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Abstract: Local general depth (LGD) functions are used for describing
the local geometric features and mode(s) in multivariate distributions. In
this paper, we undertake a rigorous systematic study of LGD and establish
several analytical and statistical properties. First, we show that, when the
underlying probability distribution is absolutely continuous with density
f(·), the scaled version of LGD (referred to as τ -approximation) converges,
uniformly and in Ld(Rp) to f(·) when τ converges to zero. Second, we es-
tablish that, as the sample size diverges to infinity the centered and scaled
sample LGD converge in distribution to a centered Gaussian process uni-
formly in the space of bounded functions on HG, a class of functions yield-
ing LGD. Third, using the sample version of the τ -approximation (SτA)
and the gradient system analysis, we develop a new clustering algorithm.
The validity of this algorithm requires several results concerning the uni-
form finite difference approximation of the gradient system associated with
SτA. For this reason, we establish Bernstein-type inequality for deviations
between the centered and scaled sample LGD, which is also of indepen-
dent interest. Finally, invoking the above results, we establish consistency
of the clustering algorithm. Applications of the proposed methods to mode
estimation and upper level set estimation are also provided. Finite sample
performance of the methodology are evaluated using numerical experiments
and data analysis.
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1. Introduction

Investigation of data depths is gaining momentum due to its applicability in a
variety of machine learning problems such as non-parametric classification and
clustering. This concept, formalized in Liu (1990) and Zuo and Serfling (2000a),
serves to identify a center for multivariate distributions and a multidimensional
center-outward order similar to that of a real line. The ordering enables a de-
scription of quantiles of multivariate distributions (see Zuo and Serfling (2000b))
and aids in using depth functions (DFs) for clustering. The current paper de-
velops the intuitive notion that local depths possess properties that help in
identifying peaks and valleys and hence clustering based on such identification
can improve the quality and stability of the clustering algorithm.

The notion of local depth (Agostinelli and Romanazzi, 2011) provides a
framework to describe the local multidimensional features of multivariate distri-
butions. Section 2 of this paper provides a detailed study of local depth functions
(LDFs) and their scaled versions, referred to as τ -approximation. Specifically,
let h(G)

τ : Rp × (Rp)kG → [0,∞) be a bounded function satisfying the symmetry
conditions

h(G)
τ (x + v;x1 + v, . . . , xkG

+ v) = h(G)
τ (x;x1, . . . , xkG

), v ∈ R
p

and h(G)
τ (−x;−x1, . . . ,−xkG

) = h(G)
τ (x;x1, . . . , xkG

).

Then the local general depth (LGD) function is given by (see below for a precise
definition)

LGD(x, τ, P ) =
∫

h(G)
τ (x;x1, . . . , xkG

)dP (x1) . . . dP (xkG
)

and τ is referred to as the localizing parameter. This integral representation pro-
vides a unified treatment and analyses of several local depth functions available
in the literature. We denote by HG = {h(G)

τ (x; ·) : x ∈ R
p, τ ∈ [0,∞]} the class

of functions yielding LGD. Typically studied LDFs can be obtained by taking
h

(G)
τ (·; ·) to be indicators of appropriate Borel sets; that is,

h(G)
τ (x; ·) = I(· ∈ ZG

τ (x)),

where ZG
τ (x) is referred to as the local set. The set associated with local lens

depth (Liu and Modarres, 2011), denoted by LLD (G in LGD is replaced by
L), is

ZL
τ (x) = {(x1, x2) ∈ (Rp)2 : max

i=1,2
‖x− xi‖ ≤ ‖x1 − x2‖ ≤ τ},

while that for the spherical depth (Elmore, Hettmansperger and Xuan, 2006) is
given by

ZB
τ (x) = {(x1, x2) ∈ (Rp)2 : ‖2x− (x1 + x2)‖ ≤ ‖x1 − x2‖ ≤ τ}.

alicianieto
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The local set for the β-skeleton depth (Yang and Modarres, 2018) is given by

Z
Kβ
τ (x) = {(x1, x2) ∈ (Rp)2 : max

i,j=1,2
i �=j

‖xi +
(

2
β
− 1

)
xj −

2
β
x‖ ≤ ‖x1 − x2‖ ≤ τ},

while that for the simplicial depth (Liu, 1990) is

ZS
τ (x) = {(x1, . . . , xp+1) ∈ (Rp)(p+1): x ∈ �[x1, . . . , xp+1],max

i,j
‖xi − xj‖ ≤ τ},

where �[x1, . . . , xp+1] is the closed simplex with vertices x1, . . . , xp+1 ∈ R
p.

While the definitions of LLD and LSD (local simplicial depth) were available
in the literature, the definitions of LBD (local spherical (ball) depth) and LKβD
(local β-skeleton depth), as defined here, seem new. Of course, β-skeleton depth
reduces to spherical depth and lens depth for β = 1 and β = 2, respectively.
Also, when p = 1 all of the above four local depths coincide. Finally, taking
τ = ∞ (that is, there is no localization) in the above, one obtains the general
depth (GD) function

GD(x, P ) =
∫

(Rp)k
h(G)
∞ (x;x1, . . . , xk)dP (x1) . . . dP (xk)

studied in Zuo and Serfling (2000a) and referred to as Type A DFs. Accordingly,
we refer to the class of LDFs above as Type A LDFs. When there is no scope for
confusion, we suppress P in GD(x, P ) and LGD(x, τ, P ) and use the notation
GD(x) and LGD(x, τ).

The LDFs scaled by τ−p, as in Definition 2.2 below, are referred to as τ -
approximations. When P is absolutely continuous with respect to (w.r.t.) the
Lebesgue measure with density f(·), the τ -approximations converge as τ →
0+ to a power of f(·). Under additional conditions, one can also prove the
convergence of the derivatives of fτ (·) to the derivatives of f(·) which facilitates
an inquiry into the modes of the density via a gradient system analysis. This, in
turn, allows characterization of the related stable manifolds paving the way for
cluster analysis. Related ideas about clustering appear in Chazal et al. (2013).
Our methodology differs from the existing literature in that we take advantage
of the τ -approximation fτ (·) and its properties, developed in Sections 2 and 3
below. For some discussion on the choice of τ see Remark 2.6 and Subsection 3.3.

Statistical inquiry about local depth requires an investigation into their sam-
ple versions, specifically of sample local depth and sample τ -approximation
(SτA), fτ,n(·). Borrowing tools from empirical process theory, we establish that,
when HG is a VC-subgraph class, the sample local depth is uniformly consis-
tent. We also obtain a related limit distribution in the class HG. Additionally,
we develop a Bernstein type inequality for sample local depth. These results
rely on the Hoeffding’s decomposition of U-statistics representation of the local
depth, which incidentally is a critical component of our analysis. A technical
issue to the above development is that the space of bounded functions on HG is
not separable and it is here that we use the VC-subgraph property of the class
HG. These results are described in Section 2.
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We next focus on the application of the above methods to clustering. To this
end, we recall from dynamical systems that the stable manifold generated by a
mode m of a “smooth” density f(·) is given by

C(m) := {x ∈ Sf : lim
t→∞

ux(t) = m},

where Sf is the interior of the support of f(·) and ux(t) is the solution at time
t of the gradient system

u′(t) = ∇f(u(t))

with initial value u(0) = x and ∇f(·) represents the gradient of f(·). If m1, · · ·mM

are the modes of f(·), then the clusters associated with f(·) are given by
C(m1), . . . , C(mM ) (Chacón, 2015). In this paper, we establish the conver-
gence of the clusters derived using fτ (·), as τ → 0+. This yields consistency
at the population level. Next, using SτA, we also prove consistency of empirical
clusters. For this, we require uniform convergence of the empirical finite differ-
ence approximations to the appropriate derivatives which we establish using the
Bernstein-type inequality described previously. These results are in Section 3.

The consistency proof of the clustering method requires additional analyses
via the use of discrete Grönwall lemma and subtle arguments involving the
density of data points. The use of SτAs require a specification of τ . While in some
cases, such as β-skeleton depths, one can choose τ to be an appropriate quantile,
care is required for other DFs. An approach to choosing τ for clustering is via
cross-validation as suggested by Wang (2010). We use this idea in Subsection 3.3.
The convergence of the clustering algorithm requires a careful “real analysis”
argument involving delicate probability bounds and path-tracing of the solution
of the gradient system. This is described in Section 4. Numerical results and
data analyses related to clustering algorithm are in Subsection 3.4 and 3.5. We
end this introduction section with a comment about the notations used in the
paper.

While the discussion on clustering focused on values of τ near 0, large and
intermediate values of τ are also useful in applications as described in Chandler
and Polonik (2021).

We assume that (Rp)kG is equipped with B((Rp)kG), where B(X ) is the
family of Borel subsets of a topological space X . We denote by Sp−1 the unit
sphere in R

p and by ‖·‖ the Euclidean norm on R
p. For a Borel measure μ on

R
p, μ⊗k is the k-fold product measure, λ(·) the Lebesgue measure on R

p. We
use a.e. to mean almost everywhere with respect to the Lebesgue measure on
R

p and a.s. to mean almost surely with respect to a probability measure P on
R

p. The support of a function g(·) and its interior are denoted by Sg and Sg,
respectively. Finally, we denote by Br(x) and Br(x) the open and closed ball in
R

p with radius r ≥ 0 and center x ∈ R
p.
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2. Local depth and extreme localization

2.1. Analytic properties

We begin by describing in detail local notions of Type A depth functions stud-
ied in Zuo and Serfling (2000a). Let G denote the class of kernel functions
G(·) : (Rp)kG → [0,∞) satisfying the properties (P1)-(P4) below. When the
kernel G(·) is an indicator of ZI

1 (0), I = L,B,Kβ , S we obtain the classical
depth functions. The sets ZI

τ (x) are referred to as local sets. In the sequel when
analyzing specific depth functions, we will interchangeably use the notations
G(·) and I(· ∈ ZG

1 (0)). The Type A local depth function is defined as follows:

Definition 2.1 Let G ∈ G, τ ∈ [0,∞], and let h(G)
τ : Rp × (Rp)kG → [0,∞) be

given by

h(G)
τ (x;x1, . . . , xkG

) :=

⎧⎪⎨
⎪⎩
G(x1−x

τ , . . . ,
xkG

−x

τ ) if τ ∈ (0,∞)
limτ→0+ G(x1−x

τ , . . . ,
xkG

−x

τ ) if τ = 0
limτ→∞ G(x1−x

τ , . . . ,
xkG

−x

τ ) if τ = ∞.

(2.1)

(i) The local general depth at localization level τ ∈ [0,∞] of a point x ∈ R
p with

respect to P is given by

LGD(x, τ, P ) :=
∫

h(G)
τ (x;x1, . . . , xkG

)dP (x1) . . . dP (xkG
). (2.2)

(ii) The general depth of a point x ∈ R
p with respect to a probability measure P

is given by
GD(x, P ) := LGD(x,∞, P ). (2.3)

Properties of the Kernel G(·):

(P1) G(·) is a non-negative and Borel measurable function satisfying

Λ(G)
1 :=

∫
G(x1, . . . , xkG

)dx1 . . . dxkG
< ∞.

(P2) G(·) is symmetric and non-increasing along any ray from the origin in
(Rp)kG ; that is, for any scalar α ≥ 0 and v ∈ (Rp)kG , G(v) = G(−v) and
G(αv) is non-increasing in α.

(P3) G(x1, . . . , xkG
) → 0 as maxi=1,...,kG

‖xi‖ → ∞.
(P4) For any ε > 0, there exist 0 < δ ≤ ε and cG > 0 such that λ((Bδ(0))kG ∩

SG) > 0 and G(·) ≥ cG in (Bδ(0))kG ∩ SG.

In typical examples studied in the literature, such as simplicial, lens, and spher-
ical depth, G(·) will have bounded support implying (P3); i.e., for some ρ > 0,

SG ⊂ (Bρ(0))k, (2.4)
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where we have suppressed G in kG. Frequently, when there is no scope of con-
fusion we will suppress the superscript or subscript G. Additionally we assume,
without loss of generality (w.l.o.g.), that Λ1 = 1 and functions in G are per-
mutation invariant (see Appendix A (Francisci et al., 2023) for details). From
the discussion in Appendix A it follows that if P is absolutely continuous with
respect to the Lebesgue measure on R

p with density f(·), then

LGD(x, τ, P ) = (h(G)
τ (0; ·) ∗ f⊗k(·))(x, . . . , x), x ∈ R

p, τ ∈ [0,∞], (2.5)

where ∗ is the convolution operator and f⊗k(x1, . . . xk) = f(x1) . . . f(xk). Since
P is fixed, in the following we write GD(x) for GD(x, P ) and LGD(x, τ) for
LGD(x, τ, P ). Also, for j = 1, . . . , p, we denote by ∂jg(·) the partial derivative of
the function g : Rp → R with respect to its jth component. Our first proposition
summarizes several continuity and differentiability properties of the LDFs.

Proposition 2.1 (i) For all x ∈ R
p, LGD(x, ·) is monotonically non-decreasing

with

lim
τ→0+

LGD(x, τ) = G(0, . . . , 0)P k({x}) and lim
τ→∞

LGD(x, τ) = GD(x).

(ii) For τ ∈ [0,∞), limr→∞ supx∈Rp\Br(0) LGD(x, τ) = 0.
(iii) If P is absolutely continuous with respect to the Lebesgue measure, then,
for each τ ∈ [0,∞), LGD(·, τ) is bounded and continuous.
(iv) Under assumption (2.4), if P is absolutely continuous with respect to the
Lebesgue measure, with m-times continuously differentiable density f(·), then,
for each τ ∈ [0,∞), LGD(·, τ) is m-times continuously differentiable and, for
i1, . . . , im ∈ {1, . . . , p},

∂im . . . ∂i1LGD(x, τ) = (hτ (0; ·) ∗ (∂im . . . ∂i1f
⊗k(·)))(x, . . . , x). (2.6)

When τ = ∞, part (ii) does not hold in general. For instance, if P is absolutely
continuous with respect to the Lebesgue measure with density function f(·),
k = 1, and G(·) = exp(−‖·‖2/2), then h∞(·; ·) ≡ 1 and (ii) holds for LGD(·,∞)
if and only if it holds for f(·) (see also Zuo and Serfling (2000a)).

Our next result is concerned with the convergence of scaled versions of LDFs
in spaces of integrable functions, under extreme localization. To this end, let
Ld((Rp)k) = Ld((Rp)k, λ⊗k), 1 ≤ d < ∞, denote the space of Lebesgue mea-
surable functions g : (Rp)k → R for which gd(·) is absolutely integrable, and
L∞((Rp)k) = L∞((Rp)k, λ⊗k) be the space of Lebesgue measurable functions
g : (Rp)k → R that are essentially bounded.

Theorem 2.1 Let P be absolutely continuous with respect to the Lebesgue mea-
sure on R

p, with density f(·).
(i) Under assumption (2.4) at every point of continuity of f(·), it holds that

lim
τ→0+

τ−kpLGD(·, τ) = fk(·). (2.7)

Furthermore, (2.7) holds uniformly on any set where f(·) is uniformly continu-
ous.
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(ii) If f(·) ∈ L∞(Rp), then (2.7) holds at every point of continuity of f(·) and
the convergence in (2.7) is uniform on any set where f(·) is uniformly continu-
ous.
(iii) Let f(·) be twice continuously differentiable. Then, under assumption (2.4),
there exists a non-trivial function R(·) such that, for all x ∈ Sf ,

lim
τ→0+

τ−2
(
τ−kpLGD(x, τ) − fk(x)

)
= R(x).

(iv) If fk(·) ∈ Ld(Rp), 1 ≤ d < ∞, then τ−kpLGD(·, τ) converges in Ld(Rp) to
fk(·).
We observe that (iii) provides the rate of convergence of the local depth to
the kth power of the density under extreme localization. An explicit formula for
R(·) is provided in Appendix A (Francisci et al., 2023). It is worth noticing that,
under the assumption (2.4), for all x ∈ R

p\Sf , fk(x) = 0 and 1
τkpLGD(x, τ) = 0

for small values of τ .
Using (2.7) one can express f(·) in terms of the limit of LDFs, for a given

choice of G(·). This leads to our next definition, namely the τ -approximation.

Definition 2.2 (τ-approximation) For any τ > 0,

f (G)
τ (x) := τ−p(LGD(x, τ))1/k. (2.8)

Remark 2.1 From Proposition 2.1 (iii), it follows that when P has a density
f(·) then, f (G)

τ (·) is continuous. Additionally, Proposition 2.1 (iv) implies that
f

(G)
τ (·) is m-times continuously differentiable in S

f
(G)
τ

.

Remark 2.2 Evidently, when k = 1 the τ -approximation reduces to the clas-
sical approximation by convolution in R

p with kernel scaled by τ . Using (A.5),
we see that the same conclusion holds if k > 1 and G(·) is the product kernel
K⊗k(·), where K⊗k(x1, . . . xk) = K(x1) . . .K(xk). See also Remark 2.5 below.

Our next proposition provides a uniform approximation of the density and its
derivatives using the τ -approximation.

Proposition 2.2 Let P be absolutely continuous with respect to the Lebesgue
measure on R

p with density f(·). Then the following hold:
(i) If f(·) is uniformly continuous, then

lim
τ→0+

sup
x∈Rp

|f (G)
τ (x) − f(x)| = 0. (2.9)

(ii) If f(·) is continuous, then for all compact sets K ⊂ R
p

lim
τ→0+

sup
x∈K

|f (G)
τ (x) − f(x)| = 0.

In particular, for all x ∈ R
p, limτ, ε→0+ supy∈Bε(x) |f

(G)
τ (y) − f(x)| = 0.

(iii) If f(·) ∈ LkGd(Rp), d ≥ 1, then f
(G)
τ (·) converges in LkGd(Rp) to f(·).
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(iv) Suppose (2.4) holds and f(·) is m-times continuously differentiable, then,
for all compact sets K ⊂ Sf and i1, . . . , im ∈ {1, . . . , p},

lim
τ→0+

sup
x∈K

|∂im . . . ∂i1fτ (x) − ∂im . . . ∂i1f(x)| = 0.

Remark 2.3 The above proposition implies that the τ -approximation converges
uniformly to the density under extreme localization. We also note that continuity
is not enough in Proposition 2.2 (i). (iv) of the Proposition provides a uniform
approximation to the partial derivatives of the τ -approximation and plays a cen-
tral role in the properties of clustering investigated in the Section 3.

2.2. Sample local depth

Let {X1, . . . , Xn} be independent and identically distributed (i.i.d.) random
variables from P on R

p; then the estimate of LGD, called sample local depth,
is the U-statistics of order k (Korolyuk and Borovskich, 2013)

LGDn(x, τ) :=
(
n

k

)−1 ∑
1≤i1<···<ik≤n

h(G)
τ (x;Xi1 , . . . , Xik), (2.10)

where x ∈ R
p and τ ∈ [0,∞]. In particular, GD(x) is estimated by setting

GDn(x) := LGDn(x,∞). For 1 ≤ j ≤ k, let

h(G,j)
τ (x;x1, . . . , xj) := E[h(G)

τ (x;x1, . . . , xj , Xj+1, . . . , Xk)] and
h̃(G,j)
τ (x;x1, . . . , xj) := h(G,j)

τ (x;x1, . . . , xj) − LGD(x, τ).

When there is no scope for confusion we also write h
(j)
τ (·; ·) for h

(G,j)
τ (·; ·) and

h̃
(j)
τ (·; ·) for h̃

(G,j)
τ (·; ·). Using (1.1.34) in Korolyuk and Borovskich (2013), we

have that

V ar[LGDn(x, τ)] =
(
n

k

)−1 k∑
j=1

(
k

j

)(
n− k

k − j

)
E[(h̃(G,j)

τ (x;X1, . . . , Xj))2].

(2.11)
It follows that, for all n ∈ N,

V ar[
√
nLGDn(x, τ)] = nk

(
n

k

)−1(
n− k

k − 1

)
E[(h̃(G,1)

τ (x;X1))2] + O

(
1
n

)
−−−−→
n→∞

k2E[(h̃(G,1)
τ (x;X1))2].

The above calculation yields that LGDn is a consistent estimator of LGD even
though this holds under much weaker conditions on G(·). In typical applications,
the choice of x, τ , and G vary and in exploratory analyses, different choices
of x, τ and G may be investigated. Our next result shows that the LGDn is
uniformly consistent over x and τ . The proof relies on the size of the class
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HG := {h(G)
τ (x; ·) : x ∈ R

p, τ ∈ [0,∞]} which can be characterized using VC-
theory. We impose a weak condition on the class HG, namely that it is a VC-
subgraph class (see Definition 3.6.8 of Giné and Nickl (2016)). We show that this
assumption holds in several examples studied in the literature. These details are
described in Appendix C (Francisci et al., 2023).

Theorem 2.2 Let HG be a VC-subgraph class of functions. Then

sup
x∈R

p

τ∈[0,∞]

|LGDn(x, τ) − LGD(x, τ)| −−−−→
n→∞

0 a.s.

In some examples, it is possible that G =: Gθ ∈ G is indexed by a parameter
θ ∈ Θ ⊂ R, as is the case for β-skeletons. In such cases, one can strengthen
the above Theorem 2.2 to obtain uniformity in the indexing parameter under
additional assumptions as described in the Assumption A.1 in Appendix A
(Francisci et al., 2023). That is,

sup
θ∈Θ

sup
x∈R

p

τ∈[0,∞]

|LGθDn(x, τ) − LGθD(x, τ)| −−−−→
n→∞

0 a.s. (2.12)

The details for the β-skeleton are also provided in Appendix C (Francisci et al.,
2023). Computational issues are addressed in Appendix E.

Next, we turn to the uniform central limit theorem for LGDn over a suitable
subset T of Rp×[0,∞]. Let �∞(T ) denote the space of all bounded functions ḡ(·) :
T → R. To study the convergence in distribution in �∞(T ), one needs to address
the measurability problems that are encountered due to the non-separability of
�∞(T ). We do this by establishing that the class HG is image admissible Suslin
as in Arcones and Giné (1993). For definition of image-admissible Suslin see
Dudley (2014). In the following, convergence in distribution in �∞(T ) is in the
sense of Hoffmann-Jørgensen (Giné and Nickl, 2016, Definition 3.7.22).

Theorem 2.3 Let T ⊂ R
p × [0,∞] such that E[(h̃(1)

τ (x;X1))2] > 0, for all
(x, τ) ∈ T , and suppose that HG is a VC-subgraph class of functions. Then

√
n(LGDn(·, ·) − LGD(·, ·)) d−−−−→

n→∞
kW (·, ·) in �∞(T )

where {W (x, τ)}(x,τ)∈T is a centered Gaussian process with covariance function
γ : T × T → R given by

γ((x, τ), (y, ν)) =
∫

h(1)
τ (x;x1)h(1)

ν (y;x1)dP (x1) − LGD(x, τ)LGD(y, ν).

Remark 2.4 Notice that, for (x, τ) ∈ T , the variance of W (x, τ) is given by
γ((x, τ), (x, τ)) = E[(h̃(1)

τ (x;X1))2] > 0 and, in the examples, T �= ∅. This im-
plies that the U-statistics (2.10) is non-degenerate, i.e. h̃(1)

τ (x; ·) �= 0 (Korolyuk
and Borovskich, 2013). Furthermore, if P is absolutely continuous with respect
to the Lebesgue measure, x ∈ SP (the interior of the support of P ), and τ > 0,
then since E[(h̃(1)

τ (x;X1))2] > 0, T can be taken to be “large”.
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In the clustering applications discussed below, we will establish the consis-
tency of the sample clustering algorithm. This will involve approximating the
τ -approximations of the depth functions and their derivatives via their sam-
ple versions. The quality of this approximation will play a critical role in the
consistency arguments. Our next result enables this study by establishing the
following Bernstein-type inequality for local depth functions. Before we state
this result, notice that, by Jensen’s inequality and (A.1),

σ2
G := sup

x∈R
p

τ∈[0,∞]

E[(h̃(G,1)
τ (x;X1))2] ≤ sup

x∈R
p

τ∈[0,∞]

E[(h̃(G,k)
τ (x;X1, . . . , Xk))2] ≤ l2G,

where lG := G(0, . . . , 0).

Theorem 2.4 Let HG be a VC-subgraph class of functions. Then, there are
constants 1 < CG,0, CG,1, CG,2 < ∞ such that, for all t ≥ max(23σG, 24CG,0),

P⊗n(
√
n sup

x∈R
p

τ∈[0,∞]

|LGDn(x, τ) − LGD(x, τ)| ≥ t) ≤ DG(n, t) :=
3∑

j=1
DG,j(n, t),

(2.13)
where

DG,1(n, t) := 8 exp
(
− t2

√
n

215k2
G(σ2

G

√
n + tlG)

)
,

DG,2(n, t) := 8C2CG,2
G,1

(
σ2
G + 2tlG√

n

)−CG,2

exp
(
−
(
nσ2

G

2l2G
+

√
nt

4lG

))
, and

DG,3(n, t) := 2 exp
(
− t2

√
n

26+kGkkG+1
G lGCG,0(σ2

G

√
n + tlG)

)
.

We now turn to the SτA for estimating the density. To this end, let P be
absolutely continuous with respect to the Lebesgue measure with density f(·).
The plug-in estimator of f (G)

τ (·) is given by

f (G)
τ,n (x) := τ−p(LGDn(x, τ))1/k, (2.14)

where we recall that we have suppressed G in kG. Our first result uses Propo-
sition 2.2 and Theorem 2.4 to establish the uniform convergence of f (G)

τ,n (·) to
f(·).

Proposition 2.3 Let HG be a VC-subgraph class of functions and suppose that
P is absolutely continuous with respect to the Lebesgue measure on R

p with
density f(·). Let {τn}∞n=1 and {εn}∞n=1 be sequences of positive scalars converging
to zero with limn→∞

n
log(n)τ

2kp
n = ∞. Then the following hold:

(i) If f(·) is uniformly continuous, then

lim
n→∞

sup
x∈Rp

|f (G)
τn,n(x) − f(x)| = 0 a.s.
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(ii) If f(·) is continuous, then for all compact sets K ⊂ R
p

lim
n→∞

sup
x∈K

|f (G)
τn,n(x) − f(x)| = 0 a.s.

In particular, for all x ∈ R
p, limn→∞ supy∈Bεn (x) |f

(G)
τn,n(y) − f(x)| = 0 a.s.

Remark 2.5 Returning to Remark 2.2, under the additional assumption that
G(·) = K⊗k(·) is a product of kernels, one can obtain our estimator as a U-
statistic with a product kernel with the same bandwidth, namely

(
n

k

)−1 1
τkp

∑
1≤i1<···<ik≤n

k∏
l=1

K

(
x−Xil

τ

)
,

which is the U-statistic estimator of fk(x) using the KDE

f (K)
τn,n(x) = 1

nτp

n∑
i=1

K

(
x−Xi

τ

)
.

Thus, LDFs are a natural extension of product kernels, where the function
K⊗k(·) is replaced by G(·).
Remark 2.6 Under the additional assumption that ψ(G)(·) is integrable in (Rp)k,
where ψ(G)(w) := supv∈(Rp)k:‖v−w‖≤1 G(v) (norm in (Rp)k), it follows from
Bertrand-Retali (1978) that consistency can be proved under the weaker condi-
tion limn→∞

n
log(n)τ

kp
n = ∞. Einmahl and Mason (2005) study uniformity in x

and τ when k = 1.

The asymptotic limit distribution of the SτA is provided in Appendix B (Fran-
cisci et al., 2023). Examples and verification of the VC-subgraph property are
provided in Appendix C. We now turn to discuss clustering application. Ap-
pendix D.1 contains applications to estimation of upper level sets of the density.

3. Clustering

In this section, we describe a methodology for clustering multivariate data using
the theory of dynamical systems, which involves three distinct but connected
steps. In the first step, one constructs cluster(s) in the population as stable
manifold(s) generated by the mode(s). Next, the behavior of the gradient system
when f(·) is replaced by its τ -approximation is studied and its convergence
established under extreme localization. Finally, one replaces the τ -approximated
density by its SτA, fτn,n(·), to obtain the empirical clusters and establish their
convergence.

The following discussion is reliant on Assumption 3.1 below concerning the
smoothness properties of f(·). Recall that the clusters are defined as the stable
manifolds generated by the mode and are obtained using the limiting trajec-
tory of the gradient system. Specifically, for any μ ∈ Sf , the stable manifold
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generated by μ is given by

C(μ) := {x ∈ Sf : lim
t→∞

ux(t) = μ}, (3.1)

where ux(t) is the solution at time t of the gradient system

u′(t) = ∇f(u(t)) (3.2)

with initial value u(0) = x. For any choice of μ, it is not required for the stable
manifold so-defined to be non-trivial; i.e. the Lebesgue measure of C(μ) can
be zero. However, if μ is chosen as a mode of f(·), then, one can verify that
the resulting manifold has a positive Lebesgue measure. We next turn to define
the stationary points type, and, in particular, the mode. Before we state the
assumption, we introduce one more notation: the Hessian matrix associated
with any function g(·) is denoted by Hg and 〈·, ·〉 denotes the inner product on
R

p.

Definition 3.1 A stationary point μ ∈ Sf of f(·) is said to be of type l, 0 ≤ l ≤
p, if Hf (μ) has l negative and p− l positive eigenvalues. In particular, m ∈ Sf is
said to be a mode (resp. an antimode) for f(·) if it is a stationary point of f(·)
and Hf (m) has only negative (resp. positive) eigenvalues, that is, m is a local
maximum (resp. minimum) for f(·). If m1, . . . ,mM are the modes of f(·), then
the clusters induced by m1, . . . ,mM are the stable manifolds C(m1), . . . , C(mM ).

Let m1, . . . ,mM be the modes and μ1, . . . , μL the other stationary points of
f(·). We deduce from dynamical systems and Morse theory literature (Hirsch,
Devaney and Smale, 1974; Matsumoto, 2002; Teschl, 2012) and Chacón (2015)
that the clusters C(m1), . . . , C(mM ) are well-defined, non-trivial, disjoint, and

Sf = ∪M
i=1C(mi) ∪ ∪L

l=1C(μl) (3.3)

Hence, C(m1), . . . , C(mM ), C(μ1), . . . , C(μL) form a partition of Sf . Addition-
ally, the clusters C(m1), . . . , C(mM ) are open sets and are separated in Sf by
the lower dimensional stable manifolds C(μ1), . . . , C(μL). This completes the
first step. The second step is described in Subsection 3.1 where we describe
step-by-step analytical tools to fill in the gap between local depths and stable
manifolds generated by the modes. The third step is described in Subsection 3.2.
The algorithm is provided in Appendix E (Francisci et al., 2023).

3.1. Identification of stationary points and convergence of the
gradient system under extreme localization

We replace f(·) by fτ (·) in (3.2) and consider the gradient system

u′(t) = ∇fτ (u(t)). (3.4)

The domain of this new system is Sfτ . We summarize the main properties
of (3.4) as τ → 0+. We begin with the properties of Sfτ .
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Lemma 3.1 For all 0 < τ1 ≤ τ2, we have that Sfτ1
⊂ Sfτ2

. Additionally, if
f(·) is continuous, then, for all τ > 0, Sf ⊂ Sfτ and limτ→0+ Sfτ ⊃ Sf . Under
assumption (2.4), limτ→0+ Sfτ ⊂ Sf .

We observe that the assumption (2.4) is essential in the last part of Lemma 3.1.
Indeed, if G(·) is the Gaussian kernel, then Sfτ = R

p, for all τ > 0, implying
limτ→0+ Sfτ = R

p. Also, since ∂Sf and SG have arbitrary shape, it is unclear if
x ∈ ∂Sf belongs to limτ→0+ Sfτ or not. Under Assumption 3.1 below, Proposi-
tion 2.2 (iv) shows that the gradient and the Hessian matrix of fτ (·) converge to
those of f(·). Recall that, by Remark (2.1), if f(·) is m-times continuously differ-
entiable, then, fτ (·) is m-times continuously differentiable in Sfτ . Additionally,
if f(·) is τ -symmetric about a stationary point μ (that is, f(μ+x) = f(μ−x), for
all x ∈ R

p with ‖x‖ ≤ τ), then it is easy to see that the stationary points of f(·)
are also the stationary points of fτ (·). However, the assumption of τ -symmetry
may be harder to verify in applications. For this reason, we do not make this
assumption in the developments below even though in Appendix D.2 (Francisci
et al., 2023) we provide sufficient conditions under which the stationary points
(resp. modes, antimodes) of f(·) are exactly the stationary points (resp. modes,
antimodes) of fτ (·) for τ > 0 when τ -symmetry obtains.

Next, to characterize the stationary points of fτ (·) without the τ -symmetry
condition, notice that for small τ , the first and second order derivatives of fτ (·)
are close to those of f(·) (Proposition 2.2). Hence, one can pick a hypercube,
centered at the stationary point with directions provided by eigenvectors of Hes-
sian matrix, so that f(·) and fτ (·) share similar properties within the hypercube.
This idea is made precise in the following theorem.

Theorem 3.1 Suppose (2.4) holds true. The following hold:
(i) If f(·) is continuously differentiable in Bρτ (μ) ⊂ Sf , τ > 0, then ∇fτ (μ) = 0
if and only if∫

hτ (0;x1, . . . , xk)∇f(μ + x1)f(μ + x2) . . . f(μ + xk)dx1 . . . dxk = 0, (3.5)

where the integral of a vector is the vector of the integrals.
(ii) If f(·) is twice continuously differentiable in Bδ(μ) ⊂ Sf , δ > 0, and μ is
a stationary point of f(·) of type l, then there exists h∗, τ∗ > 0 and a closed
hypercube Fh∗(μ) ⊂ Bδ(μ) with side length 3/2h∗ such that, for 0 < τ ≤ τ∗,
fτ (·) has a unique stationary point μτ in F̊h∗(μ) and μτ is of type l. Moreover,
‖μτ − μ‖ −−−−→

τ→0+
0.

(iii) If f(·) is three times continuously differentiable, then ‖μτ − μ‖ = O(τ2).

We now state the main assumptions required for convergence of clusters obtained
using (2.8).

Assumption 3.1 f(·) is a probability density function on R
p that is twice con-

tinuously differentiable with a finite number of stationary points in Sf . Addition-
ally, the Hessian matrix Hf has non-zero eigenvalues at its stationary points.
Also, let Rα := {x ∈ R

p : f(x) ≥ α} be a bounded set for every α > 0.
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By continuity of f(·), Rα is compact. We notice that Rα is bounded if f(·)
vanishes at infinity, that is, supx∈Rp:‖x‖≥c f(x) → 0 as c → ∞, which is satisfied,
for example, if Sf is bounded. We study next the relationship between the
gradient systems (3.4) and (3.2) under extreme localization. To this aim, notice
that the sets {Sfτ }τ>0 contain Sf by Lemma 3.1. If it exists, we denote by ux,τ (t)
the solution of (3.4) with initial point ux,τ (0) = x. Since fτ (·) is continuous, for
α > 0, the sets Rα

τ := {x ∈ R
p : fτ (x) ≥ α} = f−1

τ ([α,∞)) are closed. Lemma
A.6 in Appendix A (Francisci et al., 2023) shows that they are also bounded.
Lemma A along with the boundedness of Rα for all α > 0, implies that for
all x ∈ Sf ux,τ (·) exists and is unique in a maximal time interval (a,∞), for
some −∞ ≤ a < 0. For a stationary point μτ ∈ Sf of fτ (·), the stable manifold
generated by μτ is

Cτ (μτ ) := {x ∈ Sf : lim
t→∞

ux,τ (t) = μτ}.

We next exploit the differentiability properties of fτ (·) to show that the solutions
of the gradient system (3.4) converge for τ → 0+ to those of the gradient
system (3.2). This is described in Appendix A, Proposition A.2. We now turn
to the convergence of the clusters Cτ (μτ ) under extreme localization. To this
end, let Nf := {m1, . . . ,mM , μ1, . . . , μL} denote the set of stationary points of
f(·).

Theorem 3.2 Suppose that (2.4) and Assumption 3.1 hold true, and f(·) is
three times continuously differentiable. Let {τj}∞j=1 be a sequence of
positive scalars converging to 0. Then, for all μ ∈ Nf , there exists τ∗ > 0 and
{μτj}∞j=1,τj≤τ∗ such that ‖μτj −μ‖ = O(τ2

j ), where, for each τj, μτj is a station-
ary points of fτj (·) and is of the same type as μ satisfying limj→∞ Cτj (μτj ) =
C(μ).

3.2. Algorithm and consistency of empirical clusters

In this section, we describe the algorithm for the numerical approximation of
the clusters induced by the system (3.4) and establish its consistency.

Since the sample τ -approximation is, in general, not differentiable in x, we
use a finite difference approximation that converges to the directional derivative.
The directional derivative of g(·), in the direction of v ∈ Sp−1 (the unit sphere
in R

p), is denoted by ∇vg(·) = 〈∇g(·), v〉. To this end, for x ∈ R
p, τ > 0, n ∈ N,

h > 0 and a unit vector v ∈ R
p, the finite difference approximations of the

directional derivatives of fτ (·) and fτ,n(·) along v are given by

∇h
vfτ (x) = fτ (x + hv) − fτ (x)

h
and ∇h

vfτ,n(x) = fτ,n(x + hv) − fτ,n(x)
h

.

Our first result shows that under the condition limn→∞ nh2k
n τ2kp

n = ∞, the
finite difference approximation to the directional derivative converges uniformly
on compact sets, in probability.
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Theorem 3.3 Suppose (2.4) holds true. Let K be a compact subset of Sf ,
{hn}∞n=1 and {τn}∞n=1 sequences of positive scalars converging to 0 and {vn}∞n=1
be a sequence in Sp−1 converging to v ∈ Sp−1. (i) If f(·) is continuously differ-
entiable, then

lim
n→∞

sup
x∈K

|∇hn
vn fτn(x) −∇vf(x)| = 0.

(ii) If, additionally, HG is a VC-subgraph class of functions and lim
n→∞

nh2k
n τ2kp

n =
∞, then, for all ε > 0,

lim
n→∞

P⊗n

(
sup
x∈K

|∇hn
vn fτn,n(x) −∇vf(x)| ≥ ε

)
= 0.

The first step towards identifying the modes, is finding a local maximum of a
function. To this end, we use the steepest ascent or gradient ascent idea; that is,
starting from a point in the space, the next point is chosen in the direction given
by the gradient of the function at that point. This procedure is repeated until
convergence to a local maximum is achieved. When clustering using modes, this
procedure is often combined with kernel density estimators to find the modes of
the density underlying the given data points, and the clusters associated with
them (Fukunaga and Hostetler, 1975; Menardi, 2016). Our methodology does
not require existence of gradients, and considers data as potential candidate
points for the next move. Similar ideas were also used in Koontz, Narendra and
Fukunaga (1976).

Turning to the consistency result, we need arguments that allows one to
approximate uniformly the directional derivative of points over (i) a compact
set, (ii) the step-size, and (iii) directions. The next lemma addresses this issue
and critically uses the Bernstein-type inequality developed in Theorem 2.4.
Part (iii) of the lemma below also provides a upper bound on the uniform
approximation mentioned above. We need the following notation: for δ > 0,
(A)+δ := {x ∈ R

p : infy∈A‖x − y‖ ≤ δ} and (A)−δ := R
p \ (Rp \ A)+δ = {x ∈

R
p : infy∈Rp\A‖x− y‖ > δ}.

Lemma 3.2 Suppose (2.4) holds true. Let K be a compact subset of Sf and let
h∗ > 0 be such that (K)+h∗ ⊂ Sf . Also, let {τn}∞n=1 and {hn}∞n=1 be sequences
of positive scalars converging to 0. Assume also that f(·) is three times contin-
uously differentiable. Then
(i) the finite difference approximation of the directional derivative of fτ (·) con-
verges uniformly to that of f(·). That is,

lim
n→∞

sup
h∈[hn,h∗]

sup
v∈Sp−1

sup
x∈K

|∇h
vfτn(x) −∇h

vf(x)| = 0.

(ii) If, additionally, HG is a VC-subgraph class of functions and lim
n→∞

nh2k
n τ2kp

n =
∞, then, for all ε > 0,

lim
n→∞

P⊗n

(
sup

h∈[hn,h∗]
sup

v∈Sp−1
sup
x∈K

|∇h
vfτn,n(x) −∇h

vf(x)| ≥ ε

)
= 0.
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(iii) Let limn→∞
n

log(n)h
2k
n τ2kp

n = ∞ and HG be a VC-subgraph class of func-
tions. Then, for all ε > 0, there are constants 0 < C̃ < ∞ and ñ ∈ N such that,
for all n ≥ ñ,

P⊗n

(
sup

h∈[hn,h∗]
sup

v∈Sp−1
sup
x∈K

|∇h
vfτn,n(x) −∇h

vf(x)| ≥ ε

)
≤ C̃

n2 .

We now describe the clustering algorithm. Let Xn := {X1, . . . , Xn} be a
sample of i.i.d. random variables from P with density f(·) and {hn}∞n=1 and
{τn}∞n=1 be sequences of positive scalars converging to zero. For x ∈ R

p and
r > 0, define

Xn,r(x) := {X ∈ Xn : hn ≤ ‖X − x‖ ≤ r},
Yn,r,0 := x and, recursively, if

max
X∈Xn,r(Yn,r,j)∪{Yn,r,j}

fτn,n(X) − fτn,n(Yn,r,j) > 0, (3.6)

then
Yn,r,j+1 := argmax

X∈Xn,r(Yn,r,j)

fτn,n(X) − fτn,n(Yn,r,j)
‖X − Yn,r,j‖

; (3.7)

else stop and let j∗ := j and Ln,r(x) := Yn,r,j∗ . It is clear from the above
description that j∗ ≤ n, that is, the algorithm ends in at most n steps. Indeed,
for all j = 1, . . . , j∗, Yn,r,j ∈ Xn and, by (3.6), Yn,r,j �= Yn,r,l for all l < j. The
next theorem shows that, for small r, large n, and x ∈ C(mi), Ln,r(x) is close
to mi with arbitrary large probability.

Theorem 3.4 Suppose that HG is a VC-subgraph class of functions, Assump-
tion 3.1 and (2.4) hold true and f(·) is three times continuously differentiable.
Let {hn}∞n=1 and {τn}∞n=1 be sequences of positive scalars converging to zero with
limn→∞ nh2k

n τ2kp
n = ∞, 0 < η ≤ 1, 0 < α < mini=1,...,M f(mi), ε > 0, ξ > 0,

and 0 < r ≤ r∗ for some r∗. Then, there exists n∗ ∈ N such that, with probability
at least 1 − η, Ln,r(x) ∈ Bε(mi) for all n ≥ n∗ and x ∈ Rα ∩ (C(mi)−ξ).

Using the above theorem, one can estimate the mode using the last iterate,
namely, Ln,r(x) = Yn,r,j∗ . The Corollary 3.1 below provides strong consistency
of this estimate. Turning to the proof of Theorem 3.4, it is divided into four
distinct but connected steps. For the first step, let j∗ be a non-negative integer
and define {yr,j} recursively as follows: let yr,0 = x and

yr,j+1 = yr,j + hjvj , 0 ≤ j ≤ (j∗− 1),

where 0 < hj ≤ r for some small r > 0, and where vj is “close” to the normalized
gradient of f(·) at yr,j . We show that the sequence {yr,j} is close to the solution
ux(·) of (3.2). This is achieved, using version of the discrete Grönwall lemma
(Lemma A.7 in Appendix A (Francisci et al., 2023)). Next, we show that {Yn,r,j}
in (3.7) behaves like the sequence {yr,j} described in Step 1, with probability
(1 − η). This is achieved in Step 2 using Lemma 3.2. The proof of this step
requires the existence of sufficient number of data points in a small neighborhood
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of all points in the direction of the normalized gradient. We establish that this
is indeed the case using compactness arguments in Step 3. Finally, we apply the
results of Step 1 to {Yn,r,j}j

∗

j=0 yielding that this sequence is close to the solution
ux(·). Since for all points that are not close to a mode, there exists, by Step 3,
data points yielding a positive finite difference approximation of the directional
derivative, (3.6) occurs with the desired probability. This observation allows to
conclude, in Step 4, that Yn,r,j∗ is close to the mode.

We now give a formal definition of empirical clusters. To this end, we add
an additional step to the above algorithm in which we merge the last iterates
Ln,r(x), x ∈ R

p, that are close to each other. To this end, let

Ln,r := {Ln,r,1, Ln,r,2, . . . , Ln,r,Nn} = {Ln,r(x) : x ∈ R
p}

be the set of all last iterates. For δ > 0 and L0 ∈ Ln,r let

[L0]δ := {L ∈ Ln,r : ∃L1, . . . , Ll ∈ Ln,r : ‖L0 − L1‖, . . . , ‖Ll − L‖ ≤ δ}

and fix mn,r,1,mn,r,2, . . . ,mn,r,Mn ∈ Ln,r such that Ln,r = ∪Mn
i=1[mn,r,i]δ and

[mn,r,i]δ ∩ [mn,r,j ]δ = ∅ for i �= j. Empirical clusters are given by

Cn,r,δ,i := ∪L∈[mn,r,i]δ{x ∈ R
p : Ln,r(x) = L}.

We use probability distance and Hausdorff distance to evaluate the distance
between two clusterings C = {C1, . . . , Cs} and D = {D1, . . . , Dt} (see Chacón
(2015), for instance). Suppose w.l.o.g. that s ≤ t and recall that the symmetric
difference between two subsets A and B of Rp is AΔB = ((Rp \A) ∩B) ∪ (A ∩
(Rp \B)). The probability distance between C and D is given by

dP,c(C,D) = 1
2 min

π∈Pt

( s∑
i=1

P (CiΔDπ(i)) + c
t∑

i=s+1
P (Dπ(i))

)
,

where Pt is the set of all permutations of {1, . . . , t} and c ≥ 0 is a penalization
coefficient for clusters that do not match with any other. The Hausdorff distance
is given by

dH(C,D) = max( max
i=1,...,s

min
j=1,...,t

P (CiΔDj), max
j=1,...,t

min
i=1,...,s

P (CiΔDj)).

We denote by
C := {C(m1), C(m2), . . . , C(mM )}

the population clustering and by

Cn,r,δ := {Cn,r,δ,1, Cn,r,δ,2, . . . , Cn,r,δ,Mn}

the empirical clustering. We are now ready to prove consistency of empirical
clusters.

Proposition 3.1 Assume the conditions in Theorem 3.4 hold and λ(C(μl)) = 0
for all l = 1, . . . , L. If 0 < δ ≤ δ∗ and 0 < r ≤ r∗, for some δ∗ and r∗ that
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depend on f(·) only, then

lim
n→∞

dP,c(C, Cn,r,δ) = 0 a.s.

Next, let Cn,r,δ,ζ be the clustering obtained from Cn,r,δ by removing all clusters
with empirical probability not larger than ζ > 0.

Proposition 3.2 Assume the conditions in Theorem 3.4 hold and λ(C(μl)) = 0
for all l = 1, . . . , L. If 0 < δ ≤ δ∗, 0 < ζ < ζ∗, and 0 < r ≤ r∗, for some δ∗, ζ∗,
and r∗ that depend on f(·) only, then

lim
n→∞

dH(C, Cn,r,δ,ζ) = 0 a.s.

As an additional consequence of the Theorem 3.4, setting Jn := I(Ln,r(x) /∈
Bε(mi)) and {ηn}∞n=1 be a sequence of scalars in (0, 1] with limn→∞ ηn = 0
one can show by Theorem 3.4 that limn→∞ P⊗n(Jn = 1) ≤ limn→∞ ηn = 0,
implying that Jn converges in probability to zero. Since Ln,r(x) is the estimate
of the mode, we obtain weak consistency of the mode. Furthermore, using (iii)
of Lemma 3.2, one can strengthen the conclusion to almost sure convergence.
We summarize this observation as a corollary.

Corollary 3.1 Suppose that limn→∞
n

log(n)h
2k
n τ2kp

n = ∞ and the assumptions
of Theorem 3.4 hold. Then Jn −−−−→

n→∞
0 a.s.

It is important to note that one can weaken some of the conditions in Theo-
rem 3.4. Specifically, in Lemma D.1 in Appendix D.3 (Francisci et al., 2023) we
show that, for p ≥ 6k + 1, the conditions involving {hn}∞n=1 can be removed
provided that the sequence {τn}∞n=1 does not converge to zero “too fast”; for in-
stance, one could choose τn = n−δ/(2kp)) for some 0 < δ < 1− 6k

p . To see this, no-
tice from the lemma that hn can be replaced by h̃n := miny,z∈Xn∪{x},y �=z‖y−z‖,
which implies that Xn,r(x) = {X ∈ Xn : hn ≤ ‖X − x‖ ≤ r} can be replaced by
X̃n,r(x) = {X ∈ Xn : ‖X − x‖ ≤ r, X �= x}.

3.3. Choice of τ

A key issue in the use of LDFs for clustering is that it requires a value of τ .
Theorem 3.4 suggests that τ should decrease slowly with n, namely τ = τn =
o(n−1/(2kp)). However, it does not provide an optimal value of τ when n is small.
In this subsection, we develop an alternative data-driven procedure for choosing
τ for a fixed sample size n. Wang (2010) proposes to choose among different clus-
tering algorithms the algorithm that maximizes clustering stability in the sense
that clusters vary as little as possible when applying the algorithm to different
samples. We use adjusted Rand index as measure for clustering stability (Rand,
1971; Hubert and Arabie, 1985). If only one sample is available clustering stabil-
ity can be evaluated using cross-validation. For this, the dataset is divided into
three parts: the first and second part are used to build two different clusterings
of the sample and the third part is used for evaluating stability based on the two
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clustering. We repeat this procedure multiple times and compute the adjusted
Rand index for a given value of τ . In our numerical experiments we draw 100
different samples with sample size n = 1000 and choose C = 100 subsamples.

As for β-skeleton and simplicial depths the parameter τ can be chosen as a
quantile of the distances between the observations. For more details we refer to
Appendix E (Francisci et al., 2023).

3.4. Numerical results

In this subsection, we describe several numerical experiments to evaluate the
performance of the clustering algorithm. We use as metric empirical probability
distance with c = 1 and empirical Hausdorff distance. We consider the following
distributions studied in the literature (Wand and Jones, 1993; Chacón, 2015) in
two dimensions: (H) Bimodal IV and #10 Fountain. We also study the behavior
in dimension five (Mult. Quadrimodal) and for circular distributions (Circular
Bimodal II), where additional complexities arise for identifying the true clusters.

We next turn to the choice of τ for lens depth. As explained previously, we
choose τ to be a quantile. To be more precise, let Xn = {X1, . . . , Xn} be a
sample of i.i.d. random variables with distribution P . We notice that choosing
the parameter τ for LLD is equivalent to choose a quantile q for the pairwise
distances ‖Xi −Xj‖, i > j, i, j ∈ {1, 2, . . . , n}. Similar considerations hold for
LSD (see Appendix E (Francisci et al., 2023)). Thus, we choose q following
the discussion in Subsection 3.3. We now illustrate this idea when P is the
Mult. Quadrimodal distribution. Figure 1 shows the median adjusted Rand
index and interquartile range as a function of the quantile order q (left). The
center plot shows the boxplot of optimal value of q and the right plot displays
the number of clusters detected when q is the optimal quantile order. Based on
this preliminary analysis we conclude that the optimal value of q for LLD lies
between 0.01 and 0.1. Thus, we restrict our numerical experiments to values of
q in that range (cf. Appendix F (Francisci et al., 2023)). Additional analysis
shows that some circular distributions require values of q higher than 0.1 (see
Figure 1 in Appendix F.1).

Next, we compare LLD and LSD using the clustering algorithm in Theo-
rem 3.4 with KDE using both the above clustering algorithm and mean shift
algorithm of Fukunaga and Hostetler (1975) abbreviated as KDE-“ms”. We em-
phasize here that by KDE we mean implementation with our algorithm. We
also compare with two recent clustering algorithms, which are a combination
of mixture model clustering (Fraley and Raftery, 2002) and modal clustering
(Chacón, 2015): (i) mixture model modal merging (MMMM) and (ii) mixture
model modal clustering (MMMC). For more details we refer to Chacón (2019) or
Appendix F.1. Our simulation results are based on a sample size of 1000 and 100
numerical experiments. For more details on the numerical implementation and
the experimental setting we refer to Appendices E and F (Francisci et al., 2023).

Based on the results, we notice that our clustering algorithm performs ade-
quately and outperforms in some cases compared with KDE-“ms”. As expected,
MMMM and MMMC are the best for mixture densities. However, they perform
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Fig 1. For 100 replications with n = 1000 samples for the Mult. Quadrimodal distribution
and LLD (i) median adjusted Rand index and interquartile range as a function of the quantile
order q (left), (ii) boxplot of the optimal quantile q (center), and (iii) boxplot of the number
of clusters for the optimal quantile q (right).

poorly for Circular Bimodal II distribution. More extensive numerical experi-
ments are included in Appendix F (Francisci et al., 2023) and Francisci et al.
(2022). Description of the R code used for simulations is included in Appendix
F.1.

3.5. Data analysis

We evaluate the performance of our methodology on Iris dataset and Seeds
dataset, both available from the UCI machine learning repository (http://
archive.ics.uci.edu/ml/). In the Iris dataset the sample size is n = 150 and
there are three classes (Iris Setosa, Iris Versicolour,and Iris Virginica) with four
measurements each (sepal length, sepal width, petal length, and petal width).
Our algorithm using LDFs and KDE correctly identifies the true number of clus-
ters with probability and Hausdorff distances of 0.1 and 0.03 for both methods.
KDE-“ms” overestimates the number of clusters with probability and Haus-
dorff distances 0.37 and 0.31, respectively. Next, turning to Seeds dataset, the
sample size is n = 210 and there are three clusters relating to three varieties
of wheat (Kama, Rosa and Canadian). The data are in seven dimensions rep-

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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Table 1

Mean of the clustering errors based on distance in probability (c = 1) for the densities (H)
Bimodal IV, #10 Fountain, Mult. Quadrimodal, and Circular Bimodal II. In parentheses

the standard deviation.

Clustering errors (distance in probability)
(H) Bimodal IV #10 Fountain

MMMM 0.00 (0.00) 0.23 (0.07)
MMMC 0.00 (0.00) 0.10 (0.07)
KDE 0.00 (0.00) 0.06 (0.01)
KDE-“ms” 0.01 (0.07) 0.21 (0.31)
LLD 1 0.13 (0.28) 0.06 (0.01)
LSD 2 0.12 (0.27) 0.06 (0.01)

Mult. Quadrimodal Circular Bimodal II
MMMM 0.01 (0.00) 0.55 (0.05)
MMMC 0.01 (0.00) 0.53 (0.05)
KDE 0.34 (0.37) 0.36 (0.06)
KDE-“ms” 0.57 (0.33) 0.38 (0.12)
LLD 1 0.09 (0.22) 0.43 (0.11)
LSD 3 0.45 (0.17) 0.23 (0.17)
1 q = 0.1. 2 q = 0.01. 3 q = 0.05.

Table 2

Mean of the clustering errors based on Hausdorff distance for the densities (H) Bimodal IV,
#10 Fountain, Mult. Quadrimodal, and Circular Bimodal II. In parentheses the standard

deviation.

Clustering errors (Hausdorff distance)
(H) Bimodal IV #10 Fountain

MMMM 0.00 (0.00) 0.22 (0.03)
MMMC 0.00 (0.00) 0.09 (0.02)
KDE 0.00 (0.00) 0.06 (0.01)
KDE-“ms” 0.00 (0.03) 0.08 (0.05)
LLD 1 0.05 (0.11) 0.06 (0.01)
LSD 2 0.05 (0.11) 0.06 (0.01)

Mult. Quadrimodal Circular Bimodal II
MMMM 0.01 (0.00) 0.55 (0.04)
MMMC 0.01 (0.00) 0.53 (0.05)
KDE 0.10 (0.08) 0.44 (0.07)
KDE-“ms” 0.16 (0.08) 0.44 (0.07)
LLD 1 0.03 (0.05) 0.47 (0.07)
LSD 3 0.38 (0.18) 0.28 (0.20)

resenting geometric parameters (continuous) of wheat kernels. Our algorithm
correctly identified the three clusters with probability and Hausdorff distance
0.1 for LLD, 0.16 for KDE, and 0.17 for LSD. On the other hand, KDE-“ms”
(with built-in bandwidth) overestimated the number of clusters with probability
and Hausdorff distances 0.75 and 0.33, respectively. For more details we refer
to Appendix F (Francisci et al., 2023).
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4. Proofs

In this section, we provide detailed proofs of Theorems 2.2-2.4 and Theorem 3.4.
The proofs of preliminary results and Theorem 2.1 are given in Appendix A
(Francisci et al., 2023).
Proof of Theorem 2.2. Recall that HG = {h(G)

τ (x; ·) : x ∈ R
p, τ ∈ [0,∞]}

and let HG,1 := {h(G,1)
τ (x; ·) : x ∈ R

p, τ ∈ [0,∞]}. We will show that

sup
h(G)∈HG

∣∣∣∣
∫

h(G)(x1, . . . , xkG
)

kG∏
i=1

dP (xi) −
(

n

kG

)−1 ∑
1≤i1<···<ikG

≤n

h(G)(Xi1 , . . . , XikG
)
∣∣∣∣

converges to 0 with probability one. To this end, we use Corollary 3.3 of Arcones
and Giné (1993). Since HG is a VC-subgraph class by hypothesis it is enough to
verify that (i) suph(G)∈HG

|h(G)(·)| < ∞ and suph(G,1)∈HG,1
|h(G,1)(·)| < ∞ and

(ii) HG is image admissible Suslin (Dudley, 2014, p. 186). This then shows that
HG is a measurable class (Arcones and Giné, 1993, p. 1497) with a bounded enve-
lope. To this end, by (A.1), suph(G)∈HG

|h(G)(·)| ≤ lG, suph(G,1)∈HG,1
|h(G,1)(·)| ≤

lG, and hence (i) holds. Turning to (ii), we show that the function iG : [0,∞]×
R

p × (Rp)kG → R given by iG(τ ;x;x1, . . . , xkG
) = h

(G)
τ (x;x1, . . . , xkG

) is Borel
measurable. To see this, let FG : (0,∞) × R

p × (Rp)kG → (Rp)kG be given
by FG(τ ;x;x1, . . . , xkG

) = (x1−x
τ , . . . ,

xkG
−x

τ )
. Since G(·) is Borel measurable
and FG(·) is continuous, h(G)

(·) (·; ·) = G(FG(·)) is Borel measurable. In particu-
lar, h(G)

τ (·; ·) is Borel measurable for all τ ∈ (0,∞) and h
(G)
0 (·; ·) and h

(G)
∞ (·; ·)

are Borel measurable because they are limit of Borel measurable functions. It
follows that, for all A ∈ B(R),

i
−1
G (A) =(F−1

G (G−1(A)) ∪ ({0} × (h(G)
0 )−1(A)) ∪ ({∞} × (h(G)

∞ )−1(A))
∈B([0,∞]) × B(Rp) × B((Rp)kG) = B([0,∞] × R

p × (Rp)kG),

that is, iG(·) is Borel measurable. Hence, by Dudley (2014, p. 186), the class HG

is image admissible Suslin via the onto Borel measurable map eG : [0,∞]×R
p →

HG given by eG(τ ;x) = h
(G)
τ (x; ·).

Before proving Theorem 2.3 and Theorem 2.4, we recall that, given a pseu-
dometric space (H, d), the ε-covering number of H w.r.t. the pseudodistance d,
N(H, d, ε), is the minimum number of balls with radius at most ε required to
cover H.
Proof of Theorem 2.3. To prove Theorem 2.3, we will verify the conditions
of Theorem 4.9 in Arcones and Giné (1993). To this end, first let H(T )

G :=
{h(G)

τ (x; ·) : (x, τ) ∈ T} ⊂ HG and H(T )
G,1 := {h(G,1)

τ (x; ·) : (x, τ) ∈ T} ⊂ HG,1.
As in the proof of Theorem 2.2 where [0,∞] × R

p is replaced by T with the
corresponding subspace topology, we see that H(T )

G is image admissible Suslin
(Dudley, 2014, p. 186). Also, using (A.1), it holds that sup

h∈H(T )
G

|h(·)| ≤ lG and

sup
h(1)∈H(T )

G,1
|h(1)(·)| ≤ lG. This then shows that H(T )

G is a measurable class with
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a bounded envelope and (ii) of Theorem 4.9 in Arcones and Giné (1993) holds.
To verify (iii) in Arcones and Giné (1993) we appeal to Lemma 4.4 and (4.2)
in Alexander (1987) concerning the covering number N(H(T )

G , d
L2(H(T )

G ,P ), ·) of

H(T )
G with respect to the L2-distance, d

L2(H(T )
G ,P ), given by

d2
L2(H(T )

G ,P )
((x, τ), (y, ν))=

∫
(h(G)

τ (x;x1, . . . , xk)−h(G)
ν (y;x1, . . . , xk))2

k∏
i=1

dP (xi).

For this, we observe that H(T )
G is a VC-subgraph class of functions. Thus to

complete the proof, we need to verify (i) in Arcones and Giné (1993). To this end,
we need to show: (a) the finite dimensional distributions of

√
n(LGDn(x, τ, P )−

LGD(x, τ, P )) converge to a multivariate normal distribution and (b) for each
(x, τ), the limiting normal random variable {W (x, τ)}(x,τ)∈T admits a version
whose sample paths are all bounded and uniformly continuous with respect to
the distance d2

H(T )
G,1,P

on H(T )
G,1 given by

d2
H(T )

G,1,P
((x, τ), (y, ν)) =

∫
(h(G,1)

τ (x;x1) − h(G,1)
ν (y;x1))2dP (x1)

− (LGD(x, τ) − LGD(y, ν))2,

where we identify a function h
(G,1)
τ (x; ·) for (x, τ) ∈ T with its parameter (x, τ).

In this sense, d2
H(T )

G,1,P
is a metric on T . Since W (x, τ) is Gaussian, we can apply

Giné and Nickl (2016, Theorem 2.3.7) with T = T and d = d2
H(T )

G,1,P
. First, note

that {W (x, τ)}(x,τ)∈T is a sub-Gaussian process relative to d2
H(T )

G,1,P
. Indeed,

using Proposition A.1 in Appendix A (Francisci et al., 2023), for (x, τ), (y, ν) ∈
T , (W (x, τ),W (y, ν))
 has a bivariate normal distribution with mean (0, 0)

and covariance matrix(

E[(h̃(G,1)
τ (x;X1))2] γ((x, τ), (y, ν))

γ((y, ν), (x, τ)) E[(h̃(G,1)
ν (y;X1))2].

)
.

It follows that W (x, τ) − W (y, ν) is normally distributed with mean 0 and
variance

E[(h̃(G,1)
τ (x;X1))2]+E[(h̃(G,1)

ν (y;X1))2]−2γ((x, τ), (y, ν))=d2
H(T )

G,1,P
((x, τ), (y, ν)).

Therefore, for all α ∈ R

E[exp(α(W (x, τ) −W (y, ν)))] = exp
(
α2

2 d2
H(T )

G,1,P
((x, τ), (y, ν))

)

and the process {W (x, τ)}(x,τ)∈T is sub-Gaussian with respect to d2
H(T )

G,1,P
. We

next verify the integrability condition for the metric entropy. To this end, notice
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that, for (x, τ), (y, ν) ∈ T , the L2-distance on H(T )
G,1, dL2(H(T )

G,1,P ) is given by

d2
L2(H(T )

G,1,P )
((x, τ), (y, ν)) =

∫
(h(G,1)

τ (x;x1) − h(G,1)
ν (y;x1))2dP (x1).

Now using yet another application of Lemma 4.4 of Alexander (1987), it follows
that there are constants C1, C2 > 1 such that

N(H(T )
G , d

L2(H(T )
G ,P ),

√
ε) ≤

(
C1√
ε

)C2

.

By Jensen’s inequality, it follows that

d
L2(H(T )

G,1,P )((x, τ), (y, ν)) ≤ d
L2(H(T )

G ,P )((x, τ), (y, ν)),

which in turn, implies that

N(H(T )
G,1, dL2(H(T )

G,1,P ),
√
ε) ≤ N(H(T )

G , d
L2(H(T )

G ,P ),
√
ε) ≤

(
C1√
ε

)C2

.

Thus, for any 0 < ε ≤ 1,

N(H(T )
G,1, d

2
H(T )

G,1,P
, ε) ≤ N(H(T )

G,1, d
2
L2(H(T )

G,1,P )
, ε) = N(H(T )

G,1, dL2(H(T )
G,1,P ),

√
ε)

≤
(
C1√
ε

)C2

≤
(
C1

ε

)C2

.

(4.1)
It follows that∫ 1

0

√
log(N(H(T )

G,1, d
2
H(T )

G,1,P
, ε))dε ≤

√
C2

∫ 1

0

√
log(C1) − log(ε)dε

Now, using
√
a + b ≤ √

a +
√
b for a, b ≥ 0, it follows that the left hand side

(LHS) is bounded above by
√
C2 times

√
log(C1) +

∫ e−1

0

√
− log(ε)dε +

∫ 1

e−1

√
− log(ε)dε

≤
√

log(C1) −
∫ e−1

0
log(ε)dε + 1 − e−1

=
√

log(C1) + e−1 + 1 < ∞.

The proof finally follows from Proposition A.1 in Appendix A (Francisci et al.,
2023).
Proof of Theorem 2.4. We will show that there are constants 1 < CG,0, CG,1,
CG,2 < ∞ such that

P⊗n(
√
nMG,n ≥ t) ≤ DG(n, t),
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where MG,n is defined to be

sup
h(G)∈HG

∣∣∣∣
∫

h(G)(x1, . . . , xkG
)

kG∏
j=1

dP (xj) −
(

n

kG

)−1 ∑
1≤i1<···<ikG

≤n

h(G)(Xi1 , . . . , XikG
)
∣∣∣∣.

To this end, we verify the conditions of Theorem 5 in Arcones (1995). By (i)-(ii)
in the proof of Theorem 2.2, it follows that HG is a uniformly bounded, measur-
able (Arcones and Giné, 1993, p. 1497), VC-subgraph class, where the bounding
constant is lG. We show that this implies conditions (i)-(iii) of Theorem 5 in
Arcones (1995). Condition (i) is clear. Let

d2
L2(HG,P )((x, τ),(y, ν))=

∫
(h(G)

τ (x;x1,. . ., xkG
)−h(G)

ν (y;x1,. . ., xkG
))2

kG∏
j=1

dP (xj)

and

d2
L2(HG,1,P )((x, τ), (y, ν)) =

∫
(h(G,1)

τ (x;x1) − h(G,1)
ν (y;x1))2dP (x1).

By Jensen’s inequality, it holds that

dL2(HG,1,P )((x, τ), (y, ν)) ≤ dL2(HG,P )((x, τ), (y, ν)).

Using Lemma 4.4 and (4.2) in Alexander (1987), we see that there are constants
CG,1, CG,2 > 1 such that

N(HG,1, dL2(H(T )
G,1,P ), ε) ≤ N(HG, dHG

, ε) ≤
(
CG,1

ε

)CG,2

. (4.2)

Thus, condition (ii) holds true. Finally, (4.2) and (Arcones, 1995, (3.3) and p.
245) imply that there is a constant CG,0 such that (iii) holds true.
Proof of Theorem 3.4. The proof is divided into four steps. In the first step
below we introduce few notations and preliminary calculations. We recall that
the distance between two sets A,B ⊂ R

p is dist(A,B) := infy∈A,z∈B‖y − z‖.
Step 0. We define

Aα,ξ,i := Rα ∩ (C(mi)−ξ) and Kα,ξ,i := (∪x∈Aα,ξ,i
Gx),

where Gx := {ux(t) : t ∈ [0,∞)}. We notice that Kα,ξ,i is a closed subset of Rα

and C(mi), which is open, and for 0 < α̃ < α, 0 < ξ̃ < ξ, and Ki := Kα̃,ξ̃,i

δ := min
i=1,...,M

dist(Kα,ξ,i,R
p \Ki) > 0,

yielding that (Gx)+δ ⊂ Ki for all x ∈ Aα,ξ,i. Also, let K := ∪M
i=1Ki. At the cost

of possibly reducing α̃ and ξ̃ (and thus δ), we let 0 < αi < α̃i < f(mi) such
that

Rα̃i ∩ C(mi) ⊂ Bδ(mi), (4.3)
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B4δ(mi) ⊂ Rαi ∩ C(mi) ⊂ Bε(mi), and (4.4)
B4δ(mi) ⊂ Kα,ξ,i ⊂ Ki. (4.5)

For z ∈ R
p with ∇f(z) �= 0, let

w(z) := ∇f(z)/‖∇f(z)‖ (4.6)

and, for 0 < r ≤ ξ and j∗ ≥ 0 let

Gx,r :=
{
{yr,j}j

∗

j=0 : j∗ ≥ 0, yr,0 = x and, recursively, yr,j+1 = yr,j + hjvj

for some (hj , vj) ∈ (0, r] × (Sp−1 ∩Br(w(yr,j)))
}
.

(4.7)
Step 1. We show that, for small r, every sequence {yr,j}j

∗

j=0 ∈ Gx,r, x ∈
∪M
i=1Kα,ξ,i, either remains in (Gx)+δ \ Bδ(mi) or, for some j ∈ {0, . . . , j∗},

yr,j ∈ B4δ(mi). To this end, we suppose w.l.o.g. that x ∈ Aα,ξ := ∪M
i=1(Kα,ξ,i \

B2δ(mi)). Indeed, if x ∈ B2δ(mi), then yr,0 = x ∈ B4δ(mi). We now define
some quantities that are used in the proof of this fact. Specifically, let t0 := 0
and, recursively, tj+1 =

∑j
l=0 hl/‖∇f(yr,l)‖. Also, let

t̃(x) := inf{t ∈ [0,∞) : ux(t) ∈ B2δ(mi)},
j̃∗ := max{j ∈ {0, . . . , j∗} : tj ≤ t̃(x)},

K̃i := Ki \ R̊α̃i , K̃ := ∪M
i=1K̃i, ν := miny∈K̃‖∇f(y)‖, and ν := maxy∈K̃‖∇f(y)‖.

Notice that by (4.3) (Gx)+δ \ Bδ(mi) ⊂ K̃i and ν, ν > 0 as K̃ ∩Nf = ∅. First,
we show that

t∗ := sup
x∈Aα,ξ

t̃(x) < ∞. (4.8)

To this end, suppose by contradiction that t∗ = ∞ and let {xl}∞l=1 in Aα,ξ such
that liml→∞ t̃(xl) = ∞. {xl}∞l=1 has a convergent subsequence {xjl}∞l=1 in Aα,ξ,
that is, x := liml→∞ xjl ∈ Aα,ξ. It is clear that

t(x) := inf{t ∈ [0,∞) : ux(t) ∈ Bδ(mi)} < ∞.

Since ∇f(·) is differentiable, it is Lipschitz in K̃. Denote by L the Lipschitz con-
stant. By continuity of solutions of ordinary differential equations with respect
to the initial value (see Theorem 2.8 and (2.43) in Teschl (2012)), for all t ≥ 0,
it holds that

‖uxjl
(t) − ux(t)‖ ≤ ‖xjl − x‖eLt.

Fix 0 < ζ < δ and let l∗ ∈ N such that

‖xjl − x‖ ≤ ζe−Lt(x) for all l ≤ l∗.

It follows that
‖uxjl

(t) − ux(t)‖ ≤ ζ for all 0 ≤ t ≤ t(x).
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Since xjl ∈ Aα,ξ and uxjl
(t(x)) ∈ B2δ(mi), it obtains 0 ≤ t̃(xjl) ≤ t(x) for

all l ≥ l∗. (4.8) follows. Next, we show that u(·)(·) is jointly continuous in
K̃ × [0, t∗]. Let (xl, tl) → (x, t) ∈ K̃ × [0, t∗]. If ‖xl − x‖ ≤ e−Lt∗ζ/2 and
‖ux(tl) − ux(t)‖ ≤ ζ/2 for all l ≥ l∗, then, using again continuity w.r.t. the
initial value, we obtain

‖uxl
(tl) − ux(t)‖ ≤ ‖uxl

(tl) − ux(tl)‖ + ‖ux(tl) − ux(t)‖
≤ ‖xl − x‖eLt∗ + ζ/2 ≤ ζ.

Since u′′
x(t) = Hf (ux(t))∇f(ux(t)) and f(·) is three times continuously differen-

tiable, u′′
(·)(·) is also uniformly continuous in K̃× [0, t∗]. Using (4.8) and uniform

continuity of u(·)(·), u′′
(·)(·), let 0 < r1 ≤ δ, such that

r1t
∗
(
ν + sup

x∈K̃

sup
t∈[0,t∗]

‖u′′
x(t)‖/(2ν)

)
exp(Lt∗) ≤ δ (4.9)

and, for all 0 < r ≤ r1 and x ∈ Aα,ξ,

‖ux(t̃(x) − r/ν) − ux(t̃(x))‖ ≤ δ. (4.10)

We show that, for all j = 0, . . . , j̃∗ and 0 < r ≤ r1, yr,j ∈ (Gx)+δ \ Bδ(mi).
We recall that, by (4.3), (Gx)+δ \ Bδ(mi) ⊂ K̃. First, notice that ux(t0) = x
and, since ‖x − mi‖ > 2δ, it holds that yr,0 = x ∈ (Gx)+δ \ Bδ(mi). We now
suppose by induction that, for j ≥ 1, yr,j−1 ∈ (Gx)+δ \ Bδ(mi) and show
that yr,j ∈ (Gx)+δ \ Bδ(mi). Since u′

x(t) = ∇f(ux(t)) and f(·) is three times
continuously differentiable, then so is ux(·). By Taylor theorem with Lagrange’s
form of remainder, there exists tj−1 ≤ t̃j−1 ≤ tj such that

ux(tj) = ux(tj−1) + hj−1

‖∇f(yr,j−1)‖
∇f(ux(tj−1)) +

h2
j−1

2‖∇f(yr,j−1)‖2u
′′
x(t̃j−1).

It follows that

(yr,j − ux(tj)) = (yr,j−1 − ux(tj−1)) + hj−1(vj−1 − w(yr,j−1))

+ hj−1

‖∇f(yr,j−1)‖

(
∇f(yr,j−1) −∇f(ux(tj−1))

)

−
h2
j−1

2‖∇f(yr,j−1)‖2u
′′
x(t̃j−1).

Now, we use the Lipschitz property of ∇f(·) and get

‖yr,j − ux(tj)‖ ≤
(

1 + hj−1L

‖∇f(yr,j−1)‖

)
‖yr,j−1 − ux(tj−1)‖ + r1hj−1

+
h2
j−1

2‖∇f(yr,j−1)‖2 sup
t∈[0,t̃(x)]

‖u′′
x(t)‖.
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We now apply Lemma A.7 in Appendix A (Francisci et al., 2023) with aj =
‖yr,j − ux(tj)‖,

bj = r1hj +
h2
j

2‖∇f(yr,j)‖2 sup
t∈[0,t̃(x)]

‖u′′
x(t)‖,

cj = hjL
‖∇f(yr,j)‖ and, using (4.9) and tj ≤ t̃(x), we get that ‖yr,j − ux(tj)‖ is

bounded above by

(
r1

j−1∑
l=0

hl +
j−1∑
l=0

h2
j

2‖∇f(yr,l)‖2 sup
t∈[0,t̃(x)]

‖u′′
x(t)‖

)
exp

(
L

j−1∑
l=1

hl

‖∇f(yr,j)‖

)

≤r1tj

(
ν + sup

t∈[0,t̃(x)]
‖u′′

x(t)‖/(2ν)
)

exp(Ltj) ≤ δ.

It follows that yr,j ∈ (Gx)+δ. Moreover, tj ≤ t̃(x) implies that ‖mi − ux(tj)‖ ≥
2δ. Hence,

‖mi − yr,j‖ ≥ ‖mi − ux(tj)‖ − ‖ux(tj) − yr,j‖ ≥ δ,

that is, yr,j /∈ Bδ(mi). In particular, if j̃∗ = j∗, then yr,j ∈ (Gx)+δ \Bδ(mi) for
all j = 0, . . . , j∗. Next, we show that, if j̃∗ < j∗, then yr,j̃∗ ∈ B4δ(mi). Since
t̃(x) − r1/ν < tj̃∗+1 − r1/ν ≤ tj̃∗ ≤ t̃(x), by (4.10) it holds that ‖ux(tj̃∗) −
ux(t̃(x))‖ ≤ δ. Since ux(t̃(x)) ∈ ∂B2δ(mi), we conclude that

‖yr,j̃∗ −mi‖ ≤ ‖yr,j̃∗ − ux(tj̃∗)‖+ ‖ux(tj̃∗)− ux(t̃(x))‖ + ‖ux(t̃(x))−mi‖ ≤ 4δ.

Step 2. We apply Lemma A.8 in Appendix A (Francisci et al., 2023) with
K = K̃ and get constants r∗ := min(r1, r(K̃)) > 0 and c∗ := c(K̃) > 0 such
that, for all x ∈ K̃ and (h, v) ∈ (0, r∗] × (Sp−1 ∩Br∗(w(x)))

∇h
vf(x) ≥ c∗. (4.11)

For X ∈ Xn and x ∈ Sf let hX,x := ‖X−x‖ and vX,x := (X−x)/hX,x. We show
the existence of 0 < r2 ≤ r∗ such that for all 0 < r ≤ r2 there exist n1, n2 ∈ N

such that, with probability at least 1 − η, for n ≥ max(n1, n2) and x ∈ K̃, we
have that Xn,r(x) �= ∅,

max
X∈Xn,r(x)∪{x}

fτn,n(X) − fτn,n(x) > 0 (4.12)

and

X∗(x) := argmax
X∈Xn,r(x)

fτn,n(X) − fτn,n(x)
‖X − x‖ = argmax

X∈Xn,r(x)
∇hX∗(x),x

vX∗(x),x fτn,n(x)

satisfies
(hX∗(x),x, vX∗(x),x) ∈ [hn, r] × (Sp−1 ∩Br∗(w(x)). (4.13)
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To this end, suppose w.l.o.g. that r∗ ≤ 1. Let

d(r∗) := inf
y∈K̃

inf
v∈Sp−1\Br∗ (w(y))

〈w(y) − v,∇f(y)〉 > 0

and 0 < d∗ < d(r∗)/(5ν). Notice that, since d(r∗) ≤ νr∗, d∗ < r∗/5 ≤ 1/5 and
d̃(x) := (1 − 3d∗)‖∇f(x)‖ > 0 for all x ∈ K̃. By the mean value theorem, there
exists 0 ≤ c ≤ 1 such that

∇h
vf(x) = 〈v,∇f(x + chv)〉.

Next, by the uniform continuity of ∇f(·) over compact sets, we have that ∇h
vf(x)

converges to ∇vf(x) uniformly over v ∈ Sp−1 and x ∈ K̃. Let r3 > 0 be such
that for all h ∈ (0, r3], v ∈ Sp−1, and x ∈ K̃

|∇h
vf(x) −∇vf(x)| ≤ νd∗.

Then, for all x ∈ K̃ and v ∈ Sp−1 ∩Bd∗(w(x)), it holds that

∇vf(x) ≥ ‖∇f(x)‖(1 − ‖w(x) − v‖) ≥ ‖∇f(x)‖(1 − d∗), (4.14)

which implies that for all x ∈ K̃, h ∈ (0, r3], and v ∈ Sp−1 ∩Bd∗(w(x))

∇h
vf(x) ≥ ∇vf(x) − νd∗ ≥ ‖∇f(x)‖(1 − 2d∗). (4.15)

On the other hand, by definition of d∗, we have that, for all x ∈ K̃, and v ∈
Sp−1 \Br∗(w(x)),

∇vf(x) ≤ (1 − 5d∗)‖∇f(x)‖,
which implies that, for all x ∈ K̃, h ∈ (0, r3], and v ∈ Sp−1 \Br∗(w(x)),

∇h
vf(x) ≤ ∇vf(x) + νd∗ ≤ ‖∇f(x)‖(1 − 4d∗).

Now, let r2 := min(r3, d∗) < r∗ and 0 < r ≤ r2. Notice that (K)+r ⊂ (K)+r∗ ⊂
(K)+r(K̃) ⊂ Sf . Using Lemma 3.2 (ii) with K = K̃ and h∗ = r, we choose
n2 ∈ N such that for all n ≥ n2, with probability at least 1 − η/2,

sup
h∈[hn,r]

sup
v∈Sp−1

sup
x∈K̃

|∇h
vfτn,n(x) −∇h

vf(x)| < d∗ν. (4.16)

It follows from (4.15), (4.14), and (4.16) that, with probability at least 1− η/2,
for all x ∈ K̃, h ∈ [hn, r], and v ∈ Sp−1 ∩Br(w(x))

∇h
vfτn,n(x) > (1 − 2d∗)‖∇f(x)‖ − d∗ν ≥ d̃(x), (4.17)

and, for all x ∈ K̃, h ∈ [hn, r], and v ∈ Sp−1 \Br∗(w(x)),

∇h
vfτn,n(x) < (1 − 4d∗)‖∇f(x)‖ + d∗ν ≤ d̃(x). (4.18)

We show in Step 3 below that there exists n1 ∈ N such that, with probability
at least 1 − η/2, for all x ∈ K̃ and n ≥ n1 there exists X ∈ Xn,r(x) such that

(hX,x, vX,x) ∈ [hn, r] × (Sp−1 ∩Br(w(x))). (4.19)
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In particular, (4.16) and (4.19) hold simultaneously with probability at least
1− η. It follows from (4.17) and (4.18) that, with probability at least 1− η, for
all x ∈ K̃ and n ≥ max(n1, n2)

sup
(h,v)∈[hn,r]×Sp−1\Br∗ (w(x))

∇h
vfτn,n(x) ≤ d̃(x) < ∇hX,x

vX,x
fτn,n(x).

Thus, we have shown that the finite difference approximation of fτn,n(·) with
step hX,x and direction vX,x is larger than all finite difference approximations
with step h ∈ [hn, r] and directions v ∈ Sp−1 \Br∗(w(x)). Since d̃(x) > 0, (4.12)
and (4.13) follow.
Step 3. We show (4.19). To this end, let 0 < s1 < s2 < r < 1 and n3 ∈ N be
such that hn < s1 for all n ≥ n3. It is enough to show that there exists n1 ≥ n3
such that, for all n ≥ n1,

P⊗n([Xn ∩Ds1,s2(x) �= ∅ ∀x ∈ K̃]) ≥ 1 − η/2,

where Ds1,s2(x) := As1,s2(x) ∩ Cs2(x), As1,s2(x) := Bs2(x) \Bs1(x), and

Cs2(x) :=
{
y ∈ R

p \ {x} : ‖ y − x

‖y − x‖ − w(x)‖ ≤ s2

}
.

Let 0 < ε1 < s2−s1
2 . We first notice that

As1+ε1,s2−ε1(x) ⊂ ∩z∈Bε1 (x)As1,s2(z). (4.20)

Indeed, y ∈ As1+ε1,s2−ε1(x) satisfies s1 + ε1 ≤ ‖y − x‖ ≤ s2 − ε1. Therefore, for
all z ∈ Bε1(x), it holds that

s1 ≤ ‖y − x‖ − ‖x− z‖ ≤ ‖y − z‖ ≤ ‖y − x‖ + ‖x− z‖ ≤ s2,

that is, y ∈ As1,s2(z). Now, let h∗ > 0 such that (K̃)+h∗ does not contain
stationary points of f(·). Since w(·) is uniformly continuous in (K̃)+h∗ , there
exists ε2 ∈ (0, h∗] such that, for all x ∈ K̃,

sup
y∈Bε2 (x)

‖w(x) − w(y)‖ ≤ ε1/2. (4.21)

Suppose w.l.o.g. that ε2 ≤ s1+ε1
4 ε1. We show that

Ds1+ε1,s2−ε1(x) ⊂ ∩z∈Bε2 (x)Ds1,s2(z). (4.22)

To this end, let y ∈ Ds1+ε1,s2−ε1(z). By (4.20), it holds that y ∈ ∩z∈Bε2 (x)As1,s2(z).
We need to show that y ∈ ∩z∈Bε2 (x)Cs2(x). Since for all z ∈ Bε2(x)

‖ y − z

‖y − z‖ − y − x

‖y − x‖‖ ≤ 2‖z − x‖
‖y − z‖ ≤ 2ε2

s1 + ε1
≤ ε1/2,

using the triangle inequality and (4.21), we have that

‖ y − z

‖y − z‖−w(z)‖ ≤ ‖ y − z

‖y − z‖−
y − x

‖y − x‖‖+‖ y − x

‖y − x‖−w(x)‖+‖w(x)−w(z)‖ ≤ s2.
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(4.22) follows. Notice that, for all x ∈ K̃,

λ(Ds1+ε1,s2−ε1(x)) = λ(Ds1+ε1,s2−ε1(0)) =: Λ̃ > 0.

Now, by the compactness of K̃ ⊂ ∪x∈K̃Bε2(x), there exist x1, . . . , xq ∈ K̃ such
that K̃ ⊂ ∪q

l=1Bε2(xl). It follows from (4.22) that, for all z ∈ K̃, there exists xl

such that z ∈ Bε2(xl) and Ds1+ε1,s2−ε1(xl) ⊂ Ds1,s2(z). Therefore, it is enough
to show that there exists n1 ≥ n3 such that for all n ≥ n1

P⊗n([Xn ∩Ds1+ε1,s2−ε1(xl) �= ∅ ∀l ∈ {1, . . . , q}]) ≥ 1 − η/2.

To this end, notice that ∪q
l=1Ds1+ε1,s2−ε1(xl) ⊂ (K̃)+r ⊂ Sf and let α :=

miny∈(K̃)+r f(y). Then, pl := P (Ds1+ε1,s2−ε1(xl)) ≥ αΛ̃ > 0. Observe that

P⊗n(∩q
l=1[Xn ∩Ds1+ε1,s2−ε1(xl) �= ∅])

=1 − P⊗n(∪q
l=1[Xn ∩Ds1+ε1,s2−ε1(xl) = ∅])

≥1 −
q∑

l=1
P⊗n([Xn ∩Ds1+ε1,s2−ε1(xl) = ∅]).

Let Gl have the geometric distribution with parameter pl. Since {Xl} are inde-
pendent, it holds that

P⊗n([Xn ∩Ds1+ε1,s2−ε1(xl) = ∅]) = P (Gl > n) =
∞∑
j=n

(1 − pl)jpl = (1 − pl)n,

which implies that

P⊗n(∩q
l=1[Xn∩Ds1+ε1,s2−ε1(xl) �= ∅]) ≥ 1−

q∑
l=1

(1−pl)n ≥ 1−q(1−αΛ̃)n. (4.23)

The statement follows by taking n1 ≥ n3 such that η/2 ≥ q(1 − αΛ̃)n1 .
Step 4. Let x ∈ Aα,ξ,i and n ≥ n∗ := max(n1, n2). Notice that, by Step 2,
{Yn,r,j}j

∗

j=0 ∈ Gx,r with probability at least 1−η. Since, r ≤ r∗ ≤ r1 ≤ δ, by Step
1, either (i) {Yn,r,j}j

∗

j=0 remains in (Gx)+δ \ Bδ(mi) or (ii) Yn,r∗,j ∈ B4δ(mi)
for some j ∈ {0, . . . , j∗}. We show that (i) is not possible. Indeed, if Yn,r,j∗ ∈
(Gx)+δ \ Bδ(mi) ⊂ K̃i, then, by (4.12), there exists X∗(Yn,r,j∗) ∈ Xn,r(Yn,r,j∗)
such that fτn,n(X∗(Yn,r,j∗)) > fτn,n(Yn,r,j∗). However, since j∗ is the last iterate
by (3.6) it holds that fτn,n(Yn,r,j∗) ≥ maxX∈Xn,r(Yn,r,j∗ )∪{Yn,r,j∗} fτn,n(X). Let
j0 = min{j ∈ {0, . . . , j∗} : Yn,r,j ∈ B4δ(mi)}. By (4.4), Yn,r,j0 ∈ Rαi ∩ C(mi).
We show by induction that Yn,r,j ∈ Rαi ∩ C(mi) for all j0 ≤ j ≤ j∗. Since
Rαi ∩ C(mi) ⊂ Bε(mi) the statement follows. First, notice that, if Yn,r,j ∈
Rα̃i ∩ C(mi), then, using (4.3) and (4.4), Yn,r,j+1 ∈ Bδ+r(mi) ⊂ B2δ(mi) ⊂
Rαi ∩C(mi). Second, if Yn,r,j ∈ B4δ(mi) \ (Rα̃i ∩C(mi)), then by (4.5) Yn,r,j ∈
K̃i and by (4.11) it holds that f(Yn,r,j+1) > f(Yn,r,j). Using the induction
hypothesis, we conclude that Yn,r,j+1 ∈ Rαi ∩ C(mi).

The proof of Propositions 3.1 and 3.2 is based on the following lemma. We
recall that Aα,ξ,i = Rα ∩ (C(mi))−ξ).
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Lemma 4.1 Assume the conditions in Proposition 3.1. Let m̃n,r,i := Ln,r(z) for
some r > 0 and z ∈ Aα,ξ,i and C̃n,r,δ,i := ∪L∈[m̃n,r,i]δ{x ∈ R

p : Ln,r(x) = L}.
Given η > 0, 0 < δ ≤ δ∗, and 0 < r ≤ r∗ there exist n∗ ∈ N such that
P⊗n(En,r,δ) ≥ 1 − η for all n ≥ n∗, where En,r,δ := {C̃n,r,δ,i are distinct and
Aα,ξ,i ⊂ C̃n,r,δ,i}.
Proof of Lemma 4.1. Let δ∗ > 0 such that B2δ∗(mi) ⊂ Aα,ξ,i for all i =
1, . . . ,M . Using Theorem 3.4, there are 0 < ε ≤ δ

2 ≤ δ∗

2 , 0 < r ≤ r∗, and n∗ ∈ N

such that, with probability at least 1 − η, Ln,r(x) ∈ Bε(mi) for all x ∈ Aα,ξ,i

and n ≥ n∗. Since Aα,ξ,i ⊃ B2δ(mi) \ Bε(mi) and ‖y − z‖ ≤ 2ε ≤ δ for all
y, z ∈ Bε(mi), we obtain that

∪x∈Aα,ξ,i
{Ln,r(x)} = [m̃n,r,i]δ ⊂ Bε(mi).

As Bε(mi) are disjoint, [m̃n,r,i]δ ∩ [m̃n,r,j ]δ = ∅ for i �= j. It follows that C̃n,r,δ,i

are distinct and Aα,ξ,i ⊂ C̃n,r,δ,i.
It follows from the above lemma that, on En,r,δ, C̃n,r,δ,i i = 1, . . . ,M are

empirical clusters. In particular, Mn ≥ M on En,r,δ.
Proof of Proposition 3.1. Fix ε, η > 0. Using (3.3) and P (C(μl)) = 0 for all
l = 1, . . . , L, let 0 < α < mini=1,...,M f(mi) and ξ > 0 such that

P (∪M
i=1Aα,ξ,i) ≥ 1 − 2ε

1 + max(1, c) . (4.24)

Using Lemma 4.1, let 0 < δ ≤ δ∗, 0 < r ≤ r∗, and n∗ such that

P⊗n(En,r,δ) ≥ 1 − η for all n ≥ n∗. (4.25)

Suppose w.l.o.g. that Cn,r,δ,i = C̃n,r,δ,i i = 1, . . . ,M on En,r,δ. On the event
En,r,δ it holds that

2dP,c(C, Cn,r,δ) ≤
M∑
i=1

P⊗n(C(mi)ΔCn,r,δ,i) + c

Mn∑
i=M+1

P⊗n(Cn,r,δ,i).

Since {C(mi)}Mi=1 and {Cn,r,δ,i)}Mn
i=1 are disjoint and Aα,ξ,i ⊂ Cn,r,δ,i on En,r,δ,

2dP,c(C, Cn,r,δ) is bounded above by

P (Rp \ (∪M
i=1Aα,ξ,i) + max(1, c)P (Rp \ (∪M

i=1Aα,ξ,i)).

Using (4.24) we conclude that dP,c(C, Cn,r,δ) ≤ ε on En,r,δ for all n ≥ n∗.
Proof of Proposition 3.2. Fix ε, η > 0 and let 0 < α < mini=1,...,M f(mi) and
ξ > 0 such that P (∪M

i=1Aα,ξ,i) ≥ 1 − ε/2. Denote by P̂n the empirical measure
and recall that Cn,r,δ,i ∈ Cn,r,δ belongs to Cn,r,δ,ζ if and only if P̂n(Cn,r,δ,i) > ζ.
We let 0 < ζ < ζ∗ := mini=1,...,M P (Aα,ξ,i)) and assume w.l.o.g. that ε/2 < ζ
yielding that P (Rp \ (∪M

i=1Aα,ξ,i)) < ζ. Let δ, δ∗, r, r∗, and n∗ as in (4.25)
and take Cn,r,δ,i = C̃n,r,δ,i i = 1, . . . ,M and C̃n,r,δ := {Cn,r,δ,1, . . . , Cn,r,δ,M} on
En,r,δ. On the event En,r,δ it holds

dH(C, Cn,r,δ,ζ) ≤ dH(C, C̃n,r,δ}) + I∪M
i=1{P̂n(Cn,r,δ,i)≤ζ}∪∪Mn

i=M+1{P̂n(Cn,r,δ,i)>ζ}.

(4.26)
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Using ∪Mn

i=M+1{P̂n(Cn,r,δ,i) > ζ} ⊂ {P̂n(∪Mn

i=M+1Cn,r,δ,i) > ζ}, Aα,ξ,i ⊂ C̃n,r,δ,i,
and ∪Mn

i=M+1Cn,r,δ,i ⊂ R
p \ (∪M

i=1Aα,ξ,i) on En,r,δ, the indicator in (4.26) is
bounded above by

M∑
i=1

I{P̂n(Aα,ξ,i)≤ζ} + I{P̂n(Rp\(∪M
i=1Aα,ξ,i))>ζ}.

Since ζ < ζ∗ and P (Rp \ (∪M
i=1Aα,ξ,i)) < ζ, the law of large numbers yields

lim
n→∞

I∪M
i=1{P̂n(Cn,r,δ,i)≤ζ}∪∪Mn

i=M+1{P̂n(Cn,r,δ,i)>ζ} = 0 a.s. (4.27)

Using again Aα,ξ,i ⊂ C̃n,r,δ,i on En,r,δ and P (Rp\(∪M
i=1Aα,ξ,i)) ≤ ε/2, we obtain

dH(C, C̃n,r,δ) ≤ max
i=1,...,M

P (C(mi)ΔCn,r,δ,i) ≤ ε. (4.28)

Using (4.27) and (4.28) in (4.26) we conclude that on the event En,δ,r

lim
n→∞

dH(C, Cn,r,δ,ζ) ≤ ε.

5. Concluding remarks

In this paper, we developed the notions of local depth for general Type A DFs and
established its analytic and statistical properties. Specifically, we established the
uniform convergence of sample local depth and related asymptotic limit distri-
bution in �∞(T ) spaces. These results are then used to derive new approaches to
clustering, mode estimation, and upper level set estimation. Specifically, we de-
veloped a modal clustering approach (via a gradient system) where the density
is replaced by the population approximation. Convergence results show that the
approximated approach provides, in the limit, the same clusters as those given by
the true density. In particular, we have shown that, our approximated approach
correctly detects the true modes. We proposed an algorithm for the numerical
computation of the clusters at sample level and established its consistency.
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