ 0,
∑T̂
t=1 π̂t = 1, and φ(·|µ,Σ) is the density of a p-variate normal

distribution with mean µ and covariance matrix Σ. This is done using the ex-
pectation maximization (EM) algorithm implemented in the function Mclust
from the R package mclust (Scrucca et al., 2016). In the above, T̂ is the value
of T ∈ {1, . . . , 9} that minimizes the Bayesian information criterion (BIC) for
fitting f̂T (x) =

∑T
t=1 π̂tφ(x|µ̂t, Σ̂t). Mixture model clusters are then the sets

given by

Ĉt := {x ∈ Rp : π̂tφ(x|µ̂t, Σ̂t) > max
j=1,...,T̂ ,
j 6=t

π̂jφ(x|µ̂j , Σ̂j)}

for t = 1, . . . , T̂ . The first clustering algorithm is called mixture model modal
merging (MMMM) and relies on the idea that mixture components are likely to
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be more than the number modes. Thus, one would like to merge mixture com-
ponents whose points converge to the same mode into a single cluster. Following
this idea, one applies mean shift algorithm starting from the estimated mixture
means µ̂1, . . . , µ̂T̂ and merges those clusters whose estimated means converge to
the same mode, yielding clusters C̃1, . . . , C̃Û where Û ≤ T̂ . The second cluster-
ing algorithm is called mixture model modal clustering (MMMC) and is based
on a direct computation of the stable manifolds generated by f̂(·). An algo-
rithm for this is provided in Section 3.1 of Chacón (2019). Turning to LLD,
exploratory analysis suggests that some circular distributions require values of
q higher than 0.1. To see this, let P be the Circular Bimodal II distribution and
draw 100 samples from P . Figure 1 shows the median adjusted Rand index and
interquartile range over C = 100 subsamples (left). The central plot shows the
boxplot of optimal value of q and the right plot displays the number of clusters
detected when q is the optimal quantile order. Thus, for the Circular Bimodal
II distribution we let q run up to 0.2.

Tables 1 and 2 contain numerical results for several choices of q and s. Since
the parameter r does not affect the output of Algorithm 1, we leave it fixed at r =
0.05. The expressions LLD-q-s and LSD-q-s refer to LLD and LSD with parame-
ters q and s. The expressions KDE-"dun"-s and KDE-"dsc"-s refer to KDE with
Algorithm 1 and parameter s; and pilot options "dunconstr" and "dscalar",
respectively. Similarly, the expressions KDE-"dun"-ms and KDE-"dsc"-ms re-
fer to KDE with mean shift algorithm and pilot options "dunconstr" and
"dscalar". In Table 1 the first row refers to the case c = 0 and the second
row to the case c = 1. From these two values, it is possible to compute the
distance in probability for all values of c. In all the tables the best results are
in bold face. For the probability distance, the best results are bolded only for
the case c = 1. We observe that for mixture of normal distributions, the best
results are always obtained by MMMM and MMMC. However, these methods
perform poorly for the Circular Bimodal II distribution, where LDS yields the
lowest errors. Among other methods, LLD yields the best results for the dis-
tributions Mult. Quadrimodal. For the distributions (H) Bimodal IV and #10
Fountain, KDE, LLD, and LSD all yield similar results. Finally, we notice that
the merging algorithm in Chazal et al. (2013) may be used to improve the re-
sults of KDE, LLD, and LSD for the Circular Bimodal II distribution. Also, it is
possible to improve the performance of LSD for Mult. Quadrimodal distribution
by choosing smaller values of q, as described in Subsection F.2 below.

Clustering errors (distance in probability)
(H) Bi-
modal IV

#10 Foun-
tain

Mult. Quad-
rimodal

Circular Bi-
modal II

MMMM 0.00 (0.00)
0.00 (0.00)

0.23 (0.06)
0.23 (0.07)

0.01 (0.00)
0.01 (0.00)

0.28 (0.02)
0.55 (0.05)

MMMC 0.00 (0.00)
0.00 (0.00)

0.10 (0.06)
0.10 (0.07)

0.01 (0.00)
0.01 (0.00)

0.27 (0.02)
0.53 (0.05)
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KDE-"dun"-30 0.00 (0.00)
0.00 (0.00)

0.06 (0.01)
0.06 (0.01)

0.29 (0.31)
0.34 (0.37)

0.07 (0.06)
0.36 (0.06)

KDE-"dun"-50 0.00 (0.00)
0.00 (0.00)

0.06 (0.01)
0.06 (0.01)

0.12 (0.20)
0.14 (0.24)

0.10 (0.07)
0.34 (0.11)

KDE-"dsc"-30 0.07 (0.17)
0.11 (0.26)

0.06 (0.01)
0.06 (0.01)

0.24 (0.30)
0.28 (0.35)

0.04 (0.03)
0.37 (0.05)

KDE-"dsc"-50 0.06 (0.16)
0.09 (0.24)

0.06 (0.01)
0.06 (0.01)

0.10 (0.18)
0.11 (0.21)

0.07 (0.05)
0.37 (0.05)

KDE-"dun"-ms 0.01 (0.05)
0.01 (0.07)

0.19 (0.26)
0.21 (0.31)

0.43 (0.27)
0.57 (0.33)

0.19 (0.06)
0.38 (0.12)

KDE-"dsc"-ms 0.09 (0.19)
0.13 (0.28)

0.34 (0.30)
0.41 (0.36)

0.24 (0.30)
0.29 (0.36)

0.24 (0.05)
0.48 (0.10)

LLD-0.05-30 0.33 (0.21)
0.53 (0.33)

0.07 (0.05)
0.07 (0.06)

0.08 (0.19)
0.09 (0.22)

0.29 (0.03)
0.58 (0.06)

LLD-0.05-50 0.31 (0.25)
0.47 (0.37)

0.06 (0.01)
0.06 (0.01)

0.03 (0.01)
0.03 (0.01)

0.27 (0.04)
0.53 (0.07)

LLD-0.1-30 0.09 (0.19)
0.13 (0.28)

0.06 (0.01)
0.06 (0.01)

0.08 (0.19)
0.09 (0.22)

0.22 (0.05)
0.43 (0.11)

LLD-0.1-50 0.04 (0.12)
0.05 (0.18)

0.06 (0.01)
0.06 (0.01)

0.03 (0.01)
0.03 (0.01)

0.20 (0.06)
0.39 (0.11)

LLD-0.2-30 /
/

/
/

/
/

0.15 (0.08)
0.27 (0.16)

LLD-0.2-50 /
/

/
/

/
/

0.12 (0.08)
0.21 (0.17)

LSD-0.01-30 0.08 (0.18)
0.12 (0.27)

0.06 (0.01)
0.06 (0.01)

0.32 (0.07)
0.57 (0.15)

0.21 (0.05)
0.41 (0.10)

LSD-0.01-50 0.06 (0.15)
0.08 (0.23)

0.06 (0.01)
0.06 (0.00)

0.33 (0.05)
0.64 (0.13)

0.20 (0.06)
0.37 (0.11)

LSD-0.05-30 0.00 (0.00)
0.00 (0.00)

0.19 (0.07)
0.32 (0.14)

0.29 (0.11)
0.45 (0.17)

0.13 (0.08)
0.23 (0.17)

LSD-0.05-50 0.00 (0.00)
0.00 (0.00)

0.20 (0.06)
0.35 (0.14)

0.28 (0.07)
0.52 (0.16)

0.07 (0.07)
0.11 (0.14)

Hclust * 0.05 (0.09) 0.35 (0.07) 0.10 (0.04) 0.17 (0.05)
* The true number of clusters is given in input.

Table 1: Mean of the clustering errors based on distance in probability distance
over 100 replications with n = 1000 samples for the distributions (H) Bimodal
IV, #10 Fountain, Mult. Quadrimodal, and Circular Bimodal II. In parentheses
the standard deviation.
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Clustering errors (Hausdorff distance)
(H) Bi-
modal IV

#10 Foun-
tain

Mult. Quad-
rimodal

Circular Bi-
modal II

MMMM 0.00 (0.00) 0.22 (0.03) 0.01 (0.00) 0.55 (0.04)
MMMC 0.00 (0.00) 0.09 (0.02) 0.01 (0.00) 0.53 (0.05)
KDE-"dun"-30 0.00 (0.00) 0.06 (0.01) 0.10 (0.08) 0.44 (0.07)
KDE-"dun"-50 0.00 (0.00) 0.06 (0.01) 0.07 (0.07) 0.40 (0.13)
KDE-"dsc"-30 0.04 (0.10) 0.06 (0.01) 0.09 (0.08) 0.48 (0.06)
KDE-"dsc"-50 0.04 (0.09) 0.06 (0.01) 0.06 (0.07) 0.46 (0.07)
KDE-"dun"-ms 0.00 (0.03) 0.08 (0.05) 0.16 (0.08) 0.44 (0.07)
KDE-"dsc"-ms 0.05 (0.11) 0.11 (0.06) 0.08 (0.08) 0.48 (0.07)
LLD-0.05-30 0.27 (0.17) 0.06 (0.02) 0.03 (0.04) 0.55 (0.05)
LLD-0.05-50 0.22 (0.17) 0.06 (0.01) 0.02 (0.01) 0.52 (0.06)
LLD-0.1-30 0.05 (0.11) 0.06 (0.01) 0.03 (0.05) 0.47 (0.07)
LLD-0.1-50 0.02 (0.08) 0.06 (0.01) 0.02 (0.01) 0.45 (0.09)
LLD-0.2-30 / / / 0.34 (0.19)
LLD-0.2-50 / / / 0.27 (0.21)
LSD-0.01-30 0.05 (0.11) 0.06 (0.01) 0.55 (0.19) 0.46 (0.06)
LSD-0.01-50 0.04 (0.09) 0.06 (0.01) 0.64 (0.17) 0.45 (0.08)
LSD-0.05-30 0.00 (0.00) 0.35 (0.15) 0.38 (0.18) 0.28 (0.20)
LSD-0.05-50 0.00 (0.00) 0.38 (0.15) 0.48 (0.18) 0.13 (0.17)
Hclust * 0.05 (0.09) 0.29 (0.05) 0.07 (0.03) 0.34 (0.10)
* The true number of clusters is given in input.

Table 2: Mean of the clustering errors based on distance Hausdorff distance
over 100 replications with n = 1000 samples for the distributions (H) Bimodal
IV, #10 Fountain, Mult. Quadrimodal, and Circular Bimodal II. In parentheses
the standard deviation.

F.2. Data analysis

In this section, we revisit the data analysis with more details. As explained
in the main paper, we evaluate the performance of our methodology on two
datasets taken from the UCI machine learning repository (http://archive.
ics.uci.edu/ml/), namely, the Iris dataset and the Seeds dataset. For the
sake of completeness we provide more details concerning the data sets. The
Iris dataset consists of n = 150 observations from three classes (Iris Setosa,
Iris Versicolour, and Iris Virginica) with four measurements each (sepal length,
sepal width, petal length, and petal width). We compare our results to those
based on KDE (with built-in bandwidth) and Hclust. Our algorithm, based on
both lens and simplicial depth, correctly identifies all three clusters (see Table 3);
furthermore, the Hausdorff distance and probability distance from our algorithm
are smaller than those of the competitors.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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Fig 1: For 100 replications with n = 1000 samples for the Circular Bimodal
II distribution and LLD with s = 30 (i) median adjusted Rand index and
interquantile range as a function of the quantile order q, (ii) boxplot of the
optimal quantile q (center), and (iii) boxplot of the number of clusters for the
optimal quantile q (right).

Seeds dataset consists of n = 210 observations concerning three varieties
of wheat; namely, Kama, Rosa and Canadian. High quality visualization of
the internal kernel structure was detected using a soft X-ray technique and
seven geometric parameters of wheat kernels were recorded. They are area,
perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient,
and length of kernel groove. All of these geometric parameters were continuous
and real-valued. Table 3 contains the results of our analysis. The best results
are highlighted in bold and correspond to LLD. We notice that both of our
methods, LLD and LSD, as well as KDE, correctly identify the true number of
clusters.

It is worth mentioning here that Hclust was given as input the true number
of clusters, three, as required by this methodology. However, the Hausdorff dis-
tance and probability distance of our proposed methods are smaller than those
of Hclust. KDE-ms, in both the examples, overestimates the true number of
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clusters.

Clustering errors for Iris data
Number of clusters Distance in prob. Hausdorff distance

KDE a 3 0.03 0.03
KDE-ms b 7 0.37 0.31
LLD 1 3 0.10 0.10
LSD 2 3 0.10 0.10
Hclust * 0.16 0.16

Clustering errors for Seeds data
Number of clusters Distance in prob. Hausdorff distance

KDE a 3 0.16 0.16
KDE-ms b 25 0.75 0.33
LLD 1 3 0.10 0.10
LSD 3 3 0.17 0.17
Hclust * 0.20 0.20
a pilot="dunconstr", s = 30
b pilot="dunconstr", mean shift algorithm 1 q = 0.05, s = 30.
2 q = 10−4, s = 20. 3 q = 10−5, s = 20.

Table 3: Mean of the clustering errors based on the Hausdorff distance and
distance in probability for the Iris and Seeds data. The true number of clusters
is specified as input for the hierarchical clustering algorithm.

F.3. True clusters

In this subsection we provide the analytical expression for the distributions
(H) Bimodal IV, #10 Fountain, Mult. Quadrimodal, and Circular Bimodal II
considered in Section F.1 and the corresponding true clusters. We now describe
these distributions.
(i) The (H) Bimodal IV density is a mixture of two normal distributions with
equal weights, means µ1 = (1,−1)>, µ2 = (−1, 1)> and covariances

Σ1 = 4
9

(
1 7

107
10 1

)
and Σ2 = 4

9

(
1 0
0 1

)
.

(ii) The #10 Fountain density is a mixture of six normal distributions with
weights w1 = 1

2 and w2 = w3 = w4 = w5 = w6 = 1
10 ; means µ1 = µ2 =

(0, 0)>, µ3 = (−1, 1)>, µ4 = (−1,−1)>, µ5 = (1,−1)> and µ6 = (1, 1)>; and
covariances

Σ1 =
(

1 0
0 1

)
, Σ2 = Σ3 = Σ4 = Σ5 = Σ6 =

( 1
16 0
0 1

16

)
.

The true clusters corresponding to these densities are in Fig 2.
(iii) The Mult. Quadrimodal density is a mixture of four normal distributions
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Fig 2: True clusters associated with the (H) Bimodal IV and #10 Fountain
densities.

with means (−2, 2, 0, 0, 0), (−2,−2, 0, 0, 0), (2,−2, 0, 0, 0) and (2, 2, 0, 0, 0). The
true clusters for this distribution can be deduced from those of the projection
onto the first two components.
(iv) The Circular Bimodal II distribution is a mixture with weights w1 = 3/4
and w2 = 1/4 of the distribution (X(1) sin(X(2)), X(1) cos(X(2))), where X is
normal with mean µ1 = (2π, 0)T and covariance matrix

Σ1 =
(

0.2 0
0 1

)
,

and a centered normal distribution with covariance matrix Σ2 = 2I. For this
distribution, we evaluate, for simplicity, the clustering algorithm on the basis
of the membership to the correct mixture components and not on the basis of
the membership to the true underlying clusters, that is, the stable manifolds
associated to the gradient system (3.2).
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