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standard ultradifferentiable setting.
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1. Introduction

Spaces of ultradifferentiable functions are sub-classes of smooth functions with certain restrictions on the 
growth of their derivatives. Two classical approaches are commonly considered, either the restrictions are 
expressed by means of a weight sequence M = (Mj)j , also called Denjoy-Carleman classes (e.g. see [11]), 
or by means of a weight function ω also called Braun-Meise-Taylor classes; see [3]. More precisely (in the 
one-dimensional case) for each compact set K, the sets

{
f (j)(x)
hjMj

: j ∈ N, x ∈ K

}
, respectively

{
f (j)(x)

exp( 1
hϕ

∗
ω(hj))

: j ∈ N, x ∈ K

}
, (1.1)

are required to be bounded, where ϕ∗
ω denotes the Young-conjugate of t �→ ω(et). We shall mention that in 

the second situation the classes can be defined directly by using ω and controlling the decay of the Fourier 
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transform f̂ with growth factors t �→ exp(hω(t)), h > 0. In fact, this is the original description; see [1] and 
also the discussion in [3] where the original approach is transferred to the boundedness condition expressed 
in (1.1).

In the literature standard growth and regularity conditions are assumed for M and ω and in both settings 
we can consider two different types of spaces: For the Roumieu-type the boundedness of the sets in (1.1) is 
required for some h > 0, whereas for the Beurling-type it is required for all h > 0.

The most well-known examples are the Gevrey sequences of type α > 0 with Gα
j := jαj for j ∈ N (or 

equivalently use Mα
j := j!α). Alternatively, one can use the function t �→ t1/α =: ωα(t).

It is then a natural question how both classical settings are related. In [2] this problem is studied and it 
has been shown that in general both approaches are mutually distinct. However, based on this work, in [27]
and [23] A. Rainer and the third author have introduced the notion of weight matrices M = {M (x) : x > 0}
which allows to treat both classical methods in a unified way and to transfer proofs from one context to 
the other. This can be achieved when considering M = {M} for the weight sequence and the so-called 
associated weight matrix W := {W (�) : � > 0} with W (�)

j := exp(1
�ϕ

∗
ω(�j)) in the weight function case. But 

one is also able to describe more classes, e.g. take the Gevrey matrix G := {Gα : α > 1}; see [23, Thm. 
5.22].

A second recent generalization was presented by S. Pilipović, N. Teofanov and F. Tomić; see [19]. For 
given parameters τ > 0 and σ > 1 they consider the sequence Mτ,σ

j := jτj
σ . However, in their definition 

the geometric growth factor hj appearing in (1.1) is replaced by hjσ . Observe that the growth of j �→ hjσ is 
closely connected with j �→ Mτ,σ

j . The authors called their framework “beyond Gevrey regularity” because 

Mτ,1
j = jτj for σ = 1, i.e., the Gevrey sequence of type τ > 0. Since all the classes considered in this work 

are, in some sense, generalizations of Gevrey classes, these spaces will be called Pilipović-Teofanov-Tomić 
classes, or PTT-classes for short.

The difference between the growth of j �→ hj and j �→ hjσ suggests that the PTT-classes can be viewed 
as “non-standard ultradifferentiable classes” and one can ask how both generalizations are related. In the 
introduction of [21] it was claimed that the PTT-classes are not covered by the weight matrix approach 
which is due to the different growth of the factors mentioned before. However, the aim of this paper is to 
show that also the PTT-classes are contained in the weight matrix approach.

In fact, we treat a more abstract setting by considering an exponent sequence Φ = (Φj)j∈N and by 
replacing in (1.1) the growth j �→ hj by j �→ hΦj . This notion yields “ultradifferentiable classes beyond 
geometric growth factors” and we show that under mild regularity and growth assumptions on Φ such spaces 
admit a representation as weight matrix classes (as locally convex vector spaces) by involving the canonical 
matrix

MM,Φ := {M (c,Φ) : c > 0}, M
(c,Φ)
j := cΦjMj .

Applying this main result to the PTT-classes, we are also able to see that when both σ > 1 and τ > 0 are 
fixed then the corresponding space cannot be represented by a single weight sequence M or by a weight 
function ω; i.e., one requires the general weight matrix setting to describe these classes. In other words 
PTT-classes constitute genuine examples of ultradifferentiable classes defined by weight matrices.

On the other hand, in the very recent paper [33] it is shown that when only σ > 1 is fixed and when 
one considers matrix-type classes with parameter τ > 0, i.e. PTT-limit classes, then these spaces can 
alternatively be defined in terms of a weight function (in particular of a so-called associated weight function). 
We give an independent proof of this result by applying purely weight matrix techniques; see Theorem 6.8.

The paper is structured as follows: In Section 2 all necessary and relevant conditions on weight sequences, 
weight functions and weight matrices are given and the corresponding classes are defined. In Section 3 we 
introduce ultradifferentiable spaces “beyond geometric growth factors” and prove in Section 4 the main 
characterization results, i.e., Theorems 4.4, 4.7 and 4.9, showing that, in particular, the PTT-classes can 
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be represented as weight matrix spaces. In Section 5 we apply this fact for fixed parameters τ > 0, σ > 1, 
and study properties of the relevant matrix Mτ,σ in order to transfer known results from the matrix setting 
to PTT-classes. In Section 6 this is done analogously for so-called limit classes when fixing σ but letting 
τ → 0 resp. τ → +∞. It is shown that such spaces can be represented as Braun-Meise-Taylor classes (see 
Theorem 6.8) and satisfy additional properties since in this weight structure both mixed moderate growth 
conditions of the particular type are valid.

Acknowledgments

We wish to thank J. Vindas for pointing out additional results available for matrix classes; more precisely 
for bringing, what is now property (f) in Sections 5.2 and 6.3, to our attention. In addition he suggested to 
consider [4], whose implications are the content of Section 6.4.

And we thank N. Teofanov and F. Tomić for forwarding their preprint of [33] and the subsequent helpful 
discussions.

2. Weights and conditions

2.1. General notation

We write N := {0, 1, 2, . . . } and N>0 := {1, 2, 3, . . . }. With E we denote the class of all smooth functions. 
We use the standard multi-index notation and f (α), α ∈ Nd, stands for the α-th derivative of a given smooth 
function f (defined in Rd).

Occasionally, we write the symbol [·] if we mean either {·} (Roumieu-type) or (·) (Beurling-type) for 
spaces and growth conditions.

2.2. Weight sequences

Given a sequence M = (Mj)j ∈ RN
>0 we also use m = (mj)j defined by mj := Mj

j! and μj := Mj

Mj−1
, j ≥ 1, 

and set μ0 := 1. Analogously these conventions are used for all other appearing sequences, i.e., N ↔ n ↔ ν

etc. M is called normalized if 1 = M0 ≤ M1 holds true.
M is called log-convex, denoted by (lc), if

∀ j ∈ N>0 : M2
j ≤ Mj−1Mj+1,

equivalently if μ is nondecreasing. If M is log-convex and normalized, then both M and j �→ (Mj)1/j are 
nondecreasing. In this case we get Mj ≥ 1 for all j ≥ 0 and

∀ j ∈ N>0 : (Mj)1/j ≤ μj .

Moreover we get MjMk ≤ Mj+k for all j, k ∈ N; e.g. see [26, Lemma 2.0.4, Lemma 2.0.6].
If m is log-convex, then M is also log-convex and in this case we call M strongly log-convex and write 

that M is (slc).
For any M = (Mj)j ∈ RN

>0 it is well-known that

lim inf
j→∞

μj ≤ lim inf
j→∞

(Mj)1/j ≤ lim sup
j→∞

(Mj)1/j ≤ lim sup
j→∞

μj . (2.1)

For convenience we introduce the following set of sequences:

LC := {M ∈ RN
>0 : M is normalized, log-convex, lim (Mj)1/j = ∞}.
j→∞
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M has moderate growth, denoted by (mg), if

∃ C ≥ 1 ∀ j, k ∈ N : Mj+k ≤ Cj+k+1MjMk.

A weaker condition is derivation closedness, denoted by (dc), if

∃ A ≥ 1 ∀ j ∈ N : Mj+1 ≤ Aj+1Mj ⇔ μj+1 ≤ Aj+1.

M is called non-quasianalytic, denoted by (nq), if

∑
j≥1

1
μj

< +∞.

In the literature (mg) is also known under stability of ultradifferential operators or (M.2), (dc) under (M.2)′
and (nq) under (M.3)′; see [11]. It is also known that for log-convex (normalized) weight sequences (nq) is 
equivalent to

∑
j≥1

1
(Mj)1/j

< +∞,

which holds by the so-called Carleman-inequality; see [26, Prop. 4.1.7] and the references therein.
M has (β1) (named after [18]) if

∃ Q ∈ N>0 : lim inf
j→∞

μQj

μj
> Q,

and (γ1) if

sup
j∈N>0

μj

j

∑
k≥j

1
μk

< ∞.

In [18, Proposition 1.1] it has been shown that for M ∈ LC both conditions are equivalent and in the 
literature (γ1) is also called “strong nonquasianalyticity condition”. In [11] it is denoted by (M.3) (in fact, 
there μj

j is replaced by μj

j−1 for j ≥ 2 but which is equivalent to having (γ1)).
A weaker condition on M is (β3) (named after [27], see also [2]) which reads as follows:

∃ Q ∈ N>0 : lim inf
j→∞

μQj

μj
> 1.

For two weight sequences M = (Mj)j and N = (Nj)j we write M � N if

sup
j∈N>0

(
Mj

Nj

)1/j

< ∞,

and call them equivalent, denoted by M ≈ N , if

M � N and N � M.

In the relations above one can replace M and N simultaneously by m and n because M � N ⇔ m � n. 
Let us also write M ≤ N if Mj ≤ Nj for all j ∈ N. Finally, we write M � N , if
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lim
j→∞

(
Mj

Nj

)1/j

= 0.

For any s ≥ 0 we set Gs := (j!s)j∈N , so for s > 0 this denotes the classical Gevrey sequence of index/order 
s.

2.3. Weight functions

According to [16, Sect. 2.1] and [17, Sect. 2.2] a function ω : [0, +∞) → [0, +∞) is called a pre-weight 
function, if it is continuous, non-decreasing, ω(0) = 0 and such that

(∗) log(t) = o(ω(t)), t → +∞,
(∗) t �→ ϕω(t) := ω(et) is convex.

Consequently, for each pre-weight function we have limt→+∞ ω(t) = +∞. ω is called a weight function if ω
satisfies in addition

(∗) ω(2t) = O(ω(t)), t → +∞.

If ω(t) = 0 for all t ∈ [0, 1], then we call ω a normalized (pre-)weight function.
Let σ, τ be pre-weight functions, we write σ � τ if τ(t) = O(σ(t)) as t → +∞. We call them equivalent, 

denoted by σ ∼ τ , if σ � τ and τ � σ.

2.4. Associated weight function

Let M ∈ RN
>0 (with M0 = 1), then the associated function ωM : R≥0 → R ∪ {+∞} is defined by

ωM (t) := sup
j∈N

log
(

tj

Mj

)
for t ∈ R>0, ωM (0) := 0.

For an abstract introduction of the associated function we refer to [13, Chapitre I]; see also [11, Definition 
3.1].

If lim infj→+∞(Mj)1/j > 0, then ωM (t) = 0 for sufficiently small t, since log
(

tj

Mj

)
< 0 ⇔ t < (Mj)1/j

holds for all j ∈ N>0. (In particular, if Mj ≥ 1 for all j ∈ N, then ωM is vanishing on [0, 1].) Moreover, 
under this assumption t �→ ωM (t) is a continuous nondecreasing function, which is convex in the variable 
log(t) and tends faster to infinity than any log(tj), j ≥ 1, as t → +∞. limj→+∞(Mj)1/j = +∞ implies that 
ωM (t) < +∞ for each finite t which shall be considered as a basic assumption for defining ωM .

Summarizing, if M ∈ LC, then ωM is a normalized pre-weight function (e.g. see [9, Lemma 3.1]), however 
in general ωM (2t) = O(ωM (t)) is not clear; see the recent characterization [30, Thm. 3.1].

Finally, if M ∈ LC (or even if M is log-convex with M0 = 1 and limj→+∞(Mj)1/j = +∞), then by [13, 
Chapitre I, 1.4, 1.8] and also [11, Prop. 3.2] we get

Mj = sup
t≥0

tj

exp(ωM (t)) , j ∈ N. (2.2)

2.5. Weight matrices

For the following definitions and conditions see [23, Sect. 4] and [27, Sect. 7].
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Let I = R>0 denote the index set (equipped with the natural order). A weight matrix M associated with 
I is a (one parameter) family of weight sequences M := {M (α) ∈ RN

>0 : α ∈ I}, such that

∀ α ≤ β : M (α) ≤ M (β).

We call a weight matrix M standard log-convex, denoted by (Msc), if

∀ α ∈ I : M (α) ∈ LC.

Moreover, we put m(α)
j := M

(α)
j

j! for j ∈ N, and μ(α)
j := M

(α)
j

M
(α)
j−1

for j ∈ N>0, μ(α)
0 := 1.

A matrix is called constant if M (α) ≈ M (β) for all α, β ∈ I.
Let M = {M (α) : α ∈ I} and N = {N (α) : α ∈ I} be given. We write M{�}N if

∀ α ∈ I ∃ β ∈ I : M (α) � N (β),

and call M and N to be R-equivalent, or M{≈}N for short, if M{�}N and N{�}M. Analogously, we 
write M(�)N if

∀ α ∈ I ∃ β ∈ I : M (β) � N (α),

and call M and N to be B-equivalent, or M(≈)N for short, if M(�)N and N (�)M.
If M and N are both R- and B-equivalent, then we say for simplicity that they are equivalent.
We recall several growth and regularity assumptions on a given weight matrix:

(MH) ∀ α ∈ I : lim inf
j→∞

(m(α)
j )1/j > 0,

(M{Cω}) ∃ α ∈ I : lim inf
j→∞

(m(α)
j )1/j > 0,

(M(Cω)) ∀ α ∈ I : lim
j→∞

(m(α)
j )1/j = +∞,

(M{rai}) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ 1 ≤ j ≤ k : (m(α)
j )1/j ≤ C(m(β)

k )1/k,

(M(rai)) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ 1 ≤ j ≤ k : (m(β)
j )1/j ≤ C(m(α)

k )1/k,

(M{mg}) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ j, k ∈ N : M
(α)
j+k ≤ Cj+k+1M

(β)
j M

(β)
k ,

(M(mg)) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ j, k ∈ N : M
(β)
j+k ≤ Cj+k+1M

(α)
j M

(α)
k ,

(M{dc}) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ j ∈ N : M
(α)
j+1 ≤ Cj+1M

(β)
j ,

(M(dc)) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ j ∈ N : M
(β)
j+1 ≤ Cj+1M

(α)
j ,

(M{BR}) ∀ α ∈ I ∃ β ∈ I : M (α) � M (β),

(M(BR)) ∀ α ∈ I ∃ β ∈ I : M (β) � M (α),

(M{FdB}) ∀ α ∈ I ∃ β ∈ I : (m(α))◦ � m(β),

(M(FdB)) ∀ α ∈ I ∃ β ∈ I : (m(β))◦ � m(α),

with (m(α))◦ := ((m(α)
j )◦)j being the sequence defined by

(m(α)
k )◦ := max

{
m

(α)
� ·m(α)

j1
· · ·m(α)

j�
: ji ∈ N>0,

�∑
ji = k

}
, (m(α)

0 )◦ := 1.

i=1
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R-equivalence between matrices preserves all Roumieu-type conditions listed above and B-equivalence 
all Beurling-type conditions.

Finally, let us recall

(M{L}) ∀ C > 0 ∀ α ∈ I ∃ D > 0 ∃ β ∈ I ∀ j ∈ N : CjM
(α)
j ≤ DM

(β)
j ,

(M(L)) ∀ C > 0 ∀ α ∈ I ∃ D > 0 ∃ β ∈ I ∀ j ∈ N : CjM
(β)
j ≤ DM

(α)
j .

A matrix is called non-quasianalytic if any sequence M (α) is non-quasianalytic; see [29, Sect. 4]. When 
dealing with Roumieu type classes then it suffices to assume that there exists α0 ∈ I such that M (α0) is 
non-quasianalytic since smaller indices can be skipped; see also the discussion in [25, Sect. 5.1].

2.6. Ultradifferentiable classes

Let U ⊆ Rd be non-empty open and for K ⊆ Rd compact we write K ⊂⊂ U if K ⊆ U , i.e., K is in U
relatively compact. We introduce now the following spaces of ultradifferentiable function classes. First, for 
weight sequences we define the (local) classes of Roumieu-type by

E{M}(U) := {f ∈ E(U) : ∀ K ⊂⊂ U ∃ h > 0 : ‖f‖M,K,h < +∞},

and the classes of Beurling-type by

E(M)(U) := {f ∈ E(U) : ∀ K ⊂⊂ U ∀ h > 0 : ‖f‖M,K,h < +∞},

where we denote

‖f‖M,K,h := sup
α∈Nd,x∈K

|f (α)(x)|
h|α|M|α|

.

For a sufficiently regular compact set K (e.g. with smooth boundary and such that K◦ = K)

EM,h(K) := {f ∈ E(K) : ‖f‖M,K,h < +∞}

is a Banach space and so we have the following topological vector spaces

E{M}(K) := lim−−→
h>0

EM,h(K),

and

E{M}(U) = lim←−−
K⊂⊂U

lim−−→
h>0

EM,h(K) = lim←−−
K⊂⊂U

E{M}(K).

Similarly, we get

E(M)(K) := lim←−−
h>0

EM,h(K),

and

E(M)(U) = lim←−− lim←−− EM,h(K) = lim←−− E(M)(K).

K⊂⊂U h>0 K⊂⊂U
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For a weight function, we define the corresponding Roumieu-type classes

E{ω}(U) := {f ∈ E(U) : ∀ K ⊂⊂ U ∃ h > 0 : ‖f‖ω,K,h < +∞},

and the classes of Beurling-type by

E(ω)(U) := {f ∈ E(U) : ∀ K ⊂⊂ U ∀ h > 0 : ‖f‖ω,K,h < +∞},

where we denote

‖f‖ω,K,h := sup
α∈Nd,x∈K

|f (α)(x)|
exp( 1

hϕ
∗
ω(h|α|))

.

The spaces are topologized in complete analogy to the weight sequence case. First we define for a sufficiently 
regular compact set K the Banach space

Eω,h(K) := {f ∈ E(K) : ‖f‖ω,K,h < +∞},

and set

E{ω}(K) := lim−−→
h>0

Eω,h(K), E(ω)(K) := lim←−−
h>0

Eω,h(K),

finally we endow E[ω](U) with the following locally convex topologies

E{ω}(U) = lim←−−
K⊂⊂U

E{ω}(K), E(ω)(U) = lim←−−
K⊂⊂U

E(ω)(K).

Next, we consider classes defined by weight matrices of Roumieu-type E{M} and of Beurling-type E(M)
as follows; see also [23, 4.2]. For a weight matrix M = {M (x) : x ∈ I} and a sufficiently regular K ⊂⊂ U

we put

E{M}(K) :=
⋃
x∈I

E{M(x)}(K), E{M}(U) :=
⋂

K⊂⊂U

⋃
x∈I

E{M(x)}(K), (2.3)

and

E(M)(K) :=
⋂
x∈I

E(M(x))(K), E(M)(U) :=
⋂
x∈I

E(M(x))(U).

For such K one has the representation

E{M}(K) = lim−−→
x∈I

lim−−→
h>0

EM(x),h(K)

and so for U ⊆ Rd non-empty open

E{M}(U) = lim←−−
K⊂⊂U

lim−−→
x∈I

lim−−→
h>0

EM(x),h(K).

Similarly, we get for the Beurling case

E(M)(U) = lim←−− lim←−− lim←−− EM(x),h(K).

K⊂⊂U x∈I h>0
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2.7. Pilipović-Teofanov-Tomić classes

Let τ, h > 0, σ ≥ 1, then one considers the weight sequence

Mτ,σ
j := jτj

σ

.

Let K ⊂⊂ Rd be a sufficiently regular compact set. By Eτ,σ,h(K) we shall denote the Banach space of 
functions φ ∈ E(K) such that

||φ||Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|φ(α)(x)|
h|α|σMτ,σ

|α|
< +∞.

Note that the case σ = 1 gives, by Stirling’s formula, that Mτ,1 ≈ Gτ , i.e., Mτ,1 is equivalent to the classical 
Gevrey sequence with parameter/index τ .

If 0 < h1 ≤ h2, 0 < τ1 ≤ τ2, 1 ≤ σ1 ≤ σ2, then Eτ1,σ1,h1(K) ↪→ Eτ2,σ2,h2(K).
Let U be an open set of Rd. We define the spaces:

E{τ,σ}(U) = lim←−−
K⊂⊂U

lim−−→
h→∞

Eτ,σ,h(K) E(τ,σ)(U) = lim←−−
K⊂⊂U

lim←−−
h→0

Eτ,σ,h(K)

E{∞,σ}(U) = lim−−→
τ→∞

E{τ,σ}(U) E(∞,σ)(U) = lim−−→
τ→∞

E(τ,σ)(U)

E{0,σ}(U) = lim←−−
τ→0

E{τ,σ}(U) E(0,σ)(U) = lim←−−
τ→0

E(τ,σ)(U)

We use the abbreviated notation [τ, σ] for {τ, σ} or (τ, σ).

Proposition 2.1. [19, Prop. 2.1] [20, Prop. 2.1] Let σ ≥ 1 and τ > 0. Then for every σ2 > σ1 ≥ 1, we have 
that

E[∞,σ1](U) ↪→ E[0,σ2](U).

Moreover, if 0 < τ1 < τ2 then

E{τ1,σ}(U) ↪→ E(τ2,σ)(U) ↪→ E{τ2,σ}(U),

and

E{∞,σ}(U) = E(∞,σ)(U) E{0,σ}(U) = E(0,σ)(U).

Consequently, given τ0 > 0 we see that

E[τ0,σ1](U) ↪→
⋂

τ>τ0

E[τ,σ1](U) ↪→ E[τ0,σ2](U).

In particular, if σ > 1 then

E[∞,1](U) ↪→ E[τ,σ](U).
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3. Ultradifferentiable classes beyond geometric growth factors

The main objective is to prove that the PTT-classes can be represented as classes defined by (suitable) 
weight matrices. Indeed, we can obtain a more general result by letting the exponents of the defining 
estimates be Φj instead of j or jσ where Φ = (Φj)j is arbitrary and only satisfying some mild regularity 
property.

Definition 3.1. A sequence Φ ∈ RN
≥0 is called exponent sequence if it satisfies

lim inf
j→∞

Φj

j
> 0. (3.1)

In particular every exponent sequence tends to infinity.
Let U ⊆ Rd be non-empty open, M ∈ RN

>0 and Φ ∈ RN
≥0. We introduce now Φ-ultradifferentiable function 

classes (defined in terms of a single weight sequence M): The (local) class of Roumieu-type is given by

E{M,Φ}(U) := {f ∈ E(U) : ∀ K ⊂⊂ U ∃ h > 0 : ‖f‖M,Φ,K,h < +∞},

and the class of Beurling-type by

E(M,Φ)(U) := {f ∈ E(U) : ∀ K ⊂⊂ U ∀ h > 0 : ‖f‖M,Φ,K,h < +∞},

where we denote

‖f‖M,Φ,K,h := sup
α∈Nd,x∈K

|f (α)(x)|
hΦ|α|M|α|

. (3.2)

For a sufficiently regular compact set K

EM,Φ,h(K) := {f ∈ E(K) : ‖f‖M,Φ,K,h < +∞}

is a Banach space and so we have the following topological vector space representations

E{M,Φ}(K) := lim−−→
h>0

EM,Φ,h(K), and E{M,Φ}(U) = lim←−−
K⊂⊂U

lim−−→
h>0

EM,Φ,h(K) = lim←−−
K⊂⊂U

E{M,Φ}(K).

Similarly, we get

E(M,Φ)(K) := lim←−−
h>0

EM,Φ,h(K), and E(M,Φ)(U) = lim←−−
K⊂⊂U

lim←−−
h>0

EM,Φ,h(K) = lim←−−
K⊂⊂U

E(M,Φ)(K).

Note that condition (3.1) means that the factor hΦ|α| in the seminorms is at least geometric.

Remark 3.2. In the literature, global ultradifferentiable classes, test function spaces, ultraholomorphic 
classes, spaces of weighted sequences of complex numbers and, PTT-test function spaces (see [19]) have 
been studied. In a completely analogous way, global Φ-ultradifferentiable classes, Φ-test function spaces, Φ-
ultraholomorphic classes and Φ-spaces of weighted sequences of complex numbers (weighted with seminorms 
of the type (3.2)) can be defined; i.e., when the symbol/functor E is replaced by B, D, A or Λ.

Notation: When the open set U is not relevant in certain statement, we will simply write E{M}, E(M), 
E{τ,σ}, E(τ,σ) or E{M,Φ}, E(M,Φ).
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Example 3.3. We have two important examples in mind:

(a) If Φj = j for all j ∈ N, then we recover the classes from Section 2.6; i.e., the usual definition of 
ultradifferentiable classes defined in terms of weight sequences; e.g. see [11]. For reasons of simplicity 
we will skip the letter Φ in the definition.

(b) Let parameters σ > 1 and τ > 0 be given. Then the choices

Mτ,σ
j := jτj

σ

, Φj := jσ, j ∈ N, (3.3)

yield the classes introduced in [19]. We use the convention 00 := 1 and so Mτ,σ
0 = 1.

Given an exponent sequence Φ ∈ RN
≥0 and a pair of sequences M, N ∈ RN

>0, we want to compare the 
classes E{M,Φ} and E{N,Φ}, or resp. E(M,Φ) and E(N,Φ). We write M �Φ N if

sup
j∈N>0

(
Mj

Nj

)1/Φj

< +∞,

and we call M and N to be Φ-equivalent, written as M ≈Φ N , if M �Φ N and N �Φ M .
By definition obviously M �Φ N implies both E{M,Φ} ⊆ E{N,Φ} and E(M,Φ) ⊆ E(N,Φ) with continuous 

inclusion. Thus Φ-equivalent sequences define the same associated function classes; i.e., if M ≈Φ N then 
E{M,Φ} = E{N,Φ} and E(M,Φ) = E(N,Φ) (as topological vector spaces) and similarly for the other classes 
mentioned in Remark 3.2. Note that for Φj = j relation �Φ is precisely �; see [23, p. 101, Prop. 2.12 (1)].

Analogously, we write M �Φ N if

lim
j→+∞

(
Mj

Nj

)1/Φj

= 0,

which is obviously never reflexive and symmetric and stronger than �Φ. If M �Φ N , then E{M,Φ} ⊆ E(N,Φ)
with continuous inclusion (and similarly for the other classes mentioned in Remark 3.2).

4. Classes beyond geometric factors versus weight matrices

The aim of this section is to verify that, under mild growth and regularity assumptions on Φ, the classes 
E{M,Φ} resp. E(M,Φ) can be represented (as locally convex vector spaces) by the matrix classes E{M} resp. 
E(M) for a suitable choice of the matrix M.

4.1. Preparatory results

We introduce an appropriate matrix of sequences. Let M ∈ RN
>0 and Φ ∈ RN

≥0, then consider the set

MM,Φ := {M (c,Φ) : c > 0}, M
(c,Φ)
j := cΦjMj , j ∈ N. (4.1)

For any sequence Φ ∈ RN
≥0, we have that MM,Φ is a weight matrix in the notion of Section 2.5. Next we 

show that the mild growth restriction (3.1) on Φ is equivalent to the fact that the matrix MM,Φ allows to 
absorb exponential growth.

Lemma 4.1. Let M ∈ RN
>0 and Φ ∈ RN

≥0 be given. Then the following are equivalent:

(i) Φ satisfies (3.1), i.e., Φ is an exponent sequence.
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(ii) MM,Φ satisfies (M{L}).
(iii) MM,Φ satisfies (M(L)).

Proof. (i) ⇔ (ii) First we observe that MM,Φ satisfies (M{L}) if and only if

∀ h > 0 ∀ c > 0 ∃ D > 0 ∃ c1 > 0 ∀ j ∈ N : hjcΦj ≤ Dc
Φj

1 .

Consequently, if (ii) holds, then for h = 2, c = 1 there exists c1 > 1 and D > 0 such that

Φj

j
≥ log(2) − (1/j) log(D)

log(c1)
,

for all j ∈ N>0, so Φ satisfies (3.1).
Conversely, let h, c ≥ 1 be given. Then (3.1) yields the existence of some ε > 0 and jε ∈ N>0 such that 

for all j ≥ jε we get Φj

j ≥ ε. So there exists some c1 > c such that 
(
c1
c

)Φj/j ≥
(
c1
c

)ε ≥ h for all j ≥ jε. Thus, 
when choosing A ≥ 1 large enough, then we have that for all j ∈ N

hjM
(c,Φ)
j = hjcΦjMj ≤ Ac

Φj

1 Mj = AM
(c1,Φ)
j ,

which shows that MM,Φ satisfies (M{L}).
(i) ⇔ (iii) Follows similarly. �
If we assume more growth requirements on the sequence Φ, then we can deduce further regularity con-

ditions for MM,Φ.

Proposition 4.2. Let M ∈ RN
>0 and Φ ∈ RN

≥0 be given.

(i) If M is normalized and if Φ0 = Φ1 = 0, then each M (c,Φ) is normalized, too.
(ii) We observe that M (c,Φ) is log-convex if and only if

j �→ μ
(c,Φ)
j = cΦj−Φj−1μj is non-decreasing. (4.2)

In particular, if M is log-convex, i.e., j �→ μj is non-decreasing, and if Φ is convex, i.e.,

∀ j ∈ N>0 : 2Φj ≤ Φj−1 + Φj+1,

then M (c,Φ) is log-convex for each c ≥ 1.
Moreover, if Φ is convex and (4.2) holds for some c > 0, then also for all d > c.

(iii) If Φ is increasing, convex, and Φ0 = 0, then it is an exponent sequence. Moreover, since Φj−Φj−1 ≥ 0, 
we get

∀ 0 < c1 ≤ c2 ∀ j ≥ 1 : μ
(c1,Φ)
j =

M
(c1,Φ)
j

M
(c1,Φ)
j−1

= c
Φj−Φj−1
1 μj ≤ c

Φj−Φj−1
2 μj = μ

(c2,Φ)
j ,

i.e., the sequences are even ordered w.r.t. their corresponding quotient sequences.
(iv) If (Mj)1/j → ∞ as j → ∞, and Φ is an exponent sequence, then

∀ c ≥ 1 : (M (c,Φ)
j )1/j = cΦj/j(Mj)1/j → ∞, j → ∞.
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Proof. (i) and (iv) are direct consequences. For the last statement in (ii) let d > c and write

dΦj−Φj−1μj = cΦj−Φj−1μj

(
d

c

)Φj−Φj−1

.

Since d
c ≥ 1 and the convexity of Φ precisely means that j �→ Φj − Φj−1 is non-decreasing we get that 

j �→ dΦj−Φj−1μj is non-decreasing as well.
Let us give an argument for (iii): From convexity since Φ0 = 0, one can deduce that j �→ Φj

j is non-
decreasing:

Observe that

Φj − Φj−1 ≥ Φj−1

j − 1 ,

and therefore

Φj = (j − 1)Φj−1

j − 1 + Φj − Φj−1 ≥ j
Φj−1

j − 1 .

Since Φ is increasing we get Φj > 0 for all large j and hence Φj

j is bounded away from 0. �
Remark 4.3. Since log-convexity for M (c,Φ) and (M (c,Φ)

j )1/j → ∞ as j → ∞ for each c > 0 are desirable 
(standard) properties in the theory of ultradifferentiable (and ultraholomorphic) classes, statements (ii) and 
(iv) in Proposition 4.2 suggest that for applications the choices for Φ and M should not considered to be 
independent; cf. (3.3).

In concrete applications the requirement (M (c,Φ)
j )1/j → ∞ as j → ∞ for each c > 0 might be checked 

easily. However, even if M is log-convex, Φ is convex and M and Φ are well related as in (3.3), in general 
as c → 0 one can only expect that condition (4.2) will be satisfied from some jc ∈ N>0 on (and jc → +∞
as c → 0). Nevertheless, in this situation one can replace each M (c,Φ) (for c < 1 small) by some equivalent 
sequence when changing M (c,Φ) at the beginning, i.e., only for finitely many j. This technical modification 
leaves the classes E{MM,Φ} and E(MM,Φ) unchanged.

4.2. Comparison results

This section is devoted to formulate and prove the main comparison theorems. Using the preparation 
from the previous section we are in position to prove the first statement.

Theorem 4.4. Let M ∈ RN
>0 be given and let Φ be an exponent sequence. Let MM,Φ be the matrix defined 

in (4.1), then as locally convex vector spaces we get

E{M,Φ} = E{MM,Φ}, E(M,Φ) = E(MM,Φ). (4.3)

By the analogous definitions of the spaces we see that (4.3) also holds for the other classes mentioned in 
Remark 3.2.

Both cases from Example 3.3 satisfy (3.1); if Φj = j and so we are treating the classical situation, then 
the above result becomes trivial in the sense that M (c,Φ) ≈ M for all c > 0, i.e., MM,Φ is constant.

Proof. The Roumieu case. By definition, we have the following estimate

∀ c ≥ 1 ∀ h ≥ 1 ∀ j ∈ N : cΦjMj = M
(c,Φ)
j ≤ hjM

(c,Φ)
j ,
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that is verifying E{M,Φ} ⊆ E{MM,Φ} (with continuous inclusion).
Conversely, let h, c ≥ 1 be given. By Lemma 4.1, there exist c1, A ≥ 1 such that for all j ∈ N

hjM
(c,Φ)
j ≤ AM

(c1,Φ)
j ,

which shows E{MM,Φ} ⊆ E{M,Φ} (with continuous inclusion).

The Beurling case. Follows analogously, but in this case we use Lemma 4.1 to prove the (continuous) 
inclusion E(M,Φ) ⊆ E(MM,Φ). �

On the other hand, let us show now that condition (3.1) is also necessary to obtain (4.3) (or even more), 
when assuming mild extra assumptions on M .

A crucial part of the proof of the Roumieu case is based upon the existence of so-called optimal functions
in Roumieu classes: For any given normalized log-convex sequence N , we consider the function

θN (t) :=
∞∑
j=0

Nj

2jνjj
exp(2iνjt), t ∈ R, (4.4)

with νj := Nj

Nj−1
for j ≥ 1 and ν0 := 1. It is known that

θN ∈ E{N}(R,C), |θ(j)
N (0)| ≥ Nj ∀ j ∈ N;

see e.g. [35, Thm. 1], [23, Lemma 2.9] and the detailed proof in [26, Prop. 3.1.2]. There it has been commented 
that θN /∈ E(N)(R, C) and the proof shows that in (4.4) we can replace νj by νj+1.

The proof of the Beurling case makes use of the following functional analytic result.

Proposition 4.5. Let E, F be Fréchet spaces, such that E is a linear subspace of F (not assuming continuous 
inclusion). Assume that both are continuously included in C(U) (or even in any Hausdorff space), where U
is some open subset of Rd. Then E is continuously included in F .

Proof. We want to show that the inclusion ι : E → F is continuous. By the closed graph theorem, it suffices 
to show that if fn → 0 in E (and thus in C(U)), and fn → g in F (and thus in C(U)), we have g = 0. But 
this is now clear since C(U) is Hausdorff. �
Remark 4.6. In the light of the previous Proposition, any inclusion (as sets) of Beurling classes is automat-
ically a continuous inclusion. And equality as sets yields equality as Fréchet spaces.

Now we are in the position to formulate a converse to Theorem 4.4.

Theorem 4.7. Let M ∈ RN
>0 and Φ ∈ RN

≥0 be given. Then we get:

(i) The Roumieu case. Assume that M (c,Φ) is log-convex and normalized for some c ≥ 1, and let L =
{L(x) : x > 0} be a (Msc) matrix or even only consisting of normalized log-convex weight sequences. 
Assume that

E{M,Φ}(R) = E{L}(R)

is valid (as sets). Then Φ has to satisfy (3.1), i.e., Φ is an exponent sequence.
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(ii) The Beurling case. Assume that limj→+∞(M (c,Φ)
j )1/j = +∞ for all c > 0 and such that (w.l.o.g., cf. 

Remark 4.3) each M (c,Φ) is log-convex and M (c,Φ)
0 = 1. Assume also that (as sets and thus automatically 

as Fréchet spaces)

E(M,Φ)(R) = E(L)(R)

is valid with L = {L(x) : x > 0} a given (Msc) matrix. Then Φ has to satisfy (3.1).

We immediately get the following consequence:

Corollary 4.8. Let M ∈ RN
>0 and Φ ∈ RN

≥0 be given such that the requirements of the particular case in 

Theorem 4.7 are valid. If limj→∞
Φj

j = 0, then E[M,Φ] cannot be identified with any weight matrix class E[L]
with L being (Msc).

Proof. (i):
Choose c such that M (c,Φ) is log-convex and normalized. By applying the optimal functions θN from 

(4.4) to N ≡ M (c,Φ) we get by the equality of the classes that there exist h, x0 (w.l.o.g. greater than 1) such 
that

∀x ≥ x0 ∀j ∈ N : Mj ≤ cΦjMj ≤ hj+1L
(x)
j , (4.5)

and therefore we get

∀x ≥ x0 ∀j ∈ N : 1
h2 ≤

(
L

(x)
j

Mj

)1/j

. (4.6)

In addition we infer, again by working with optimal functions, but now for the sequences j �→ njL
(n)
j , 

that for all n ∈ N there exists cn (w.l.o.g. increasing in n) such that

∀ j ∈ N : njL
(n)
j ≤ cΦj

n Mj ,

and by taking roots we end up with

∀ j ∈ N>0 : n(L(n)
j )1/j ≤ cΦj/j

n M
1/j
j . (4.7)

Now let us assume that (3.1) is violated, i.e., that

lim inf
j→∞

Φj

j
= 0,

then we can find a sequence of integers jn such that

c
Φjn/jn
n ≤ 2.

Combining (4.6) and (4.7) we infer (for all n ∈ N with n ≥ x0)

n

h2 ≤ n

(
L

(n)
jn

Mj

)1/jn

≤ 2,

n
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which yields a contradiction as n → ∞.
(ii):
By Proposition 4.5, we infer that the spaces are isomorphic as Fréchet spaces. Thus we get that for any 

compact set K ⊂⊂ R there exist h, x0 > 0 and a compact set J ⊂⊂ R such that for all f ∈ E(M,Φ)(R) =
E(L)(R) we have

‖f‖M,Φ,K,1 ≤ 1
h
‖f‖L(x0),J,h,

which yields, by plugging in the family of functions fs(t) := eist,

exp(ωM (s)) ≤ 1
h

exp(ωL(x0)(s/h)).

Due to log-convexity we can apply (2.2) and get from this estimate (since the sequences of L are pointwise 
ordered), that for all x ≤ x0 and j ∈ N

hj+1L
(x)
j ≤ Mj

and finally, since w.l.o.g. h ≤ 1, we get that for all x ≤ x0 and j ∈ N>0

h2 ≤
(

Mj

L
(x)
j

)1/j

. (4.8)

Analogously we argue to get that for all n ∈ N there exists cn > 0 such that

cΦj+1
n Mj ≤

(
1
n

)j

L
(1/n)
j ,

and therefore (
Mj

L
(1/n)
j

)1/j

≤ 1
n

(
1
cn

)(Φj+1)/j

. (4.9)

Now again assume that (3.1) is violated, i.e., that

lim inf
j→∞

Φj

j
= 0,

then we can find a sequence of integers jn such that

(
1
cn

)(Φjn+1)/jn
≤ 2.

Combining (4.8) and (4.9) we infer

h2 ≤ 2
n
,

which again gives the desired contradiction and thus finishes the proof. �
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In particular, if we choose for the matrix L the concrete matrix MM,Φ from (4.1), then we can draw the 
same conclusion i.e., that Φ already has to be an exponent sequence. Under somewhat milder conditions, we 
can actually show even more in this case. This is due to the fact that we can prove the desired implication 
directly, however by using the same techniques ((4.4), Proposition 4.5) as in the proof of Theorem 4.7 before.

Theorem 4.9. Let M ∈ RN
>0 and Φ ∈ RN

≥0 be given and MM,Φ be the matrix defined in (4.1). Then we get:

(i) The Roumieu case. Assume that M (c,Φ) is log-convex and normalized for some c > 0 and that (as sets)

E{MM,Φ} ⊆ E{M,Φ}

is valid. Then Φ has to satisfy (3.1). In particular this implication holds for any M ∈ LC.
(ii) The Beurling case. Assume that limj→+∞(M (c,Φ)

j )1/j = +∞ for all c > 0 and such that (w.l.o.g., cf. 
Remark 4.3) each M (c,Φ) is log-convex and M (c,Φ)

0 = 1. Assume also that (as sets and thus automatically 
as Fréchet spaces)

E(M,Φ) ⊆ E(MM,Φ)

is valid. Then Φ has to satisfy (3.1).

Consequently, (3.1) has to hold when assuming (4.3) if the additional requirements on M (c,Φ) of the 
particular case hold true.

If the symmetric restriction from above is imposed on the sequence Φ, i.e., the growth of hΦj is at most 
geometric, then we recover the classical ultradifferentiable classes defined by a single weight sequence.

Proposition 4.10. Let M ∈ RN
>0 and Φ = (Φj)j ∈ RN

≥0 be given. If Φ is an exponent sequence and in addition 
also

lim sup
j→∞

Φj

j
< ∞, (4.10)

then as locally convex vector spaces E[M,Φ] = E[M ].

Finally, we can treat the converse statement.

Theorem 4.11. Let M ∈ RN
>0 and Φ ∈ RN

≥0 be given. Then we get:

(i) The Roumieu case. Assume that M (c,Φ) is log-convex and normalized for some c > 1, and let M ∈ LC
or even M be only normalized and log-convex. Assume that

E{M,Φ}(R) = E{M}(R)

is valid (as sets). Then Φ has to satisfy both (3.1) and (4.10).
(ii) The Beurling case. Assume that limj→+∞(M (c,Φ)

j )1/j = +∞ for all c > 0 and such that (w.l.o.g., cf. 
Remark 4.3) each M (c,Φ) is log-convex and M (c,Φ)

0 = 1. Assume also that (as sets/locally convex vector 
spaces)

E(M,Φ)(R) = E(M)(R)

is valid. Then Φ has to satisfy both (3.1) and (4.10).
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Proof. We follow the proof of Theorem 4.7 with M = L(x) for any x > 0. In the Roumieu case the second 
part in (4.5) implies (4.10) for Φ. Then we consider j �→ hjMj for some arbitrary but fixed h > 1 instead 
of j �→ njL

(n)
j and so (4.7) yields (3.1).

In the Beurling case note that M (1,Φ) = M and by the assumption M has all assumptions from the 
set LC except M0 ≤ M1. Then follow again the proof of Theorem 4.7: Replace M by (cΦjMj)j for some 
1 > c > 0 and L(x) = M and get with h < 1 in the first step that (4.10) holds. The argument for obtaining 
(3.1) follows similarly. �
4.3. More general (matrix) situations

For the sake of completeness let us comment on even more general situations compared with the definitions 
in Section 3. On the one hand, we can consider Φ-ultradifferentiable classes E[N ,Φ] defined in terms of a 
given weight matrix N = {N (x) : x > 0}, i.e., with an additional parameter. For U ⊆ Rd non-empty open, 
these classes are defined in the natural way by

E{N ,Φ}(U) = lim←−−
K⊂⊂U

lim−−→
x∈I

lim−−→
h>0

EN(x),Φ,h(K).

Similarly, we consider for the Beurling case

E(N ,Φ)(U) = lim←−−
K⊂⊂U

lim←−−
x∈I

lim←−−
h>0

EN(x),Φ,h(K).

Accordingly, we introduce (cf. (4.1))

MN ,Φ := {N (c,c,Φ) : c > 0}, N
(c,c,Φ)
j := cΦjN

(c)
j , j ∈ N. (4.11)

It is then straight-forward to check that Lemma 4.1 can be transferred to this setting and Theorem 4.4
takes the following form:

Theorem 4.12. Let N = {N (x) : x > 0} be given and let Φ be an exponent sequence. Let MN ,Φ be the matrix 
defined in (4.11), then as locally convex vector spaces we get

E{N ,Φ} = E{MN ,Φ}, E(N ,Φ) = E(MN ,Φ). (4.12)

In both cases we can replace the symbol (functor) E by B, D, A or by Λ.

These classes will be relevant for the study of PTT-limit classes in Section 6. Theorem 4.12 and the 
matrix introduced in (4.11) should be compared with the matrix Mσ, see (6.1); in particular, this result 
becomes relevant for the equalities in Remark 6.3.

On the other hand, take M ∈ RN
>0 and let F := {Φa : a > 0} be a family of sequences Φa ∈ RN

≥0 such 
that

∀ 0 < a ≤ b ∀ j ∈ N : Φa
j log(a) ≤ Φb

j log(b). (4.13)

We introduce the following locally convex vector spaces

E{M,F}(K) := lim−−→
a>0

lim−−→
h>0

EM,Φa,h(K),

and
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E{M,F}(U) = lim←−−
K⊂⊂U

lim−−→
a>0

lim−−→
h>0

EM,Φa,h(K) = lim←−−
K⊂⊂U

E{M,F}(K).

Similarly, we set

E(M,F)(K) := lim←−−
a>0

lim←−−
h>0

EM,Φa,h(K),

and

E(M,F)(U) = lim←−−
K⊂⊂U

lim←−−
a>0

lim←−−
h>0

EM,Φa,h(K) = lim←−−
K⊂⊂U

E(M,Φa)(K).

Finally, let us introduce the matrix

MM,F := {M (c,Φc) : c > 0}, M
(c,Φc)
j := cΦ

c
jMj , j ∈ N. (4.14)

If Φa = Φ for all a > 0, then (4.13) is trivially satisfied (recall that Φj ≥ 0) and E[M,F ] = E[M,Φ] as locally 
convex vector spaces.

Theorem 4.4 turns in the following form:

Theorem 4.13. Let M ∈ RN
>0 be given and let F := {Φa : a > 0} be a family of sequences Φa ∈ RN

≥0
satisfying (4.13). Let MM,F be the matrix defined in (4.14) and assume that this matrix satisfies (M{L})
resp. (M(L)). Then as locally convex vector spaces we get

E{M,F} = E{MM,F}, E(M,F) = E(MM,F ). (4.15)

Again, in both cases we can replace the symbol (functor) E by B, D, A or by Λ.

Proof. Analogous to Theorem 4.4. �
Let us characterize now the crucial conditions (M{L}) resp. (M(L)) in terms of a growth condition on 

F . The next result generalizes Lemma 4.1 to the matrix MM,F defined in (4.14).

Proposition 4.14. Let MM,F be given and assume that F = {Φa : a > 0} satisfies (4.13).

(a) The following are equivalent (Roumieu case):
(i) MM,F := {M (c,Φc) : c > 0} satisfies (M{L}).

(ii) The family F satisfies

∃ ε > 0 ∀ c > 0 ∃ d > c : lim inf
j→∞

Φd
j

j
log(d) −

Φc
j

j
log(c) ≥ ε. (4.16)

(b) The following are equivalent (Beurling case):
(i) MM,F := {M (c,Φc) : c > 0} satisfies (M(L)).

(ii) The family F satisfies

∃ ε > 0 ∀ c > 0 ∃ d < c : lim inf
Φc

j log(c) −
Φd

j log(d) ≥ ε. (4.17)

j→∞ j j
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Proof. (a)(i) ⇒ (ii) By assumption we have (recall M (c,Φc)
j := cΦ

c
jMj):

∀ h > 0 ∀ c > 0 ∃ d > 0 ∃ D ≥ 1 ∀ j ∈ N : hjcΦ
c
jMj ≤ DdΦd

jMj .

Fix now h > 1 and by (4.13) we can assume that d ≥ c. Hence

∀ c > 0 ∃ d > c ∃ D ≥ 1 ∀ j ∈ N>0 : log(h) − log(D)
j

≤
Φd

j

j
log(d) −

Φc
j

j
log(c),

and so (4.16) is verified with (e.g.) ε := log(h)/2.
(a)(ii) ⇒ (i) (4.16) implies

∃ ε > 0 ∀ c > 0 ∃ d > c ∃ jc ∈ N ∀ j ≥ jc :
Φd

j

j
log(d) −

Φc
j

j
log(c) ≥ ε

2 ⇔ eεj/2cΦ
c
jMj ≤ dΦd

jMj .

Then let h > 1 be given (large) and iterate the previous estimate n-times, with n ∈ N>0 chosen minimal 
such that enε/2 ≥ h. This then yields choices d = cn+1 > cn > · · · > c1 = c (since by assumption the value 
of ε is not depending on the choice for ci) such that

hjcΦ
c
jMj ≤ enεj/2cΦ

c
jMj ≤ dΦd

jMj

for all j ≥ max{jci : 1 ≤ i ≤ n}. Finally, when choosing D ≥ 1 sufficiently large, we ensure

hjcΦ
c
jMj ≤ DdΦd

jMj

for all j ∈ N and D is only depending on the number of iterations n, i.e., on given h, and on the given index 
c. Thus (M{L}) is verified.

The equivalence for the Beurling case is analogous. �
Remark 4.15. We comment on some special cases:

(a) The constant case: If Φa = Φ for all a > 0 and if Φ is an exponent sequence, i.e., (3.1) is valid, then 
both (4.16) and (4.17) hold true: For given c > 0 e.g. we choose d = 2c in (4.16) resp. d = c/2 in (4.17)
and get both requirements with ε := log(2) lim infj→∞

Φj

j .
(b) Assume that for all c, d > 0 with c ≤ d we have that Φc ≤ Φd, which implies (4.13).

(∗) Assume that there exists some c0 > 0 such that Φc0 satisfies (3.1) with value ε0 > 0. So each Φd, 
d ≥ c0, satisfies (3.1) with lim infj→∞

Φd
j

j ≥ ε0. Then, arguing as in the constant case before, we get 
(4.16) with ε := log(2)ε0 for all choices c ≥ c0. Note that in the Roumieu case we can omit all c < c0
without changing the corresponding function class.

(∗) If for all c > 0 we have that Φc satisfies (3.1) uniformly in c, i.e.,

∃ ε1 > 0 ∀ c > 0 : lim inf
j→∞

Φc
j

j
≥ ε1,

then (4.17) holds true with ε := log(2)ε1.
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5. PTT-classes as spaces defined by weight matrices

Let the parameters τ > 0 and σ > 1 be given but from now on fixed and consider (with the convention 
00 := 1)

Mj = Mτ,σ
j := jτj

σ

, Φj = jσ for all j ∈ N. (5.1)

For these particular choices of M and Φ we write M (c,τ,σ) for M (c,Φ). Thus the sequences and the matrix 
introduced in (4.1) have the form

M
(c,τ,σ)
j := M

(c,Φ)
j = cj

σ

jτj
σ

, c > 0, j ∈ N, Mτ,σ := MM,Φ = {M (c,τ,σ) : c > 0}. (5.2)

5.1. Properties of the matrix Mτ,σ

Note that, in particular, Theorem 4.4 applies to this special situation. We thus have as a corollary, 
in accordance with the notation in the works of S. Pilipović, N. Teofanov, and F. Tomić, the following 
statement.

Proposition 5.1. Let U ⊆ Rd be open, τ > 0, and σ > 1. Then (as locally convex vector spaces)

E{τ,σ}(U) = E{Mτ,σ}(U), E(τ,σ)(U) = E(Mτ,σ)(U). (5.3)

Therefore, we may apply certain results available in the weight matrix setting to PTT-classes. First we 
need to study the properties of the defining weight matrix Mτ,σ.

Theorem 5.2. Let τ > 0, and σ > 1 be fixed. Then we have:

(i) Mτ,σ satisfies (M(Cω)); in fact we even have 
(
M

(c,τ,σ)
j /j!α

)1/j
→ +∞ as j → +∞ for any α > 0

and any c > 0. Consequently, Mτ,σ also satisfies (MH) and (M{Cω}).
(ii) There exists a matrix M̃τ,σ which is equivalent to Mτ,σ and such that M̃τ,σ consists only of sequences 

that are strongly log-convex (and normalized).
(iii) Mτ,σ has both (M{dc}) and (M(dc)).
(iv) Mτ,σ has both (M{rai}) and (M(rai)); in fact in both conditions we can choose the same index α = β.
(v) Mτ,σ has both (M{FdB}) and (M(FdB)).

(vi) For each c > 0 the sequence M (c,τ,σ) is strongly non-quasianalytic, in fact we even have that 
γ(M (c,τ,σ)) = +∞. For the precise definition, properties and meanings of the growth index γ(M)
introduced in [34, Sect. 1.3] we refer to [7, Sect. 3].

(vii) Mτ,σ neither has (M{mg}) nor (M(mg)).
(viii) The sequences M (c,τ,σ) are pairwise non-equivalent. More precisely, we have M (c1,τ,σ) � M (c2,τ,σ) for 

all 0 < c1 < c2.

Proof. (i) For all j ≥ 1 we see that

(
m

(c,τ,σ)
j

)1/j
=

(
M

(c,τ,σ)
j

j!

)1/j

≥
(
M

(c,τ,σ)
j

jj

)1/j

=
(
cj

σ

jτj
σ−j

)1/j
= cj

σ−1
jτj

σ−1−1,
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and so 
(
m

(c,τ,σ)
j

)1/j
→ +∞ as j → ∞ for all c > 0. This also implies μ(c,τ,σ)

j /j → +∞ for all c > 0; 
see (2.1). More generally, for any α > 0 and any c > 0 it is immediate by the same estimate above that (
M

(c,τ,σ)
j /j!α

)1/j
→ +∞.

(ii) Obviously, by the convention 00 := 1, we get 1 = M
(c,τ,σ)
0 and c = M

(c,τ,σ)
1 for all c > 0. Thus for 

each c ≥ 1 the sequence M (c,τ,σ) is log-convex because M is log-convex and j �→ jσ is convex. Actually 
M (c,τ,σ) ∈ LC for each c ≥ 1.

Let us verify that the quotients of each sequence m(c,τ,σ) are non-decreasing from some index jc on. This 
then implies the statement, since each M (c,τ,σ) can then be replaced by an equivalent sequence M̃ (c,τ,σ)

which is even strongly log-convex and normalized:
By (i) we have μ(c,τ,σ)

j /j → +∞ and so μ(c,τ,σ)
j /j ≥ 1 for all j ≥ j′c. Then take j′′c := max{jc, j′c} and set

μ̃
(c,τ,σ)
j

j
:= 1, 1 ≤ j < j′′c ,

μ̃
(c,τ,σ)
j

j
:=

μ
(c,τ,σ)
j

j
, j ≥ j′′c .

Since c �→ j′′c is non-decreasing (by the order of μ(c,τ,σ)) we have that m̃(c,τ,σ) are ordered (even w.r.t. their 
quotient sequences). Moreover, M (c,τ,σ) ≈ M̃ (c,τ,σ) for each c > 0 (even on the level of the corresponding 
quotient sequences).

So let us show that the quotients of m(c,τ,σ) are eventually non-decreasing for any fixed c > 0:

j �→ m
(c,τ,σ)
j

m
(c,τ,σ)
j−1

is non-decreasing if and only if j �→ log
(

m
(c,τ,σ)
j

m
(c,τ,σ)
j−1

)
is so. For all j ≥ 1 we get

m
(c,τ,σ)
j

m
(c,τ,σ)
j−1

= μ
(c,τ,σ)
j

1
j

= cj
σ−(j−1)σ jτj

σ

(j − 1)τ(j−1)σ
1
j
,

and we set now f(t) := log(c)(tσ − (t − 1)σ) + τtσ log(t) − τ(t − 1)σ log(t − 1) − log(t), t > 1. Then for all 
t > 1:

f ′(t) = σ log(c)(tσ−1 − (t− 1)σ−1) + στtσ−1 log(t) + τtσ
1
t

− τσ(t− 1)σ−1 log(t− 1) − τ(t− 1)σ 1
t− 1 − 1

t

= (σ log(c) + τ)(tσ−1 − (t− 1)σ−1) + τσ(tσ−1 log(t) − (t− 1)σ−1 log(t− 1)) − 1
t
≥ 0

⇔ (σ log(c) + τ)t(tσ−1 − (t− 1)σ−1) + τσt(tσ−1 log(t) − (t− 1)σ−1 log(t− 1)) ≥ 1.

We now continue to show

(σ log(c) + τ)t(tσ−1 − (t− 1)σ−1) + τσt log(t− 1)(tσ−1 − (t− 1)σ−1) → ∞ as t → ∞, (5.4)

which obviously implies the above statement.
Observe that tσ−1 − (t − 1)σ−1 = (σ − 1)ξσ−2 for some ξ ∈ (t − 1, t). Therefore, for t > 2 and σ > 2, we 

have

(σ − 1)tσ−2 ≥ tσ−1 − (t− 1)σ−1 ≥ (σ − 1)(t− 1)σ−2,

whereas in the case 1 < σ ≤ 2, we have

(σ − 1)(t− 1)σ−2 ≥ tσ−1 − (t− 1)σ−1 ≥ (σ − 1)tσ−2.
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Plugging in the appropriate term into (5.4) finishes the proof.
(iii) We claim that for some choices c, c1 > 0 and some A ≥ 1 (large) we get for all j ∈ N>0:

M
(c,τ,σ)
j+1 ≤ AM

(c1,τ,σ)
j ⇔ c(j+1)σ (j + 1)τ(j+1)σ ≤ Acj

σ

1 jτj
σ

⇔ (j + 1)σ log(c) + τ(j + 1)σ log(j + 1) ≤ log(A) + jσ log(c1) + τjσ log(j)

⇔ τ
(j + 1)σ log(j + 1) − jσ log(j)

(j + 1) − j︸ ︷︷ ︸
=:Δj

≤ log(A) + jσ log(c1) − (j + 1)σ log(c).

Note that the very first estimate is clear for j = 0 by the convention 00 := 1 and when taking A ≥ cσ. 
Set f(t) := tσ log(t), t ≥ 1, and then f ′(t) = σtσ−1 log(t) + tσ−1 = tσ−1(σ log(t) + 1) is strictly increasing 
(and tending to infinity as t → +∞). Thus we have Δj ≤ f ′(j + 1) = (j + 1)σ−1(σ log(j + 1) + 1) ≤
2σ(j + 1)σ−1 log(j + 1). On the other hand, when given c ≥ 1 we choose c1 := (2c)2σ (> c), and then for all 
j ≥ 1:

jσ log(c1) − (j + 1)σ log(c) = (2j)σ log(2c) − (j + 1)σ log(c)

≥ (j + 1)σ log(2c) − (j + 1)σ log(c) = (j + 1)σ log(2).

Thus, in the Roumieu case we are able to conclude when choosing A ≥ 1 sufficiently large.
When given c1 < 1, then we choose c := c1

2 and get for all j ≥ 1:

jσ log(c1) − (j + 1)σ log(c) = jσ log(c1) − (j + 1)σ log(c1) + (j + 1)σ log(2)

≥ (j + 1)σ log(2),

since log(c1) < 0. This proves the Beurling case.

(iv) First, by Stirling’s formula we get for all c > 0 and j ≥ 1:

cj
σ−1

jτj
σ−1−1 = cj

σ−1
jτj

σ−1

j
=

(M (c,τ,σ)
j )1/j

j

≤ (m(c,τ,σ)
j )1/j ≤ e

j
(M (c,τ,σ)

j )1/j = ecj
σ−1

jτj
σ−1−1.

Thus (M{rai}) follows because we have for all 1 ≤ c ≤ c1, A ≥ e and 1 ≤ j ≤ k:

ecj
σ−1

jτj
σ−1−1 ≤ Ack

σ−1

1 kτk
σ−1−1.

Concerning (M(rai)), let 0 < c1 ≤ c < 1, A ≥ 1 and 1 ≤ j ≤ k, then

ecj
σ−1

1 jτj
σ−1−1 ≤ Ack

σ−1
kτk

σ−1−1

⇔ jσ−1 log(c1) − kσ−1 log(c) ≤ log(A/e) +
(
τkσ−1 − 1

)
log(k) −

(
τjσ−1 − 1

)
log(j).

So the desired estimate follows by choosing c1 = c and A large enough.
Recall that each strongly log-convex sequence satisfying m0 = M0 = 1 has the property that j �→ (mj)1/j

is nondecreasing, compare this with (ii).
(v) This follows by (i), (iii) and (iv); see [24, Lemma 1 (1)].
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(vi) By repeating the arguments given in (ii) we see that for each α > 0 (and any c > 0) the mapping 

j �→ μ
(c,τ,σ)
j

1
jα is eventually non-decreasing and by (i) one has 

(
M

(c,τ,σ)
j

j!α

)1/j

→ +∞ for any α > 0.

Thus γ(M (c,τ,σ)) = +∞ follows for all c > 0 (however this implication is in general strict; see [10, Prop. 
4.4 (i) ⇒ (ii)]) and so [7, Thm. 3.11] yields the assertion.

(vii) We test conditions (M{mg}) and (M(mg)) for j = k ≥ 1. So let A ≥ 1 and c, c1 > 0 be given, then:

(M (c,τ,σ)
2j )1/(2j) ≤ A(M (c1,τ,σ)

j )1/j ⇔ c(2j)
σ−1

(2j)τ(2j)σ−1 ≤ Acj
σ−1

1 jτj
σ−1

⇔ 2σ−1jσ−1 log(c) + τ2σ−1jσ−1 log(2j) ≤ log(A) + jσ−1 log(c1) + τjσ−1 log(j)

⇔ 2σ−1 (log(c) + τ log(2)) − log(c1) ≤
log(A)
jσ−1 + log(j)τ

(
1 − 2σ−1) .

As j → ∞ the first summand on the right-hand side tends to 0, whereas the second one tends to −∞ and 
so does the right-hand side. This leads to a contradiction for any choice c, c1 > 0.

(viii) For every 0 < c1 < c2, we have that

lim
j→∞

(
M

(c2,τ,σ)
j

M
(c1,τ,σ)
j

)1/j

= lim
j→∞

(
c2
c1

)jσ−1

= ∞. �

5.2. Results for PTT-classes

By Theorem 4.4 we know that E[τ,σ](U) can be identified with the matrix class E[Mτ,σ](U). From (i) and 
(iii) in Theorem 5.2 it follows immediately that E[Mτ,σ ](U) contains the real analytic functions and the 
restrictions of entire functions and it is closed with respect to taking derivatives.

By employing results from various works, let us now give a (non-exhaustive) list of results that hold for 
those matrix classes due to the regularity properties listed in Theorem 5.2.

(a) Stability properties ([24]): E[Mτ,σ ] is...
– stable under composition,
– stable under solving ODEs,
– stable under inversion,
– inverse-closed.
This follows since by (i), (iii) and (iv) the classes E[Mτ,σ] satisfy all necessary properties such that 
Theorems 5 and 6 from [24] are applicable.

(b) Almost analytic extensions ([6]): E[Mτ,σ ]-regularity of a function can be characterized by almost analytic 
extension. This means that a function f is in E[Mτ,σ ](U) if and only if, for any quasiconvex domain V
relatively compact in U , f |V can be extended to a function F on Cd such that ∂F tends to 0 sufficiently 
fast near V (measured in terms of Mτ,σ).
This follows since by (i), (ii) and (iii) we have that M̃τ,σ is a regular weight matrix in the sense of [6, 
Def. 2.6].

(c) Image of the Borel map ([18], [32], [31], [16], [17]): We have the following description of the image of 
the Borel map:

j∞0 (E[Mτ,σ ]) = Λ[Mτ,σ ].

By (vi) we have that each M (c,τ,σ) has (γ1) and the rest follows from the results of aforementioned 
papers.
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(d) PTT-classes are not “classical ultradifferentiable spaces” ([23], [29]): By (vii) and (viii), neither 
E{Mτ,σ}(U) nor E(Mτ,σ)(U) coincides (as vector spaces) with E{M}(U), E{ω}(U), or, respectively, with 
E(M)(U), E(ω)(U) for any weight sequence M or any weight function ω; see [23, Prop. 4.6] and [29, Cor. 
3.17].

(e) Nuclearity ([29]): By (iii) the classes E{Mτ,σ}(U) and E(Mτ,σ)(U) are nuclear; see [29, Prop. 7.2].
(f) Almost harmonic extensions ([5]): E[Mτ,σ ]-regularity of a function can be characterized by almost har-

monic extension. A little simplified, this means that a pair of functions φ0, φ1 is of E[Mτ,σ]-regularity 
(on a subset of Rd), if and only if (locally) there exists a function Φ (on a subset of Rd+1) such that 
the restriction of Φ to Rd coincides with φ0, and the restriction of ∂yΦ to Rd coincides with φ1, and 
ΔΦ tends to 0 sufficiently fast near Rd (measured in terms of Mτ,σ).
This is due to the fact that Theorems [5, Thm. 3.1, Thm. 3.2, Thm. 4.6] can be applied to the classes 
E[Mτ,σ ]: For this note that [M.1]∗w holds true by (ii) in Theorem 5.2 (each strongly log-convex sequence 
even satisfies (M.1)∗), [M.2]′ by (iii) and (NA) is precisely (M(Cω)) which is valid by (i). Finally, also 
in [5] a matrix M is called non-quasianalytic if each M ∈ M is non-quasianalytic and this is valid, in 
particular, by (vi).

6. PTT-limit classes as spaces defined by weight matrices

In [19], for fixed σ ≥ 1, the authors also consider limits with respect to the parameter τ , i.e., the spaces 
E∞,σ and E0,σ, presented in Subsection 2.7, which are endowed with the natural inductive resp. projective 
limit topology.

The main reason to consider these classes is represented by the fact, that they are stable with respect 
to so-called ultradifferential operators. Observe here that a function f lies in E∞,σ(U) if and only if there 
exists a uniform τ such that f ∈ E{τ,σ}(K) for all K ⊂⊂ U and thus the limit classes E∞,σ(U) do not quite 
fit in the realm of Roumieu-type classes defined via weight matrices since quantifiers are exchanged. In the 
latter case it is allowed that τ is also depending on K; see (2.3).

In order to comment on this subtle difference, first for σ ≥ 1 let us from now on consider the matrix 
(using the notation from (5.2))

Mσ := {M (τ,τ,σ) : τ > 0}, M
(τ,τ,σ)
j := τ j

σ

jτj
σ

. (6.1)

We get the following connection with the respective matrix class defined in terms of Mσ.

Theorem 6.1. Let U, V ⊆ Rd be open, and V ⊂⊂ U . Then as locally convex vector spaces we get

E∞,σ(U) ↪→ E{Mσ}(U) ↪→ E∞,σ(V ), E0,σ(U) = E(Mσ)(U). (6.2)

Proof. The Roumieu case. The first inclusion is clear from the definition of the respective spaces. For the 
second one, observe that any f ∈ E{Mσ}(U) lies in E{M(τ,τ,σ)}(V ) for some τ , i.e., there exists h ≥ 1 and 
A > 0 such that for all x ∈ V and α ∈ Nd we have

|f (α)(x)| ≤ Ah|α|M
(τ,τ,σ)
|α| ,

and for any τ ′ > τ , we find B > 0 such that for all j we have

hjM
(τ,τ,σ)
j ≤ BM

(τ ′,τ ′,σ)
j ,

which finishes the Roumieu case.
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The Beurling case. Since there is a universal quantifier for the compact set, the index τ , and the geometric 
factor h, we do not have to worry about interchanging those. The rest follows from Proposition 5.1. �
Proposition 6.2. Let σ ≥ 1 and N = {N (x) : x > 0} be a (Msc) and non-quasianalytic weight matrix. 
Suppose that we have

E∞,σ(U) ⊆ E{N}(U).

Then it follows that

E∞,σ(U) � E{N}(U).

Proof. Similarly as in (viii) in Theorem 5.2 we get

∀ τ1 > τ > 0 : M (τ,τ,σ) � M (τ1,τ1,σ).

The inclusion E∞,σ(U) ⊆ E{N}(U) and the optimal function θM(τ1,τ1,σ) (see (4.4)) implies the following:

∀ τ > 0 ∃ x > 0 : M (τ,τ,σ) � N (x). (6.3)

Therefore, note that θM(τ1,τ1,σ) ∈ E∞,σ(U) for any τ1 > 0 since the estimate |θM(τ1,τ1,σ)(t)| ≤ 2j+1τ j
σ

1 jτ1j
σ

holds globally on whole R; see again [35, Thm. 1], [23, Lemma 2.9] and the detailed proof in [26, Prop. 
3.1.2].

Let Kj be a sequence of mutually disjoint compact sets with non-empty interior contained in U such 
that they accumulate at the boundary of U , i.e., for any compact set K ⊂⊂ U there exists j such that 
Kj ∩K = ∅. Let Sj be also a sequence of compact sets such that Sj ⊆ K◦

j . Finally, let xj ∈ Sj . Then by 
[22, Cor. 3.12] there exists φj ∈ D{N(j)}(K◦

j ) such that φj ≡ 1 on Sj . Let θj ∈ E{N(j)}(R) be such that 
|θ(k)

j ((xj)1)| ≥ N
(j)
k (where (xj)1 is the first component of xj), and set Θj(x1, . . . , xd) := θj(x1). Finally, set

hj := Θjφj , h :=
∑
j

hj .

Then clearly hj ∈ D{N(j)}(K◦
j ), and thus h ∈ E{N}(U). But h /∈ E{τ,σ} for any τ (and therefore not in 

E∞,σ(U)). To see this, take for given M (τ,τ,σ) some j big enough to get (6.3). By taking K = Kj , one 
immediately gets h /∈ E{τ,σ}(U). �
Remark 6.3. After a private communication, in the very recent paper [33] the authors already have taken 
into account this fact and included the definition of the limit classes

ER
∞,σ(U) :=

⋂
K⊂⊂U

⋃
τ>0

E{τ,σ}(K) =
⋂

K⊂⊂U

⋃
τ>0

E{Mτ,σ}(K) = E{Mσ}(U),

see [33, (2.12)]. Note that this difference might be considered negligible in the light of Theorem 6.1 and for 
the Beurling-type both notions coincide; i.e.

E0,σ(U) = E(Mσ)(U).

When considering the notion of germs of E∞,σ-functions then also no difference occurs. For these equalities 
recall Theorem 4.12.
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6.1. Properties of the matrix Mσ

From now on we focus on E[Mσ](U) and gather several important growth and regularity properties for 
the crucial weight matrix Mσ from (6.1).

Theorem 6.4. Let σ > 1, then the matrix Mσ has the following properties:

(i) Mσ satisfies (M(Cω)) and, more generally, even 
(

M
(τ,τ,σ)
j

j!α

)1/j

→ +∞ for any α > 0 and any τ > 0.

(ii) Mσ is equivalent to a matrix M̃σ all of whose sequences are strongly log-convex.
(iii) Mσ satisfies both (M{mg}) and (M(mg)).
(iv) Mσ has both (M{rai}) and (M(rai)); in fact we have that in both conditions we can choose the same 

index.
(v) Mσ has both (M{FdB}) and (M(FdB)).

(vi) Mσ has both (M{L}) and (M(L)).
(vii) The sequences M (c,c,σ) are pair-wise not equivalent and Mσ has both (M{BR}) and (M(BR)) in [23, 

Sect. 4.1].
(viii) Each M (τ,τ,σ) is strongly non-quasianalytic; in fact we even have that γ(M (τ,τ,σ)) = +∞ for all 

τ > 0.

Proof. In order to shorten the notation, we write in this proof M (c) := M (c,c,σ).
(i) This follows just as in the proof of Theorem 5.2.
(ii) By the convention 00 := 1 we get 1 = M

(c)
0 and c = M

(c)
1 for all c > 0. For each c ≥ 1 the sequence 

M (c) is log-convex because j �→ log(jcjσ) = cjσ log(j) is convex; more precisely one has M (c) ∈ LC for all 
c ≥ 1.

By replacing τ by c, we can repeat the arguments given in the proof of (ii) in Theorem 5.2. Since also 
the order is preserved we have that M̃σ is standard log-convex.

(iii) First, we test conditions (M{mg}) and (M(mg)) on the diagonal, i.e., for j = k ≥ 1. So let A ≥ 1
and c, c1 > 0 be given, then:

(M (c)
2j )1/(2j) ≤ A(M (c1)

j )1/j ⇔ c(2j)
σ−1

(2j)c(2j)
σ−1 ≤ Acj

σ−1

1 jc1j
σ−1

⇔ (2j)σ−1 log(c) + c(2j)σ−1 log(2j) ≤ log(A) + jσ−1 log(c1) + c1j
σ−1 log(j).

We also have

c(2j)σ−1 log(2j) ≤ jσ−1c1 log(j) ⇔ 2σ−1 log(2j) ≤ c1
c

log(j)

⇔ 2σ−1 log(2) ≤ log(j)(c1
c
− 2σ−1).

In the Roumieu case, w.l.o.g. we take c large enough to guarantee c2
σ−1−1 ≥ 1 + 2σ−1. Thus, when given 

such an index c we choose c1 := c2
σ−1

> c. Then, on the one hand clearly (2j)σ−1 log(c) = jσ−1 log(c1) and, 
on the other hand c1c −2σ−1 ≥ 1 ⇔ c1 ≥ (1 +2σ−1)c because c1 = c2

σ−1 ≥ (1 +2σ−1)c ⇔ c2
σ−1−1 ≥ 1 +2σ−1. 

Thus we are done when choosing A sufficiently large and note that c1 → ∞ as c → ∞.
In the Beurling case, w.l.o.g. we take given c1 < 1 small enough to ensure c1 < 1

1+2σ−1 and then we 
set c := c21 < c1. Then, on the one hand, c1 ≥ c(1 + 2σ−1) is immediate and, second, we have (note that 
log(c1) < 0)

(2j)σ−1 log(c) ≤ jσ−1 log(c1) ⇔ 2(2j)σ−1 log(c1) ≤ jσ−1 log(c1) ⇔ 2(2j)σ−1 ≥ jσ−1,
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which holds for all j ∈ N.
So far we have verified the desired properties on the diagonal (i.e., j = k). However, by the equivalence 

stated in (ii) before also M̃σ has both (M{mg}) and (M(mg)) verified on the diagonal. Thus [27, Thm. 
9.5.1, Thm. 9.5.3] applied to M̃σ yields the conclusion and by the equivalence we are done with Mσ, too.

(iv) (M{rai}) follows by repeating the estimates from (iv) in Theorem 5.2. Note that we have for all 
1 ≤ c ≤ c1, A ≥ e and 1 ≤ j ≤ k

ecj
σ−1

jcj
σ−1−1 ≤ Ack

σ−1

1 kc1k
σ−1−1.

Let 0 < c1 ≤ c < 1, A ≥ 1 and 1 ≤ j ≤ k, then

ecj
σ−1

1 jc1j
σ−1−1 ≤ Ack

σ−1
kck

σ−1−1

⇔ jσ−1 log(c1) − kσ−1 log(c) ≤ log(A/e) +
(
ckσ−1 − 1

)
log(k) −

(
c1j

σ−1 − 1
)
log(j).

We take c1 = c and repeat the computation from (iv) in Theorem 5.2 when τ is replaced by c. This should 
be compared with (ii) and recall that each strongly log-convex sequence satisfying m0 = M0 = 1 has the 
property that j �→ (mj)1/j is nondecreasing.

(v) This follows by (i), (iii) and (iv); see [24, Lemma 1 (1)].

(vi) For all h ≥ 1 (large) and all 0 < c < c1 we can find some constant A ≥ 1 (large) such that for all 
j ∈ N>0:

hjM
(c)
j = hjcj

σ

jcj
σ ≤ Acj

σ

1 jc1j
σ

= AM
(c1)
j ⇔ h ≤ A1/j

(c1
c

)jσ

jj
σ(c1−c).

(vii) The same estimate as given in (vi) also yields the following property for Mσ:

∀ 0 < c < c1 : M (c) � M (c1),

hence both desired properties.

(viii) Follows analogously as in (vi) in Theorem 5.2. �
6.2. PTT-limit classes as Braun-Meise-Taylor classes

Let σ > 1 be given. Then, on the one hand E[Mσ] cannot be described by a single weight sequence which 
follows by (vii) in Theorem 6.4. On the other hand, the aim of this section is to show that it actually can be 
understood as a Braun-Meise-Taylor class. This question has very recently been studied and solved in [33]
(for the modified defined limit classes mentioned in Remark 6.3). There the authors give precise asymptotics 
of ω in terms of the so-called Lambert function W ; cf. [33, Prop. 3.1]. However, we give an independent 
proof of their main result by involving only weight matrix techniques.

Let us emphasize that for σ = 1 this statement is not true: By (6.1) the matrix M1 := {M (τ,τ,1) : τ > 0}
consists of sequences M (τ,τ,1)

j = τ jjτj and hence M1 is equivalent to the Gevrey matrix G0 = {(j!τ )j∈N :
τ > 0}. From (the first paragraph in the proof of) [23, Thm. 5.22] it follows that the corresponding weight 
matrix class cannot be described by a space given by a log-convex M (in particular M ∈ LC) or by a weight 
function ω.

We prove now an abstract result on the connection between weight sequences and their associated weight 
functions which is important in the ultradifferentiable setting on its own.

Lemma 6.5. Let M, N ∈ LC. Then the following are equivalent:
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(i) M and N are related by

∃ c ∈ N>0 ∃ A ≥ 1 ∀ j ∈ N : Nj ≤ A(Mcj)1/c. (6.4)

(ii) The associated weight functions are related by

ωM (t) = O(ωN (t)), t → +∞.

Moreover, the following are equivalent:

(i)′ M and N are related by

∀ c ∈ N>0 ∃ A ≥ 1 ∀ j ∈ N : (Ncj)1/c ≤ AMj . (6.5)

(ii)′ The associated weight functions are related by

ωM (t) = o(ωN (t)), t → +∞.

Proof. (ii) ⇒ (i) We have ωM (t) ≤ cωN (t) + c for some c ≥ 1 (large) and all t ≥ 0. W.l.o.g. take c ∈ N>0
and then (2.2) yields for all j ∈ N:

Mcj = sup
t≥0

tcj

exp(ωM (t)) ≥ 1
ec

sup
t≥0

tcj

exp(cωN (t)) = 1
ec

(
sup
t≥0

tj

exp(ωN (t))

)c

= 1
ec
N c

j .

Thus (6.4) is shown with A = e.

(i) ⇒ (ii) For given M ∈ RN
>0 and c ∈ N>0 we set

M̃ c
j := (Mcj)1/c,

hence M̃1 ≡ M is clear. If M is log-convex, then each M̃ c as well and M̃ c
0 = 1 if M0 = 1. If M ∈ LC, then 

M̃ c ∈ LC (for some/any c ∈ N>0). Thus by definition and assumption we get

∃ A ≥ 1 ∀ t ≥ 0 : ω
M̃c(t) ≤ ωN (t) + log(A). (6.6)

We obtain for all j ∈ N and c ∈ N>0

M̃ c
j := (Mcj)1/c =

(
sup
t≥0

tcj

exp(ωM (t))

)1/c

.

Moreover, since M ∈ LC we get ωM (t) = 0 for t ∈ [0, 1] (i.e., normalization) and so:

M̃ c
j = sup

t≥0

tj

exp(c−1ωM (t)) = sup
t≥1

tj

exp(c−1ωM (t)) = exp(sup
t≥1

j log(t) − c−1ωM (t))

= exp(sup
s≥0

js− c−1ωM (es)) =: exp(ϕ∗
c−1ωM

(j)).

Thus we may apply [8, Lemma 2.5] to ω ≡ c−1ωM and get

c−1ωM ∼ ω˜c .
M
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More precisely, by setting the weight matrix parameter x = 1, we see

∃ D > 0 ∀ t ≥ 0 : ω
M̃c(t) ≤ c−1ωM (t) ≤ 2ω

M̃c(t) + D. (6.7)

Combining (6.7) with (6.6) immediately yields

1
2cωM (t) − D

2 ≤ ω
M̃c(t) ≤ ωN (t) + log(A) =⇒ ωM (t) ≤ 2cωN (t) + Dc + 2c log(A).

Thus ωM (t) = O(ωN (t)) as t → +∞ is verified.

(ii)′ ⇒ (i)′ For all c ∈ N>0 we can find D ≥ 1 such that ωM (t) ≤ 1
cωN (t) + D for all t ≥ 0 and so, 

analogously as before, we obtain (6.5) with A := eD.

(i)′ ⇒ (ii)′ Using the notation from above, (6.6) transfers into

∀ c ∈ N>0 ∃ A ≥ 1 ∀ t ≥ 0 : ωM (t) ≤ ω
Ñc(t) + log(A). (6.8)

Then we follow the arguments in (i) ⇒ (ii) and combine (6.8) with the first half from (6.7) applied to N in 
order to get

∀ c ∈ N>0 ∃ A ≥ 1 ∀ t ≥ 0 : ωM (t) ≤ c−1ωN (t) + log(A).

Thus ωM (t) = o(ωN (t)) is verified. �
The importance of Lemma 6.5 is that it enables the possibility to express all requirements in [29, Cor. 

3.17 (ii)] purely in terms of the given matrix N directly:

Corollary 6.6. Let M be (Msc). Then as locally convex vector spaces

E[M] = E[ω],

with ω being a weight function in the sense of Braun-Meise-Taylor (see [3], [29]) if and only if there exists 
a (Msc) matrix N = {N (α) : α > 0} which is R- resp. B-equivalent to M and such that

(∗) N has (M[L]),
(∗) N has (M[mg]),
(∗) N has (cf. (6.4))

∀ α, β > 0 ∃ c ∈ N>0 ∃ A ≥ 1 ∀ j ∈ N : N
(α)
j ≤ A(N (β)

cj )1/c. (6.9)

Remark 6.7. Any ωN(α) (for N (α) ∈ N ) is a valid choice for ω in Corollary 6.6.
Note that (6.9) is clearly preserved under R- and B-equivalence of weight matrices.

In particular we can apply this statement to PTT-limit classes and get the following.

Theorem 6.8. Let σ > 1 and put ω(σ) := ωM(1,1,σ) ; i.e. the associated weight function of M (1,1,σ) = (jjσ )j∈N . 
Then as locally convex vector spaces we get

E[Mσ ] = E[ω(σ)]. (6.10)

Moreover, all associated weight functions of the matrix Mσ are equivalent, i.e.,
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∀ h, h′, τ, τ ′ > 0 : ωM(h,τ,σ) ∼ ωM(h′,τ′,σ) ,

and consequently in (6.10) we can replace ω(σ) by any ωM(h,τ,σ) .

Proof. We only have to verify (6.9) in Corollary 6.6 for the matrix Mσ (the first two conditions are contained 
in Theorem 6.4). But this is clear for our concrete matrix Mσ since (6.9) holds for β ≥ α taking c = A = 1
and for β < α we have that

j �→ jσ
(
log(α) − cσ−1 log(β) + (α− βcσ−1) log(j) − (βcσ−1) log(c)

)
is bounded from above for c large enough. �
Remark 6.9. The previous result fails for σ = 1: The Gevrey matrix G0(= M1) clearly satisfies (M[L]) and 
(M[mg]) but (6.9) is violated when taking e.g. α = 2β.

6.3. Results for PTT-limit classes

As seen in the previous section the PTT-limit classes can be represented by certain Braun-Meise-Taylor 
classes (defined by the weight function ω(σ) := ωM(1,1,σ)). Let us now give additional properties available 
for PTT-limit classes that follow from this representation (and the properties listed in Theorem 6.4).

(a) Stability properties ([24]): E[Mσ] is...
– stable under composition,
– stable under solving ODEs,
– stable under inversion,
– inverse-closed.
This follows since by (i), (iii) and (iv) in Theorem 6.4 the classes E[Mσ] satisfy all necessary properties 
such that Theorems 5 and 6 from [24] are applicable.

(b) Almost analytic extensions ([6]): E[Mσ]-regularity of a function can be characterized by almost analytic 
extension. This means mutatis mutandis the same as already outlined in Section 5.2.
In addition both [6, (7.1), (7.2)] hold true; (7.1) is precisely (M{mg}) and (7.2) is (M{FdB}). In particular 
one can deduce (among other things) an ultradifferentiable elliptic regularity theorem.

(c) The image of the Borel map ([18], [32], [31], [16], [17]): We have the following description of the image 
of the Borel map:

j∞0 (E[Mσ]) = Λ[Mσ].

By (viii) we have that each M (τ,τ,σ) has (γ1) and the rest follows from the results of the aforementioned 
papers.

(d) Cartesian closedness ([28]): For E1, E2, F convenient vector spaces and Ui ⊆ Ei c∞-open (for the 
definitions consult [28], or the thorough treatment [12]) one has as convenient vector spaces

E[Mσ](U1 × U2, F ) ∼= E[Mσ](U1, E[Mσ](U2, F )).

This follow since by (i), (ii), (iii) and (iv) the classes E[Mσ ] form cartesian closed categories due to [28, 
Thm. 5.9, 6.2].

(e) A result on powers ([14], [15]): If for two integers p, q with gcd(p, q) = 1 and some function f , we have 
fp, fq ∈ E[Mσ], then we already have f ∈ E[Mσ].
This follows since by (iii) we have that Mσ satisfies (M[mg]), and, by (ii), M̃σ has the desired properties. 
Thus [15, Thm. 1.1, Thm. 4.1] (cf. also [14, Thm. 4.2]) is applicable and immediately gives the claim.
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(f) Almost harmonic extensions ([5]): E[Mσ]-regularity can be characterized by almost harmonic extension. 
The rest is mutatis mutandis the same as outlined in Section 5.2.

(g) Nuclearity ([29]): By (iii) the classes E{Mσ}(U) and E(Mσ)(U) are nuclear; see [29, Prop. 7.2].

6.4. A further possible result

In [4], the authors consider ultradistributional boundary values of constant coefficient hypoelliptic partial 
differential operators. Ultradistributional is understood in the framework of Denjoy-Carleman classes, i.e., 
classes defined via weight sequences. They require, apart from the normalization condition 1 = M0 = M1
as basic assumptions for M log-convexity, (mg), (nq) and (β3); see [4, Def. 2.6] (there (β3) is denoted by 
(M.2)∗).

It seems to be reasonable that the results from [4] can be transferred to E[Mσ]: Note that each sequence 
satisfies all standard assumptions except (mg) because by (viii) in Theorem 6.4 and [7, Thm. 3.11] we get 
(β3) and even condition (M.4)a for any a > 0; see [4, Def. 2.7] resp. [7, Thm. 3.11 (ii)]. (Also M (τ,τ,σ)

1 = 1
is violated for τ �= 1 but which can be achieved by switching to an equivalent weight matrix.)

Then one can try to compensate the failure of (mg) by applying (M{mg}) resp. (M(mg)) instead and 
which is valid by (iii) in Theorem 6.4.

However, by (vii) in Theorem 5.2 both generalized moderate-growth-type conditions fail for Mτ,σ and so 
a generalization of the proofs from [4] to the PTT-classes E[τ,σ] = E[Mτ,σ ] is not clear. (The other standard 

properties, except M (c,τ,σ)
1 = 1 for each c > 0, hold true for each sequence in Mτ,σ.)
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