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Abstract
Over the past few decades, the application of iterated function systems (IFS) in reconstructing fractal images has been a

challenging research area. Numerous methods have been proposed to address this issue. However, they generally focus on

binary or grayscale images, neglecting the color component of the process. Consequently, they are unsuitable for

reconstructing colored images. In a previous paper presented at the ISCMI 2021 conference, the authors introduced a novel

approach that utilizes the cuckoo search algorithm and k-means clustering for IFS fractal reconstruction of colored images.

Building upon that work, this paper introduces an enhanced and extended method by combining genetic algorithms (GAs)

and particle swarm optimization (PSO) with local search and image clustering. In this approach, GA and PSO are mutually

coupled to automatically determine the color of the contractive functions and the IFS parameters, respectively. The output

of each method serves as the input for the other in an iterative manner. Main contributions of this method are: (1) it

computes automatically the optimal number and IFS code of the contractive functions; (2) the color of the contractive

functions is determined automatically through an optimization process using GA; (3) a local refinement step is performed

to further enhance the final solution. Overall, this new method yields highly accurate results in reconstructing the geometry

and color of input fractal images, without requiring any additional information about the target beyond the bitmap image.

Keywords Swarm intelligence � Genetic algorithms � Particle swarm optimization � Image reconstruction �
Color fractal images � Iterated function systems � Collage theorem

1 Introduction

1.1 Motivation

Fractals are fascinating mathematical objects, typically

showing complicated geometrical patterns when drawn on

the screen. Strikingly, such complex geometric shapes are

generally obtained through very simple production rules.

There are several ways to compute and display fractal

objects. Popular procedures include escape-time fractals,

recursive fractals, finite subdivision rules, random pro-

cesses (e.g., Brownian motion, percolation clusters, diffu-

sion-limited aggregation, Lévy flights, random walks),

strange attractors of dynamical systems, L-systems, and

others. The interested reader is referred to [1, 2] for a

general overview on the field.

One of the most popular methods for fractal image

generation is based on the so-called Iterated Function

Systems (IFS). Basically, an IFS is a finite set of contractive

affine maps fuigi¼1;...;N , defined on a complete metric
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space, M [3, 4]. These affine maps depend on several

parameters encapsulating different 2D geometrical opera-

tions (scaling, rotation, translation). The set of parameter

values for all affine maps of the IFS is called the IFS code.

It can be proved that every IFS has a unique compact fixed

set, A, usually known as the attractor of the IFS. Inter-

estingly, the graphical representation of this attractor is a

fractal image.

The use of IFS goes beyond the generation of beautiful

fractal images. Actually, one of the most exciting appli-

cations of the IFS appears in image reconstruction. Given a

digital image, it is possible to obtain an IFS whose attractor

replicates the input image accurately. Amazingly, this input

image does not necessarily need to be a fractal image; it

can be any image. This is a very surprising result, even

shocking at first sight, which is based on the observation

that very often, some parts of an image resemble other

parts of the same image. This feature is also characteristic

in fractal geometry, as the fractal objects exhibit the

property of self-similarity: they show (at least, approxi-

mately) similar patterns at different scales [1]. In this way,

the central task of fractal image reconstruction is to iden-

tify similar parts within a digital image and then compute

affine transformations connecting them, so that the image

can be (approximately) reconstructed through iterative

application of such transformations on an initial image

[5, 6].

Although labeled as a very promising technique, the IFS

image reconstruction is severely affected by a limiting

factor: given a 2D input image, it is very difficult to obtain

the IFS code (i.e., the parametric values of the IFS) pro-

viding a close approximation of the input image. This

problem, usually referred to as IFS fractal image recon-

struction problem, has become more challenging than

expected. Although several approaches have been pub-

lished during the last decades to address this problem (see

Sect. 2 for details), the field still lacks a general method-

ology solving this question in the general case.

An additional issue is that the current methods for IFS

image reconstruction address the problem from a purely

geometric standpoint. As a result, they can only be applied

to binary images, while the case of colored images is not

actually considered. A previous paper presented by the

authors at the ISCMI 2021 conference [7] addressed the

reconstruction of colored images with IFS by introducing

the color as a new free variable vector. The method com-

bined the cuckoo search algorithm and k-means clustering

to perform reconstruction of both the geometry and the

color of the fractal image. However, the method had sev-

eral limitations. In this paper, the method introduced in our

previous conference paper in [7] is extended and enhanced

in several ways. The main contributions of this work can be

summarized as follows:

• In the previous conference paper, the number of

contractive functions of the IFS was assumed to be

known and given as an input of the method. Instead, in

this paper this number is assumed to be unknown and

computed in a fully automatic way.

• In the previous paper, the geometry and the color were

not specialized, but encapsulated into a single repre-

sentation. In this new method, genetic algorithms are

used to address the discrete color subproblem, while

particle swarm optimization is applied to address the

continuous geometric subproblem, according to the

actual (discrete or continuous) nature of the free

variables of the general problem.

• In the previous paper, the geometry and the color were

calculated through two different fitness functions, but

their interplay was ignored. This limitation affected the

accuracy of the results. In this new method, the

interplay of the color and the geometry is embedded

in the method by using a hybrid scheme, in which the

genetic algorithms and the PSO do not work indepen-

dently, but mutually coupled. Under this new strategy,

the output of each method is used as input of the other

in an iterative fashion. This new scheme takes into

account the interplay of the geometry and color, as any

new computation of one of them modifies automatically

the results for the other.

• A new local refinement step through local search

heuristics is now considered for further improvement of

the final solution.

• The global fitness of the previous paper based on the

arithmetic mean of the fitness functions for the geom-

etry and the color is now replaced by a weighted convex

combination of these individual fitness functions, and

the best value for the weight is empirically determined.

As a consequence of these changes, the method provides

much more accurate results than the previous method and

in a fully automatic way (see Sect. 5 for details).

This paper is organized as follows: Section 2 discusses

the previous work in the field. The mathematical back-

ground needed to follow the paper is presented in Sect. 3.

The proposed method is explained in detail in Sect. 4. The

obtained graphical and numerical results are discussed in

Sect. 5. The paper closes with the main conclusions and

some ideas for future work in the field.

2 Previous work

The notion of using fractals to encode digital images

started with the seminal work by Michael Barnsley in the

1980s (see [5] for details). Based on earlier theoretical

developments by Hutchinson in [4], he introduced the use
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of fractal transformations to encode images in [8] and then

in [9], where the collage theorem was firstly presented.

That theorem showed that the digital images can be effi-

ciently approximated through iterated function systems,

leading to the first approaches and some patents for fractal

image compression.

Interestingly, the graphical representation and encoding

of digital images through IFS are a highly asymmetric

problem. Rendering the attractor of a given IFS (usually

called the direct problem) is a quite trivial task. Simple,

fast, and efficient methods can be found, for instance, in

[1, 3, 10]. On the contrary, the IFS encoding problem, i.e.,

obtaining an IFS whose attractor approximates a given

digital image accurately (also known as the inverse prob-

lem and also as the IFS image reconstruction problem), is

extremely difficult and elusive. Several methods have been

described in the literature to address the inverse problem.

First algorithms for fractal images were introduced in

[9, 11]. These early methods were later extended to an

automatic approach in [12], based on the concept of the

partitioned iterated function systems (PIFSs). However,

these methods rely on exhaustive search procedures, which

are slow and computationally expensive. Several methods

were proposed to alleviate this computational load, mostly

based on quadtrees, rectangular partitions, and triangular

partitions, in some cases combined with clustering. But

because they are mostly based on greedy algorithms, they

are still slow and generally exhibit very low efficiency. The

list of these methods is quite large, and they are out of

scope to be discussed here. The interested reader is referred

to [13] for a detailed review. Other approaches include

Gröbner basis [14], wavelet transform [15], gradient search

[16], and moment matching [17]. Unfortunately, they are

also computational expensive and can only be applied to

some (generally simple) particular cases, while failing to

solve the general problem.

It has been pointed out that the inverse problem can be

formulated as an optimization problem. Consequently,

there have been attempts to solve it using classical math-

ematical optimization techniques. However, it was noticed

that these techniques are not powerful enough to solve the

general problem. Then, the focus shifted toward meta-

heuristic techniques, which are generally applied to prob-

lems unsolvable with the classical approaches; for instance,

when the objective function is not differentiable and hence

gradient-based techniques can no longer be applied. Other

cases include multimodal problems and ill-conditioned

problems.

As a feasible alternative, nature-inspired population-

based methods, such as those typically found in evolu-

tionary computing and swarm intelligence, have been

considered to tackle the IFS inverse problem. One of the

most popular approaches was based on the application of

evolutionary techniques, such as genetic algorithms

[18, 19] and genetic programming [20, 21]. The combi-

nation of fractal compression using PIFS and genetic

algorithms is reported in [22–24]. Similarly, an evolu-

tionary algorithm has been applied in [25] for fractal

coding of binary images. Other examples of these tech-

niques can be found in [26, 27].

Swarm intelligence methods have also been applied in

several papers. Fractal image compression with different

variations of the particle swarm optimization can be found

in [28, 29]. These works do not compute the IFS parame-

ters, but instead perform exhaustive search of similarities

between blocks of the image. The papers in [30] and [31]

perform IFS image reconstruction through the bat algo-

rithm and the firefly algorithm, respectively. Their results

might be acceptable in some settings where the accuracy is

not critical, but they provide suboptimal solutions. A more

recent paper improves the accuracy while being able to

compute the optimal number of contractive maps in addi-

tion to their parametric values [32].

All previous methods deal with the problem of shape

reconstruction from a geometric point of view exclusively

and can only be applied to binary (i.e., black and white)

images. In contrast, the case of full-color images has been

largely ignored in the literature. In a previous paper pre-

sented at the ISCMI 2021 conference, the authors intro-

duced a new method to address the reconstruction of

colored images with IFS by considering the color as a new

free variable vector [7]. The method combined a swarm

intelligence method called cuckoo search algorithm and k-

means clustering to perform reconstruction of both the

geometry and the color of the fractal image. An alternative

method based on the bat algorithm and multilevel thresh-

olding was also recently reported [33]. To the best of our

knowledge, these are the only papers addressing the issue

of IFS image reconstruction for colored images. However,

these methods have also some limitations. In this paper,

they are substantially extended and enhanced in several

ways.

3 Mathematical background

This section provides the reader with the mathematical

background needed to follow the paper. The interested

reader is kindly referred to [3, 6, 34] for further details.

3.1 Contractive maps and iterated function
systems

Let (X, d) be a metric space, where X is a non-empty set

and d a distance defined on X. A contractive map u on

(X, d) is a function u : X ! X such that there is a real
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number 0� k\1 holding: dðuðxÞ;uðyÞÞ� k:dðx; yÞ,
8x; y 2 X. The Banach fixed-point theorem states that every

contractive map u on a non-empty complete metric space

(X, d) has a unique fixed point, denoted as p. Moreover,

given any x 2 X, the sequence x;uðxÞ;uðuðxÞÞ; . . .
obtained by iterative composition of u with itself con-

verges to the fixed point. In other words, if xnþ1 ¼ uðxnÞ,
8n 2 N, then limn!1 xn ¼ p.

Let M ¼ ðX; dÞ be a complete metric space. An iterated

function system (IFS) is a finite set f/igi¼1;...;N of con-

tractive maps /i : X ! X defined on M. Generally, the

IFS will be denoted as W ¼ fX;/1; . . .;/Ng. In this paper,

we will focus on 2D bitmap images, so we consider

onwards the complete metric space ðR2; d2Þ, where d2
denotes the Euclidean distance. Therefore, the contractive

affine maps /i are of the form:

x�

y�

� �
¼ /i

x

y

� �
¼

ai bi

ci di

� �
:
x

y

� �
þ

ei

fi

� �
ð1Þ

or equivalently, in matrix notation:

x� ¼ UiðxÞ ¼ Ai:xþ bi, where bi is a 2D vector describing

the translations, and Ai is a 2� 2 matrix encoding other 2D

transformations, such as scaling and rotation. Since the

maps /i are contractive, the matrix Ai has eigenvalues

ki1; k
i
2 such that jkijj\1, j ¼ 1; 2. Furthermore, the con-

tractivity factor of the mapping /i, denoted as si, holds that

si ¼ jdetðAiÞj\1, thus making the objects smaller after

transformation.

From Eq. (1), we can see that any contractive affine map

/i is uniquely defined by the set of parameters

ðai; bi; ci; di; ei; fiÞ. Furthermore, any IFS, W, is fully

characterized by the collection of parameters

fðai; bi; ci; di; ei; fiÞgi¼1;...;N , called the IFS code of W.

3.2 Hutchinson operator and IFS attractor

Let CSðXÞ denote the set of all compact (i.e., closed and

bounded) subsets of X � R2. Note that the bitmap images

are compact subsets of R2. The Hausdorff metric h on

CSðXÞ is defined as:

hðR;SÞ ¼ max dhðR;SÞ; dhðS;RÞf g ð2Þ

where dhðR;SÞ ¼ max
x2R

min
y2S

d2ðx; yÞ:
Because ðR2; d2Þ is a complete metric space, it can be

proved that ðCSðXÞ; hÞ is also a complete metric space [3].

The Hutchinson operator, H, defining the join action of all

contractive maps /k on CSðXÞ, is given by:

HðBÞ ¼
[N
k¼1

/kðBÞ 8B 2 CSðXÞ ð3Þ

Since all the /k are contractions in ðR2; d2Þ, H is also a

contraction on CSðXÞ with the induced Hausdorff metric

[3, 4]. Then, the Banach fixed-point theorem states that H

has a unique fixed point, HðAÞ ¼ A, called the attractor of

the IFS. Interestingly, the attractor set A is a fractal image,

regardless of the initial set B in Eq. (3).

There are several approaches to render the attractor of

an IFS [35]. A simple and popular procedure is the prob-

abilistic algorithm, where each contractive map /k is

associated with a probability xk [ 0, such thatPN
k¼1 xk ¼ 1. The method proceeds iteratively: starting

with an compact set S0 2 CSðXÞ, one of the maps of the IFS

is randomly chosen with probability xk at iteration j to

obtain Sj ¼ /kðSj�1Þ. The process is repeated again for the

resulting set, and so on. It can be proved that fSjgj ¼ A,

meaning that this iterative process can render the attractor

[3, 10]. Theoretically the initial set S0 can be any compact

set, but since the /j are contractive, the size of S0

decreases over the iterations, eventually collapsing to a

point. Consequently, it is advisable to take S0 as a single

point for computational efficiency.

There are several approaches to compute the probabili-

ties xj [1, 36]. The most popular method, usually called

Barnsley’s algorithm (also, the chaos game), considers a

probability value xj related to the area filled by the con-

tractive map /k, which is proportional to its contractive

factor, sk ¼ jdetðAkÞj ¼ jak:dk � bk:ckj. Then, the method

computes xi as:

xi ¼
siPN
k¼1 sk

i ¼ 1; . . .;N: ð4Þ

In this paper, we follow this classical choice. Other

methods are also feasible, even leading to more efficient

values [10]. However, this problem is out of the scope of

this work and is not addressed here.

3.3 The Collage theorem and the IFS
reconstruction optimization problem

An important result in fractal theory is the collage theorem

[9]. Given an IFS W on ðR2; d2Þ with contractivity factor

s ¼ max
i

si, any I 2 CSðR2Þ, and a threshold �� 0, if

H I ;
SN

i¼1 /iðIÞ
� �

� e, then

H I ;Að Þ� 1
1�sH I ;

SN
i¼1 /iðIÞ

� �
with H(., .) being the

induced Hausdorff metric on CSðR2Þ, and A the attractor of

W. In practical terms, this means that given any digital

image I , there exists an IFS whose attractor has a graphical

representation A that approximates I accurately, according

to the Hausdorff metric.

The challenging question is how to compute this IFS W,

which is the problem addressed in this paper. To
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reconstruct a digital image I , we need to compute the

collection of parameters of an IFS (i.e., its IFS code) such

that the attractor of the IFS, HðIÞ, provides an accurate

approximation of I , according to a given metrics D. Thus,
this problem can be formulated as the following opti-

mization problem:

minimize
fAi;bigi¼1;...;N

D I ;
[N
i¼1

/iðIÞ
 !" #

ð5Þ

such that si ¼ jdetðAiÞj\1 for all i ¼ 1; . . .;N.
It is worthwhile to remark that it is actually enough to

approximate I by HðBÞ, where B is any initial image (note

that the attractor of the IFS W is independent of the initial

image B). Therefore, the optimization problem becomes:

minimize
fAi;bigi¼1;...;N

D I ;
[N
i¼1

/iðBÞ
 !" #

ð6Þ

This problem is extremely challenging, as it is continuous

(since all free variables in fAi; bigi¼1;...;N are real-valued),

constrained (because the corresponding functions /k have

all to be contractive), and multimodal (there can be several

global or local optima of the objective function D). In short,
we have to solve a very difficult constrained multimodal

continuous optimization problem. The problem is so

challenging that it cannot be solved through classical

mathematical optimization techniques. Several techniques

have been proposed to tackle this issue, but only partial

solutions have been reported in the literature so far (see

Sect. 2 for details). Nowadays, the general problem still

remains open and the community in the field is still

searching for more powerful methods to address this

problem. Furthermore, the difficulty of this problem is

exacerbated by three additional major factors: (1) the

optimal number of contractive functions, N is unknown in

advance, so the method should typically include some

procedure to determine it; (2) the problem can be high-

dimensional for complex images, as they might require a

large number of contractive maps for accurate reconstruc-

tion; (3) the optimization problem in Eq. (6) does not

include any reference to color, so Eq. (5) must be modified

to add this new attribute. This paper proposes a new

method to solve all these problems simultaneously, as

discussed in the next section.

4 The proposed method

The proposed method is presented in this section. Firstly, a

brief overview of the method is described. Then, the dif-

ferent elements of the method are discussed individually in

further detail.

4.1 Overview of the method

The input of our method is a fractal image, I . It is assumed

that I is given as a rectangular colored bitmap image of

size P� Q (measured in pixels) on the compact domain

X ¼ ½a; b	 � ½c; d	 � R2. Without loss of generality, we can

consider the domain to be the unit square, that is,

a ¼ c ¼ 0, and b ¼ d ¼ 1. To be more precise, the image

is mathematically represented by a two-dimensional matrix

D of size P� Q, where each matrix element di;j is a vector

of three components, di;j ¼ ðRi;j;Gi;j;Bi;jÞ, accounting,

respectively, for the values of the red, green, and blue color

channels of the corresponding pixel (i, j) of the image.

According to the collage theorem in Sect. 3.3, there is an

IFS W, whose attractor approximates I accurately. Our

goal is to reconstruct the input image I in both geometry

and color using that IFS. Note that this task requires to

obtain the optimal number of contractive functions, N,

which was assumed to be known in our previous confer-

ence paper in [7], but it is automatically computed in this

extended version. It also requires to determine all relevant

parameters of the IFS W, that is, its IFS code. Finally, it

also requires to obtain the color map of the input figure.

This color subproblem can be solved by determining the

color of each of the N contractive maps of the IFS.

Figure 1 shows the workflow of our method. Given an

input fractal image, the procedure consists of four main

steps:

1. Firstly, color-based image clustering is carried out to

identify the main regions in the image (see Sect. 4.2 for

details).

2. Then, color histogram of each region of the cluster is

computed and the dominant color for each cluster is

extracted (see Sect. 4.3 for details).

3. Thirdly, a memetic approach hybridizing genetic

algorithms and particle swarm optimization is applied

to determine the optimal number of contractive func-

tions, the IFS code and the color map of each

contractive function via discrete and continuous opti-

mization with genetic algorithms and particle swarm

optimization (see Sect. 4.4 for details).

4. Finally, local search refinement is applied to enhance

the optimal solution found in the previous step (see

Sect. 4.5 for details).

The four steps of the method are individually discussed in

detail in next sections. For a better description of the

method, we consider an illustrative example of a colored

fractal image. The image, called Barnsley’s fern (or just

fern for short), was first proposed by Michael Barnsley in

the 1980s. It is one of the most iconic fractal images and is

often used to illustrate the ability of IFS to generate organic

shapes of high complexity. Although it consists of only
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four contractive functions, the shape is challenging for

geometric reconstruction, due to several factors: the dis-

parity of areas covered by the contractive functions, posi-

tional rotations, and others. Therefore, it is a good

benchmark to test the performance of the proposed method.

The fern image is displayed in Fig. 2 in two versions:

full color on the left and the binary version on the right.

The image has been generated with one million points

following the rendering procedure explained in Sect. 3.2

and processed as a bitmap image of size 600� 600 pixels.

The final image consists of 360,000 pixels, encoded as a

square matrix of order 600. The components of the matrix

are color vectors in RGB color map for the colored image,

and 0 s and 1 s for the binary image, corresponding to the

pixels of the fractal and the pixels of the background,

respectively. The number of active pixels (those in black in

the binary version) is 80,240, giving a filling rate (i.e.,

percentage of active pixels over the total size of the image)

of 22.28%.

4.2 Color-based image clustering of the input
image

First step of our method is to perform color-based image

clustering. The goal of this step is to identify the main

regions (with respect to the color) of the input image and

their dominant colors. In this paper, we consider two

classical methods for image clustering for which several

efficient implementations and computer libraries are

available:

1. Similar to the previous conference paper in [7], we

apply the well-known k-means method, which is based

on minimization of within-cluster variances. In partic-

ular, k-means is based on minimizing the sum of the

squared distances of each data to the cluster centroid.

Thus, given a set of data vectors x1; x2; . . .; xn, the

algorithm builds k clusters fC1;C2; . . .;Ckg as:

min
X

Eð�giÞ ¼ min
X

Pk
i¼1
P

xj2Ci
jjxj � �gijj2, where �gi

denotes the centroid of cluster Ci. The centroids are

updated iteratively from the condition: oE
o �gi
¼ 0, yield-

ing: �g
ðtþ1Þ
i ¼ 1

jCðtÞi j

P
xj2CðtÞi

xj, where t indicates the

iteration.

2. In addition, we consider a modification of the classical

Otsu algorithm for automatic image binary threshold-

ing [37], also based on the minimization of the intra-

cluster intensity variance. Since in this paper we are

dealing with colored images, we consider an imple-

mentation of the extension of the Otsu algorithm to the

case of multi-level thresholding described in [38],

which applies a recursive procedure accessing to a pre-

computed between-class variance through a look-up

table.

These methods are applied to perform image clustering

for different values of the number of clusters. The resulting

clusters are stored to be subsequently used for comparative

purposes between the initial fractal image and the recon-

structed one throughout the iterative optimization during

the next steps of our method.

It is interesting to remark that both algorithms, k-means

and Otsu algorithm, are based on the same criterion,

namely the minimization of the within-class variance.

Their main difference is that Otsu method is an exhaustive

global search algorithm, while k-means searches for the

optimal solution locally. Figure 3 shows the image clus-

tering results for the k-means method on the input colored

Fig. 2 Fractal colored image fern used in this paper in colored (left)

and binary (right) versions

Fig. 1 Workflow of the method. On the left, the different steps of the

method are shown (from top to bottom). On the right, the techniques

used for each step are indicated
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fractal image fern in Fig. 2 for different number of clusters

ranging from 2 to 9 (including background). The results for

image clustering with Otsu multi-level thresholding are

very similar visually, so they are omitted here to keep the

paper at reasonable length.

4.3 Dominant color determination for each
cluster

Once the image clustering step is carried out, color his-

togram of each cluster is computed in order to determine its

dominant color. To this aim, the pixels of each cluster are

identified and their intensity values, described as triplets in

RGB code, are stored and used to compute the histogram of

the cluster. Then, the highest peak value in the histogram is

selected to determine the dominant color of each cluster.

The output of this step is a collection of vectors

fRj;Gj;Bjgj¼1;...;N , corresponding to the dominant colors

(in RGB color code) of the N clusters. This step provides an

initial ground truth for the region colors of the original

image for comparative purposes with the potential solu-

tions of our method throughout the iterations.

4.4 IFS code optimization

This is the most critical step of the method. It applies a

hybrid approach combining genetic algorithms and particle

swarm optimization to determine the optimal number of

contractive functions and the IFS code (through PSO) and

the color map of each contractive function (through GA).

4.4.1 Genetic algorithms

Genetic algorithms (GAs) are metaheuristic search proce-

dures based on the Darwinian principles of natural evolu-

tion and natural selection. They become popular thanks to

the seminal work carried out in the 1970 s by J. Holland

[39]. Since then, they have been widely used in optimiza-

tion problems, specially in combinatorial optimization

[40].

The general structure of the genetic algorithm is shown

in Table 1. Genetic algorithms are population-based

methods that proceed iteratively by generations: at each

generation g, a GA considers a population of individuals,

where each particular individual, accounting for a potential

solution, is represented using a genetic representation. In

this work, we use a discrete representation where the

individuals Dk are vectors of Ni components (as many as

the number of contractive functions of the IFS) of the form:

Dk ¼ ðD1
k ;D

2
k ; . . .;D

Ni

k Þ where each Dj
k ¼ ðR

j
k;G

j
k;B

j
kÞ, and

the Rj
k;G

j
k;B

j
k components, accounting for the red, green,

and blue color channels, take integer values within the

range 0� 255.

Generally the initial population is selected randomly,

but some knowledge about the specific problem can also be

embedded into the initial population with the aim at

improving the convergence speed. Since in our case no

prior knowledge about the problem is assumed, the indi-

viduals for the genetic algorithm are initialized with ran-

dom values taken from an integer uniform distribution on

the range 0� 255 for each color component.

A critical aspect in many GA applications is the size of

this initial population, denoted onwards as NGA. If it is too

small, the algorithm could converge too quickly, while if it

is too large the algorithm could waste valuable computa-

tional resources. The population size is often chosen to be

constant, although GA with dynamic population size are

also possible [42]. In this paper, we consider a fixed pop-

ulation of NGA ¼ 100 individuals.

Each one of the potential solutions must be evaluated by

using a fitness function; the result of this evaluation is

typically understood as a measure of the adaptation for

each individual, which is, in turn, a measure of the good-

ness of the solution for the given optimization problem. For

the color optimization subproblem addressed in this work

with genetic algorithms, we consider the normalized RGB

color difference error, C, given by:

CðI o; I rÞ ¼
1

3Nl

XNl

i¼1

�
jRi

o �Ri
rj þ jGi

o � Gi
rj þ jBi

o � Bi
rj

255

�" #

ð7Þ

where ðRi
o;G

i
o;B

i
oÞ and ðRi

r;G
i
r;B

i
rÞ are the RGB color

channels of the contractive functions of the original and the

reconstructed images, respectively, and Nl indicates the

number of contractive functions of the optimal solution

found by the method.

After the initialization step, the evolution process in

genetic algorithms works iteratively: at each iteration new

populations are obtained using a selection process, based

on the Darwinian concept of individual adaptation. This

selection process is repeated over the generations and the

selected individuals form the new population. In this work,

the selection operator is implemented as a biased roulette

wheel with slots weighted proportionally to the individual

fitness values. Then, some genetic operators (crossover and

mutation) are applied onto the new population [40, 43].

The individuals exhibiting the best adaptation measure

increase their chance of reproducing and generating new

individuals through crossover and mutation. These genetic

operators are driven by some parameters, as listed in

Table 2.

The crossover operator generates two new individuals

(offsprings) by combination of different parts from two
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selected individuals of the population. In this work, we

consider a two-point crossover operator that, with proba-

bility pc, selects two random chromosomes of two indi-

viduals and then swaps the values of the parent

chromosomes to produce the two new offsprings. A good

performance of the GA requires the choice of a high

crossover probability, in order to promote the diversity of

the population. This will enhance the exploratory ability of

the population, covering larger regions of the search space.

We noticed that our crossover procedure can introduce

strong perturbations to the individuals of the population

even if they are close the convergence. To alleviate this

effect, we store not only the new offsprings but also their

parents, so that the population is temporarily increased.

Then, the best individuals (as many as the GA population

size, NGA) are selected based on their individual fitness,

while the rest of the population is rejected and, hence, not

preserved for the next generation. This elitist strategy

attenuates the effect of the crossover operator, while still

promoting population diversity and the ability to explore

regions of the search space far from the current best

solutions.

Finally, a mutation operator is applied. It generates, with

a given probability, pm, a new individual by a small change

in a single individual. The mutation operator guarantees

that all the search space has a nonzero probability of being

explored, by increasing further the diversity of the popu-

lation. A good GA performance requires the choice of a

low mutation probability (often taken inversely propor-

tional to the population size). In our work, the mutation

operator picks a random component of the individual, xj
and modifies it as xj  xj 
 ms, with ms called the muta-

tion strength, and where the positive or negative sign is

randomly chosen with the same probability.

Table 1 General structure of the

genetic algorithm (modified

from [41])

begin

Let g=0 be the generation counter

Create and initialize a population, Popð0Þ ¼ fx1ð0Þ; x2ð0Þ; . . .; xpð0Þg
repeat

Evaluate the fitness, f ðxiðgÞÞ, of each individual xi of Pop (g)

Select individuals from Pop (g)

Apply crossover operator with probability pc to produce offspring

Apply mutation operator with probability pm on offspring

Set population of new generation Popðgþ 1Þ
Advance to the new generation g ¼ gþ 1

until stopping condition is true

end

Fig. 3 k-means clustering results of the image in Fig. 2(left) for different number of clusters (left-right, top-bottom) ranging from 2 to 9

(including background)
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This procedure is repeated through successive genera-

tions until a termination condition is reached. Common

terminating criteria are: (1) that a solution is found satis-

fying a lower threshold value; (2) that a fixed number of

generations are reached; or (3) that successive iterations no

longer produce better results. However, depending on the

given problem, other criteria can be set up. In our case, the

termination criterion is that no further improvement is

attained after 10 consecutive generations.

4.4.2 Particle swarm optimization

Particle Swarm Optimization (PSO) is a highly popular

bio-inspired metaheuristic technique for real-valued opti-

mization problems. The original PSO algorithm was first

proposed by Kennedy and Eberhart in 1995 [44]. Many

other variants from this original procedure have been

proposed [45]. The interested reader is referred to [46] for

further details. See also [47] for a nice computational

approach of the PSO and its variants.

In the PSO algorithm, an initial population of potential

solutions (called particles) are distributed (uniformly in the

general case) over the search space; then, they are provided

with an initial velocity and the capacity to communicate

the best positions to each other and adjust their own

position and velocity based on these optimal positions. In

this work, we consider a population size NPSO of 100

particles. The particles W i, representing the IFS, follow a

continuous representation given by vectors of Ni compo-

nents (as many as the number of contractive functions of

the IFS), of the form:

W i ¼ ð/1
i ;/

2
i ; . . .;/

Ni
i Þ ð8Þ

where each /j
i ¼ ða

j
i; b

j
i; c

j
i; d

j
i; e

j
i; f

j
i Þ, i.e., the IFS parame-

ters of the corresponding contractive function /j
i. Without

loss of generality, we can assume that the parameters

aji; b
j
i; c

j
i; d

j
i ; e

j
i; f

j
i take real values on the interval (0, 1].

However, since the functions /j
i must be contractive, the

following constraints must hold:

aji
� �2þ cji

� �2
\1

bji
� �2þ dji

� �2
\1

aji
� �2þ bji

� �2þ cji
� �2þ dji

� �2
\1þ aji:d

j
i � bji:c

j
i

� �2

8>>><
>>>:

ð9Þ

These conditions are to be checked at every iteration step t.
Note that the length of each individual W i is Ni, which

can be different from one IFS to another. In other words,

different to our previous conference paper, we do not

consider an initial value for the number of contractive

functions of the IFS. Instead, Ni is a dynamic variable that

changes over the iterations according to the best fitness

value at each iteration. In this way, the method is able to

compute automatically the optimal number of contractive

functions for any input fractal image. In this work, Ni is

initialized randomly between 2 and 10, although larger

values are also supported in our approach without further

modification.

Similar to genetic algorithms, the dynamics of the

population is considered along successive iterations. The

evolution of the particle i is determined by two memory

factors: the memory of their own best position, and

knowledge of the global best. For the first main factor, we

collect the coordinates Pb
i associated with the best solution

(according to a given fitness function f) it has achieved so

far along with the corresponding fitness value, f ðPb
i Þ. For

the second main factor, we also store the position, Pb
g, and

the best fitness value, f ðPb
gÞ, among all the particles in the

population from the initial iteration. This global informa-

tion is used to modify the position and velocity of each

particle i according to the following evolution equations:

Table 2 Parameters of the genetic algorithm and values used in this

paper

Symbol Meaning Used value

NGA Population size 100

pc Crossover probability 0.9

pm Mutation probability 0.1

ms Mutation strength 40
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Viðt þ 1Þ ¼ wViðtÞ
þ c1R1 ½Pb

gðtÞ � PiðtÞ	 þ c2R2 ½Pb
i ðtÞ � PiðtÞ	

ð10Þ

Piðt þ 1Þ ¼ PiðtÞ þ ViðtÞ ð11Þ

where PiðtÞ and ViðtÞ are the position and the velocity of

particle i at time t, respectively, w is the inertia weight

which defines how much the old velocity will affect the

new one, and the coefficients c1 and c2 are constant values
called learning factors, defining the level of affection of Pb

g

and Pb
i . To be more precise, c1 is a weight accounting for

the ‘‘social‘‘ or ‘‘global’’ component of the swarm, while c2
represents the ‘‘cognitive‘‘ or ‘‘personal’’ component,

accounting for the memory of the individual particle i

along the time. Two random numbers, R1 and R2, following

a uniform distribution on the unit interval [0, 1], are

included to diversify the search.

The PSO is used in this work to compute the optimal

number of contractive functions and their IFS code. To this

purpose, the fitness function computes the distance

between the attractor of the reconstructed IFS and the input

image. Since the input consists of 2D bitmap images given

as a collection of pixels, the most natural choice would be

the Hausdorff distance, given by Eq. (2). However, this

metric is very computational expensive. Even worse, it

may become unreliable for this problem, as it might

identify as similar images that are different in terms of their

geometry. For these reasons, other similarity functions

have been proposed in the literature [25, 30, 32]. In this

paper, we consider two of them, described in next

paragraphs.

The first one is given by the Hamming distance, which

has already been used in our previous conference paper in

[7]. To compute this distance, we consider the binarized

version of the original and the reconstructed images,

denoted as IB
o and IB

r , respectively, with the same size

p� q, and compute the Hamming similarity error, SH,

given by:

SHðIB
o ; I

B
r Þ ¼ e

1

p� q

Xp
x¼1

Xq
y¼1

IB
o ðx; yÞ � IB

r ðx; yÞ
�� �� ð12Þ

with IB
j ðx; yÞ indicating the binary value of the pixel (x, y)

of IB
j . Note that SHðIB

o ; I
B
r Þ computes the number of

mismatched pixels between both images. Therefore, values

of SHðIB
o ; I

B
r Þ close to 0 mean that the images are very

similar, indicating a very good geometrical reconstruction,

while values close to 1 mean that both images are very

different, a clear indication of poor reconstruction.

The second fitness function is the intersection similarity

function, S#p
, given by:

S#p
ðIB

o ; I
B
r Þ ¼

#pðIB
o \ IB

r Þ
#pðIB

o [ IB
r Þ

ð13Þ

where #pð:Þ represents the number of active pixels of the

image, that is, those displayed in black in the binarized

version of the image; see, for instance, Fig. 2(right). In this

case, values of this function close to 1 indicate very good

matching, with the limit case for value 1, which corre-

sponds to a perfect matching between the union and

intersection of both images. The opposite applies for values

approaching to 0.

The PSO also comes with some parameters, as shown in

Table 3. The most critical parameters might be the social

and cognitive factors. However, in our trials, we did not

notice significant differences in the final results, only in the

CPU times. We finally set them to 2.0, values that show a

good behavior toward convergence, according to some

theoretical studies. About the inertia weight, although it

can be taken constant, some studies suggest that it is better

to modify it dynamically over the time [48]. Initially, a

relatively high value is generally considered, correspond-

ing to a system with low viscosity so that the swarm per-

forms extensive exploration. Then, the value is gradually

decreased until a small value the system corresponding to a

dissipative system where the swarm is better at homing into

local optima. This is also the strategy taken in this paper:

starting with a value w ¼ 0:9, it is gradually decreased by

0.05 every 100 iterations.

This PSO algorithm is sketched in the pseudocode

shown below. The procedure is repeated iteratively, and the

solutions are evaluated at each iteration according to the

similarity function given by Eq. (12) until a termination

condition is reached. Once the method ends, the best par-

ticle of the swarm at the last iteration is taken as the best

solution of the optimization problem.

Table 3 Parameters of the particle swarm optimization method and

values used in this paper

Symbol Meaning Used value

NPSO Population size 100

c1 Global factor 2.0

c2 Cognitive factor 2.0

w Inertia weight Linearly decreasing from 0.9
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4.4.3 Hybridization of GA and PSO

Despite their remarkable features, genetic algorithms and

particle swarm optimization also have some important

limitations. For instance, PSO suffers from premature

convergence (particles in PSO can get stuck in local min-

ima or confined within a poor region of the search space).

At its turn, genetic algorithms suffer from memory loss

(whenever an individual in GA is not selected, its infor-

mation is lost). Both are also affected by parameter tuning.

In this context, the underlying idea of hybridization is to

take advantage of their individual strengths to improve

their performance while simultaneously overcoming its

main limitations. In fact, hybrid evolutionary systems

based on GA and PSO have been extensively used so far,

with a number of papers showing that they outperform their

individual components for several optimization problems

(a brief discussion of several hybrid approaches can be

found in [50] and references within).

In the particular case of this paper, GA and PSO are

used to deal with the subproblems of dominant color

optimization and IFS parameter optimization, respectively.

Note that the color problem is discrete in nature, leading to

a discrete optimization problem, where GA is a very suit-

able approach. On the contrary, the IFS parameters are

real-valued, so their optimization is more suited for a

continuous optimizer such as PSO. There is another

important reason to consider hybrid schemes in this paper.

The reconstruction of colored fractal images with IFS is

affected by the fact that the computation of the IFS

parameters and the color of each contractive function are

strongly intertwined in a highly nonlinear way. Modifying

the IFS parameters changes the contractive functions,

which in turn modifies the attractor of the image and hence

its colors. In order to match the new colors of the image

again, new computations have to be carried out, which

modify the IFS parameters, and so on.

In order to solve this problem, we consider a hybrid

approach already used in the past to solve a different
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problem in another field but with similar characteristics of

nonlinear interplay between sets of free variables [50]. The

method, called IMCH GAPSO (standing for Iterative

Mutually Coupled Hybrid GA-PSO), is based on the idea

that GA and PSO are mutually coupled, in the sense that

the output of one system is used as the input of the other

and vice versa. This coupling is then repeated iteratively

until a termination criterion is attained. In particular, the

GA is applied to optimize the color values of the con-

tractive functions of the IFS, as explained in Sect. 4.4.1.

Once a value for them is obtained, this input is injected into

the PSO to determine the optimal IFS parameters with such

colors, as described in Sect. 4.4.2. Once the PSO is exe-

cuted, the fitness of the new particles along with the colors

obtained from the GA is evaluated according to the global

fitness function:

FðI 0; I rÞ ¼ aSHðI 0; I rÞ þ ð1� aÞ ½1� CðI 0; I rÞ	
ð14Þ

where a is a scalar factor taking values on the interval

(0, 1). Equation (14) is a convex combination of the fitness

functions associated with the two subproblems of this

paper. In this sense, it extends the global fitness function in

our previous conference paper [7], where we took a ¼ 0:5.

This time, we carried out several simulations for different

values of a varying from 0.1 to 0.9 with step size 0.1. From

them, we found empirically that a ¼ 0:7 provides the best

results in terms of accuracy and CPU times, so this is the

value selected in this paper. The corresponding solutions

are then ranked according to their fitness values and the

process is started again with a new round of executions for

the GA, then the PSO, and so on. This process is repeated

for a given number of iterations, for which convergence has

already been achieved. This number is set to 12,000 iter-

ations in this paper.

4.5 Solution refinement through local search

Once the best solution is obtained through the IMCH GA-

PSO method described in the previous section, it is com-

bined with a local search procedure with the aim at

improving its accuracy even further. In this paper, we

consider two local search heuristics to intensify the search

in the neighborhood of the global optima. The first pro-

cedure is the Luus–Jaakola local search procedure, which is

a popular heuristic for nonlinear programming problems

[51]. In this method, an initialization step is performed,

where random uniform values are sampled for each com-

ponent. These random values are added to the current

values of the obtained solution to generate a new candidate

solution, which replaces the current one in case of

improvement of the fitness value. Otherwise, the sampling

space is multiplicatively decreased by a factor, which can

be assumed to be constant. This process is repeated itera-

tively. With each iteration, the neighborhood of the point

decreases, and the search is increasingly limited to a

smaller area until a termination criterion is reached.

The second local search procedure is called MADS (s-

tanding for Mesh Adaptive Search algorithm). It is a direct

search method originally proposed by Audet and Dennis in

[52] for nonlinear optimization. A great advantage of this

method is that it extends the family of search methods

known as generalized pattern search by allowing local

exploration in an asymptotically dense set of directions in

the space of optimization variables. In other words, the

local exploration of variables is no longer restricted to a

finite number of directions, making MADS less restrictive

for exploration of the search space than the classical pattern

search methods. In this paper, we follow the implementa-

tion described in [53]. The reader is kindly referred there

for further details.

The local search heuristics is run for 1,000 additional

iterations during the local refinement step to further

improve the quality of the solution. This scheme has shown

to be very effective for the problem addressed in this paper,

as it will be discussed in the next section.

5 Computational experiments and results

This section presents the main results obtained for the IFS

image reconstruction problem of the fern fractal image in

Fig. 2. Firstly, the graphical results are discussed. Then, the

numerical results are presented and analyzed.

5.1 Graphical results

Figures 4, 5, 6, 7 and 8 show the evolution of the best

solution of the population for the 13,000 iterations of our

method with step-size 250, starting with a random initial

image. Each picture in those images is comprised of two

parts: on the left, the colored attractor of the best IFS is

depicted, where the color of each contractive map is

determined by the genetic algorithm and the geometry by

the PSO; on the right, this colored attractor is combined

with the target image (in black) superimposed on the

attractor for easier and prompt visualization of the differ-

ence between both images. The images are also part of two

QuickTime videos: Video1.mov (length: 110 s; size: 10.5

MB) and Video2.mov (length: 158 s; size: 13.9 MB), sub-

mitted as accompanying material of this paper.

The first image in Fig. 4(top-left) corresponds to one of

the 100 random images generated for the initial population

of the method. As clearly shown in this picture, the initial

random image is extremely different to the input image. As
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shown in the sequence of images in Figs. 4, 5, 6, 7 and 8,

the application of our method makes the best solution to get

closer to the target image over the iterations, until reaching

a very good approximation of the input image at the last

iterations. This convergence process is not visually obvious

at the earlier iterations, as the strong nonlinear interplay

between the color and the geometry can yield solutions that

that might look worse than the previous ones from a visual

point of view, either in terms of geometry or in terms of the

intended color. On the other hand, we recall that the

number of contractive maps of the IFS changes dynami-

cally over the iterations. And since each contractive map is

Fig. 4 (l-r, t-b) Evolution of the best solution for 0 to 2,250 iterations (step-size 250)
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associated with one color, this can make new colors appear

during the iterative process. During our simulations, we

noticed that the number of contractive functions of the

partial best solutions typically tends to vary from 3 (the

lowest value found in our simulations) to 10 (the largest

one). For instance, the reader can see that a new blue color

appears in the transition between the left and the right

images of the second row of Fig. 4, indicating that a new

contractive function has been added by the method. This

new function disappears in the first row of Fig. 5, an

indication that a contractive map has been removed from

the IFS. New functions are automatically added or removed

Fig. 5 (l-r, t-b) Evolution of the best solution for 2,500 to 4,750 iterations (step-size 250)
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by the method according to the fitness values all over the

iterative process. Anytime a new contractive map is added,

a new color is automatically assigned to the map by the

genetic algorithm. That is the reason that explains why we

can see different variations of the color palette throughout

Figs. 4, 5, 6, 7 and 8.

In addition to our primary geometry-based fitness

function, the Hamming similarity error, in this paper we

also consider the intersection similarity function, as given

Fig. 6 (l-r, t-b) Evolution of the population best for 5,000 to 7,250 iterations (step-size 250)
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by Eq. (13). This fitness function requires to compute the

intersection and the union of the original and the recon-

structed images. Figures 9, 10, 11, 12 and 13 (left-right,

top-bottom) show the evolution of the intersection (on the

left) and the union (on the right) sets of the input and the

reconstructed fractal images of the fern example for the

13,000 iterations with step-size 250. Note the remarkable

difference between the intersection and the union sets at

early stages of the method. This difference is visually

decreasing over the iterations, and the global shape of the

Fig. 7 (l-r, t-b) Evolution of the population best for 7,500 to 9,750 iterations (step-size 250)
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bFig. 8 (l-r, t-b) Evolution of the population best for 10,000 to 12,750 iterations (step-size 250)
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target fractal image becomes more recognizable at later

stages of the procedure. Two additional QuickTime videos:

Video3.mov (length: 158 s; size: 8.7 MB) and Video4.mov

(length: 158 s; size: 7.6 MB), showing, respectively, the

evolution of the intersection and the union sets for our

Fig. 9 (l-r, t-b) Intersection (left) and union (right) sets of the input and approximating fractal images of the bush example for 0 to 2,250

iterations (step-size 250)
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example, are also submitted as accompanying material of

the paper.

Figure 14 summarizes the graphical results of the global

best of our method for the fern example in this paper. The

top row shows the reconstructed colored image (on the

left). A simple visual comparison with the original image

in Fig. 2(left) shows that the proposed method performs

very well, since the final reconstructed image is very

Fig. 10 (l-r, t-b) Intersection (left) and union (right) sets of the input and approximating fractal images of the bush example for 2,500 to 4,750

iterations (step-size 250)
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similar visually to the target one. The image in Fig. 14(top-

right) shows the superposition of the original image (in

black) and the reconstructed image (in full color behind)

for easier visual comparison. The fact that the colors of the

reconstructed image in the background can barely be seen

(as they are hidden by the original image in black in the

Fig. 11 (l-r, t-b) Intersection (left) and union (right) sets of the input and approximating fractal images of the bush example for 5,000 to 7,250

iterations (step-size 250)

Neural Computing and Applications

123



foreground) is a clear indication of the high accuracy of the

geometric reconstruction. As a further evidence, the bottom

row of Fig. 14 shows the intersection (left) and union

(right) of the original and the reconstructed fractal images.

Note that both images look quite similar, albeit not iden-

tical. The ground truth image is obviously in-between.

These graphical results show that the method is able to

Fig. 12 (l-r, t-b) Intersection (left) and union (right) sets of the input and the approximating fractal images of the bush example for 7,500 to

9,750 iterations (step-size 250)
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capture successfully all major features of the input image,

even although it has a complicated and irregular shape.

Figure 15 summarizes the graphical results regarding

the reconstruction of color with our method. The fig-

ure shows the histogram of the original fractal image (left)

and the reconstructed image (right), with the three color

channels displayed individually (top) and combined with

transparent colors for better visualization (bottom). Once

again, the visual results show that the method performs

very well: both histograms look very similar, although the

matching is not perfect. The difference is more noticeable

for the blue color channel, corresponding to the bottom

rightmost areas of the fractal image, where the geometric

matching is less accurate. Yet, in our opinion the results are

quite impressive. To the best of our knowledge, there is no

method reported in the literature even attempting to address

this problem, much less getting this high accuracy results.

5.2 Numerical results

The good graphical results described in previous section

have been confirmed by the numerical results. Table 4

summarizes the main results obtained for the example in

this paper. It shows the results obtained for the global best

solution for the 13,000 iterations with step-size 1,000 (in

rows). The following data are shown (in columns):

bFig. 13 (l-r, t-b) Intersection (left) and union (right) sets of the input

and the approximating fractal images of the bush example for 10,000

to 12,750 iterations (step-size 250)

Fig. 14 Summary of the

graphical results: (top-left)

reconstructed colored image

(compare it with the original

one in Fig. 2(left)); (top-right)

superposition of the original (in

black) and the reconstructed (in

color) images for visual

comparison; (bottom)

intersection (left) and union

(right) of the original and the

reconstructed fractal images
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• Number of iterations, iter;

• Number of contractive maps, N, of the best solution at

generation iter;

• Number of mismatched pixels between the recon-

structed and the original images;

• Ratio of mismatches with respect to the active pixels of

the image;

• Number of pixels in the intersection of the recon-

structed and the original images;

• Number of pixels in the union of the reconstructed and

the original images;

• Ratio between the number of pixels in the intersection

and the union;

• Ratio between the number of pixels in the intersection

and the number of active pixels of the image.

The most important conclusion from Table 4 is the excel-

lent behavior of the method in terms of the geometric

accuracy and its predictive capacity. Taking a look at the

last row of the table, which displays the final results of the

method, we can see that the method is able to recover the

optimal number of contractive functions of the input

image, which is N ¼ 4, even although this datum is never

used in our method. On the other hand, there are only

18,445 different pixels between the original and the

reconstructed images, a ratio of only 22.98% of the total

pixels of the image. Also, we remark that the number of

pixels in the intersection and in the union is very close to

the actual number of pixels of the target image, which is

obviously between them. The disparity of these values is

less than 10,000 pixels, a remarkable error of less than the

13%. Finally, the percentage of pixels in the intersection is

Fig. 15 Histogram of the original fractal image (left) and the reconstructed fractal image (right), with the three color channels displayed

individually (top) and combined with transparent colors (bottom)

Table 4 Numerical results of

our method for the fern fractal

example

iter N 6¼pix 6¼pix (ratio) pix (int.) pix (union) int./union (ratio) int./input (ratio)

0 5 119,509 1.4893 46,686 166,195 0.2809 0.5818

1,000 6 72,039 0.8977 53,033 125,073 0.4240 0.6609

2,000 6 57,947 0.7221 54,429 122,376 0.4843 0.6783

3,000 5 65,708 0.8188 43,746 109,454 0.3996 0.5451

4,000 7 66,198 0.8251 45,405 111,602 0.4168 0.5759

5,000 7 55,422 0.6907 55,571 110,993 0.5006 0.6925

6,000 5 64,998 0.8100 33,175 98,173 0.3379 0.4134

7,000 4 58,494 0.7289 39,796 98,290 0.4048 0.4959

8,000 4 67,990 0.8473 44,844 112,834 0.3974 0.5588

9,000 4 58,233 0.7257 39,609 97,842 0.4048 0.4936

10,000 4 60,547 0.7545 46,869 107,416 0.4363 0.5841

11,000 4 52,325 0.6521 49,585 101,910 0.4865 0.6179

12,000 4 40,335 0.5026 57,000 97,335 0.5856 0.7103

13,000 4 18,445 0.2298 70,164 88,609 0.7918 0.8744
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larger than 87%, a clear indication of an excellent match-

ing. We are unaware of any paper reporting numerical

results with this high level of accuracy, even when con-

sidering methods focused exclusively on binary images

without any color.

Table 4 provides other interesting information about the

previous graphical results. The second column shows that

the method is able to determine automatically the optimal

number of contractive maps over the iterations. Note also

that the value of N in the table changes from 4 to 7 over the

generations. In addition, the values of N change even fur-

ther over the population, taking values from 3 to 10, but

these values do not appear in the table as they correspond

to suboptimal solutions, while the table only shows the best

solution for each iteration value. Also, it is interesting to

remark that due to the interplay between the geometry and

the color, it may happen that changing the number of

contractive functions does not necessarily lead to an

improvement of the geometric matching between the

original and the reconstructed images. For instance, the

numerical results are better for 2,000 iterations than for

3,000 or 4,000. However, this tells us only a part of the

story, because the higher matching for 2,000 iterations is

obtained by using contractive functions covering large

areas, with a total of 122, 376 pixels for the union and only

54, 429 for the intersection. It is obvious that if we

approximate the original image with other covering all its

area in excess, we recover most of the pixels of the target

image, but at the cost of adding many wrong pixels in

excess to the image. This is exactly what happens here.

These situations are allowed in our method in order to

prevent the method from getting stuck in local optima and

to increase the exploratory ability of the method, searching

for more promising areas of the search space.

5.3 Computational issues

The computations in this work have been performed on a

personal computer with 5.2 GHz Intel Core i9-11900 pro-

cessor with 32 GB of RAM and graphical card Nvidia

Quadro P620 2 Gb GDDR5X. The source code has been

implemented by the authors in the native programming

language of the popular scientific program MATLAB ver-

sion 2021b and using the numerical libraries for fractals in

[54, 55]. The clustering procedure has been run on Math-

ematica using source code adapted by the authors from

public libraries for image processing and computer vision.

The videos have been generated by the authors using the

iLife suite by Apple. Regarding the time complexity of the

method, taken into account our choices for the genetic

operators of selection (roulette wheel), two-point crossover

and one-point mutation, the genetic algorithm complexity

is O(g:NGA:Ni), with g the number of generations. For the

PSO, using our constant values for the social and cognitive

factors and a linear variation of the inertia weight, the

complexity is O(T :NGA:Ni) with T the number of iterations.

6 Conclusions and future work

This paper is an extension of a previous conference paper

in [7] to address the problem of fractal image reconstruc-

tion for colored images through IFS in a fully automatic

way. Given a colored fractal image, the goal is to obtain the

IFS parameters and the color map of each contractive

function automatically so that the input image can be

accurately replicated not only in terms of its geometry but

also its color, without any knowledge about the input

fractal image beyond the input bitmap image. This work

presents a method to address this issue based on four steps:

image clustering, color determination, IFS code optimiza-

tion, and local search refinement. The optimization task is

solved through a hybrid method combining GA and PSO to

compute the color of the contractive functions, and the

optimal number of contractive functions and their IFS

parameters, respectively. The GA and PSO algorithms are

mutually coupled so that the input of each method is

injected as input for the other, in an iterative fashion until

convergence is achieved.

This new method has been applied to a popular yet chal-

lenging example of fractal image. The graphical and

numerical results clearly show that themethod performs very

well, leading to excellent reconstruction results for both the

geometry and the color. To the best of our knowledge, no

other method has ever attempted to solve automatically the

fractal image reconstruction problem with IFS for colored

images, a clear evidence of the originality and contribution

of this work. In this context, the present work opens the door

for future developments in this field.

This work has also some limitations. The most noticeable

is that only one example of fractal image is presented, raising

a reasonable open question about the generality of this work.

We have performed some trials on other examples and found

that the method is also able to provide very good results,

which could lead to a positive answer to this generality

question. Unfortunately, we have had no time to finish all our

simulations for the submission deadline of this special issue,

and hence, these other examples are not included here. Of

course, it would be great to include other images in the

benchmark, but getting the results for this example has been

an intensive work, requiring several days in simulations and

data analysis. And this leads to what is, in our opinion, the

most critical aspect of this method: the computational times.

The method, as exposed above, provides a high degree of
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accuracy at the expense of very large computational times. A

typical execution of the method as described for the fern

example takes tens of hours for a single run on a powerful

personal computer. Given the stochastic nature of the

metaheuristic techniques, several executions must be carried

out in order to suppress spurious behaviors and obtain reli-

able results, which means that, unless you have a computer

farm at your disposal (not certainly the authors’ case), you

must be ready for weeks of extensive computations. Clearly,

the computational speed is still a challenge for this method.

However, our focus in this work is not on computational

speed, but on accuracy. Since nomethod has been reported so

far in the literature to solve this problem, we wanted to

confirm the feasibility of our approach to yield accurate

results regardless of the computational effort, sowe accepted

the challenge and are extremely satisfied with the (arguably)

impressive results. Given this pioneering nature, we have

prioritized its precision over any other factor of the problem.

But this large CPU time must be taken into account as a

limiting factor of the method.

Once we show that the method performs well, our next

focal point goes to the limitations of themethod and how they

can be improved. We are working now on ideas and new

procedures to alleviate the computational load and decrease

the computational times. One possibility could be to identify

more efficient clusteringmethods for the color determination

subproblem. Other line of research might be to proposemore

efficient fitness functions for this problem. These ideas will

be part of our plans for future work in the field.
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supplementary material available at https://doi.org/10.1007/s00521-
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20. Lutton E,Véhel JL, Cretin G, Glevarec P, Roll C (1995) Mixed

IFS - resolution of the inverse problem using genetic program-

ming. INRIA Rapport 2631

21. Nettleton DJ, Garigliano R (1994) Evolutionary algorithms and a

fractal inverse problem. Biosystems 33:221–231

22. Wu MS, Teng WC, Jeng JH, Hsieh JG (2006) Spatial correlation

genetic algorithm for fractal image compression. Chaos Solitons

Fractals 28(2):497–510

23. Wu MS, Jeng JH, Hsieh JG (2007) Schema genetic algorithm for

fractal image compression. Eng Appl Artif Intell 20:531–538

24. Yuan WX, Ping LF, Guo WS (2009) Fractal image compression

based on spatial correlation and hybrid genetic algorithm. J Vis

Commun Image R 20:505–510

25. Dasgupta D, Hernandez G, Niño F (2000) An evolutionary

algorithm for fractal coding of binary images. IEEE Trans Evolut

Comput 4(2):172–181

26. Evans AK, Turner MJ (1998) Specialisation of evolutionary

algorithms and data structures for the IFS inverse problem. In:

M.J. Turner (Ed.). In: Proceedings of the second IMA conference

on image processing: mathematical methods, algorithms, and

applications

27. Shonkwiler R, Mendivil F, Deliu A (1991) Genetic algorithms for

the 1-D fractal inverse problem. In: Proceedings of the fourth

international conference on genetic algorithms, Morgan Kauf-

mann, pp. 495–501

28. Muruganandham A, Wahida RSD (2010) Adaptive fractal image

compression using PSO. Proc Comput Sci 1:338–344

29. Tseng CC, Hsieh JG, Jeng JH (2008) Fractal image compression

using visual-based particle swarm optimization. Image Vis

Comput 26:1154–1162

30. Gálvez A, Iglesias A (2019) Modified bat algorithm with local

search for fractal image compression of bitmap images. In: Pro-

ceedings of international conference on cyberworlds, CW 2019,

IEEE Computer Society Press, Los Alamitos, CA, pp. 199–206

31. Gálvez A, Iglesias A (2019) Modified memetic self-adaptive

firefly algorithm for 2D fractal image reconstruction. In: Pro-

ceedings of IEEE 42nd annual computer software & applications

conference, IEEE-COMPSAC 2019. Tokyo (Japan), IEEE,

pp. 165–170

32. Gálvez A, Iglesias A, Dı́az JA, Fister I, López J, Fister I (2021)
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