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In the last 2 decades, several neuroimaging studies investigated 
brain abnormalities associated with the early stages of psy-
chosis in the hope that these could aid the prediction of onset 
and clinical outcome. Despite advancements in the field, neu-
roimaging has yet to deliver. This is in part explained by the 
use of univariate analytical techniques, small samples and lack 
of statistical power, lack of external validation of potential 
biomarkers, and lack of integration of nonimaging measures 
(eg, genetic, clinical, cognitive data). PSYSCAN is an inter-
national, longitudinal, multicenter study on the early stages of 

psychosis which uses machine learning techniques to analyze 
imaging, clinical, cognitive, and biological data with the aim of 
facilitating the prediction of psychosis onset and outcome. In 
this article, we provide an overview of the PSYSCAN protocol 
and we discuss benefits and methodological challenges of large 
multicenter studies that employ neuroimaging measures.

Keywords:  psychosis/first episode of psychosis/clinical 
high risk of psychosis/PSYSCAN/neuroimaging/MRI/ 
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Introduction

Neuroimaging provides a powerful, noninvasive method 
to unveil some of the neurobiological mechanisms under-
lying serious psychiatric disorders such as schizophrenia. 
In the last 2 decades, researchers have tried to identify 
brain abnormalities that could aid the prediction of 
psychosis onset1–5 and clinical outcomes6–12 in the early 
stages of psychosis, so that patients can be offered dif-
ferent forms of treatment according to their individual 
needs. For example, despite several advancements, one 
of the key challenges in the management of individuals 
at clinical high risk of psychosis (CHR-P) is that it is 
not currently possible to identify the subgroups that 
will subsequently transition to psychosis or that will de-
velop other mental health disorders.13,14 Stratification 
of these subgroups would allow potentially preven-
tative interventions to be selectively offered to these 
individuals.15,16 This is an important task given that one-
size-fits-all therapeutic approaches are not particularly 
effective to prevent the onset of psychosis in this pop-
ulation.15 Similar limitations are observed in the clinical 
management of patients who have already experienced a 
first episode of psychosis (FEP): it is difficult to reliably 
predict if  and when patients will suffer a relapse solely on 
clinical presentation. If  course of illness could be deter-
mined early on, targeted intervention could potentially 
prevent future hospitalizations. Another important chal-
lenge in the management and treatment of people with 
psychosis is that available antipsychotic medications are 
partially or not effective in about one-third of patients.17,18 
It is currently not possible to predict which patients will 
go on to show a poor response to treatment. Identifying 
these patients would promote earlier access to effec-
tive medications for treatment resistant psychosis, such 
as clozapine,19 as well as using psychotherapy more ef-
fectively.20,21 Although some neuroimaging studies have 
reported findings that may differentiate patients with dis-
tinct clinical outcomes,22 these have yet to be externally 
validated and translated into tools that can be used in 
clinical practice.23,24

In this context, clinically valid and reliable neuro-
imaging biomarkers of psychosis onset and outcome 
have yet to be identified, as the results from structural, 
functional, and neurochemical magnetic resonance im-
aging (MRI) studies are mixed. This might in part be 
explained by (1) differences in the sociodemographic (eg, 
age, ethnicity, migration, socioeconomic status) and clin-
ical features of the samples studied, which often reflect 
inter-site differences in catchment area populations, type 
of early detection and intervention services involved, 
and potential sampling biases (particularly in CHR-P 
individuals25); (2) the use of relatively small samples, 
which might result in type I  and type II errors26 and 
therefore limited generalizability of the findings; (3) het-
erogeneous image preprocessing protocols; and lastly (4) 

the use of different inclusion criteria in different studies, 
leading to substantial heterogeneity in symptom severity 
and comorbidities.

To date, the majority of neuroimaging studies 
investigating abnormalities in the CHR-P and FEP 
populations have employed univariate analytical methods 
that allow statistical inferences at the group, rather than 
the individual level. Although univariate approaches 
are suited to detect focal abnormalities at a group level, 
differences in brain anatomy and functioning in the early 
stages of psychosis appear to be relatively subtle and 
widespread.5,27–29 Univariate approaches also involve mul-
tiple testing and the subsequent correction for multiple 
comparisons, which may be too conservative and not sen-
sitive enough to detect alterations that are expressed at 
a network level rather than in a few distinct brain areas. 
The application of multivariate data-driven approaches, 
such as machine learning30,31 allows inferences to be made 
at the individual level, and therefore carry greater trans-
lational potential for application in clinical practice.32,33 
In addition, multivariate approaches consider multiple 
voxels simultaneously and between-voxel correlations, 
rather than each voxel independently, and might there-
fore be better suited to detecting abnormalities at a net-
work level, rather than focally.34,35

Machine learning has been employed in the field 
of mental health to make predictions on a number 
of neurological and psychiatric conditions, including 
Alzheimer,36 depression,37,38 anxiety disorders,39 eating 
disorders,40 and psychosis6,10,33,41,42(for critical reviews, 
please see Orrù et  al,30 Gifford et  al,22 Vieira et  al,31 
Arbabshirani et  al,23 and Dwyer et  al43). In the context 
of psychosis, machine learning has been used to inves-
tigate different stages of illness ranging from psychosis 
risk,10,41,44 first episode of psychosis6,45 to established schiz-
ophrenia.46 Studies have employed structural44 and func-
tional MRI data47 but also nonimaging data41 to make 
predictions on broadly 3 areas: diagnosis, prognosis, and 
response to treatment. Aiding diagnosis classification is 
clinically helpful for some psychiatric conditions, such 
as anxiety disorders, or prodromal stages, where there 
is diagnostic uncertainty,36,44 while for other conditions, 
such as established schizophrenia, prediction of prog-
nosis or response to treatment might be clinically more 
meaningful.6,33

Studies on the early stages of  psychosis, including 
both FEP and CHR-P individuals have generally 
shown accuracies above 75%.23,30,43 However, a recent 
study challenged the potential of  machine learning for 
detecting changes in the early stages of  psychosis. Using 
relatively large datasets of  FEP patients, Vieira et  al45 
reported lower classification accuracies than previous 
studies (between 50% and 70%), but also poor general-
izability of  models to other sites.45 While the initial ma-
chine learning studies suggest that this approach holds 
some promise, they have involved relatively small groups 
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of subjects.4,10,44,48–51 This is important as the reliability 
of  machine learning is directly affected by sample size, 
and overall accuracies are seen to decrease with sample 
size.23 This suggests that results from previous studies, 
including studies on patients with psychosis, may not 
be generalizable, and so must be interpreted with cau-
tion.23,24 This also suggests that overfitting may be taking 
place; which is when a machine learning model is fitted 
to noise in the data rather than to an underlying pattern 
of  interest. In this context, overfit models might give 
very high accuracies on the training data but will not 
generalize to new data. On the other hand, a negative 
correlation between sample size and accuracy might also 
be a sign of  publication bias rather than overfitting.45,52 
A further limitation of  multivariate studies in the field 
to date is that in most cases, the findings have not been 
validated in an independent dataset.43,53 Finally, each 
lab tends to use its own pre-processing techniques and 
machine learning analytical approaches, adding further 
complexity/heterogeneity when comparing results from 
different studies.

Structural and functional brain changes are not the only 
objective measures that can be used to aid prediction of 
clinical outcome in psychosis. Indeed, evidence suggests 
that psychosis is associated with genetic changes54,55 as well 
as alterations in cognitive functioning.56–58 Therefore, inte-
grating neuroimaging, biological, clinical, and cognitive 
data may facilitate the multimodal prediction of psychosis 
onset and clinical outcomes.42,59 In this context, multivar-
iate analysis approaches such as machine learning, which 
can take into account simultaneously different clinically 
meaningful measures, have the potential of generating 
valid, clinically relevant, and usable prediction models. 
PSYSCAN (http://psyscan.eu) is a research program 
funded as part of the European Funding 7th Framework 
Programme that was designed to address the methodo-
logical issues described above, with the goal of translating 
findings from neuroimaging, genetics, clinical and cognitive 
measures from individuals in the early phase of psychosis 
(ie, CHR-P and FEP) into mainstream clinical practice.

PSYSCAN: Translating Neuroimaging Findings From 
Research into Clinical Practice

PSYSCAN is an international, longitudinal, multicenter 
study on the early stages of psychosis (ie, CHR-P 
and FEP stages) involving partners from the United 
Kingdom (London and Edinburgh), the Netherlands 
(Amsterdam, Maastricht, and Utrecht), Spain (Madrid 
and Santander), Denmark (Glostrup/Copenhagen), 
Germany (Marburg and Heidelberg), Ireland (Galway), 
Israel (Tel Aviv), Austria (Vienna), Switzerland (Zurich), 
Australia (Melbourne), Italy (Naples), plus affiliate 
sites in China (Hong Kong), Canada (Toronto), South 
Korea (Seoul), and Brazil (Sao Paulo). This consor-
tium aims to recruit a large sample of CHR-P and FEP 

participants and to collect a number of multimodal im-
aging measures (ie, structural, resting state functional 
MRI, and diffusion tensor imaging data), which will be 
integrated with psychopathological, sociodemographic, 
genetic, metabolomic, proteomic, immunological and 
cognitive data with the aim of improving outcome pre-
diction. Data are being collected at first presentation 
and again at a number of follow-up timepoints, with the 
same instruments and methodological procedures being 
used at each site. A healthy control group is also being 
recruited and will serve as a comparative/control group 
for the CHR-P as well as for the FEP cohort.

Figure 1 and table 1 show the design of the PSYSCAN 
study. Supplementary material 1 provides a detailed over-
view of the sociodemographic information, clinical, and 
cognitive measures collected at the different follow-up 
timepoints.

Methodological Considerations in Multimodal 
Multicenter Studies

Multicenter studies provide a means of acquiring data 
from relatively large samples of subjects, representing dif-
ferent geographical areas. However, the involvement of 
several sites also introduces methodological challenges, 
particularly in controlling for the effects of site differences 
when acquiring imaging data. Table 2 lists some potential 
benefits and challenges that can arise when performing 
multicenter studies involving imaging acquisition.

Use of a Common Imaging Acquisition Protocol 
Across Sites

One of the major issues in multicenter neuroimaging 
studies are the effects of intersite variations in scanner 
make, model, and field strength.60–63 To minimize such 
effects, all sites in the PSYSCAN consortium used 3T 
scanners, adopted a common image acquisition pro-
tocol and underwent a site qualification procedure to 
ensure that the standard acquisition protocol could be 
implemented locally (supplementary materials 2). The 
site qualification was led by IXICO (https://ixico.com), 
the industrial partner in this project. The acquisition 
protocol includes published pulse-sequence design (ie, 
Alzheimer’s Disease Neuroimaging Initiative ADNI-2 
T1 and ADNI-3 FLAIR64) and study-specific Diffusion 
Tensor Imaging (DTI) and resting state functional MRI 
sequences (supplementary materials 2).

Healthy Traveling Subjects Scanned at Different Sites

In the PSYSCAN study, although all sites are using 
scanners with the same field strength and harmonized 
acquisition parameters (supplementary materials 2), 
additional variability can still arise through the use of 
scanners that differ in model, manufacturer or specific 
features.60,65 The study has therefore included a travelling 
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subject study, an approach that has been previously 
adopted in other multicenter studies.65,66 Six healthy 
individuals have been scanned on 2 separate occasions 
using the PSYSCAN neuroimaging protocol, at 6 sites 
within the consortium. The data from these subjects will 
be used to quantify within- and between-scanner hetero-
geneity, to identify the determinants of this variance, to 
quantify the effects on the data, and to develop post-hoc 
calibration methods to attenuate these effects.

Recruitment at Different Sites

A further methodological challenge for multicenter 
studies is to ensure reliability of  nonimaging data col-
lection across multiple sites. Work-Package 5 (WP5) 
is responsible for collecting data from (1) CHR-P 
individuals, (2) FEP patients, and (3) healthy controls, 
in a naturalistic prospective design. Standardized and 
harmonized psychopathological, demographic, cogni-
tive, and genetic measures are collected at baseline and 
during follow-up assessments. Researchers at each site 
completed both face-to-face and online training (http://
psyscan.eu) on the instruments being used to screen and 
assess participants, including, but not limited to, the 
Positive and Negative Syndrome Scale,67 a revised ver-
sion of  the Comprehensive Assessment of  an At Risk 

Mental State68 which allows the additional scoring of  the 
Structured Interview of Psychosis-Risk Syndromes69 and 
the Schizophrenia Proneness Instrument for Adults.70 To 
further ensure reliability across sites, particularly in the 
assessment of  CHR-P participants, teleconferences to 
discuss all included cases take place every 1–2 months. 
Centralized monitoring and yearly on-site monitoring 
visits are also conducted to ensure that the protocols are 
being followed correctly, and to address any local issues 
related to subject assessment and follow-up. Cognitive 
function is assessed on iPads using tests derived from 
the CANTAB cognitive battery71 (ie paired associates 
learning, spatial span task, processing speed, emotion 
recognition task). These are brief  computerized tests 
which participants perform using an iPad, with a total 
assessment time of  around 20 minutes. Twenty minutes 
was chosen as a feasible time frame for clinical practice. 
The use of  nonverbal rather than verbal tasks facilitates 
the use of  the assessment in subjects with a wide range 
of  native languages. Using a computerized assessment 
permits vocal instructions in the subject’s native lan-
guage to be embedded within the test (translation was 
done from English to the 10 other languages part of 
the consortium using a forward/backward translation 
method, and a check of  the vocal instructions by a na-
tive speaker).71

Fig. 1. (a) Organization structure of the PSYSCAN Consortium in WorkPackages (WP). (b) Timelines of the Work-Packages in 
PSYSCAN.
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Table 1. Aims and Expected Outcomes From PSYSCAN Work-Packages (WP)

Work-Package Aim Outcome

WP1. Management of the 
PSYSCAN project

To ensure (a) scientific dialogue and communication across the 
consortium and (b) efficient administration and reporting in 
accordance with EC guidelines and requirements

Overall organization and coordi-
nation of the PSYSCAN project 
and consortium

WP2. Merged legacy datasets To collect, organize, analyze, and report on existing datasets 
collected by the consortium partners over the last 20 years 
from (a) patients with psychosis, (b) patients with genetic 
vulnerability for psychosis (22q11.2 deletion syndrome), (c) 
subjects at clinical high risk of psychosis (CHR-P), and (d) 
healthy controls

Development of new methods 
Data analysis on merged existing 
datasets 
New methods testing and valida-
tion

WP3. Development of software 
for data analysis

To design, code, assemble, document, and test new  
specialized software modules for machine learning, connec-
tivity and network analysis

Development of new methods for 
the analysis or imaging, clinical, 
cognitive, and biological data 
Application of machine learning 
techniques on legacy and prospec-
tive data

WP4. Data management Responsible for (a) the technical aspects of data  
management of both WP2 and WP5, (b) development of 
quality control protocols for imaging data collected as part of 
WP5

Large database with neuroim-
aging, demographic, cognitive and 
clinical data collected as part of 
WP5

WP5. Naturalistic prospective 
study

To collect new, homogenized data from (a) CHR-P individuals, 
(b) patients with first episode psychosis (FEP), and (c) healthy 
controls in a naturalistic prospective study comprising around 
1000 subjects in total. Standardized and harmonized measures 
of neuroimaging, clinical, cognitive, biological, and  
genetic variables are collected at baseline and at  
follow-up to determine clinical and functional outcomes.

New longitudinal neuroimaging, 
cognitive, clinical, and biological 
measures collected from ~700 
subjects (CHR-P, FEP, and HC)

WP6. Dissemination To disseminate the activities and results of PSYSCAN, in-
cluding the development of a website (psyscan.eu), annual 
stakeholder workshops for consultation and dissemination, 
production of leaflets, social media engagement (including 
Facebook and Twitter), publication of articles in scientific 
journals, and the organization of a final PSYSCAN conference

PSYSCAN website, publications, 
workshops, and conference

Table 2. Methodological Considerations in Multicenter Studies Involving Neuroimaging

Benefits Challenges

Use of a common 
imaging acquisition 
protocol across sites 

Common imaging acquisition protocols and, 
wherever possible, published pulse-sequence  
design (eg, ADNI) minimize differences and 
allow for validation and replicability of the 
results

Site qualification is resource intensive and time consuming 
Standardized and on-going quality check to ensure that there 
are no changes to the MRI protocol is resource intensive and 
time consuming 
Compromise on acquisition protocols used, as not all sites have 
access to latest technology

Recruitment at  
different sites

Results are more representative of the overall  
patient population and therefore more  
generalizable 
Large number of participants leads to 
increased statistical power

Logistically and resource intensive 
Under-recruitment at single sites can be problematic in future 
analyses, particularly for neuroimaging analyses

Healthy traveling 
subjects scanned at 
different sites

Objective method to estimate and control for 
scanner variance

Logistically intensive, potentially expensive 
Jet lag can influence state of alertness and affect functional 
MRI 
Due to the small group, generalizability can be questionable

Use of legacy data Develop and test new analytical methods 
Large dataset without recruitment costs

Data transfer and organization can be logistically and resource 
intensive 
Data handling difficulties such as partial information, missing 
data, lack of common measurements

Combining imaging 
and nonimaging 
data

Different measures can provide  
complementary information and therefore 
might facilitate prediction

New methods for the integration of different data type have to 
be developed 
High level of technical and statistical expertise needed to 
handle increased data complexity
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Use of Legacy Data

In addition to the new data being acquired in WP5, ex-
isting data from previous studies have been collated from 
more than 3000 subjects, using 16 datasets from 9 of 
the consortium partners. These include structural MRI, 
DTI, and fMRI data, as well as nonimaging data (basic 
sociodemographic and clinical data), from patients with 
psychosis, patients with genetic vulnerability for psy-
chosis (22q11.2 deletion syndrome), CHR-P individuals 
and healthy controls. These legacy data are being used 
to facilitate the development of novel machine learning 
algorithms that will be applied to the new datasets 
from WP5. These algorithms will initially be validated 
by dividing the samples into discovery and validation 
subsamples, and more definitively by testing the algorithms 
on analogous, independent datasets from other research 
consortia, through the Harmonization of At Risk Multisite 
Observational Networks for Youth (HARMONY) col-
laboration that includes the Personalised Prognostic 
Tool for early Psychosis Management (PRONIA—an-
other EU-FP7 program) and 2 National Institute of 
Mental Health (NIMH)—funded programs, the North 
American Prodrome Longitudinal Study (NAPLS), and 
the Philadelphia Neurodevelopmental Cohort (PNC).

Combining Imaging and Nonimaging Data

One of the core aims of the project is to integrate neu-
roimaging, clinical, cognitive, and peripheral biomarker 
data to facilitate the prediction of psychosis onset, clin-
ical and functional outcomes. Therefore, alongside clin-
ical and cognitive data, blood samples (including whole 
blood, serum, and plasma) are collected for analyses of 
genomic, proteomic, metabolomic, and immune markers 
at baseline, 6 and 12  months in the CHR-P and HC 
cohorts and at baseline and 12 months in the FEP cohort. 
In particular, DNA will be extracted from whole blood 
for a GWAS analysis to allow the polygenic risk score 
for schizophrenia to be determined for each individual. 
A broad range of proteomic and metabolomic and immu-
nological markers will be examined which can be readily 
determined from the frozen serum and plasma samples. 
Current markers in the literature have highlighted CFI 
and C6 proteins,72 reduced levels of essential polyunsatu-
rated fatty acids73 and increased levels of IL-674, however, 
this is a rapidly developing field so we will plan to un-
dertake both an exploratory and hypothesis-led approach 
based on the most recent findings at the time of analysis.

To date, most predictive algorithms in psychosis have used 
data from a single modality, such as MRI data44,75 or clin-
ical data.76 The combination of imaging and nonimaging 
data may result in a more accurate model with higher pre-
dictive power compared with that of previous prediction 
tools,42,77 in particular, if different risk estimation tools are 
used in the context of a sequential and stepped assessment 

to enrich the risk prediction.77 With both legacy and newly 
collected data, supervised machine learning approaches31 
will be used to predict clinically meaningful outcomes (eg, 
psychosis onset, social and role functioning, changes in 
symptom scores, and treatment response) from both neu-
roimaging and nonneuroimaging data. Similarly, unsu-
pervised machine learning approaches31,78 will be used to 
identify subgroups of patients and investigate their clin-
ical outcomes. These subgroups could potentially then be 
used to further inform supervised learning, for instance, by 
stratifying the subjects before making predictions.

Future Directions

Key steps for future progress in the field include the valida-
tion of prognostic and predictive algorithms in independent 
datasets from other projects (ie, external validation). Wide 
collaborations with other consortia such as HARMONY 
will provide the opportunity to initiate such endeavours. This 
independent validation of prognostic/predictive algorithms 
is critical to the ultimate identification of measures that can 
reliably predict psychosis onset in CHR-P individuals or 
clinical outcomes in those with a first episode of psychosis. 
For these measures to be embedded in day-to-day clinical 
practice they ideally should be collectable using methods 
that (1) are widely available, (2) do not require an exces-
sive amount of patient or clinician time, and that (3) have 
a reasonable cost. This applies to some of the potentially 
useful measures in psychosis, such as MRI scanning or a 
blood sample for whole genome sequencing, whereas others 
may require technology that is relatively inaccessible (eg, 
positron emission tomography—PET-scanning) or analyses 
that are currently relatively expensive (eg, proteomics). It 
is therefore more likely that complex, multimodal, risk es-
timation algorithms would enter clinical routine only in a 
stepped risk assessment framework, in line with previous 
successful examples of clinical medicine (eg, cardiovascular 
and pulmonary77).

Overall, PSYSCAN and similar large cohort studies 
are purposely designed to significantly contribute to the 
bench-to-bed approach and aim to develop clinically us-
able tools to predict psychotic illness onset and course, 
differential diagnosis, treatment response, and functional 
outcome, with practical implications for individualized 
treatment.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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