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High-resolution imaging is of great importance in var-
ious fields. The use of pupil phase-only filters (PPF) 
exceeds the diffraction limit of the imaging system in a 
simple way. When dealing with distorted wavefronts, 
however, PPF require that aberrations be compensated 
for. In this paper, we introduce a novel technique con-
sisting in the use of discrete adaptive optics with PPFs 
so that the compensating device implements the PPF at 
the same time. Analysis of the theory for point spread 
function reshaping using PPFs has enabled us to de-
velop a new approach to characterizing apodizing filters. 
A validation experiment has been carried out, the first of 
its kind to our knowledge, in which a number of PPFs 
were combined with two levels of compensation. Our 
experimental results are discussed. © 2023 Optica Publishing 
Group

http://dx.doi.org/

Reshaping an instrument’s point spread function (PSF) is a
technique applied in various fields such as microscopy [1, 2],
medical ultrasound [3], optical trapping [4], lithography [5], data
storage [6] and astronomy [7, 8]. An easy way to reshape the
instrument PSF is through the use of pupil filters [9–12]. We
focus specifically on pupil phase-only filters (PPFs) since they
do not absorb energy. We pay particular attention to binary
phase-only filters with phase values 0 and π, since they are sim-
ple to calculate and implement, do not produce focus shift along
the system’s optical axis and perform fairly well [13]. In two
zone binary filters, it is sufficient to modify the border radius
to change the shape of the PSF central peak; that is, to obtain a
super-resolved or apodized PSF. We use figures of merit, such as
Strehl ratio (S), and the axial and transverse gain, to estimate the
binary PPF efficiency. So far, these figures have been obtained
analytically by using a parabolic approximation of the PSF core
[13]. This approach is effective for describing super-resolution
but not for apodization, so our first goal is to introduce a new
theoretical approach to design apodizing filters. The main draw-
back when dealing with distorted wavefronts is that PPFs are
not effective unless the wavefront has been corrected to achieve

a Strehl ratio of 0.25 [14]. This condition requires the help of
an adaptive optics (AO) system. The second goal of our paper
is to show that performing the PPF and compensation simulta-
neously is as effective as using an AO system together with an
additional separate system to create the PPF. It is also much sim-
pler and cheaper. The final goal of this paper is to demonstrate
that the use of discrete AO (DAO) [15, 16] is particularly advan-
tageous for reproducing the PPF and the compensating phase
screen (CPS) at the same time. The use of a deformable mirror
(DM) in standard AO has certain drawbacks for CPS generation
such as the limited dynamic range, the low spatial sampling and
the influence function (particularly important in binary PPF).
However, the use of a spatial light modulator (SLM), as in DAO,
easily surmounts these limitations. Moreover, SLM behaves
quite well in broadband.[17] DAO techniques have several addi-
tional advantages over AO: they are based on a point diffraction
interferometer (PDI) wavefront sensor that is easy to manufac-
ture and implement, no algorithm is needed to reconstruct the
wavefront surface and the dynamic range is almost infinite. Fi-
nally, note that combining super-resolving or apodizing PPF
with discrete CPS for aberration compensation is quite simple
because both share the same set of discrete phase values.

We provide experimental validation for the binary and qua-
ternary cases of DAO. In the laboratory set-up we used a de-
formable mirror to distort the incoming wavefront and a SLM to
compensate for the distortion while at the same time introduc-
ing a PPF. This is the first time that such experiments have been
carried out. The results confirm the feasibility of our proposal.

To estimate PPF efficiency, various figures of merit that char-
acterize the PSF must be used. So far, these figures have been
obtained analytically for binary PPFs from the filter zone radii by
using a parabolic approximation to the PSF core [13]. However,
we show that this approach is effective for describing super-
resolution but not for apodization, so we derive a new theo-
retical approach in order to obtain useful figures of merit for
designing apodizing filters. We pay attention to the Strehl ratio
S, which compares the height of the central core with that of
the unobstructed pupil, and to the transverse gain factor GT
(defined as in [13]), which gives a measure of the apodization
or super-resolution performance in the transverse direction in
the focal plane. Both are normalized so that they are equal to
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unity for the unobstructed pupil. A filter is considered to be
super-resolving when GT is greater than unity and apodizing
in the opposite case. Our objective is to derive expressions for
these figures of merit within the framework of scalar diffrac-
tion theory. Let us consider a general complex pupil function
P(ρ)=A(ρ)eiϕ(ρ), where ρ is the normalized radial coordinate over
the pupil plane, A(ρ) is the amplitude transmittance function
and ϕ(ρ) is the phase function. For a converging monochromatic
spherical wave front passing through the center of the pupil, the
normalized field amplitudeU in the focal plane may be written
as:

U(ν) = 2
∫ 1

0
P(ρ)J0(νρ)ρdρ (1)

where Jn represents a Bessel function of the first kind (0th order
in this case), ν is the radial dimensionless optical coordinate in
the focal plane given by ν = k NA r with k = 2π/λ, NA is
the numerical aperture of the pupil, and r is the usual radial
distance. In order to derive analytical expressions for the figures
of merit, the field distribution in Eq. 1 is expanded in series near
the geometrical focus based on moments of the pupil function,
In [13]:

In = 2
∫ 1

0
P(ρ)ρ2n+1dρ (2)

Within a second-order approximation of the intensity distribu-
tion of the PSF core (parabolic approximation), the figures of
merit obtained from these moments are [13]:

S = I2
0 GT = 2

I1
I0

(3)

For simplicity, we henceforth study two-zone binary phase-only
filters, shown in Fig.1, though the analysis could be readily ex-
tended to n-zone filters. Two-zone 0 − π filters are completely
determined by the value of the radius, ρ1, of the boundary be-
tween zones. In such a case, P(ρ) = −1 if ρ < ρ1 and P(ρ) = 1
if ρ1 < ρ < 1, and Eq. 1 yields:

U(ν) = 2
(

J1(ν)

ν
− 2ρ1

J1(ρ1ν)

ν

)
(4)

Fig. 1. Left: Two-zone binary PPF with phase π in the internal
circle and 0 in the external annulus. Right: PSF (squared modu-
lus of Eq. 4) for different values of the radius of two-zone binary
PPF.

while the pupil moments, Eq. 2, are real-valued functions:

In = ±
2 − 4ρ2n+2

1
2n + 2

(5)

where the plus sign corresponds to the filter with π phase in the
inner circle and 0 in the outer annulus, and the minus sign to

the complementary filter. Finally, the figures of merit in Eq. 3
become:

S = (1 − 2ρ1
2)2 GT =

1 − 2ρ1
4

1 − 2ρ1
2 (6)

Fig. 2. Transverse gain GT as a function of the radius ρ1.
Parabolic core approximation, Eq. 6, (black solid lines) and
Gaussian sidelobe approximation, Eq. 10, (blue long-dashed
line). Experimental data (dots and circles) of the transverse gain
fit to Eq. 6 in the super-resolution regime (left branch) and to Eq.
10 in the apodization regime (right branch).

The transverse gain in Eq. 6 is represented in Fig. 2. Phase filters
do not absorb energy, so when the core shrinks and decreases,
the sidelobes increase, which distinguishes three regimes:
a) Super-resolution: 0 < ρ1 < 0.57. For such a radius range the
PSF is narrower than that corresponding to the unobstructed
pupil, at the cost of an increase of sidelobe intensity and a de-
crease in S (see Fig.1). To explain this behavior, we can use Eq. 4.
The field amplitude is obtained from the subtraction of the Airy
field corresponding to the clear pupil, J1(ν)/ν, and twice that
of the inner pupil of radius ρ1, ρ1 J1(ρ1ν)/ν. Consequently, the
zeros of the PSF arise when the two terms are identical. It can be
seen that this happens for a ν0 value which is lower than the first
zero of the Airy pattern, thus yielding super-resolution. This ν0
value and the corresponding transverse gain can be estimated
by using the second-order approximation of the PSF core, and
we shall see that they fit quite well with experimental data.
b) Sidelobe excess, 0.57 < ρ1 < 2−1/2. In such a radius range,
the sidelobe height surpasses that of the core (see Fig.1). This
range is consequently useful only in some special applications.
c) Apodization: 2−1/2 < ρ1 < 1. In this region, the width of
the PSF is greater than that of the unobstructed pupil. For this
regime, both terms in Eq. 4 reach the same value for a ν0 value
greater than the first zero of the Airy pattern, thus yielding
apodization. This range could even be divided into two sub-
regions, one with negative and the other with positive gain. It
can be readily derived from Eq. 6 that the transition between
the two subregions occurs when ρ1 = 2−1/4. In the first sub-
region, 2−1/2 < ρ1 < 2−1/4, the PSF is composed of a central
plateau with a higher border, which corresponds to the sidelobes
of the fields in Eq. 4, while in the second subregion, 2−1/4 < ρ1,
the PSF recovers the central peak shape. Eq. 6 predicts a high
negative transverse gain for the first subregion (Fig. 2), which
is unrealistic. In order to develop a correct expression of the
transverse gain, we perform a Gaussian approximation of the
first lobe of the clear pupil LG(ν) and of the second term in Eq.
4, −2ρ1 J1(ρ1ν)/ν (which accounts for the effect of the pupil of
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radius ρ1), LG1(ν):

LG(ν) = −
[
LGM exp

(
−(ν − νM)2

2σ2

)]1/2

LG1(ν) = −2ρ2
1

[
LGM exp

(
−(ρ1ν − νM)2

2σ2

)]1/2
(7)

where νM = 1.635λ/D is the position of the first lobe maximum
of the Airy pattern, LGM = 0.0175 is the normalized intensity at
this position and σ = 0.18 accounts for the lobe width. Introduc-
ing these approximations into Eq. 4, the position of the first zero
of U(ν), ν0, is given by:

LG(ν0)− LG1(ν0) = 0 (8)

which yields:

ν0 =
νM(1−ρ1)+

√
νM2(1−ρ1)2−2(1−ρ1)2σ2(ln 4+4 ln ρ1)

1 − ρ1
2

(9)
From Eq. 9 the transverse gain can be readily obtained:

GT =

(
νAiry

ν0

)2
(10)

where νAiry is 1.22λ/D, the first zero of the Airy pattern. This
gain is shown in Fig. 2. It yields more realistic results than those
of Eq. 6 (long-dashed line), which overestimates the apodization
capability of pupil filters. This new expression is now contrasted
with experimental data.

We checked the previous theory in aberrated images. For this
task, a DAO system simultaneously introduced the apodizing or
super-resolving PPF and compensated for aberrations. We im-
plemented the first two levels of DAO: Binary Adaptive Optics
(BAO) [15], which achieves a half-wave correction by adding
a binary CPS to the distorted wavefront, yielding S = 0.4 at
most, and quaternary adaptive optics (QAO) [16], which uses
a four-level CPS to increase the Strehl ratio to S = 0.81. The
set-up we used is shown in Fig. 3 and is based on the Thor-
labs AOK2 kit. The light source is a laser diode (635 nm) which
illuminates a deformable mirror with 32 active actuators (Thor-
labs DM32-35-Ux01). The light after leaving the mirror reaches
an SLM (Hamamatsu X8267-16) and is then sent to a Shack-
Hartmann (SH) wavefront sensor (Thorlabs WS150-SC) and to a
PDI wavefront sensor. The PDI consists of a 4− f system with
a mask placed on the intermediate common focus plane. We
used a transmittance mask consisting of a chrome thin film, of
thickness approximately λ/10 (61 nm), coated on a transparent
glass substratum with a central hole of diameter 7 µm. The thin
chrome film creates a semitransparent region around the cen-
tral hole. This mask affects both the amplitude and the phase
of the incoming field. The refractive index of chrome for the
635 nm red laser light is around 3.3, which introduces a phase
retardation of about 0.44π with respect to the field that crosses
the central hole. A pellicle beam splitter sends part of the en-
ergy to the camera SC to form the compensated image. We
placed DM, SLM and sensors on planes conjugate to that of the
pupil plane with the help of a series of 4− f systems built with
pairs of achromatic lenses. The distortion introduced by the
deformable mirror is simultaneously measured by the SH and
the PDI wavefront sensors. The DAO compensation is based
on the successive binarization of PDI interferograms. The first
interferogram is binarized using as a threshold the local average
intensity estimated over an area of 20 pixel radius. To perform

the second binarization, we repeated the same procedure but
the average is now estimated over an area of 5 pixel radius. The
experimental procedure and the technique’s performance were
previously analysed in [16].

Fig. 3. Experimental set-up. LASER: laser diode 635 nm. DM:
deformable mirror, creates wavefront distortions. SLM: spatial
light modulator for pupil modulation PPF+CPS. SC: scientific
camera. S-H. Shack-Hartman wavefront sensor for wavefront
checking. PDI: point difraction interferometer, wavefront sensor
to generate interferograms for CPS.

We combined a super-resolving or apodizing PPF with binary
and quaternary CPSs and we analyzed the effect of the different
combinations on the PSF. We applied these combinations to
different aberrated wavefronts and we obtained similar results
in all cases. As an example, we show the effect of the PPF on
a wavefront affected by defocus. The peak-to-valley distance
in this distorted wavefront was 4π. Figs. 4(a) and (b) show
some transversal profiles of the PSF obtained from the aberrated
wavefront when the BAO and QAO CPS are applied, and when
they are combined with a super-resolving PPF with different
values of the radius ρ1. We see in Fig. 4(a) that a clear PSF peak
appears when we apply the BAO CPS (solid line) corresponding
to S = 0.53. The peak height and width decrease, at the same
time as the intensity of the sidelobes increases, as the radius of
the PPF, ρ1, increases (long, medium and short dashed lines).
When we apply the QAO CPS, Fig. 4(b), we observe a similar
behavior except for a higher S value (S = 0.84). We note that
the QAO-compensated peak (solid line) reduces its height and
width as the PPF radius increases, as shown by long, medium
and short dashed lines respectively.

The same analysis was carried out for the combination of
BAO and QAO CPS with apodizing PPFs. Various apodiz-
ing PPFs were added to the BAO CPS, Fig. 4(c), so that the
peak intensity decreased its height and increased its width
as ρ1 decreased (dashed lines). We observe that an apodiz-
ing PPF also causes a small deformation of the PSF. Simi-
lar behavior was found when a QAO CPS corrected the dis-
torted wavefront, as shown in Fig. 4(d). In this case, the
apodized curves were not as deformed as in the case of BAO
compensation. We also observe that the effect of apodizing
PPFs is really low, in particular for QAO compensation.
We have to evaluate the effect of the PPF on the GT value. Ex-
perimental GT values are plotted in Fig. 2 (circles and dots for
BAO an QAO, respectively) along with the theoretical curves.
Experimental values provide a good fit to the super-resolution
branch given by Eq. 6. However, apodization values are much
closer to the theoretical values corresponding to Eq. 10.

As a final comparison, we show in Fig. 5 the PSF correspond-
ing to the aberrated wavefront (a), to the BAO compensation
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Fig. 4. PSF transverse profiles for different super-resolving filters
combined with BAO (a) and QAO (b) compensating filters. PSF
transverse profiles for different apodizing filters combined with
BAO (c) and QAO (d) compensating filters.

(b), to the BAO compensation combined with a super-resolving
filter (c) and to BAO compensation combined with an apodiz-
ing filter (d). Because of the BAO compensation, the energy is
concentrated and a clear PSF peak appears (Fig. 5(b)). When the
BAO filter is combined with the corresponding super-resolving
(Fig. 5(c)) or apodizing filter (Fig. 5(d)), the PSF peak intensity
decreases and the width decreases or increases respectively. In
Fig. 5(c), we also see that a sidelobe clearly appears because of
the super-resolving filter. Fig. 6 shows the PSF corresponding
to the aberrated wavefront (a), to the QAO compensation (b), to
the QAO compensation combined with a super-resolving filter
(c), and to QAO compensation combined with an apodizing
filter (d). We see that the behavior is similar to that of BAO
compensation although the PSF height is greater in this case.

Fig. 5. PSF corresponding to the aberrated wavefront (a), the
BAO compensation (b), the BAO compensation combined with
a superresolving filter (c) and the BAO compensation combined
with an apodizing filter (d).

We have demonstrated the attainment of super-resolution or
apodization simultaneously with aberration correction by DAO
with no extra elements. In our experimental set up, the binary
PPF that allows the PSF reshaping was implemented by using
the SLM of the DAO system. The advantage of this combination

Fig. 6. PSF corresponding to the aberrated wavefront (a), the
QAO compensation (b), the QAO compensation combined with
a super-resolving filter (c), and the QAO compensation com-
bined with an apodizing filter (d).

is its simplicity. We found that PSF Strehl ratio increases with
compensation, and that reshaping filters are effective when they
are combined with BAO or QAO compensating phase screens.
Moreover, we have introduced a new theoretical approach to
describe the transverse gain of apodizing filters. This approach
provides theoretical values that fit much better with experimen-
tal results than those of the general theory. Finally, the features
and simplicity of this technique make it ideal for obtaining im-
proved images with adaptive optics.
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