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A novel heuristic tool for selecting the best upgrading conditions for the 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We introduce PPAA-U for soil-washing 
optimization. 

• PPAA-U maximizes recovery and mini-
mizes concentrate yield. 

• PAAA-U penalizes experimental contri-
butions with high variability. 

• This methodology yields consistently 
good results. 

• PPAA-U has many potential applications 
in other separation technologies.  
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A B S T R A C T   

Here, we propose two-parameter penalized attributive analysis, PPAA-U, a novel heuristic tool for selecting the 
best upgrading conditions (BUCs) for soil washing. Given a multi-component feed and a specific set of operating 
conditions, PPAA-U generates a quality index based on how well recoveries for key components are maximized 
while minimizing the yield. We demonstrate, through the calculation of families of curves, that this quality index 
is related linearly to recovery and to the inverse of the yield, meaning that reducing yield values is more 
important than maximizing recovery. To evaluate our method, electrostatic separation at 12 different voltages 
was carried out on soil samples from an ex-industrial site in Spain. Values of recovery, yield, and grade were 
analyzed using basic attributive analysis and PPAA-U with and without target-to-distance correction. Both 
methods identified the same optimal separation voltage, and the power of PPAA-U to correct for high variation in 
yields and recoveries was observed as a divergence between results produced by each method at low voltages 
where variation in these values was greatest. PPAA-U thus offers a convenient tool for soil washing optimization, 
and we suggest that it could be applied successfully to other industrial processes.   
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1. Introduction 

Many industrial processes lead to the accumulation of potentially 
toxic elements (PTEs) in soils, and the need to remove them is driving 
research into soil remediation techniques in several countries [1,2]. 
Existing soil remediation technologies include various physical, chemi-
cal, and biological methods [3,4]. Originally developed in the mining 
industry to obtain metal concentrates from mineral ores, physical sep-
aration technologies have been used for soil remediation in the case of 
both organic and inorganic pollutants [5-7]. Physical separation can be 
used to remove potentially toxic elements (PTEs) from soil either 
directly, where PTEs are present as discrete particles, or, since many 
PTEs are strongly absorbed by clay, by separating the fraction onto 
which they are preferentially sorbed [8-10]. Although physical soil 
washing can be a terminal process, it is usually followed by chemical soil 
washing [11,12]. 

Physical soil remediation shares many common processes with 
mineral beneficiating and recycling. In all cases, the objective is to 
separate a concentrate of perhaps two or more target components from a 
multi-component feed. However, whereas in mineral beneficiation (and 
recycling), optimization may occur for either elements or mineral 
compounds, in the case of soil washing, we tend to be concerned only 
with elements. 

The principal distinction between soil remediation and mineral 
processing (beneficiation or recycling) lies in the different economics of 
these processes. These considerations mean that the concentrate-to- 
tailings ratio achieved in mineral processing operations is generally 
closer to one than it is in soil remediation [13]. In mineral beneficiation, 
for example, the cost of further processing the concentrate (through the 
pyro- and hydrometallurgical routes) is offset due to the value of the 
final product [14,15]; however, for soil washing, a high initial 
concentrate-to-tailing ratio is crucial to avoid compromising the eco-
nomic viability of the operation [16]. 

This means that, for soil remediation, in contrast to mineral benefi-
ciation and recycling, concentrate yield minimization is the most 
important criterion. Moreover, in soil remediation, the washed fraction 
(tailings) must adhere to environmental standards in terms of grade for 
it to be declared decontaminated, whereas in mineral recycling and 
beneficiation, the grade of tailings is dictated more by economic con-
siderations and may remain quite high provided that the process is 
profitable [17,18]. 

In any mineral separation process, whether this be a beneficiation or 
soil remediation process, improving performance implies increasing the 
concentration of a target element or compound in one of the process 
flows. Thus, the total mass of the initial material flow, known as the feed 
(F), is normally separated into two products, the concentrate (C) and the 
tailings (T), corresponding to the fractions in which the grade of the 
target element or compound is, respectively, higher or lower than that in 
the feed. A third fraction is sometimes collected, the middlings (M), 
which has a grade intermediate between that of the concentrate and the 
tailings. 

The total mass balance is then [19]: 

F = C+M+T (1) 

Dividing Eq. (1) by the mass of the feed gives the yield or weight 
recovery for each mass flow (Eq. (2)) [20]: 

F
F
= 1 =

C
F
+

M
F
+

T
F

(2) 

Of the three yields, that of most interest is the concentrate yield, CF =

γ, which contains the highest concentration of the target element or 
compound. 

A parameter known as the grade or assay is used to indicate the 
proportion of the target element or compound in each of the mass flows. 
Its value for the concentrate is usually denoted as λ, and this value can be 
used as an assessment of the quality of the separation process. The 

grades for the feed, middlings, and tailings are denoted by α, β, and ϑ, 
respectively. In a successful separation process, the following in-
equalities should be true: λ > α; ϑ < α; and λ > β > α [20]. The recovery, 
ε, refers to the mass of the target element or compound found in a given 
mass flow relative to the feed. Thus, for the concentrate fraction, re-
covery is defined as [20]: 

ε =
λ
α γ (3) 

The same value for the tailings fraction is usually denoted as η, such 
that [20]: 

ε+ η = 1 (4) 

Intuitively, it would seem that ε alone could be used as a measure of 
separation performance due to its relationship to the parameters α, λ, 
and γ. However, this is not the case and, in fact, assessing separation 
performance requires consideration of not only ε but at least two of 
either α, λ, or γ. For example, ε = 100% may seem to imply perfect 
separation, but accompanied by high γ and low λ, this is clearly not so. 
Thus, if we wish to optimize a separation process, we must maximize ε 
and λ while simultaneously minimizing γ [20,21,19]. 

Bearing in mind the above discussion, the aim of this research is to 
develop a robust method for determining the best upgrading conditions 
for a given soil washing operation. Specifically, we will:  

• Offer an exhaustive analysis of basic attributive analysis in terms of 
families of curves.  

• Discuss the effect of experimental noise on the overall quality of a 
given experimental set-up.  

• Show how attributive analysis can be modified to address this type of 
distortion.  

• Provide a practical example of the use of attributive analysis. 

2. Materials and methods 

In this section, we discuss the sources of the soil samples and the 
separation technique used to demonstrate the practical application of 
attributive analysis. We then explain the principles of basic and penal-
ized attributive analysis. 

2.1. Sample preparation and analysis 

The site of interest is the Linares mining district (Andalusia, Spain), a 
center for intense Pb mining, mineral processing, and metallurgical ac-
tivities for several centuries [22,23]. Ten 2.5 kg samples were collected 
from the top 35 cm layer of soil at random points across the study site to 
form a bulk sample of 25 kg. The bulk sample was homogenized and wet 
sieved (water flow = 0.3 l/min) using sodium carbonate and sodium 
hexametaphosphate as dispersing agents to produce six granulometric 
fractions: 63 µm, 63–125 µm, 125–250 µm, 250–500 µm, 500–1000 µm, 
and 1000–2000 µm (ASTM D-422–63) [24]. Wet sieving continued until 
3 kg of the 1000–2000 µm fraction was obtained. This fraction was then 
divided into thirty-six subsamples for electrostatic separation. Each of 
these subsamples was subjected to chemical analysis. 

Subsequently, representative subsamples weighing 1 g each were 
extracted. These specimens were digested using "aqua regia" (a mixture 
of HCl and HNO3) before analysis via inductively coupled plasma optical 
emission spectroscopy (ICP–OES) (HP 7700, Agilent Technologies). 

Separation of the feed samples was achieved using an EHTP Outotec 
(Fig. S1) high-tension electrostatic separator. This advanced specifica-
tion model is equipped with an AC wiper electrode operating at 18 kV 
and two DC electrodes—one corona and the other static—adjustable to a 
maximum of 41.5 kV, known as the separation voltage. Additionally, it 
features a grounded roller brush with interchangeable bristles and 
infrared roller heating for particle removal. Three fractions are 
collected: the nonconductive, intermediate, and conductive fractions. 
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The most important parameters in the separation process include the 
conductivity of the sample particles, the rotation speed of the roller, the 
placement of the electrodes, and the corona electrode tension. This en-
ables the separation of materials based on their conductivity properties, 
making electrostatic separation an invaluable tool for many industrial 
and research applications. 

Samples are loaded onto the roller via the feed hopper and travel 
towards the corona electrode. The air surrounding the corona electrode 
is ionized; thus, as the particles on the roller approach the corona 
electrode, they pick up charge. Conductive particles will lose their 
charge most rapidly; therefore, the roller’s centrifugal force ejects these 
particles first, and they are collected in the conductors bin. More insu-
lating particles keep their charge and remain on the roller until they are 
brushed off and fall into either the insulators or the middlings bin. 

The apparatus was operated at 12 different separating voltages in a 
range from 20 kV to 41.5 kV. Separations were repeated three times at 
each separation voltage, and the results presented here correspond to 
the average values recorded for the three experiments completed at each 
voltage. A comprehensive description of the apparatus is provided in the 
Supplementary material section (SM1). 

2.2. Basic attributive analysis 

The basic model for attributive analysis was developed and applied 
to soil washing by Sierra et al. (2010) and Boente et al. [25]. Given the 
results of a number of soil-washing experiments using a particular sep-
aration technique, this method seeks to determine the set of experi-
mental parameters that provides optimal separation. As discussed, this is 
done by seeking the conditions where the recovery of target elements is 
maximized while minimizing the yield. 

Considering a set of m experiments to separate out n contaminating 
elements, the performance of a given experiment, i, with respect to 
target element, j, is expressed as a quality factor Qi

j (Eq. (5)): 

Qi
j =

Min{γ}
γi +

εi
j

Max
{

εj
} (5)  

where  

• i = 1, …, m and refers to the results produced by a specific set of 
experimental parameters.  

• j = 1, …, n and refers to results for a specific target element or 
contaminant; in this study, m = 10 (see Table 1 for all target ele-
ments considered).  

• Qi
j: Quality factor of experiment i for element j.  

• γi: Yield of experiment i.  
• εi

j: Recovery of element j in experiment i. 

In the present study, the main experimental variable is the separation 
voltage; thus, m = 12, and ten target elements (the values of j) were 
considered (see Table 1). Table 1 presents the yields and recoveries of 
each element at each separation voltage tested; the values shown are an 
average of the results from three experimental runs at the same sepa-
ration voltage. 

As in the present study, there are generally numerous contaminants 
to consider, each of which has a specific target grade, that is, a safe 
threshold concentration after soil washing. Because some contaminants 
are significantly more toxic than others, each element to be removed 
during the soil washing operation is given a weighting coefficient 
related to its target grade, known as the target-to-distance correction. 
The sum of these coefficients must add up to 1; thus, we first define 
Ai

j(Eq.6) :

Ai
j =

αi
j

∝target
j

(6) 
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where  

• i and j are defined as before.  
• αi

j: Feed grade of element j in experiment i.  
• ∝target

j : Target grade for element j. 

Then, to obtain the correct weighting for each element’s contribution 
to overall contamination levels, the following transformation is imple-
mented (Eq. (7)): 

Ai
j
′
=

Ai
j

∑m

i
Ai

j

(7) 

A global quality index for a given experiment, i, for all elements 
(
Qi

T

)

can then be defined as follows (Eq. (8)): 

Qi
T =

∑n

j=1
Qi

jA
i
j′ (8) 

Finally, the best experimental set-up is, then, that for which this 
value is maximal (Eq. (9)): 

Qoptimal = Max
{∑n

j=1
Qi

jA
i
j′
}

(9)  

where the following restrictions apply: 
{
∀αi

j, γ
i, εi

j,m, n,Qi
T : αi

j ∈
[
αtarget

j , 106], γi, εi
j ∈ (0, 100),m, n ∈ N,Qi

T

∈ (0, 2n)
}

2.3. Two-parameter penalized attribute analysis (PPAA-U) 

As can be appreciated from Eqs. (5) and (6), experiments for which 
the yield, recovery, or grade varies greatly compared to the mean values 
will be given disproportionally more weight than those resulting in less 
variance. This will clearly bias the final quality assessment; thus, we 
present a modified method to address and eliminate this problem. 
Specifically, the inverse of the standard deviation can be used as a 
weighting factor to penalize large variations in each of the parameters of 
interest, yield, recovery, and grade, all of which vary for each element 
and every experiment. In addition, because the range of variation will be 
of a different order of magnitude for each parameter (for instance, in our 
case study, ε [%] is in the range {2, 83.3}, while γ [%] is in the range 
{0.7, 9}, and α [mg/kg] is in the range {0.32, 3108.21}, see Table 1), the 
weighting factors must be normalized to between 0 and 1. 

In this way, we obtain a new value for the quality factor of each 
experiment and target element, Ci

j (Eqs. (10)–(14)): 

Γi =
Min{γ}

γi

⎛

⎜
⎜
⎝

∑m

i=1
|γi − γ|

m

⎞

⎟
⎟
⎠

− 1

(10)  

Γi′ =
Γi

∑m

i
Γi

(11)  

Еi
j =

εi
j

Max
{

εj
}

⎛

⎜
⎜
⎝

∑m

i=1

⃒
⃒
⃒εi

j − εj

⃒
⃒
⃒

m

⎞

⎟
⎟
⎠

− 1

(12)  

Еi
j
′
=

Еi
j

∑m

i
Еi

j

(13)  

∁i
j = Γi′+Еi

j
′ (14)  

and a new target-to-distance correction coefficient, Bi
j
′(Eq. (15)–(16)): 

Bi
j =

αi
j

∝target
j

⎛

⎜
⎜
⎝

∑m

i=1

⃒
⃒
⃒∝i

j − αj

⃒
⃒
⃒

m

⎞

⎟
⎟
⎠

− 1

(15)  

Bi
j′ =

Bi
j

∑m

i
Bi

j

(16) 

Thus, the corrected global quality index for an experiment i for all 
elements j to n is: 

∁i
T =

∑n

j=1
∁i

jB
i
j′ (17) 

Finally, the optimal experimental set up can be found as follows: 

∁optimal = Max
{∑n

j=1∁i
jB

i
j′
}

(18). 

where  

• i, j, and n are defined as before.  
• γ: Yield of experiment i.  
• γ: Mean yield for element j.  
• ε: Recovery of element j in experiment i.  
• εj: Mean recovery for element j.  
• αi

j: Grade of the feed of j element in experiment i.  
• αj: Mean grade for element j.  
• ∝target

j : Target grade for element j. 

and the following restrictions apply: 
{
∀αi

j, γ
i, εi

j,m, n,Ci
T : αi

j ∈
[
αtarget

j , 106], γi, εi
j ∈ (0, 100],m, n ∈ N,Ci

T

∈ (0, 2n)
}

The Supplementary material section (SM2) contains an example of 
this methodology used in a scenario involving two experimental set-ups 
with two elements to be separated. 

3. Results and discussion 

3.1. Separation results 

We conducted twelve experimental runs with separation voltages 
ranging from 41.5 kV to 17.5 kV (Table 1). There was a positive corre-
lation between yield (γ) and voltage with γ = 1.4% at 20 kV and 
γ = 8.6% at 41.5 kV with a maximum of γ = 9.0% at 40.0 kV (peak- 
yield voltage). Similarly, the recovery (ε) in the conductive fraction was 
also positively correlated with the voltage. The peak-yield voltage 
(40 kV) also produced the highest maximum recoveries for six PTEs of 
interest: Zn (83.3%), followed by Mo (81.0%), Cu (62.2%), Cu (62.2%), 
Sb (59.6%) and Ni (57.3%). The same voltage, however, resulted in the 
lowest recoveries for the other four PTEs studied: Hg (13.2%), Cr 
(38.8%), Cd (45.0%), and As (41.7%). Considering the variation in the 
values recorded for the three parameters of interest, yield, recovery, and 
grade, while the first of these parameters varied in a range from 1.4% to 
8.6%, the other two had far wider ranges: 2%–83.3% and 0.3 mg/kg to 
3108 mg/kg, for recovery and grade, respectively. All the data are 
summarized in Table 1. 

Attributive analysis generates a family of curves describing the re-
lationships between yield, recovery, and the quality index for a partic-
ular experimental set-up. In the following sections, we will consider 
these curves and compare the performances of basic and penalized 
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attributive analysis in evaluating the quality indices of the twelve sep-
aration experiments undertaken here. 

3.2. Families of curves 

Taking Eq. 5, the attributive analysis equation, and substituting in 
values for yield (γ) and recovery (Ɛ), it is possible to produce a family of 
surfaces that share a similar shape and functional relationship. These 
surfaces represent the ways in which the quality index of an experiment 
(Q) will vary with changes in either γ or Ɛ. Fig. 1 shows a surface plot of 
Q for all possible combinations for γi and εi

j ranging from 0.01 to 0.99. 
Sierra et al. (2010) applied the attributive analysis function to pro-

cess engineering; however, they did not analyze the family of surfaces 
created. Such analysis enables an exploration of the theoretical consis-
tency of the proposed methodology. In this way, as part of the present 
study, we will perform a sensitivity analysis and a comparative analysis 
with known values from our electrostatic separation experiment (see 
Section 2.1). Concerning the former type of analysis, this considers the 
relative sensitivity of the quality index to changes in yield and recovery 
values. Meanwhile, our comparative analysis involves an examination of 
results derived from the basic version of attributive analysis in com-
parison to those derived from PPAA-U without target-to-distance 
correction. 

As demonstrated in Fig. 1, the relationship between Q and γ is very 
different from its relationship with Ɛ; thus, it is useful to examine these 
two relationships separately. This can be done by keeping either one of 

the two addends in Eq. 5 ( εi
j

Max{εj}
or εi

j) constant to give two families of 

curves, one for Q varying with γ and another for Q varying with Ɛ. 

Starting with the recovery addend, εi
j

Max{εj}
, setting Max

{
εj
}

to 0.99 

and varying εi
j between 0.01 and 0.99, we obtain a set of curves corre-

sponding to different values of γ (for values of γ from γmin=0.01 to 0.99). 
These curves correspond to the Q-Ɛ plane (see Fig. 1) at different points 
along the γ-axis, and as can be seen in Fig. 2, the quality index, Q, and Ɛ 
are related by a straight line: 

Q =
εi

j

Max
{

εj
}+ K 

The gradient of the line can be found by taking the derivative of Q 
with respect to Ɛ: 

dQ =
dεi

j

Max
{

εj
}

such that (Eq. (19)): 

dQ
dεi

j
=

1
Max

{
εj
} (19) 

This tells us that as the maximum recovery increases, the slope of the 
curve generated decreases. Moreover, when Max

{
ϵj
}

is large, the vari-
ation in Q with recovery will decrease. 

Taking the yield addend, Min{γ}
γi , setting Min{γ}= 0.01 and varying Ɛ 

from 0.01 to Ɛ= Max
{

εj
}
= 0.99 gives a second set of curves. These 

curves are Q-γ planes at different points along the Ɛ axis; see Fig. 3. In 
contrast to Ɛ, γ has a nonlinear relationship with Q, and calculating the 
gradient of the curve gives an inverse square function (Eq. (20)): 

dQ
dγ

=
− Min{γ}

(γi)
2 (20) 

This result shows that the quality index is highly sensitive to yield for 
values of γi < 0.1; however, for γi > 0.1, the quality index remains 
almost stable. In this way, reducing yield values is more important than 
maximizing recovery since, at very low yields, small changes in this 
parameter have a very large impact on the quality index. 

Eq. 20 also demonstrates that the sensitivity of the quality index to 
changes in yield decreases for higher values of Min{γ}. This fact could be 

Fig. 1. General shape of a quality index function.  

Fig. 2. Quality index function (parallel to the Q-ε plane).  

Fig. 3. Quality index parallel to the Q-γ plane.  
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useful under particularly noisy experimental conditions. 
From the above analysis, it becomes apparent that Q should be 

considered a function of four variables: γi and εi
j, Min{γ} and Max

{
εj
}
. 

We will now explore in more detail the effect of variations in Min{γ} and 
Max

{
εj
}
. 

Starting this time with the yield addend, Min{γ}
γi , increasing Min{γ}

reduces the function domain from [0,1] to [Min{γ},1]. As was 
mentioned, while this function is highly sensitive to γi < 0.1, at larger 
values of γi the curve is relatively flat (Fig. 3); thus, increasing Min{γ} 
places the quality function in a largely stable zone. Furthermore, as  
Fig. 4 demonstrates, higher values of Min{γ} lead to flatter curves, 
meaning that Q becomes increasingly insensitive to variation in γi. 

Similarly, considering the recovery addend, εi
j

Max{εj}
, if Max

{
εj
}

de-

creases, this also narrows the function domain from [0,1] to [0, 
Max

{
εj
}
]. In addition, since the gradient of the curve (see Eq. 19) is 

constant and equal to 1
Max{εj}

, increasing Max
{

εj
}

will decrease the 

gradient angle, given by tan− 1
(

1
Max{εj}

)

. This is demonstrated in Fig. 5. 

3.3. Results of Penalized Attributive Analysis (PAA-U) 

Bearing in mind the insights of the previous section, we now consider 
a comparison of basic attributive analysis, AA, and its inverse standard 
deviation weighted or penalized version, PPAA-U. Fig. 6 presents a 
comparison between results obtained using AA and PPAA-U (without 
target-to-distance correction) for the electrostatic soil washing opera-
tion described in Section 2.1. We observe significant agreement between 
AA and PPAA-U, particularly for lower voltages (<25 kV). This is 
because the variation in recoveries for the elements tested is less at lower 
voltages (see Table 1) than at higher voltages. In this way, the weighting 
used in PPAA-U makes little difference at lower voltages; however, at 
high voltages, the high variances are strongly penalized, lowering the Q 
values of these experiments and thus causing a divergence in the results 

obtained via the basic and penalized versions of the method. In addition, 
both AA and PPAA-U predict the presence of two maxima in the quality 
index: one at low voltages where, despite low recoveries, the lower yield 
leads to a peak in the quality index and a second at high voltages where 
there is high recovery. 

When the target-to-distance correction is introduced, while both 
methods once again give similar results and, as expected PPA diverges 
from AA at higher voltages, the overall pattern is very different: spe-
cifically, the peak in the quality index at lower voltages disappears 
(Fig. 7). The target-to-distance correction allows us to compare how 
different experimental set-ups perform with respect to particularly 
harmful elements. This, in turn, enables attributive analysis to identify 
not simply the best overall separation conditions but those that are most 
environmentally optimal. In the present case, voltages greater than 
37.5 kV stand out as providing the best separation conditions, giving 
priority to the removal of the most harmful PTEs. 

The work presented here demonstrates that PPAA-U is a promising 
tool for identifying the optimal conditions for electrostatic soil washing 
operations. To further improve the methodology, additional quotients 
should be incorporated to account for components reporting to the 
middlings fraction instead of considering it as part of the concentrate, as 
is done here. In addition, the method could be modified to encompass 
some of the economic factors involved in the soil washing process, 
especially those relating to the circular economy, to further optimize 
conditions. 

4. Conclusions 

Currently, the available literature offers few means to evaluate the 
quality of a separation process. Methods that do exist tend to use only 
two parameters, typically recovery and yield; however, on their own, 
these two variables do not provide a sufficiently robust way to identify 
separation conditions that are genuinely optimal. 

In its original form, attributive analysis addresses the shortcomings 
of other methods, providing a tool to assess optimal separation 

Fig. 4. Quality index function for different minimum yields.  
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conditions through a comparison of three variables: yield, recovery, and 
grade. However, this basic method suffers where there are large varia-
tions in the yields and recoveries of the components or elements 
separated. 

Indeed, examination of the attributive analysis function reveals that 
it exhibits significant sensitivity to dispersion within both the yield 
dataset and the recovery dataset. However, the sensitivity to variations 
in yield is greatest, something that can be attributed to the fact that 
while the quality index is linearly related to recovery (with the slope 
being dependent on the maximum recovery value), it has an inverse 
relationship with yield and thus an inverse squared relationship to 
changes in yield. Penalized attributive analysis, PAA-U, directly ad-
dresses the issue of variations in yields and recoveries, most strongly 
penalizing contributions to the quality index from experimental set-ups 

for which the largest variations are recorded. 
Target-to-distance correction improved the performance of both AA 

and PPAA-U. For the separation technique used in this work, without 
this correction, two maxima (one at higher and one at lower voltages) in 
the quality index were observed, making it difficult to distinguish the 
true optimum conditions. When the target-to-distance correction was 
introduced, however, the lower voltage maximum was removed. This 
shows that while lower voltages might provide effective separation on 
average, they are poor at removing particularly harmful PTEs; this more 
targeted separation is achieved only at higher voltages. 

Future work should focus not only on the application of PPAA-U to 
evaluate the soil washing methods used in the remediation of metal 
(loid)-polluted soil but also as part of feasibility studies for 

Fig. 5. Quality index function for different maximum recoveries.  

Fig. 6. AA (ΣQ) and PPAA-U (ΣC) quality index results before target-to- 
distance correction. 

Fig. 7. Quality index as calculated via basic AA (ΣQA) and PPAA-U (ΣCA) with 
target-to-distance correction. 
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bioremediation or chemical oxidation technologies (where numerous 
organic contaminants, each with different target concentrations, are 
addressed simultaneously). Furthermore, this methodology can not only 
be applied to environmental remediation operations but could also be 
used to determine optimal operating conditions in a variety of materials 
processing or manufacturing contexts. In such contexts, the quality 
factor used in this method might involve variables such as temperature, 
pressure, or particle size and also the environmental and economic 
factors such as the costs associated with particular operating conditions, 
which might depend on energy use or manpower requirements. 

Environmental implications 

Two-parameter penalized attribute analysis for upgrading (PPAA-U) 
provides a way to optimize soil remediation operations and is, thus, a 
valuable tool to improve environmental outcomes. The method assesses 
how well a given set of operating conditions maximizes recovery while 
simultaneously minimizing the concentrate yield, and its primary 
advantage lies in the way it provides a single value, the quality index, to 
identify optimal separation conditions. Furthermore, PPAA-U could be 
adapted easily to various processes and thus has numerous potential 
applications in a range of industries; in particular, its capacity to address 
multiple variables opens new avenues for sustainable materials pro-
cessing and manufacturing. 
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