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Abstract. We study the six diagrams generated by the first three Schechter
interpolators Δ2(f) = f ′′(1/2)/2!, Δ1(f) = f ′(1/2), Δ0(f) = f(1/2) act-
ing on the Calderón space associated to the pair (�∞, �1). We will study
the remarkable and somehow unexpected properties of all the spaces ap-
pearing in those diagrams: two new spaces (and their duals), two Orlicz
spaces (and their duals) in addition to the third order Rochberg space,
the standard Kalton-Peck space Z2 and, of course, the Hilbert space �2.
We will also deal with a nice test case: that of weighted �2 spaces, in
which case all involved spaces are Hilbert spaces.
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1. Introduction

The aim of this paper is to present the seven natural Banach spaces gen-
erated by the first three interpolators of the complex interpolation method
when applied to the couple (�∞, �1) at 1/2. They are three Rochberg spaces
�2, Z2 and Z3, two Orlicz spaces �f , �g generated by the Orlicz functions
f(t) = t2 log t2, g(t) = t2 log4 t; and two new spaces ∧,©. We present the
basic diagram generated by these three interpolators and the six possible di-
agrams they generate, which produce the seven spaces just mentioned, their
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duals, and nothing more. And it is so by virtue of the symmetries of the six di-
agrams: some are overt (described in Sect. 2.3), but some are deeply concealed
and unexpected (like those described between Proposition 3.2 and 3.7).

Following [7], we will work with a variant C of the Calderón space con-
sidered in [3, Section 4.1] when working with the pair (�∞, �1): if S is the open
strip {z ∈ C : 0 < Re(z) < 1} in the complex plane, C will be the space of
continuous bounded functions on S that are also weak∗-continuous as func-
tions f : S −→ �∞ and that moreover are holomorphic on S and satisfy the
boundary condition f(k+ it) ∈ Xk for each t ∈ R and supt ‖f(k+ it)‖Xk

< ∞,
valid for k = 0, 1. The Calderón space C is complete with the norm ‖f‖ =
sup{‖f(k + it)‖k : k = 0, 1; t ∈ R}. The evaluation maps δz : C −→ �∞
are continuous for all z ∈ S, and given θ ∈ (0, 1) and p = θ−1 one obtains
�p = {f(θ) : f ∈ C} with the standard norm in �p equal to the quotient norm
in ‖x‖θ = inf

{‖f‖ : x = f(θ), f ∈ C}
. See [3, Lemma 4.1.1] and [5, Section

10.8] for details.
For the rest of the paper we will focus on the Hilbert space case: θ = 1/2;

p = 2. We consider the interpolators Δk : C → �∞ defined by Δk(f) =
f (k)(1/2)/k! for k = 0, 1, 2, . . . Following Rochberg [29] (see also [6,7]), the nth

Rochberg space is defined as Rn = {(Δn−1(f), . . . ,Δ0(f)) : f ∈ C} endowed
with its natural quotient norm. This yields R1 = �2 and R2 = Z2, the Kalton-
Peck space [24]. We will denote R3 with the more friendly name Z3. Among
the distinguished subspaces of Z3 we will encounter the three Orlicz spaces
�2 = {(w, 0, 0) ∈ Z3}, �f = {(0, x, 0) ∈ Z3} and �g = {(0, 0, y) ∈ Z3}, and the
three spaces Z2 = {(w, x, 0) ∈ Z3}, ∧ = {(w, 0, y) ∈ Z3} and © = {(0, x, y) ∈
Z3}.

Let us now aim at diagrams: It is a fact uncovered through [4,11,24]
that Z2 admits two natural representations 0 → �2 → Z2 → �2 → 0 and
0 → �f → Z2 → �∗

f → 0 as a non-trivial twisted sum that are associated
to the two permutations (Δ1,Δ0) and (Δ0,Δ1). In the same way, we will
show (Sect. 2) that Z3 admits six natural representations as a twisted sum
space associated with the six diagrams generated by the six permutations of
the three interpolators (Δ2,Δ1,Δ0). Indeed, if we denote [abc] the diagram
obtained from the permutation (Δa,Δb,Δc), the six diagrams are (we will
omit the arrow 0 → at the beginning and → 0 at the end of the exact sequences
forming the rows and columns):

[210] �2

��

�2

��
Z2

��

p1,0

��

Z3
Q0 ��

Q1,0

��

�2

�2 �� Z2

q1,0 �� �2

[012] �g

��

�g

��
© ��

p1,2

��

Z3
Q2 ��

Q1,2

��

�∗
g

�2 �� ©∗ q1,2 �� �∗
g
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[120] �f

��

�f

��
Z2

��

p2,0

��

Z3
Q0 ��

Q2,0

��

�2

�∗
f

�� ∧∗ q2,0 �� �2

[102] �f

��

�f

��
© ��

p0,2

��

Z3
Q2 ��

Q0,2

��

�∗
g

�f
�� ∧∗ q0,2 �� �∗

g

[201] �2

��

�2

��
∧ ��

p0,1

��

Z3
Q1 ��

Q0,1

��

�∗
f

�f
�� Z2

q0,1 �� �∗
f

[021] �g

��

�g

��
∧ ��

p2,1

��

Z3
Q1 ��

Q2,1

��

�∗
f

�∗
f

�� ©∗ q2,1 �� �∗
f

We will prove:

• Properties shared by all spaces/sequences
(1) All the spaces in the diagrams are hereditarily �2 (Proposition 5.1)

and have basis.
(2) All the exact sequences are nontrivial (Corollary 5.7).
(3) All quotient maps, except perhaps q1,2 and q2,1 (see below), are

strictly singular (Proposition 5.14).
• Properties similar to those of Z2

(1) The spaces ©, ∧, ©∗ and ∧∗ admit a symmetric two-dimensional
decomposition.

(2) Z3 admits a symmetric three-dimensional decomposition (Proposi-
tion 3.1) and it is isomorphic to its dual [6, Prop. 5.5 and Cor.
5.7].

(3) Every infinite dimensional complemented subspace of Z3 contains a
copy of Z3 complemented in the whole space (Proposition 5.5).

(4) The spaces Z3, ∧ and ∧∗ contain no complemented copies of �2 and
admit no unconditional basis (Proposition 5.12).

(5) Every basic sequence in Z3 contains a subsequence equivalent to the
canonical basis of one of the spaces �2, �f , �g (Theorem 5.8).

• Properties different from those of Z2

(1) None of the spaces ©, ∧, ©∗ and ∧∗ is isomorphic to a subspace or
a quotient of Z2 (Proposition 5.4).

(2) ∧ and © are not isomorphic to their duals (Proposition 5.10).
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(3) Neither of the spaces ∧ and ∧∗ is isomorphic to either © or ©∗

(Proposition 5.11).
• Open questions

(1) We have been unable to show that © (hence ©∗ also) contains
no complemented copies of �2. From that it would follow also q1,2

and q2,1 are strictly singular, hence that © and ©∗ do not have
an unconditional basis (Remark 5.15), which would complete our
scheme.

(2) We could not cover in this paper the case of interpolation at an
arbitrary θ �= 1/2. In that case, the first thing one loses is duality
and its associated symmetries: Zp is no longer isomorphic to Z∗

p .
The same is valid for weighted �p-spaces or weighted versions of a
given space with an unconditional basis.

2. The Six Diagrams Generated by the Three Interpolators
Δ2,Δ1,Δ0

A Banach space space Z is a twisted sum of Y and X if there exists an exact
sequence 0 → Y → Z → X → 0 (namely, a diagram formed by Banach spaces
and continuous operators so that the kernel of each of them coincides with
the image of the previous one). Twisted sums of Y and X correspond to a
special type of maps X −→ Y , called quasi-linear maps [5,24]. We need to
widen this notion as in [12,15] assuming that Y is continuously embedded in
an “ambient” Hausdorff topological vector space Banach space Σ which, for us,
will be a Banach or quasi-Banach space. There are indeed natural situations
in which these “generalized” quasi-linear maps appear: centralizers between
quasi-Banach function spaces [22]; differentials generated by two interpolators
[11]; or G-actions on twisted sums [12].

Definition 2.1. A quasi-linear map Ω : X � Y with ambient space Σ is a
homogeneous map Ω : X −→ Σ for which there exists a constant C such that
for x1, x2 ∈ X,

• Ω(x1 + x2) − Ω(x1) − Ω(x2) ∈ Y and
• ‖Ω(x1 + x2) − Ω(x1) − Ω(x2)‖Y ≤ C(‖x1‖X + ‖x2‖X).

A quasi-linear map Ω as above defines a twisted sum Y ⊕Ω X = {(β, x) ∈
Σ×X : β−Ω(x) ∈ Y } endowed with the quasinorm ‖(β, x)‖Ω = ‖β−Ω(x)‖Y +
‖x‖X ; the embedding j : Y −→ Y ⊕Ω X given by j(y) = (y, 0) is isometric
and the quotient map π : Y ⊕Ω X −→ X is given by π(β, x) = x. They define
the exact sequence 0 �� Y �� Y ⊕Ω X �� X �� 0 , that shall be
referred to as the exact sequence generated by Ω. Since X and Y are complete,
(Y ⊕Ω X, ‖(·, ·)‖Ω) is a quasi-Banach space [14, Lemma 1.5.b]. When Y and
X are B-convex Banach spaces, the quasi-norm in Y ⊕Ω X is equivalent to
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a norm [20, Theorem 2.6]. This is the case for the spaces we consider in this
paper.

Definition 2.2. A quasi-linear map Ω : X � Y with ambient space Σ is bounded
if there exists a constant D so that Ωx ∈ Y and ‖Ωx‖Y ≤ D‖x‖X for each
x ∈ X. It is trivial if there exists a linear map L : X −→ Σ so that Ω − L :
X −→ Y is bounded. Two quasilinear maps Ω1,Ω2 X � Y with ambient
space Σ are boundedly equivalent if Ω1 −Ω2 : X → Y is bounded. This implies
that ‖(·, ·)‖Ω1 and ‖(·, ·)‖Ω2 are equivalent quasi-norms. The quasilinear maps
Ω1 : X1 � Y1 and Ω2 : X2 � Y2 are isomorphically equivalent, denoted
Ω1 � Ω2, if there exist three isomorphisms S, T, U forming a commutative
diagram

0 −−−−→ Y1 −−−−→ Y1 ⊕Ω1 X1 −−−−→ X1 −−−−→ 0

S

⏐
⏐
� T

⏐
⏐
� U

⏐
⏐
�

0 −−−−→ Y2 −−−−→ Y2 ⊕Ω2 X2 −−−−→ X2 −−−−→ 0.

(1)

The following notions of domain and range generalize the classical domain
and range for Ω-operators obtained from an interpolation process [8,17,18], for
centralizers on function spaces [4] or for G-centralizers in suitable G-Banach
spaces [12].

Definition 2.3. Let Ω : X � Y be a quasi-linear map with ambient space Σ.
The domain of Ω is the set Dom Ω = {x ∈ X : Ωx ∈ Y }, and the range of Ω
is the set Ran Ω = {β ∈ Σ : ∃x ∈ X : β − Ωx ∈ Y }.

Since Ω is quasi-linear, Dom Ω is a linear subspace of X as well as Ran Ω.
The space Dom ω can be endowed with the quasi-norm ‖x‖D = ‖Ωx‖+‖x‖ so
that it is isometric to the subspace {(0, x) ∈ Y ⊕Ω X. The space Ran Ω can be
endowed with the quasi-norm ‖β‖R = inf{‖β −Ωx‖+‖x‖} where the infimum
is taken over all x ∈ X : β − Ωx ∈ Y . In this way Ran Ω can be identified
with the quotient (Y ⊕ΩX)/Dom Ω with quotient map (β, x) → β. What is not
guaranteed is that either Dom Ω is a closed subspace of Y ⊕ΩX or, equivalently,
that Ran Ω is Hausdorff. Now, if Ω : X → Σ is continuous at 0 for some choice
of the ambient space Σ then Dom Ω is closed. Indeed, if (0, xn) → (z, x) then
‖z − Ω(xn − x)‖ + ‖xn − x‖ → 0. Thus xn − x → 0 and, by continuity,
Ω(xn − x) → 0 in Σ; thus ‖z‖Σ ≤ ‖z − Ω(xn − x)‖Σ + ‖Ω(xn − x)‖Σ → 0,
which means that ‖z‖Σ = 0 and, by Hausdorffness, z = 0. In fact, if Ran Ω
is Hausdorff then we could choose it as ambient space: the formal identity
establishes a continuous inclusion Y → Ran Ω since ‖y‖R ≤ ‖y‖ (with the
choice x = 0) and Ω : X → Ran ω.

Given an interpolation pair of Banach spaces (X0,X1) with ambient space
Σ and associated Calderón space C, we fix the following terminology:

Operator acting on the pair. An operator T : Σ → Σ is said to act on the
pair (X0,X1) if T [Xi] ⊂ Xi for i = 0, 1
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Interpolator. An operator Δ : C → Σ is an interpolator if every T acting
on the pair admits an operator TC : C → C such that ΔTC = TΔ.

Consistent family of interpolators. A family {Δi : i ∈ I} of interpolators
on C is said to be consistent if for each operator T acting on the pair
(X0,X1) there exists an operator TC on C such that TΔi = ΔiTC for
every i ∈ I.
Given a finite sequence {Δi : i = 0, . . . , n + k} of interpolators we will

consider the pair (Ψ,Φ) of interpolators Ψ = 〈Δk+n−1, . . . Δk〉 : C → Σn

and Φ = 〈Δk−1, . . . Δ0〉 : C → Σk, given by Ψ(f) = (Δk+n−1f, . . . Δkf) and
Φ(f) = (Δk−1f, . . . Δ0f). Proceeding in the standard way, see [7] and [11], we
obtain the following commutative diagram with exact rows and columns:

ker Ψ ∩ ker Φ ker〈Ψ,Φ〉
⏐
⏐
�

⏐
⏐
�

ker Φ −−−−→ C Φ−−−−→ XΦ

Ψ

⏐
⏐
�

⏐
⏐
�〈Ψ,Φ〉

∥
∥
∥

Ψ(ker Φ) ı−−−−→ X〈Ψ,Φ〉
ρ−−−−→ XΦ

(2)

in which XΦ = Φ(C), XΨ = Ψ(C), X〈Ψ,Φ〉 = 〈Ψ,Φ〉(C) and all the spaces are
endowed with their natural quotient norms. The maps ı and ρ are defined by
ıΨg = (Ψg, 0) and ρ(Ψf,Φf) = Φf . If BΦ : XΦ → C denotes an homogeneous
bounded selection for the quotient map Φ : C → XΦ then the differential
associated to (Ψ,Φ) is the map ΩΨ,Φ : XΦ → Σn given by ΩΨ,Φ = Ψ ◦ BΦ.
We have that ΩΨ,Φ : XΦ � Ψ(ker Φ) is a quasilinear map with ambient space
Σn. The differential ΩΨ,Φ is continuous at 0 and, consequently, the domain
of ΩΨ,Φ is closed, its range is Hausdorff, and one also has the inverse exact
sequence 0 �� Dom ΩΨ,Φ

�� XΨ,Φ
�� Ran Ω〈Ψ,Φ〉 �� 0 . Moreover

[11, Proposition 3.8]:

Proposition 2.4. The following identities, with equivalence of norms in (1) and
(2), hold:
(1) Dom ΩΨ,Φ = Φ(ker Ψ).
(2) Ran ΩΨ,Φ = XΨ.
(3) ΩΦ,Ψ = (ΩΨ,Φ)−1.

From now on we will focus on the pair (�∞, �1) and the sequence of inter-
polators Δk : C → �∞ given by Δk(f) = f (k)(1/2)/k!. These are interpolators
because the evaluation map of the nth- derivative δ

(n)
z : C → �∞ at an interior

z is continuous [6, Lemma 2.4] for each n ∈ N. Moreover, each finite sequence
{Δk : n ≤ k ≤ m} is consistent. More specifically, we will focus on diagram (2)
obtained from the first three interpolators Δ2,Δ1,Δ0. There are six possible
permutations of these interpolators, and therefore six different diagrams.
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2.1. The Diagram [abc].
Let (a, b, c) be a permutation of (0, 1, 2). Observe that ker〈Δb,Δc〉 = ker Δb ∩
ker Δc. We denote by [abc] the diagram generated by the triple (Δa,Δb,Δc):

[abc] Δa(ker Δb ∩ ker Δc)

j

��

Δa(ker Δb ∩ ker Δc)

k

��
〈Δa,Δb〉(ker Δc)

l ��

q

��

〈Δa,Δb,Δc〉(C) s ��

r

��

Δc(C)

Δb(ker Δc)
i �� 〈Δb,Δc〉(C)

p �� Δc(C)

where the maps are given by
• j(Δah) = (Δah, 0), k(Δah) = (Δah, 0, 0), h ∈ ker Δb ∩ ker Δc;
• l(Δag,Δbg) = (Δag,Δbg, 0), q(Δag,Δbg) = Δbg, i(Δbg) = (Δbg, 0),

g ∈ ker Δc;
• s(Δaf,Δbf,Δcf) = Δcf , r(Δaf,Δbf,Δcf) = (Δbf,Δcf), p(Δbf,Δcf)

= Δcf , f ∈ C.

2.2. The Quasi-Linear Maps

We simplify the notation for the quasi-linear maps as follows:

Ωa,b = ΩΔa,Δb
; Ωa,〈b,c〉 = ΩΔa,〈Δb,Δc〉 and Ω〈a,b〉,c = Ω〈Δa,Δb〉,Δc

.

It follows from Proposition 2.4 that
(1) the central column of [abc] is generated by Ωa,〈b,c〉,
(2) the central row of [abc] is generated by Ω〈a,b〉,c,
(3) the lower row of [abc] is generated by q◦Ω〈a,b〉,c � Ωb,c, since q◦〈Δa,Δb〉 =

Δb.
(4) the left column of [abc] is generated by Ωa,〈b,c〉 ◦ i.

2.3. Elementary Symmetries

The following equivalences are obvious, or can be derived from Proposition
2.4:

Ω〈b,c〉,a � Ω〈c,b〉,a, Ωa,〈b,c〉 � Ωa,〈c,b〉
(Ωa,〈b,c〉)−1 � Ω〈b,c〉,a, (Ω〈a,b〉,c)−1 � Ωc,〈a,b〉, (Ωa,b)−1 � Ωb,a.

3. Determination of the Spaces in the Diagrams

We will show that the six diagrams [abc] corresponding to the permutations
of (0, 1, 2) can be drawn (with equivalence of norms) with the self-dual spaces
R1 = Δ0(C) = �2; R2 = 〈Δ1,Δ0〉(C) = Z2, [7,24] and R3 = 〈Δ2,Δ1,Δ0〉(C)
from now on denoted Z3; the Orlicz spaces �f and �g and their duals, and the
new spaces ∧ and © and their duals. The properties of these spaces will be
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considered in Sect. 5. We begin showing that the spaces in the diagrams admit
symmmetric Schauder decompositions and bases:

Proposition 3.1. The unit vector basis (en) is a symmetric basis for the three
Banach spaces Δc(C), Δb(ker Δc) and Δa(ker Δb ∩ ker Δc). Similarly,
〈Δa,Δb〉(ker Δc) and 〈Δa,Δb〉(C) have a symmetric two-dimensional decompo-
sition and 〈Δa,Δb,Δc〉(C) has a symmetric three-dimensional decomposition.
Moreover, all the spaces in the diagrams admit a basis.

Proof. Observe that since the family {Δn+k, . . . ,Δ1} is consistent, given an op-
erator T : Σ → Σ acting on the pair the induced operator T (Δkf) = Δk(TCf)
defines an operator τk on XΔk

= Δk(C) in the form τk(Δkf) = Δk(TCf): In-
deed, if Bk is a homogeneous bounded selection for Δk then ‖τk(Δkf)‖XΔk

=
‖τk(ΔkBkΔkf)‖XΔk

= ‖Δk(TCBkΔkf)‖XΔk
≤ ‖Δk‖‖TC‖‖Bk‖‖Δkf‖XΔk

. Let
now X be any of the first three spaces in the statement and let Pn denote the
natural projection onto the subspace generated by {e1, . . . , en}. Since Pn is
a norm-one operator on �∞ and �1, (Pn) is a bounded sequence of operators
on X by the argument above. Clearly (en) is contained in X and generates
a dense subspace. Since for each x ∈ span{en : n ∈ N}, Pnx converges to x
in X, it does the same for each x ∈ X. Thus (en) is a Schauder basis for X,
and considering the operators associated to permutations of the basis. The
argument at the beginning of the proof shows that the basis is symmetric. The
remaining results on FDD’s are proved in a similar way, using the operators
induced by Pn in each of the spaces.

All the spaces have a basis because if (En) is a FDD for X with FDD-
constant K and each En has a basis (xn

i )kn
i=1 with basis constant ≤ M then(

(xn
i )kn

i=1

)∞

n=1
is a basis for X with basis constant ≤ KM [9, Proposition 6.5].

�

The next result shows that some of the spaces in the diagrams coincide.
Note that algebraic equality implies isomorphism because if τ1 : X1 → Y and
τ2 : X2 → Y are operators between Banach spaces with τ1(X1) = τ2(X2) then
the quotients X1/ ker τ1 and X2/ ker τ2 are isomorphic: if Ti : Xi/ ker τi → Y
denotes the injective operator induced by τi then T−1

2 ◦ T1 : X1/ ker τ1 →
X2/ ker τ2 is a closed bijective operator, which is continuous by the closed
graph theorem.

Proposition 3.2. The following equalities hold:
(1) Δ2(ker Δ1 ∩ ker Δ0) = Δ1(ker Δ0) = Δ0(C),
(2) 〈Δ2,Δ1〉(ker Δ0) = 〈Δ1,Δ0〉(C),
(3) Δ1(ker〈Δ0,Δ2〉) = Δ0(ker Δ1).

Proof. Let ϕ : S → D be a conformal equivalence such that ϕ(1/2) = 0. Since
ϕ′(1/2) �= 0, we can define φ = ϕ′(1/2)−1ϕ. (1) For each g ∈ ker Δ0 there is
f ∈ C such that g = φ · f , hence Δ1g = Δ0f , and we get Δ1(ker Δ0) ⊂ Δ0(C).
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Conversely, if f ∈ C then g = φ · f ∈ ker Δ0 and Δ0f = Δ1g, so the second
equality is proved. The first equality can be proved in a similar way. It was
proved in [7, Theorem 4] that j(x1, x0) = (x1, x0, 0) and q(y2, y1, y0) = y0

define an exact sequence

0 −−−−→ 〈Δ1,Δ0〉(C)
j−−−−→ 〈Δ2,Δ1,Δ0〉(C)

q−−−−→ Δ0(C) −−−−→ 0,

and (2) follows from 〈Δ2,Δ1,Δ0〉(ker Δ0) = ker q and 〈Δ1,Δ0, 0〉(C) = Im j.
(3) Note that y ∈ Δ0(ker Δ1) if and only if (0, y) ∈ 〈Δ1,Δ0〉(C) = 〈Δ2,Δ1〉
(ker Δ0); equivalently, y ∈ Δ1(ker Δ0 ∩ ker Δ2) = Δ1(ker〈Δ0,Δ2〉). �

Next we identify the corner spaces as Orlicz sequence spaces. Let us
consider the Orlicz functions f(t) = t2(log t)2 and g(t) = t2(log t)4.

Proposition 3.3. Δ0(ker Δ1) = �f and Δ0(ker Δ1 ∩ ker Δ2) = �g.

Proof. The first equality was essentially proved in [24, Lemma 5.3]. With our
notation,

Δ0(ker Δ1) = Dom Ω1,0 = {x ∈ �2 : Ω1,0x ∈ �2}
and Ω1,0 : �2 → �∞ is given by Ω1,0 = 2x log(|x|/‖x‖2). Thus

Δ0(ker Δ1) = {x ∈ �2 : x log |x| ∈ �2} = �f .

Similarly, since Δ0(ker Δ1 ∩ ker Δ2) = Dom Ω〈2,1〉,0 and Ω〈2,1〉,0 : �2 →
�∞ × �∞ is given by

Ω〈2,1〉,0x =
(

2x log2 |x|
‖x‖2

, 2x log
|x|

‖x‖2

)

(see [7]), we have Δ0(ker Δ1∩ker Δ2) = {x ∈ �2 : (2x log2 |x|, 2x log |x|) ∈ Z2}.
Therefore x ∈ Δ0(ker Δ1 ∩ ker Δ2) if and only if x ∈ �2, 2x log |x| ∈ �2 and

2x log2 |x| − Ω1,0(2x log |x|) = 2x log2 |x| − 4x log |x| log
|x log |x||

‖2x log |x|‖2
∈ �2.

Since log |x log |x|| = log |x|+log | log |x||, we conclude that Δ0(ker Δ1∩ker Δ2)
= {x ∈ �2 : x log2 |x| ∈ �2} = �g. �

The second equality in the following result appears observed in [4, Ex-
ample after Corollary 3].

Proposition 3.4. Δ2(ker Δ0) = Δ1(C) = �∗
f .

Proof. For the first equality, 〈Δ1,Δ0〉(C) = 〈Δ2,Δ1〉(ker Δ0) by Proposition
3.2. Thus

x ∈ Δ1(C) ⇔ (x, f(1/2)) = (f ′(1/2), f(1/2)) for some f ∈ C
⇔ (x, g′(1/2)) = (g′′(1/2), g′(1/2)) for some g ∈ ker Δ0

⇔ x ∈ Δ2(ker Δ0).
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For the second equality, since Z2 = 〈Δ1,Δ0〉(C), we have a natural exact
sequence

0 �� Δ0(ker Δ1) = �f
i �� Z2

p �� Δ1(C) �� 0 (3)

with i(x) = (0, x) and p(y, x) = y. Moreover (see [24, Section 5]), the expression
〈U2(y, x), (b, a)〉 = 〈−x, b〉 + 〈y, a〉 defines a bijective isomorphism U2 : Z2 →
Z∗

2 , where 〈·, ·〉 denotes the Riesz product. Since i∗U2 = p, we get Δ1(C) = �∗
f .
�

The following three results were unexpected for us since, at first glance,
the first two spaces seem to be incomparable.

Proposition 3.5. Δ0(ker Δ2) = Δ0(ker Δ1) = �f .

Proof. The second equality is proved in Proposition 3.3. Moreover, the map
Ω2,0 : �2 → �∞ is given by Ω2,0 = 2x log2(|x|/‖x‖). Thus

Δ0(ker Δ2) = Dom Ω2,0 = {x ∈ �2 : x log2 |x| ∈ Δ2(ker Δ0) = �∗
f}.

Since �f = {x ∈ �2 : x log |x| ∈ �2}, �∗
f = {x ∈ �∞ : x log−1 |x| ∈ �2} [27,

Example 4.c.1]. Then

x ∈ Δ0(ker Δ2) ⇔ x ∈ �2 and
x log2 |x|

log(|x| log2 |x|) =
x log2 |x|

log |x| + 2 log | log x| ∈ �2.

Thus x ∈ Δ0(ker Δ2) if and only if x log |x| ∈ �2; equivalently x ∈ �f . �
Like in the proof of Proposition 3.4, it was proved in [6, Proposition 5.1]

that the expression

〈U3(x2, x1, x0), (y2, y1, y0)〉 = 〈x0, y2〉 − 〈x1, y1〉 + 〈x2, y0〉
defines a bijective isomorphism U3 : Z3 → Z∗

3 given by U3(x2, x1, x0) =
(x0,−x1, x2). This fact will be a tool to prove the next result.

Proposition 3.6. Δ2(ker Δ1) = Δ2(ker Δ0) = �∗
f .

Proof. The second equality is proved in Proposition 3.4, and we derive the first
equality from Proposition 3.5 by constructing an isomorphism from Δ2(ker Δ1)
onto Δ0(ker Δ2)∗ that takes en to en for every n ∈ N. Recall that if M and N
are closed subspaces of X with N ⊂ M then (M/N)∗ � N⊥/M⊥. Thus, with
the natural identifications we get

Δ0(ker Δ2) � 〈Δ1, Δ0〉(ker Δ2)

Δ1(ker Δ0 ∩ ker Δ2)
=⇒ Δ0(ker Δ2)

∗ � (Δ1(ker Δ0 ∩ ker Δ2))
⊥

(〈Δ1, Δ0〉(ker Δ2))
⊥

and

Δ2(ker Δ1) � 〈Δ0,Δ2〉(ker Δ1)
Δ0(ker Δ2 ∩ ker Δ1)

,

and we conclude that U3 induces an isomorphism from Δ2(ker Δ1) onto Δ0

(ker Δ2)∗ by showing that U3 takes 〈Δ0,Δ2〉(ker Δ1) onto (Δ1(ker Δ0 ∩ ker Δ2))
⊥



Interpolator Symmetries and New Kalton-Peck Page 11 of 28   108 

and Δ0(ker Δ2∩ker Δ1) onto (〈Δ1,Δ0〉(ker Δ2))
⊥. Indeed, Δ1(ker Δ0∩ker Δ2)

can be identified with the subspace of the vectors (0, y, 0) in Z3. Then (Δ1(ker
Δ0 ∩ ker Δ2))

⊥ is the subspace of the vectors (x, 0, z) in Z∗
3 , which coincides

with U3 (〈Δ0,Δ2〉(ker Δ1)), and similarly 〈Δ1,Δ0〉(ker Δ2)⊥ = U3 (Δ0(ker Δ2

∩ ker Δ1)), and it is clear that the induced isomorphism takes en to en for
every n ∈ N. �

What follows is perhaps the most surprising symmetry:

Proposition 3.7. Δ1(ker Δ2) = Δ1(ker Δ0) = �2.

Proof. Proposition 3.5 implies ker Δ0 + ker Δ1 = ker Δ0 + ker Δ2, from which
we get

Δ1(ker Δ0) = Δ1(ker Δ0 + ker Δ2) ⊃ Δ1(ker Δ2),

while Proposition 3.6 implies ker Δ2 + ker Δ0 = ker Δ2 + ker Δ1. Thus

Δ1(ker Δ2) = Δ1(ker Δ2 + ker Δ0) ⊃ Δ1(ker Δ0).

�

A rich theory [1,30], see also [5, Section 10.8], contemplates Z2 as a
Fenchel-Orlicz space, with the meaning described next. A function ϕ : C

n →
[0,∞) is a (quasi) Young function if it is (quasi) convex, ϕ(0) = 0, limt→∞ ϕ(tx)
= ∞ and ϕ(zx) = ϕ(x) for every z ∈ C with |z| = 1 and every x �= 0. If we
call two positive functions φ, ψ equivalent when φ/ψ is both upper and lower
bounded, a quasi-convex function φ on R

n is equivalent to its convex hull
coφ(x) = inf{∑

θiφ(xi) : x =
∑

θixi,
∑

θi = 1, θi ≥ 0}. A Young function ϕ
generates the Fenchel-Orlicz space

�ϕ =
{

(xj)j≥1 ⊂ C
n : ∃ρ > 0 such that

∑
ϕ
(1

ρ
xj

)
< ∞

}

endowed with the norm ‖(xj)j≥1‖ϕ = inf{ρ > 0 :
∑

ϕ( 1
ρxj) ≤ 1}. The case

n = 1 correspond to Orlicz spaces. We will say that a quasi-Young function φ
generates the Fenchel-Orlicz space �ϕ when coφ is equivalent to ϕ.

The Rochberg spaces associated to the scale of �p-spaces are Fenchel-
Orlicz spaces in a natural way (see [16]). Indeed, given θ ∈ (0, 1) and n ≥ 2
there is a Young function ϕn : C

n → [0,∞) such that Zn = �ϕn
. More precisely:

• �2 is �ϕ1 , the Orlicz space generated by the Orlicz function ϕ1(x) = |x0|2.
• Z2 is �ϕ2 , the Fenchel-Orlicz space generated by the quasi-Young function

ϕ2(x1, x0) = |x1 − x0 log |x0||2 + |x0|2.
Keep track that ϕ2(x1, 0) = |x1|2, so �2 = {(x, y) ∈ �ϕ2 : y = 0}; while
ϕ2(0, x0) = |x0 log |x0||2 + |x0|2 ∼ f , so �f = DomKP = {(x, y) ∈ �ϕ2 :
x = 0}.
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• Z3 is �ϕ3 , the Fenchel-Orlicz space generated by the quasi-Young function

ϕ3(x2, x1, x0) = ϕ2(x1, x0) + ϕ1(x2 − g(x1,x0)[2])

where f [i] stands for f(i)(1/2)
i! and gx(z) = |x|2z−1x, so that gx[1] =

2x log |x|. Now, we set g(x1,x0) = gx0 + ϕ
k2

gx1−gx0 [1], with ϕ : S → D a con-
formal map such that ϕ(1

2 ) = 0 and k2 is adjusted so that g(x1,x0)[1] = x1.
One therefore has g(x1,x0)(z) = gx0(z)+ϕ(z)

k2
gx1−2x0 log |x0|(z) = |x0|2z−1x0+

ϕ(z)
k2

|x1 − 2x0 log |x0||2z−1(x1 − 2x0 log |x0|) to get, after a few tedious
computations,

g(x1,x0)[2] = 2x0 log2 |x0| +
ϕ′(1/2)

k2
2(x1 − 2x0 log |x0|) log(|x1 − 2x0 log |x0||)

+
ϕ′′(1/2)

2k2
(x1 − 2x0 log |x0|).

• ∧ is generated by ϕ3(x2, 0, x0) = ϕ2(0, x0) + |x2 − g(0,x0)[2]|2.
• © is generated by ϕ3(0, x1, x0) = ϕ2(x1, x0) + |g(x1,x0)[2]|2.

4. Construction of the Diagrams

As we said before, 〈Δa,Δb,Δc〉(C) � Z3 for each permutation (a, b, c) of
(2, 1, 0).

Diagram [210]: By Proposition 3.2, Δ2(ker Δ1 ∩ ker Δ0) = Δ1(ker Δ0) =
Δ0(C) � �2 and 〈Δ2,Δ1〉(ker Δ0) = 〈Δ1,Δ0〉(C) � Z2. We thus get

�2

��

�2

��
Z2

��

��

Z3
��

��

�2

�2 �� Z2
�� �2

The two quasilinear maps generating the two middle sequences are Ω〈2,1〉,0 and
Ω2,〈1,0〉; both can be found explicitly in [7] (and implicit in [29]) and also at
the appropriate places in this paper.

Diagram [012]: By Propositions 3.3 and 3.7, Δ0(ker Δ1 ∩ ker Δ2) = �g and
Δ1(ker Δ2) = �2. So we have the spaces in the left column. The next result
provides the spaces in the lower row.

Proposition 4.1. (a) Δ2(C) is isomorphic to �∗
g. (b) 〈Δ1,Δ2〉(C) is isomorphic

to ©∗.
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Proof. (a) By Proposition 3.3, �g = Δ0(ker Δ1 ∩ ker Δ2) which is isomor-
phic to a closed subspace of Z3, namely {(x2, x1, x0) ∈ Z3 : x2 = x1 =
0}. Hence �∗

g � Z∗
3/ (Δ0(ker Δ1 ∩ ker Δ2))

⊥. Since (Δ0(ker Δ1 ∩ ker Δ2))
⊥ =

U3 (〈Δ0,Δ1〉(ker Δ2)) then

Δ2(C) � Z3

〈Δ0,Δ1〉(ker Δ2)
� �∗

g.

(b) The space © = 〈Δ0,Δ1〉(ker Δ2) is isomorphic to {(x2, x1, x0) ∈ Z3 :
x2 = 0}, a closed subspace of Z3. Hence ©∗ � Z∗

3/ (〈Δ0,Δ1〉(ker Δ2))
⊥. Since

(〈Δ0,Δ1〉(ker Δ2))
⊥ = U3 (Δ0(ker Δ1 ∩ ker Δ2))

we get 〈Δ1,Δ2〉(C) � Z3/(Δ0(ker Δ1 ∩ ker Δ2)) � ©∗. �

Thus we obtain the diagram:

�g

��

�g

��
© ��

��

Z3
��

��

�∗
g

�2 �� ©∗ �� �∗
g

Diagram [201]: Ω2,〈0,1〉 � Ω2,〈1,0〉 gives the central column (coincides with that
of [210]), and Propositions 3.4 and 3.5 give the lower row. Thus, we get

�2

��

�2

��
∧ ��

��

Z3
��

��

�∗
f

�f
�� Z2

�� �∗
f

Arguing as in the proof of Proposition 4.1, we get (U3 appeared before
Proposition 3.6):

Proposition 4.2. 〈Δ2,Δ0〉(C) is isomorphic to ∧∗ = 〈Δ2,Δ0〉(ker Δ1)∗.

Proof. Since the space ∧ = 〈Δ2,Δ0〉(ker Δ1) is isomorphic to a subspace of
Z3, we get ∧∗ � Z∗

3/ (〈Δ2,Δ0〉(ker Δ1))
⊥. Moreover (〈Δ2,Δ0〉(ker Δ1))

⊥ =
U3 (Δ1(ker Δ2 ∩ ker Δ0)), and therefore 〈Δ2,Δ0〉(C) � Z3/ (Δ1(ker Δ2∩
ker Δ0)) � ∧∗. �
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Diagram [120]: Ω〈1,2〉,0 � Ω〈2,1〉,0 gives the central row, and Δ1(ker Δ2 ∩
ker Δ0) = �f and Δ2(ker Δ0) = �∗

f by Propositions 3.2, 3.3 and 3.6. Since
∧∗ � 〈Δ2,Δ0〉(C) by Proposition 4.2 and Δ0(C) = �2, we get

�f

��

�f

��
Z2

��

��

Z3
��

��

�2

�∗
f

�� ∧∗ �� �2

Diagram [021]: Ω0,〈2,1〉 � Ω0,〈1,2〉 gives the central column and Ω〈0,2〉,1 �
Ω〈2,0〉,1 gives the central row. Since Δ2(ker Δ1) = �∗

f by Proposition 3.6, we
get

�g

��

�g

��
∧ ��

��

Z3
��

��

�∗
f

�∗
f

�� ©∗ �� �∗
f

Diagram [102]: Ω1,〈0,2〉 � Ω1,〈2,0〉 gives the central column, and Ω〈1,0〉,2 �
Ω〈0,1〉,2 gives the central row. Moreover, Δ0(ker Δ2) � �f by Proposition 3.5.
So we get

�f

��

�f

��
© ��

��

Z3
��

��

�∗
g

�f
�� ∧∗ �� �∗

g

5. Properties of the Spaces

Here we describe some isomorphic properties of the spaces in the diagrams.
Recall that a Banach space X is hereditarily �2 if every closed infinite dimen-
sional subspace of X contains a subspace isomorphic to �2. Being hereditarily
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�2 is inherited by subspaces, but not by quotients since every separable reflex-
ive space is a quotient of a reflexive hereditarily �2 space [2, Theorem 6.2]. To
be hereditarily �2 is a three-space property [14, Theorem 3.2.d].

Proposition 5.1. All the spaces appearing in the diagrams [abc] are hereditarily
�2.

Proof. Each infinite dimensional subspace of a reflexive Orlicz sequence space
contains a copy of �p for p ∈ [α, β], being α (resp. β) the lower (resp. upper)
Boyd index of the space [26, Proposition I.4.3, Theorem I.4.6]. Since Z3 has
type 2 − ε and cotype 2 + ε for each ε > 0, the same happens with �f and
�g and their dual spaces, hence their Boyd indices are 2 and these spaces are
hereditarily �2. Apply the 3-space property for all the other spaces. �

Recall from [25, Corollary 13] that if M is an Orlicz function satisfying
the Δ2-condition and 2 ≤ q < ∞ then the space �M has cotype q if and
only if there exists K > 0 such that M(tx) ≥ KtqM(x) for all 0 ≤ t, x ≤ 1.
Consequently, the spaces �f and �g have cotype 2 and �∗

f and �∗
g have type 2.

We need one more technical result:

Proposition 5.2. Let X be a Banach space.

(1) If X has type 2 then every subspace isomorphic to �2 is complemented.
(2) If X has an unconditional basis and cotype 2 then every subspace of X

isomorphic to �2 contains an infinite dimensional subspace complemented
in X.

Proof. (a) is a consequence of Maurey’s extension theorem; see [19, Corollary
12.24]. (b) The following argument is similar to the proof of [28, Theorem 3.1]
for subspaces of Lp, 1 < p < 2, with an unconditional basis. Let (en) be an
unconditional basis of X, let (xk) be a normalized block basis of (en), and take
a sequence (cj) of scalars and a successive sequence (Bk) of intervals of integers
so that xk =

∑
i∈Bk

ciei. We consider the sequence of projections (Pk) in X
defined by Pkej = ej if j ∈ Bk, and Pkej = 0 otherwise. Let Qk be a norm-one
projection on span{ej : j ∈ Bk} onto the one-dimensional subspace generated
by xk. We claim that Px =

∑∞
k=1 QkPkx defines a projection on X onto the

closed subspace generated by (xk). If x ∈ X then
∑∞

k=1 Pkx is unconditionally
converging and ‖∑∞

k=1 Pkx‖ ≤ D‖x‖ for some D > 0. Moreover, since X

has cotype 2,
(∑∞

k=1 ‖Pkx‖2
)1/2 ≤ E‖∑∞

k=1 Pkx‖ for some E > 0. We write
QkPkx = skxk for each k. Then

( ∞∑

k=1

|sk|2
)1/2

≤
( ∞∑

k=1

‖Pkx‖2

)1/2

≤ E · D‖x‖.

Hence
∑∞

k=1 QkPkx converges, and it is easy to check that P is the required
projection. �



  108 Page 16 of 28 J. M. F. Castillo et al. Results Math

Corollary 5.3. Each infinite dimensional subspace of one of the spaces �f , �g,
�∗
f and �∗

g contains a complemented copy of �2.

Since Z2 � Z∗
2 [24], a space X is (isomorphic to) a subspace (resp. a

quotient) of Z2 if and only if X∗ is a quotient (resp. a subspace) of Z2.

Proposition 5.4. None of the spaces ©, ©∗, ∧ and ∧∗ is (isomorphic to) a
subspace or a quotient of Z2.

Proof. It was proved in [24, Theorem 5.4] that every normalized basic sequence
in Z2 has a subsequence equivalent to the basis of one of the spaces �2 or �f .
Thus none of the four spaces is a subspace of Z2 because © and ∧ contain a
copy of �g and ©∗ and ∧∗ contain a copy of �∗

f , as we can see in the diagrams.
�

Next we extend to Z3 some fundamental results about Z2. The following
one is in [21] for Z2 and the proof we present is similar to that in [5, Proposition
10.9.1] for Z2.

Proposition 5.5. An operator τ : Z3 → X either is strictly singular or an
isomorphism on a complemented copy of Z3.

Proof. Since the quotient map in the sequence 0 → �2 → Z3 → Z2 → 0 is
strictly singular (see [7]) an operator τ : Z3 → X is strictly singular if and
only if τ |�2 is strictly singular. So, let τ be a non-strictly singular operator.
Let us assume first that τ |�2 is an embedding so that we can assume that
‖τ(y, 0)‖ ≥ ‖y‖ for all y ∈ �2. Observe the commutative diagram:

�2

ı

��

�2

(τ,ı)

��
Z3

(τ,id) ��

π

��

X ⊕ Z3

Q

��

�� X

Z2
�� PO �� X

• The composition Q (τ, id) is strictly singular since it factors through π.
• Q (τ, id) = Q(τ, 0) + Q (0, id).
• Q (0, id) is an embedding since

‖Q(0, z)‖ = inf
y∈�2

‖(0, z) − (τ, ı)(y)‖ = inf
y∈�2

‖(−τy, z − y)‖
= inf

y∈�2

{‖τ(y, 0)‖ + ‖z − y‖} ≥ ‖y‖ + ‖z‖ − ‖y‖ = ‖z‖.

Thus, Q(τ, 0), being the difference (or sum) between a strictly singular operator
and an embedding, has to have closed range and finite dimensional kernel [27,
Proposition 2.c.10] and therefore it must be an isomorphism on some finite
codimensional subspace of Z3, and the same happens to τ . All subspaces of
Z3 with codimension 3 are isomorphic to Z3 and thus we are done.
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In the general case, if τ is not strictly singular, then τ |U is an embedding
for some subspace U of �2 generated by a normalized block basis (un) of the
canonical basis. We consider the operator τU : �2 → �2 given by τU (en) =
un, which acts on the pair. It was shown by Kalton [21] that the operator
SU : Z2 −→ Z2 defined by SU (en, 0) = (un, 0) and SU (0, en) = (Ω1,0un, un) is
continuous and makes commutative the following diagram:

0 −−−−→ �2 −−−−→ Z2 −−−−→ �2 −−−−→ 0

τU

⏐
⏐
�

⏐
⏐
�SU

⏐
⏐
�τU

0 −−−−→ �2 −−−−→ Z2 −−−−→ �2 −−−−→ 0

(4)

The operator SU can be described by the matrix SU =
(

u 2u log u
0 u

)
. The

theory developed in [12, Proposition 7.1] explains why the upper-right entry
of the matrix has to be 2u log u and why there is also a commutative diagram

0 −−−−→ Z2 −−−−→ Z3 −−−−→ �2 −−−−→ 0

SU

⏐
⏐
�

⏐
⏐
�RU

⏐
⏐
�τU

0 −−−−→ Z2 −−−−→ Z3 −−−−→ �2 −−−−→ 0

(5)

in which

RU =

⎛

⎝
u 2u log u 2u log2 u
0 u 2u log u
0 0 u

⎞

⎠

Since τU is an into isometry, so are SU and RU . Thus, RU (Z3) is an iso-
metric copy of Z3. Let us show it is complemented. With that purpose, consider
ZU

3 the space Z3 constructed with each block un in place of en; namely, ZU
2 is

the twisted sum space U ⊕ΩU
1,0

U constructed with ΩU
1,0(u) = 2

∑
λn log |u|

‖u‖ for
u ∈ U and then ZU

3 is the space ZU
2 ⊕ΩU

〈2,1〉,0
U with the corresponding definition

for ΩU
〈2,1〉,0. We can in this way understand RU as an operator R′

U : ZU
3 → Z3

in the obvious form: R′
U (un, 0, 0) = RU (en, 0, 0), R′

U (0, un, 0) = RU (0, en, 0)
and R′

U (0, 0, un) = RU (0, 0, en). Consider the diagram

ZU
3

R′
U ��

DU

��

Z3

D

��
(ZU

3 )∗ Z3
(R′

U )∗
��

Here DU is the obvious isomorphism between ZU
3 and (ZU

3 )∗ induced by D.
The diagram is commutative: for normalized blocks ui, uj , uk, ul, um, un one
has

R′
U (ui, uj , uk) = (ui + 2uj log uj + 2uk log2 uk, uj + 2uk log uk, uk)
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while the action of D
(
ui + 2uj log uj + 2uk log2 uk, uj + 2uk log uk, uk

)
over(

ul + 2um log um + 2un log2 un, um + 2un log un, un

)
gives

(ui + 2uj log uj + 2uk log2 uk)un − (uj + 2uk log uk)(um + 2un log un)

+uk(ul + 2um log um + 2un log2 un);

namely

δin + 2δjn log u + 2δkn log2 u − δjm − 2δjn log u − 2δkm log u − 4δkn log2 u

+δkl + 2δkm log u + 2δkn log2 u

which is δin − δjm + δkl. Thus

(R′
U )∗

DR′
U (ui, uj , uk)(ul, um, un) = DR′

U (ui, uj , uk) (R′
U (ul, um, un))

= 〈R′
U (ui, uj , uk), R′

U (ul, um, un)〉
= δin − δjm + δkl

= DU (ui, uj , uk)(ul, um, un)

Therefore, D−1
U (R′

U )∗
D is a projection onto the range of RU , as desired, and

one can repeat the same argument as before working now with τ |U instead of
τ |�2 . �
Corollary 5.6. Every operator from Z3 into a twisted Hilbert space is strictly
singular. In particular, Z3 does not contain complemented copies of either Z2

or �2.

Proof. That Z3 cannot be a subspace of a twisted Hilbert space was proved in
[7, Prop. 12]. �
Corollary 5.7. The six representations of Z3 as a twisted sum in the diagrams
are non-trivial.

Proof. Since Z3 contains no complemented copy of �2 and Z3 � Z∗
3 [6, Prop.

5.5 and Cor. 5.7], by Corollary 5.3 the exact sequences Z2 → Z3 → �2,
∧ → Z3 → �∗

f and © → Z3 → �∗
g have strictly singular quotient map,

while �2 → Z3 → Z2, �f → Z3 → ∧∗ and �g → Z3 → ©∗ have strictly
cosingular embedding. Of course, the second part is a dual result of the first
one. �

In [24, Theorem 5.4] it is proved that every normalized basic sequence in
Z2 admits a subsequence equivalent to the basis of one of the spaces �2 or �f .
For Z3 we have:

Theorem 5.8. Every normalized basic sequence in Z3 admits a subsequence
equivalent to the basis of one of the spaces �2, �f , �g.

Proof. Let (yn, xn, zn)n be a normalized basic sequence in Z3. If ‖zn‖ → 0 as
n → ∞, we can assume that

∑ ‖zn‖ < ∞ and thus that, up to a perturba-
tion, (yn, xn, zn) is a basic sequence in Z2; therefore it admits a subsequence
equivalent to the basis of either �2 or �f [24, Theorem 5.4].
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If ‖zn‖ ≥ ε then we can assume after perturbation that there is a block
basic sequence (un) in �2 such that

∑ ‖zn − un‖ < ∞. Since

(yn, xn, zn) = (yn, xn, zn) − (Ω〈2,1〉,0un, un) + (Ω〈2,1〉,0un, un)
= ((yn, xn) − Ω〈2,1〉,0un, zn − un) + (Ω〈2,1〉,0un, un)

and zn − un → 0 we can assume that ((yn, xn) − Ω〈2,1〉,0un, zn − un) admits
a subsequence equivalent to the basis of either �2 or �f . We conclude showing
that (Ω〈2,1〉,0un, un) is equivalent to the canonical basis of �g. And thus the
plan is to show that

∑
(xnΩ〈2,1〉,0un,

∑
xnun) converges in Z3 if and only

if (xn) ∈ �g. In order to show that, we simplify the notation: let x be a
scalar sequence, let u = (un) be the sequence of blocks and let us denote
xu =

∑
xnun. Showing that (xΩ〈2,1〉,0u, xu) converges in Z3 is the same as

showing that its norm is finite. Recall that for a positive normalized z one has
Ω〈2,1〉,0(z) = (2z log2 z, 2z log z). Since

‖(xΩ〈2,1〉,0u, xu)‖Z3 = ‖(xΩ〈2,1〉,0u − Ω〈2,1〉,0(xu)‖Z2 + ‖xu‖2

= ‖(xΩ〈2,1〉,0u − Ω〈2,1〉,0(xu)‖Z2 + ‖xu‖2,

assuming ‖un‖ = 1 for all n and ‖xu‖ = 1, one gets

xΩ〈2,1〉,0u − Ω〈2,1〉,0(xu) =
(
x2u log2 u, 2x log u

) − (
2xu log2(xu), 2xu log(xu)

)

=
(
2xu(log2 u − log2 xu), 2xu(log u − log(ux))

)

=
(
2xu(log2 u − (log2 x + log2 u + 2 log x log u), −2xu log x)

)

=
(−2xu(log2 x + 2 log x log u), −2xu log x)

)

and therefore

‖(xΩ〈2,1〉,0u − Ω〈2,1〉,0(xu)‖Z2 = ‖
(
−2xu(log2 x + 2 log x log u), −2xu log x)

)
‖Z2

= ‖ − 2xu(log2 x + 2 log x log u) + 4xu log x log (2xu log x) ‖2 + ‖2xu log x‖2
= ‖2xu

(
log2 x + 2 log 2 log x + 2 log x log log x

)
‖2 + ‖2xu log x‖2.

That means that the sequence x satisfies x(log2 |x|) ∈ �2; namely, x ∈ �g. �

This result has consequences for the structure of the spaces Z3, ∧ and
©.

Proposition 5.9. Z3 has no complemented subspace with an unconditional ba-
sis.

Proof. If (xn) were an unconditional basic sequence in Z3 generating a comple-
mented subspace, it would admit a subsequence (xnk

) equivalent to the basis
of one of the spaces �2, �f , �g by Theorem 5.8. Since this subsequence would
generate a complemented subspace of Z3, we would conclude that Z3 contains
a complemented copy of �2, by Corollary 5.3, which cannot happen. �

Proposition 5.10. The spaces ∧ and © are not isomorphic to their dual spaces.
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Proof. Both ∧ and © are subspaces of Z3, hence Theorem 5.8 applies. But
∧∗ and ©∗ contain a copy of �∗

f , as we can see in the diagrams, while the
canonical basis of �∗

f (or any of its subsequences) is not equivalent to those of
�2, �f or �g. �

Proposition 5.11. The space ∧ (hence ∧∗ also) is not isomorphic to either ©
or ©∗.

Proof. The idea for the proof is to show that every weakly null sequence in ∧
contains a subsequence equivalent to the canonical basis of either �2 or �g, so
that ∧ cannot contain either �f or �∗

f and therefore it cannot be isomorphic to
either © or ©∗. Why it is so is essentially contained in the proof of Theorem
5.8, taking into account that the elements of ∧ have the form (y, 0, z). Our
interest lies now in showing that when (un) are blocks in �2 (actually in �f )
and

∑
(xnyn, 0, un) converges in Z3 then x = (xn) is in either �2 or �g. Using

the same notation as then, since ‖(xy, 0, xu)‖Z3
=

∥
∥(xy, 0) − Ω〈2,1〉,0(xu)

∥
∥

Z2
+

‖xu‖�2 , and since (xy, 0) and xu converge when x ∈ �2, our only concern is
when Ω〈2,1〉,0(xu) converges in Z2. But this means that x ∈ Dom Ω〈2,1〉,0 =
�g. �

Proposition 5.12. The spaces ∧ and ∧∗ do not contain �2 complemented. Con-
sequently, they do not have an unconditional basis.

Proof. Consider the diagram [120]. Its lower sequence comes defined by �(x) =
x log2 x, obtained from the composition Ω〈2,1〉,0x = (x log2 x, x log x) with the
projection onto the first coordinate. Let u be a sequence of disjoint blocks of
the canonical basis of �2 and let x ∈ �2.

�(xu) = xu log2(xu) = xu
(
log x + log u)2

)

= xu
(
log2 x + log2 u + 2 log x log u

)

= xu log2 x + xu log2 u + 2xu log x log u

Observe that the second term x → xu log2 u is linear while the third term
x → 2x log xu log u is x → Ω1,0(x), according to [5, Lemma 9.3.10] and up to
a weight and a linear map. This map is bounded when considered with values
in its range �∗

f , which yields that the restriction �|[u] is, up to a linear plus
a bounded map, � once again. Therefore, the quotient map Q in 0 → �∗

f →
∧∗ Q→ �2 → 0 is strictly singular; hence Q∗, the embedding in its dual sequence

0 → �2
Q∗
→ ∧ → �f → 0, which is the left column in diagram [201], is strictly

cosingular.
The rest is similar to [6, Prop. 15]: Assume that ∧∗ contains a subspace

A isomorphic to �2 complemented by some projection P . Since Q is strictly
singular, there exist an infinite dimensional subspace A′ ⊂ �2 and a nuclear
operator K : A′ → ∧∗ nuclear norm ‖K‖n < 1 such that I − K : A′ → A
is a bijective isomorphism. Let N be a nuclear operator on ∧∗ extending K
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with ‖N‖n < 1. Then I∧∗ − N is invertible, where I∧∗ is the identity on ∧∗,
(I∧∗ − N)−1 =

∑
k≥0 Nk, and (I∧∗ − N) ◦ P ◦ (I∧∗ − N)−1 is a projection on

∧∗ onto A′. This cannot be since the embedding map Q∗ is strictly cosingular.
Since ∧ is reflexive, it cannot contain �2 complemented also. As for the second
part, since ∧ is a subspace of Z3, the argument in the proof of Corollary 5.9
also proves the result. �

Corollary 5.13. All the exact sequences appearing in the six diagrams are non-
trivial.

Proof. Corollary 5.7 showed that the sequences passing through Z2 are non-
trivial. The non-triviality for those passing through ∧ and ∧∗ follows from the
fact that these spaces do not admit an unconditional basis (Proposition 5.12);
for those passing through © follows from the fact that �f ⊕ �f � �f does not
contain copies of �g and �g ⊕ �2 � �g does not contain copies of �f ; and for
those passing through ©∗ we can argue as for ©. �

This corollary can be improved.

Proposition 5.14. The following maps:

(1) Q0, Q1, Q2, Q1,0, Q0,1, Q2,0, Q0,2, Q1,2, Q2,1;
(2) p1,0, p0,1, p2,0, p0,2, p2,1, p1,2; and
(3) q1,0, q0,1, q2,0, q0,2

are strictly singular.

Proof. (1) That Q0, Q1, Q2, Q1,0 and Q0,1 are strictly singular is a consequence
of Proposition 5.5, because �2, �∗

f , �∗
g and Z2 do not contain Z3. The lower part

in the diagram [120]

Z2
��

p2,0

��

Z3
Q0 ��

Q2,0

��

�2

�∗
f

�� ∧∗ q2,0 �� �2

plus the technique used before shows that Q2,0, hence Q0,2, is strictly singular.
Therefore, its restrictions p2,0 and p0,2 are strictly singular too. The restriction
of p1,2 to �f is the canonical inclusion of �f into �2, which is strictly singular
due to the criterion [27, Theorem 4.a.10] asserting that given two Orlicz spaces
�M , �N for which the canonical inclusion j : �M → �N is continuous then j is
strictly singular if and only if for each B > 0 there is a sequence τ1, . . . , τn

in (0, 1] such that
∑

M(τit) ≥ B
∑

N(τit) for all t ∈ [0, 1]. Straightforward
calculations yield that the canonical inclusions �g → �f and �f → �2 are strictly
singular. Thus, also p0,2 is strictly singular and consequently the lower part of
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diagram [102]

© ��

p0,2

��

Z3
Q2 ��

Q0,2

��

�∗
g

�f
�� ∧∗ q0,2 �� �∗

g

yields that Q0,2, hence Q2,0 too, is strictly singular. (2) the maps are restric-
tions of Q1,0, Q0,1, Q2,0 and Q0,2. (3) follows from Corollary 5.3 because Z2

and ∧∗ contain no complemented copy of �2. �

Remark 5.15. We have been unable to prove that q1,2 and q2,1 are strictly sin-
gular, from where it would follow that © and ©∗ do not have an unconditional
basis.

6. The Case of Weighted Hilbert Spaces

This is an interesting test case by its simplicity (all exact sequences are trivial
and all spaces are isomorphic to Hilbert spaces), and provides some insight
about what occurs in other situations. Let w = (wn) be a weight sequence
(a non-increasing sequence of positive numbers such that limwn = 0 and∑

wn = ∞) and let w−1 = (w−1
n ). Note that �2(w)∗ is isometric to �2(w−1).

If C is the Calderón spaces for the couple (�2(w−1), �2(w)), an homoge-
neous bounded selector for the interpolator Δ0 : C → Σ is B(x)(z) = w2z−1x.
Therefore B(x)′(z) = 2w2z−1 log w · x and Ω1,0x = Δ1Bx = 2 log w · x. The
Rochberg space R2 will be

Z2(w) = {(y, x) : x ∈ �2, y − 2 log w · x ∈ �2}

from where Dom Ω1,0 = {x ∈ �2 : 2 log w · x ∈ �2} = �2(log w) = {(0, x) ∈
Z2(w)} and Ran Ω1,0 = �2((log w)−1) so that (Ω1,0)−1x = 1

2 log wx; thus Dom
(Ω1,0)−1 = {x ∈ �2((log w)−1) : (log w)−1 ·x ∈ �2(log w)} = �2 = Ran (Ω1,0)−1,
as we already know.

Next, B(x)′′(z) = 4w2z−1 log2 w · x, and thus Δ2B(x) = 2 log2 w · x.
Therefore

Ω〈2,1〉,0(x) = (Δ2B(x),Δ1B(x)) =
(
2 log2 w · x, 2 log w · x

)

defines a linear map with domain Dom Ω〈2,1〉,0 = {x ∈ �2 : (2 log2 w ·x, 2 log w ·
x) ∈ Z2(w)} = �2(log2 w) since one must have 2 log w ·x ∈ �2 and 2 log2 w ·x−
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4 log2 ·w = −2 log2 w · x ∈ �2. Therefore we have some parts of the first two
diagrams [210] and [012]

�2

��

�2

��
Z2(w) ��

��

Z3 ��

��

�2

�2 �� Z2(w) �� �2

�2(log2 w)

��

�2(log2 w)

��
© ��

��

Z3 ��

��

�2(log−2 w)

� �� ©∗ �� �2(log−2 w)

We need to know now who are © = Dom Ω2,〈1,0〉 and � = ©/�2(log2 w). To
get the first of those spaces we need to know Ω2,〈1,0〉. Recall from the standard
diagram

ker a ��

b

��

C a ��

(b,a)

��

�2

�2 �� Z2(w) �� �2

that if A,B are homogeneous bounded selectors for a and b then

W (y, x) = B(y − Ωb,ax) + Ax

is a selector for (b, a) and therefore Ωc,(b,a) = cW . With this info at hand,
we need a selector W for 〈Δ1,Δ0〉 to then obtain Ω2,〈1,0〉 = Δ2W . Now, the
selector for Δ0 is Bx(z) = w2z−1x as we already know, and the selector for
Δ1 : ker δ0 → �2 is 1

ϕ′(1/2)ϕB where ϕ is a conformal mapping with ϕ(1/2) = 0.
Thus, W (y, x) = ϕ

ϕ′(1/2)B(y − Ω1,0x) + Bx, and elementary calculations yield

Ω2,〈1,0〉(y, x) =
1

2
W (y, x)′′(1/2) = Ω1,0(y − Ω1,0x)

+
ϕ′′(1/2)

2ϕ′(1/2)
(y − Ω1,0x) +

1

2
Bx′′(1/2)

= 2 log w · (y − 2 log w · x) +
ϕ′′(1/2)

2ϕ′(1/2)
(y − 2 log w · x) + 2 log2 w · x.

Setting d = ϕ′′(1/2)
2ϕ′(1/2) one gets Ω2,〈1,0〉(y, x) = (2 log w + d)y − (2 log2 w +

2d log w)x. This yields Dom Ω2,〈1,0〉 = {(y, x) ∈ Z2(w) : (2 log w + d)y −
(2 log2 w + 2d log w)x ∈ �2} and then Dom Ω2,〈1,0〉|Dom Ω1,0 = {(0, x) ∈ Z2(w) :
(2 log2 w + 2d log w)x ∈ �2} = �2(log2 w). And since dy − 2d log wx ∈ �2 when
(y, x) ∈ Z2(w) one gets

© = {(y, x) ∈ Z2(w) : (2 log w + d)y − (2 log2 w + 2d log w)x ∈ �2}
= {(y, x) ∈ Z2(w) : log wy − log2 wx ∈ �2}
= {(y, x) ∈ Z2(w) : log w(y − log wx) ∈ �2}
= {(y, x) : x ∈ �2 and y − log wx ∈ �2(log w)}.
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By obvious reasons we will call this space © = Z�2(log w)(w). It is clear
that © is a twisting 0 −→ �2(log w) −→ Z�2(log w)(w) −→ �2(log w) −→ 0
of �2(log w) obtained with the same quasilinear map Ωx = 2 log wx. This is
a bonus effect of working with weighted spaces in which all maps are linear.
On the other hand, � is the domain of Δ2Ω−1

2,〈1,0〉. We showed in Proposition
3.6 that Δ0(ker Δ2) = Δ0(ker Δ1) =⇒ Δ1(ker Δ2) = Δ1(ker Δ0), which in
this case yields Dom (Ω) = �2(log w) =⇒ � = �2. Thus, giving the analogous
meaning as before to the space Z�2((log w)−1)(w), diagrams [210] and [012] are

�2

��

�2

��
Z2(w) ��

��

Z3 ��

��

�2

�2 �� Z2(w) �� �2

�2(log
2 w)

��

�2(log
2 w)

��
Z�2(log w)(w) ��

��

Z3 ��

��

�2(log
−2 w)

�2 �� Z�2((log w)−1)(w) �� �2(log−2 w)

The other relevant new space appears in [201]

�2

��

�2

��
∧ ��

��

Z3(w) ��

��

�2(log−1 w)

�2(log w) �� Z2(w) �� �2(log−1 w)

that we can identify as the pullback space ∧ = {(y, 0, x) ∈ Z3} generated with
the map Ω2,〈1,0〉|Dom Ω1,0x = −(2 log2 w + 2d log w)x. We thus get that [102]
and [201] are

�2(log w)

��

�2(log w)

��
Z�2(log w)(w) ��

��

Z3 ��

��

�2(log
−2 w)

�2(log w) �� ∧∗ �� �2(log−2 w)

�2

��

�2

��
∧ ��

��

Z3 ��

��

�2(log
−1 w)

�2(log w) �� Z2 �� �2(log−1 w)

The vertical sequence on the left is defined by Ωx = 2 log wx because this
is the derivation associated to the interpolation couple

(
�2(w−1 log w), �2(w

log w))1/2 = �2(log w). Since Dom Ω = {x ∈ �2(log w) : log wx ∈ �2(log w)} =
{x ∈ �2(log w) : log2 wx ∈ �2} = �2(log2 w) one gets that [021] and [120] are
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�2(log2 w)

��

�2(log2 w)

��
∧ ��

��

Z3 ��

��

�2(log−1 w)

�2(log−1 w) �� ©∗ �� �2(log−1 w)

�f

��

�f

��
Z2 ��

��

Z3 ��

��

�2

�2(log−1 w) �� ∧∗ �� �2
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