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The increasing availability of magnetic resonance imaging (MRI)
datasets is boosting the interest in the application of machine learning in
neuroimaging. A key challenge to the development of reliable machine
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as the ComBat method, require a statistically representative sample;
therefore, these approaches are not suitable for machine learning models
aimed at clinical translation where the focus is on the assessment of in-
dividual scans from previously unseen scanners. To overcome this chal-
lenge, we developed a tool (‘Neuroharmony’) that is capable of
harmonizing single images from unseen/unknown scanners based on a
set of image quality metrics, i.e. intrinsic characteristics which can be
extracted from individual images without requiring a statistically
representative sample. The tool was developed using a mega-dataset of
neuroanatomical data from 15,026 healthy subjects to train a machine
learning model that captures the relationship between image quality
metrics and the relative volume corrections for each region of the brain
prescribed by the ComBat method. The tool resulted to be effective in
reducing systematic scanner-related bias from new individual images
taken from unseen scanners without requiring any specifications about
the image acquisition. Our approach represents a significant step forward
in the quest to develop reliable imaging-based clinical tools. Neuro-
harmony and the instructions on how to use it are available at htt
ps://github.com/garciadias/Neuroharmony.

1. Introduction

Over the past few years, neuroimaging research has shifted its focus
from group level to individual level analysis, with the ultimate aim of
generating results that can be translated into clinical practice. In partic-
ular, the constantly growing number, size, and availability of MRI
research datasets in the last decades (e.g., Jack et al., 2008; Miller et al.,
2016; Thompson et al., 2017) has boosted interest in the application of
machine learning methods to the investigation of brain disorders
(Arbabshirani et al., 2017; Lemm et al., 2011; Ma et al., 2018; Vieira
et al., 2017). A number of successful applications to brain disorders have
been reported including, for example, Alzheimer’s Disease (AD) (Ger-
ardin et al., 2009), depression and mood disorders (Nouretdinov et al.,
2011), autism (Ecker et al., 2010) and schizophrenia (Lei et al., 2019).
Yet, translational implementation in the real word remains limited
(Focke et al., 2011; Orrù et al., 2012). An important challenge to such
implementation is the use of different MRI scanners and acquisition
protocols resulting in inconsistent measures of brain region volumes
(Clark et al., 2006; Han et al., 2006; Jovicich et al., 2006; Lee et al., 2019;
Takao et al., 2011). In particular, inconsistencies can arise from the MRI
machine field strength, head motion, gradient non-linearity, time-of-day,
among others (Goto et al., 2012; Keshavan et al., 2016; Krueger et al.,
2012; Lee et al., 2019; Takao et al., 2011; Trefler et al., 2016). A number
of multi-scanner studies have adopted a rigid acquisition protocol,
including phantom calibration (Maikusa et al., 2013) to mitigate these
inconsistencies. However, this requires a priori coordination with
regards to the image acquisition protocol between the different centers
and it therefore is not an option if the aim is to leverage already existing
data.

In order to mitigate scanner and protocol effects, various data
harmonization methods have been proposed (Doran et al., 2005; J. P.
Fortin et al., 2018; J. P. Fortin et al., 2017; Jovicich et al., 2006; Keshavan
et al., 2016; Maikusa et al., 2013). Data harmonization consists of per-
forming calibration corrections to data from different sources with the
aim of making their comparison more meaningful. The aim of the
harmonization process is not necessarily to approximate the measure-
ments to the ground truth (i.e., the real volume of brain regions) but to
make the comparisons among subjects more reliable at both the indi-
vidual and group level. Therefore, harmonization does not eliminate
possible systematic bias, but guarantees that the distortion affects all data
points in the same way. For instance, the ComBat harmonization tool (J.
P. Fortin et al., 2018; J. P. Fortin et al., 2017; Johnson et al., 2007) uses
Bayesian regression to find systematic differences among multiple data
collected using different scanners. The tool performs additive and mul-
tiplicative corrections to produce distortions that eliminate these sys-
tematic differences from the data. The main limitation of this approach is
2

the need for a sample size that guarantees a statistically representative
sample from each scanner included in the study. This presents a chal-
lenge for the translational implementation of machine learning models in
clinical practice. To be useful in real world clinical practice, a trained
model must be able to make predictions about a single image from a
scanner that was not part of the training set. In other words, the model
must be able to extrapolate the features to unseen data from unknown
scanners in the absence of a statistically representative sample from each
scanner. It follows that existing harmonization tools, such as ComBat, are
not suitable for machine learning models aimed at clinical translation. In
order to address this challenge, we need harmonization procedures that
do not require a statistically representative sample for each scanner.
Ideally, a flexible machine learning-based tool would require no a priori
calibration of the images and no information about the MRI scanner and
protocol. In this paper, we developed a tool that takes a first step in this
direction.

In particular, we propose a new approach to harmonization that does
not require a statistically representative sample for each scanner and
protocol. Tardif et al. (2009) showed that contrast-to-noise ratio impacts
the results of voxel-based morphometry studies. Following this obser-
vation, Esteban and colleagues developed a series of image quality
metrics (IQMs) to perform quality control of MRI images in multiple
datasets (Esteban et al., 2017, 2019). These metrics - which include
contrast-to-noise ratio and other intrinsic characteristics - are directly
measurable from individual MRI images without requiring a statistically
representative sample. Critically, IQMs were shown to be associated with
the scanner used to acquire the images. For example, the contrast be-
tween grey matter (GM) and white matter (WM) was found to vary
strongly between different acquisitions protocols and scanners (Esteban
et al., 2017). Based on these background findings, we hypothesized that
the use of these intrinsic characteristics of the images could be used to aid
data harmonization. In order to test this hypothesis, we first evaluated
the ComBat harmonization tool (J. P. Fortin et al., 2018; J. P. Fortin et al.,
2017; Johnson et al., 2007) using a mega-dataset comprising a total of
15,026 structural neuroanatomical scans from healthy subjects from 62
scanners. This evaluation showed that ComBat was able to reduce
scanner-related differences as expected. We then trained a machine
learning tool (‘Neuroharmony’) that captured the relationship between
the IQMs and the corrections to the relative volumes of each region of
interest (ROI) prescribed by the ComBat harmonization. Finally, we
applied Neuroharmony to images from unseen scanners to predict the
relative volume corrections showing its ability to reduce variation in the
data due to inter-scanner variability. To our knowledge, Neuroharmony
is the first tool capable of harmonizing single images from unseen
datasets.

2. Material and methods

2.1. Datasets

The initial sample of our study included 18,190 T1-weighted MRI
images of healthy controls from 89 scanners. We excluded all subjects
younger than 18 years old and older than 70 years old. Upon visual in-
spection, we observed that some of the images were affected by motion,
poor contrast-to-noise ratio or other artifacts. To exclude poor quality
images, we used the MRIQC1 tool with the standard parameters (Esteban
et al., 2017). This tool uses 68 IQMs to determine the probability of an
image being unusable. We discarded any image where this probability
was higher than 0.5. We also excluded all outliers with regards to relative
brain volume measurements, since outliers are unexpected in healthy
subjects and are likely to be due to artifacts resulting from poor seg-
mentation. A subject was considered an outlier if the relative volumes of
at least 10 regions of interest (ROIs), corresponding to ~10% of the
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feature space, were more than 2.5 standard deviations (σ) away from the
sample mean (μ). Here ‘relative volume’ refers to the volume of each ROI
divided by the total intracranial volume of the subject. We iteratively
repeated this process, recalculating μ and σ until no additional subject
met our criteria for being an outlier. This process was implemented
within each scanner, in order to ensure that subjects would not be
considered outliers simply because of differences among scanners. To
ensure the quality of the FreeSurfer preprocessing (described below) we
applied the Qoala quality control tool (Klapwijk et al., 2019) excluding
any image with a probability of not being usable higher than 0.5. After
excluding images of poor quality, outliers, and subjects with any missing
data, we selected all scanners available with enough statistical repre-
sentation, for which we defined a threshold of 5 subjects per scanner
(based on Fortin et al., 2018 showing that the algorithm works for
samples as small as 5 subjects). The final sample comprised of 15,026
subjects from 62 scanners on 32 datasets, ABIDEII (Nielsen et al., 2013),
ADHD2002 (Milham et al., 2012), ASSOCIATIVE LEARNING (Bursley
et al., 2016), BIOBANK (Miller et al., 2016), COBRE (Çetin et al., 2014),
CYBERBALL (Romaniuk et al., 2016), DUBLIN, EMOTION REGULATION
(Wager et al., 2008), EU GEI, FALSE BELIEFS (Moran et al., 2012),
GALWAY, GOTTINGEN, HARM AVOIDANCE (Van Schuerbeek et al.,
2016), HMRRC, IOPPN (Benetti et al., 2013), IXI (Heckemann et al.,
2011), LOSS AVERSION, MAASTRICHT UNIVERSITY, MAASTRICHT
GROUP, MATURATIONAL CHANGES (Velanova et al., 2008), MCIC3

(Gollub et al., 2013), MORAL JUDGMENT (Chakroff et al., 2016),
NUSDAST (Wang et al., 2013), PLACEBO (T�etreault et al., 2016), PPMI4

(Marek et al., 2011), ROUTE LEARNING (Chanales et al., 2017), PAFIP
(Pelayo-Ter�an et al., 2008), SEQUENTIAL INFERENCE VBM (FitzGerald
et al., 2017), TOMC (Frisoni et al., 2009), UCL, UCLA (Poldrack et al.,
2016), UTRECHT GROUP, WASHINGTON UNIVERSITY (Power et al.,
2015). A table with detailed information for all included scanners can be
found in the supplementary material,5. Fig. 1 shows the distribution of
the relative volume of the right middle temporal gyrus for all the
included scanners; this region was chosen as a typical example to illus-
trate the variations found across the different scanners. It can be seen that
the distribution varied substantially across scanners.

The collection of all data was approved by the local ethics commit-
tees. Informed consent, including the sharing of the images for future
research, was obtained from all participants.

2.2. Preprocessing

All T1-weighted images were preprocessed using the recon-all func-
tion from the FreeSurfer package version 6.0.06 (Fischl et al., 2002) with
the standard parameters. In this case, FreeSurfer sets the same random
seed to all runs and stochastic effects of the reconstruction is consistent
among subjects. For each image, the volumes of 101 ROIs were extracted
and normalized by dividing the volume of each region by the total
intracranial volume of the subject (see supplementary material for the
complete list of ROIs). These regions were extracted based on the
Desikan-Killiany atlas (Desikan et al., 2006) and on the ASEG atlas (Fischl
et al., 2002).
2 Structural MRI data were obtained from www.nitrc.org.
3 The imaging data and demographic information was collected and shared by

[University of Iowa, University of Minnesota, University of New Mexico, Mas-
sachusetts General Hospital] the Mind Research Network supported by the
Department of Energy under Award Number DE-FG02-08ER64581.
4 Data used in the preparation of this article were obtained from the Parkin-

son’s Progression Markers Initiative (PPMI) database (www.ppmi-info
.org/data). For up-to-date information on the study, visit www.ppmi-info.org.
5 https://doi.org/10.1016/j.neuroimage.2020.117127
6 https://surfer.nmr.mgh.harvard.edu.
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2.3. Demographics

The sample from each scanner used in this study covered a broad
range of ages. Overall, the data from each scanner were highly unbal-
anced in terms of age and sex, as shown in Fig. 2 and Fig. 3. In the whole
dataset, 55% of the subjects were female. Fig. 2 shows the distribution of
ages for male and female subjects in 10 of the largest scanners, while
Fig. 3 shows the sex ratios for all scanners. It is evident that some of the
scanners only contained subjects of one sex. We can also see that there is
almost no overlap in the age range between certain pairs of scanners.
Considering these differences, we assessed scanner bias after taking the
effects of sex and age into account (below). As detailed in the supple-
mentary material, different scanners often used different acquisition
protocols. In this article, we use the expression “scanner bias” regardless
of the overlap between acquisition protocols. However, it is important to
stress that both scanner and acquisition protocol can affect the quality of
the images and the measure of volumes.

2.4. ComBat harmonization

Fortin et al. (2018) compared three types of scanner harmonization,
which they called residual, adjusted residual and ComBat harmonization.
From these methods, the most robust results were achieved by the
ComBat harmonization. This procedure consists of performing a Bayesian
regression that corrects the measurements from different samples with
additive and multiplicative terms. The complete description of the model
can be found in Johnson et al. (2007).

In this study, we used the python version of the ComBat software that
can be found at https://github.com/ncullen93/neuroCombat. The
harmonization process was done over the relative ROI volumes.

The ComBat tool performs the harmonization based on a given co-
variate while conserving the variance due to other covariates of interest.
For example, in a multi-site study comparing patients and healthy sub-
jects, it is possible to correct distortions from site to site while conserving
the health-related neuroanatomical variations, as described in J. P. Fortin
et al. (2018). To account for the individual contribution of the different
covariates, we applied several ComBat instances in a stepwise manner:
first to remove sex-related effects, then age-related effects, and finally
another instance of ComBat was applied to eliminate the scanner bias. To
perform age correction, we treated age as a categorical variable taking
the rounded integer value of the subject age.

2.5. Harmonization efficiency assessment

To evaluate the efficacy of the harmonization, we applied the
nonparametric Kolmogorov-Smirnov two-sample test (K–S test; Darling,
1957; Massey, 1951; Smirnov, 1939) to the relative volumes of each ROI
for each pair of scanners. The K–S test is a unidimensional test. Therefore,
to verify the distinguishability of our multidimensional samples, the test
needed to be performed for each pair of scanners on each of the 101 ROIs,
as proposed in Garcia-Dias et al. (2019). Assuming that most of the sys-
tematic variation in the relative volume of the brain regions in healthy
subjects can be explained by age, sex and the scanner bias, we expected
that once we have eliminated differences associated with these variables,
there should be substantial overlap among the relative volume distri-
butions from different scanners. Therefore, if the harmonization is
effective, the K–S test should fail to reject the null hypothesis. If the
assumption that age, sex and scanner bias are the main sources of sys-
tematic bias is false, the K–S test should lead to the rejection of the null
hypothesis for most pairs of scanners after harmonization. Since we are
more concerned about type II errors, we did not perform any multiple
comparison correction to the p-values.

2.6. Strength of the ComBat correction by ROI

The harmonization affects different regions with different magni-

https://github.com/ncullen93/neuroCombat
http://www.nitrc.org
http://www.ppmi-info.org/data
http://www.ppmi-info.org/data
http://www.ppmi-info.org
https://doi.org/10.1016/j.neuroimage.2020.117127
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Fig. 1. Box plot of the right middle temporal gyrus relative volumes for all scanners included in our study. A grey horizontal line marks the median value in each
dataset, the solid green boxes present the inter-quantile ratio in each dataset. The vertical green lines cover 90% of the measurements in each dataset. The yellow
triangles represent data points outside the 5–95% interval.

Fig. 2. Violin plot showing age distribution for male (in green, left distribution)
and female (in yellow, right distribution) subjects for all datasets along with the
individual distribution of the 10 largest scanner samples.

7 https://scikit-learn.org/stable/index.html.
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tudes. To show how the ComBat harmonization affected each of the ROIs,
we defined the correction ratio as the median volume of each region
divided by the median correction provided by ComBat. For comparison,
we used the coefficient of variation, CV ¼ 100 � σ

μ, and the quartile-

based coefficient of variation, QCV ¼ 100� Q3�Q1
Q2

:

2.7. Strength of the ComBat correction for each covariate (sex, age, and
scanner)

The ComBat harmonization process allows one to correct for one
covariate while maintaining the variance from other covariates. In this
4

way, we can measure the effect that each different covariate has on the
final correction provided by ComBat. Since each scanner had different
imbalances in terms of sex and age, we expected that each scanner would
be corrected for each of the covariates to different degrees. As shown in
Figs. 2 and 3, there was great variability in age and sex amongst scanners,
with almost no overlap amongst some of the scanners. Therefore, to
correct the scanner bias on the ROI relative volumes, we investigated
how sex and age contribute to the differences among datasets. To this
end, we measured the contribution of each covariate by taking the me-
dian of the absolute value of the ComBat corrections for all ROI volumes
and summing all values per scanner. To make a reliable comparison
among scanners, we divided the contribution of each covariate by the
sum of all three contributions for this scanner, which we called Δtiv.

2.8. Neuroharmony training

We observed correlations between the relative volumes of ROIs with
the IQMs of the images. Such observation is not unexpected since some of
IQMs can directly influence the behavior of the preprocessing analysis.
For example, this is clear for IQMs such as the FWHM (which measures
the resolution of the image; see appendix A.1) that can affect the ability
of FreeSurfer to distinguish the boundaries between regions. Similarly,
some images with lower contrast-to-noise ratio could result in a sys-
tematic underestimation of the relative volume of a region due to the
difficulties of distinguishing its boundaries. Here, we implemented
random forest regressors (from the Scikit-learn7 python package, Bui-
tinck et al., 2013; Pedregosa et al., 2011) to predict the harmonization
corrections obtained with ComBat. We used the 68 IQMs generated by
the MRIQC tool (listed in appendix A.1) as well as age, sex and the
original relative volumes of the ROIs as input variables to predict the
ComBat corrections for each ROI: ROIcorrection ¼ fðIQMs;Age; Sex; vROIÞ
where, vROI is the relative volume of the ROI. One model was trained per
ROI. A comprehensive statistical description of each feature for each
individual scanner can be found at garciadias.github.io/neuroharmony.
In order to avoid the so-called “curse of dimensionality” and the inclusion
of redundant variables, we performed a principal component analysis
(PCA) (Wold et al., 1987) on the training dataset. This identified 20

https://scikit-learn.org/stable/index.html


Fig. 3. The ratio of subjects of each sex in the data from all included scanners. The plot shows bars corresponding to 100% of the subjects measured with each scanner.
The portion of male subjects is colored in green and the portion of female subjects is colored in yellow and X-hatched.
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principal components as the smallest number of principal components
conserving 99% of the explained variance for all the input variables for
all regions. In this way, we could generalize a rule that maps the IQMs to
the corrections that ComBat would perform to the relative ROI volumes.
This enabled us to estimate harmonization corrections for unseen scan-
ners, as long as their image quality parameters fall within the range of
Fig. 4. Diagram showing the data

5

parameters in our training sample.
We used a leave-one-scanner-out cross-validation strategy for

hyperparameter search and selection for the random forest models. For
the purpose of hyperparameter tuning only, we merged scanners with
fewer than 30 images. This allowed us to greatly decrease the compu-
tational cost of the hyperparameter search and focus the training efforts
splits to train Neuroharmony.
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on the scanners with a statistically representative sample. The merge of
the datasets was applied only to the cross-validation split. The labels of
the scanners were preserved during training and the final model was
retrained without any scanners merged. During training, we also under-
sampled the BIOBANK S01, as this would dominate the training sample
for the model due to its very large size (n ¼ 9926). To this end, we
randomly selected 555 subjects from BIOBANK S01, matching the
number of subjects from TOMC-S02, the second-largest scanner sample.
We also eliminated data from UCL S02, since ComBat failed to harmonize
the data from this scanner (below).
Fig. 5. The minimum p-values for the K–S test among all ROIs, before and after ComB
K–S test p-values before harmonization, while the values in the top of the main diagon
to a pair of scanners. Cells are colored as shown on the color bar.

6

For the validation of Neuroharmony we used 454 subjects from 16
scanners: ADHD200-NeuroIMAGE (n ¼ 22), ADHD200-Pittsburgh (n ¼
20), BIOBANK-SCANNER02 (n ¼ 313), PPMI-SCANNER001 (n ¼ 5),
PPMI-SCANNER012 (n ¼ 5), PPMI-SCANNER018 (n ¼ 5), PPMI-
SCANNER032 (n ¼ 8), PPMI-SCANNER034 (n ¼ 15), PPMI-
SCANNER057 (n ¼ 8), PPMI-SCANNER086 (n ¼ 5), PPMI-
SCANNER088 (n ¼ 10), PPMI-SCANNER096 (n ¼ 11), PPMI-
SCANNER120 (n ¼ 7), PPMI-SCANNER289 (n ¼ 6), PPMI-
SCANNER290 (n ¼ 9), PPMI-SCANNER291 (n ¼ 5). To avoid any
cross-contamination of the training and validation sets, we did not
at harmonization. The cells under the main diagonal of the matrix represent the
al represent the p-values after the ComBat harmonization. Each cell corresponds



R.–M.P.Q.-C.a.-.N.C.statement.K.authors:C.D.curation,F.analysis,F.acquisition,I.M.P.administration,R.S.S.V.V.W.draft,W.further.–>a. Garcia-Dias et al. NeuroImage 220 (2020) 117127
include these data in the ComBat harmonization or in the training of
Neuroharmony. Fig. 4 illustrates the process splitting the scanner data to
train Neuroharmony.

3. Results

3.1. Harmonization assessment

To evaluate the performance of ComBat harmonization, we ran the
K–S test for every pair of scanners before and after harmonization, as
shown in Fig. 5. The cells are colored according to the minimum p-value
among all ROIs. This minimum p-value refers to the ROI with the worst
harmonization correction among all ROIs for each pair of scanners. At a
p-value of 0.001, most of the scanner pairs had distinguishable distri-
butions of relative volumes before harmonization, but the harmonization
was able to eliminate the bias between almost all pairs, raising the p-
value above 0.001 for all ROIs. However, it is important to note that
ComBat harmonization failed in some regions for some scanner pairs. For
instance, the sample from the scanner UCL S02 remained distinguishable
from the distribution of some scanners after harmonization. Investigation
of the variables for which the harmonization failed revealed a noticeable
double peak on the distributions, e.g. for the right and left cerebellum
white matter.
3.2. Strength of the ComBat correction by ROI

In Fig. 6, we showed only the 10 smallest correction ratios and the 10
largest correction ratios for clarity. We can see that the ventricles were
Fig. 6. The median ROI volume divided by the median ComBat correction. From left
the next 10 show the ROIs with the largest correction ratio (red dotted bars). The X
quartile-based coefficient of variation.

7

especially affected by the harmonization, which means these regions
were the ones with the largest divergent measurements among scanners.
For example, the corrections account for more than 17% and 16% of the
left and right lateral ventricle volumes, respectively. In our datasets, we
observed that the lateral ventricles were also amongst the regions with
the largest variability. Therefore, even when the corrections reached
17% of the mean volume of the region, the magnitude of the corrections
was a fraction of the CV of the region. In other words, the scanner bias
was small compared to the natural variability of the relative ROI vol-
umes. In the supplementary material, we report a table showing how
each of the ROIs was affected by the ComBat normalization together with
their CV and QCV.
3.3. Strength of the ComBat correction for each covariate (sex, age, and
scanner)

In Fig. 7 we show by what proportion each of the covariates affected
the correction for each scanner. Correction for sex-related effects had a
small impact, even on scanners dominated by one sex, as was the case of
ABIDEII BNI 1. Age-related effects had a relatively higher contribution,
but in most cases the dominant confound was the scanner of origin.
3.4. Validation

Here, we present the results of the application of Neuroharmony to
our external validation set. In Fig. 8, we show the p-values of the K–S tests
comparing the validation set harmonized with Neuroharmony and the
training set harmonized with ComBat. We see that Neuroharmony was
to right, the first 10 bars show the ROIs with the smallest correction ratios while
-hatched yellow bars show coefficient of variation and the green bars show the



Fig. 7. Relative contributions of each confound to the final ComBat correction. Each scanner is represented as a vertical bar divided in portions equivalent to the
contributions that either scanner (green), age (yellow, X-hatched) or sex (red, filled with dots) made to the correction. The black dashed line marks the 50% level.
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able to achieve a p-value higher than 0.001 for almost all ROIs.
Furthermore, Neuroharmony was also effective at the level of GM, WM
and the whole brain with p-values of 0.455, 0.667 and 0.803, respec-
tively. To calculate the effect of the harmonization at these levels, we
added the values from all regions corresponding to GM or WM and
compared these values before and after harmonization, as done for in-
dividual ROIs. It is important to remark that, as listed in the supple-
mentary material, from the 101 ROIs only 7 corresponded to WM and 86
corresponded to GM, whilst 8 regions did not belong to either category.
Therefore, a limitation of this approach was that these regions did not
correspond to the whole brain, the totality of GM or WM, but it can
illustrate how the tool would behave at these levels.

The only ROIs that were not completely corrected were the left
ventral diencephalon, corpus callosum mid-anterior, left pars orbitalis,
right lateral ventricle, left lateral ventricle, left nucleus accumbens, and
third ventricle. However, in all cases except for the left ventral dien-
cephalon, Neuroharmony was able to increase the p-value by orders of
magnitude. In Fig. 9, we show the kernel density plot for the ComBat-
harmonized training set, the ComBat-harmonized validation set, and
the validation set without harmonization for each of these regions. We
included the left superior parietal cortex, that achieved the 0.001
threshold, for comparison. The figure shows how the corrections were
partially accomplished and that the harmonization approximated the
density distributions relatively well.

4. Discussion

The aim of this study was to develop a new approach for harmonizing
MRI data that would not require a statistically representative sample for
each scanner and acquisition protocol, or a previous calibration of
scanners. In essence, this involved training a machine learning tool,
which we have called ‘Neuroharmony’, to capture the relationship be-
tween the intrinsic characteristics of the images and relative volume
corrections for each ROI assigned by the ComBat harmonization.

Before training Neuroharmony on the ComBat outcomes, it was
important to evaluate the behavior of the ComBat harmonization
method, which we performed using a mega-dataset comprising of 15,026
healthy subjects from 62 scanners. This number of scanners exceeded the
number of scanners of any previous application of ComBat in the liter-
ature. As expected, ComBat was capable of reducing scanner bias.
8

Nevertheless, for some pairs of scanners, the null hypothesis of the K–S
test was rejected, suggesting that between-scanner differences on certain
brain regions remained after harmonization. This was likely caused by
the presence of an unexpected double peak distribution in the relative
volumes of these regions. ComBat performs multiplicative and additive
corrections to the distributions, which are not able to eliminate this kind
of distortion. The double peak observed in these regions was unexpected
and it could not be explained by demographic imbalances. No differences
in scanning protocol were reported. The source of this distortion needs
further investigation. Furthermore, we found that different regions were
affected by the ComBat harmonization to a different degree. We showed
that the scanner-related corrections corresponded to a fraction of the
natural variability of the relative volumes, indicating a high degree of
neuroanatomical heterogeneity even amongst healthy subjects.

Having established that the ComBat harmonization tool behaved as
expected, we proceeded to train a machine learning tool that used IQMs
to predict the ComBat outcomes using the same mega-dataset. Consistent
with our hypothesis, we found that it was possible to use the IQMs to
predict the harmonization correction assigned by the ComBat tool.
Overall, these results show that Neuroharmony can generalize the
harmonization to unseen scanners. Neuroharmony was capable of
providing corrections that eliminated clear differences between the data
from the validation set and the rest of the data harmonized with ComBat.
Improvements were observed even when the 0.001 threshold was not
achieved.

To the best of our knowledge, Neuroharmony presents the first
approach capable of providing harmonization for a single image of an
unseen scanner. This approach has the potential to make a significant
contribution towards bridging the gap between research –where the data
have a known statistical distribution – and clinical applications of ma-
chine learning – where a single image may come from an unknown sta-
tistical distribution. In addition, this approach has the potential to reduce
scanner bias in neuroimaging studies that aim to make single-subject
inferences without necessarily using machine learning methods (C.
Scarpazza, et al., 2013; C. Scarpazza et al., 2016).

The present study has a number of important limitations. Firstly,
although our sample was very heterogeneous in terms of IQMs, we
cannot guarantee that it covers all possible scanner configurations and
acquisition protocols. For instance, if a scanner has a contrast-to-noise
ratio outside the range of our training sample, we cannot guarantee an



Fig. 8. The p-values for the K–S test for the comparison between the validation set harmonized with Neuroharmony and the training sample harmonized with ComBat.
From left to right, each bar in the pairs of bars represents the p-value of the K–S test for the data corrected by Neuroharmony (green) and the data without any
correction (red, filled with dots). A horizontal black dashed line marks the 0.001 threshold.
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effective harmonization of the data. To mitigate this problem, the tool
warns the user if any subjects fall outside the training range. Secondly,
the model does not operate with the same accuracy for all regions. For
example, mean absolute error was the lowest for the corpus callosum
mid-posterior and anterior, and the highest for the lateral ventricles
(both hemispheres), so the tool was more accurate in correcting the re-
gions of the corpus collosum than the lateral ventricles. We suggest that
the difficulties in correcting some of these regions might be explained by
their high degree of variability. The ventricles, for example, were the
regions with the largest CVs among all of the 101 ROIs. Such large
variation is likely to be multifactorial, resulting from the contributions of
variables such as handedness, craniotype, nutrition and health (Jacka
et al., 2015; Luders et al., 2010; Zhuravlova et al., 2018). While sex, age
and the IQMswere sufficient to eliminate systematic bias among scanners
in the vast majority of regions, these additional sources of variability
might explain the suboptimal performance of Neuroharmony in a subset
of regions. An alternative explanation is that, given the nature of Free-
Surfer segmentation, different regions might be affected by the quality of
the image in different ways. A further explanation is that in some regions
the relationships between the IQMs and the corrections established by
ComBat are too complex to be generalized in our model. Further
9

investigation is required to better understand the causes of the limited
performance of Neuroharmony in these regions. Neuroharmony was
developed to provide a solution for eliminating the bias in unseen
scanners. However, when working with existing multisite datasets that
include a statistically representative sample for each scanner, ComBat
should be preferred. Here we demonstrate the efficacy of Neuroharmony
on healthy subjects. At this stage we do not know whether the assump-
tions of the model hold when applied to patient data, and therefore we
cannot conclude that the Neuroharmony tool is effective in reducing bias
in the context of clinical studies. A further validation of the tool using
patient data will be the focus of a future publication. It is important to
note that we eliminated the variance due to age and sex to deal with the
highly imbalanced nature of our sample; however, in some instances, it
may be useful to preserve the variance from these covariates (e.g. in age
prediction studies). Therefore, Neuroharmony allows the user to specify
the variables for which variance should and should not be eliminated.

Despite these limitations, our initial validation suggests that our
approach represents a significant step forward in the quest to develop
clinically useful imaging-based tools. For example, Neuroharmony could
be integrated within available clinical tools for single-subject inferences
in brain disorders from MRI images. At present, none of these tools



Fig. 9. The kernel density plot for the relative volume of the regions as labelled in the x-axis of each plot. The title of each plot includes the p-value of the K–S test
comparing the training set harmonized with ComBat (yellow dashed lines) and the validation set harmonized with Neuroharmony (green solid lines). The validation
set without harmonization is shown as a red dotted line.
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account for inter-scanner variability (see C. Scarpazza et al., 2020).
Neuroharmony and the instructions on how to use it are available at htt
ps://github.com/garciadias/Neuroharmony.
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Appendix A.1. Image quality metrics

Let xj be the intensity of each voxel (X ¼ {x1;x2;…;xj;…;xN}) in an image with N voxels. Therefore, the mean brightness of the image is defined as

μ ¼
PN

j¼1
xj

N and the standard deviation as σ ¼ 1
N

PN
j¼1ðxj � μÞ2. When these quantities are measured considering only the pixels of a given tissue, we use

sub-indexes WM for white matter and GM for grey matter.

� CJV: Coefficient of joint variation between white matter and grey matter. The CJV is defined as:

CJV¼ σWM þ σGM

μWM � μWM
:

� CNR: The contrast-to-noise rate evaluates how the contrast between grey and white matter relates to the noise on the image. The CNR is defined as:

CNR¼ μGM � μWM

σbackground
:

� SNR: The signal-to-noise ratio evaluates how the mean signal measurements relate to the noise in the image. The SNR is measured separately for GM,
WM, CSF and for the whole brain. The SNR is defined as:

SNRtissue ¼ μtissue
σtissue
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� SNRD: The Dietrich signal-to-noise ratio compares the mean sign on the brain tissue with the standard deviation in the background with a correction
factor. The SNRD can be written as

SNRD¼ μbrainffiffiffiffiffiffi
2

4�π

q
σbackground

:

� INU: The intensity non-uniformity index measures inhomogeneities in the brightness of the image (Tustison et al., 2010).
� QI1: The ratio of ‘bad’ voxels on the background of the image. This is measured based on a statistical approach. The voxels in the background that are
out of a range covering 10 median absolute deviations around the median value are considered to be artifacts. The bounders of the image are
discarded in this process. The method is described by Mortamet et al. (2009).

� QI2: A measurement of the goodness of fitting of the background distributions with the expected probability density function, excluding the artifact
voxels accounted by QI1. The method is described by Mortamet et al. (2009).

� EFC: The entropy focus criterion is a measure of the Shannon entropy that indicates the presence of blurring and ghosting. This quantity is an
estimation of how well the brightness throughout the image is distributed. The method is described by Atkinson et al. (1997). The energy E is
calculated as

E¼ �
XN
j¼1

xj
Bmax

ln
�

xj
Bmax

�
:

where Bmax is the maximum entropy, Bmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼1x
2
j

q
. With this, the EFC can be written as

EFC¼
�

Nffiffiffiffi
N

p log
ffiffiffiffiffiffiffiffi
N�1

p �
E:

� FBER: The foreground-background energy ratio. Similar to SNR, this is an estimation of howmuch brighter the image of the brain is in relation to the
background.

FBER¼ Ebrain

Ebackground
:

� WM2MAX: This index measures how close to the maximum count the mean brightness of the white matter region is. The mean white matter value is
compared to the 99.95 percentile (P99:95ðXÞ). Ideally, this value is in the range of 0.6–0.8. The WM2AX is defined by

WM2MAX¼ μWM

P99:95ðXÞ:

� FWHM: The Full width at half maximum is a measure of the resolution of the image. Lower values indicate a higher resolution, while higher values
indicate a blurrier image. The FWHM is measured in a two-dimensional plane. Therefore, four values of FWHM are presented, x, y, z and the average
of the three. X, y and z correspond to the coronal, transverse and sagittal planes. The FWHM is defined as

FWHMm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
"
4 ln

( 
1�

σ2
Xm
iþ1;j�Xm

i;j

2σ2
Xm
i;j

)!#�1
vuut ;m 2 fx; y; zg:

� ICVs : The intracranial volume of each of each tissue (CSF, GM, and WM). Deviations from the normal expected values can indicate poor image
quality.

� rPVE: The residual partial volume effect accounts for the potential errors generated by counting the volumes in voxels on the interface of different
tissues. The rPVE is calculated for each of the brain tissues (CSF, GM, and WM).

� Summary statistics: A collection of statistical metrics that summarize the distribution of voxel brightness in the different regions (background, CSF,
WM, and GM). The measured quantities include mean, standard deviation, percentiles 5% and 95%, and kurtosis.

� TPMs: This metric of tissue probability maps establishes a comparison between the different tissues with the templates from Fonov et al. (2009). The
index measures the overlap between the different tissues (CSF, GM, and WM) in the template with those in the subject.

On Fig. 10 we show the Pearson correlation among all regression features.
12
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Fig. 10. The Pearson correlation matrix for all IQMs, sex and age.

Appendix A.2. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.117127.
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