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Abstract— Circuits containing two nonlinear resonators have
been recently proposed for a variety of applications, such as
nonlinear isolators, robust wireless power transfer, and sensors.
However, their simulation is difficult due to the presence of
hysteresis phenomena, associated with turning points in the
solution curve, and even disconnected curves, as will be shown in
this work. Here, we will present a general analysis methodology,
compatible with commercial harmonic balance (HB) and able
to provide all the coexisting periodic solutions. It is based on
the use of two auxiliary generators (AGs), one per nonlinear
resonator. The first AG acts like an independent source and
controls the second one, which also depends on the input source,
unlike a previously presented formulation. This extra dependence
enables a systematic and broad-scope application but demands a
conceptually different analysis strategy, presented in this work.
Besides its numerical capabilities (in combination with HB), the
new formulation will provide insight into the complex behavior
of systems composed by two nonlinear resonators. It will be
illustrated through its application to a Lorentzian–Fano nonlinear
isolator and a system for robust near-field wireless power transfer,
in which the new formulation particularizes to the previous one.

Index Terms— Auxiliary generators (AGs), contour intersec-
tions, hysteresis, nonlinear resonators.

I. INTRODUCTION

HYSTERESIS phenomena versus the input power and
other parameters are intrinsic to the behavior of non-

linear resonators [1], [2], [3], [4], [5], [6], [7]. This hysteresis
is associated with the coexistence of periodic steady-state
solutions in some parameter intervals, delimited by turning
points, at which the slope of the solution curve tends to infinite.
When using harmonic balance (HB), the Jacobian matrix of
the HB system becomes singular at the turning points [8],
[9], [10]. Moreover, an ill-conditioning problem is often
observed before reaching the turning point, which may lead
to convergence failures or to a jump to a coexisting solution.
To obtain the complete solution curve in in-house HB, one
should make use of continuation methods such as parameter
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switching [11] or arc length [12]. Basically, these methods
replace the actual physical parameter (such as the input power)
with a parameter versus which the circuit/system does not
exhibit the turning point. In the case of commercial HB,
manual parameter switching can be carried out by introducing
an auxiliary generator (AG) [13], [14] into the circuit. The
voltage (current) AG must satisfy a nonperturbation condition
given by the zero value of the ratio between its current and
voltage (voltage and current) [15], which provides an outer tier
equation, solved through optimization [13], [14]. In the case
of nonautonomous circuits (such as a nonlinear resonator), the
outer tier variables are the AG amplitude and phase. Thus,
depending on the section of the solution curve, we will sweep
the physical parameter or the AG amplitude or phase. This
switching is manual and involves a sequence of parameter
changes and sweeps that will become cumbersome in the
case of intricate curves. Recently, a new contour method [16],
[17], [18], compatible with commercial HB, has been pro-
posed. It also relies on the introduction into the circuit of
an AG, which unlike [13] and [14] is not optimized. Instead,
it is used to calculate a nonlinear immittance (admittance or
impedance) function in commercial HB. This function depends
on the excitation amplitude and frequency, in the case of
an autonomous circuit, or amplitude and phase, in a nonau-
tonomous one. It allows obtaining the solution curves either
as contour levels [16], [17], directly traced in commercial
HB, or by calculating contour intersections [18] in in-house
software. The method takes advantage of the fact that the direct
excitation of the nonlinear device at the fundamental frequency
rarely gives rise to convergence problems. This is because
the device nonlinearities are not multivalued in terms of their
time-domain control voltages. In the presence of disconnected
solution curves, the method is also advantageous with respect
to in-house software. This is because it exhaustively (and
simultaneously) provides all the solutions coexisting for a
given parameter value, which may belong to different sections
of the same curve or even to different curves.

The method (based on the calculation of a single nonlinear
immittance function) is applicable to a complete transistor, due
to the compacity of its nonlinear core. However, in circuits
in which the nonlinearities are not closely connected, the
procedure fails. This is the case of circuits containing two
nonlinear resonators, which have recently attracted interest for
a variety of applications, including nonlinear isolators [19],
[20], [21], [22], [23], robust wireless power transfer [24], [25],
and sensors [26], [27], [28], [29], [30], [31]. The multivalued
solution may originate in either one or another resonator or
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be the result of the combined action of both. Thus, two AGs,
one per nonlinear resonator, would be needed, each with
its own amplitude and phase, making a total of four inde-
pendent outer tier values. As a result, the contour methods
in [16], [17], and [18], valid only with two independent
variables, are not applicable.

Here, we will present a general analysis methodology for
circuits with two nonlinear resonators, compatible with com-
mercial HB and able to provide all the coexisting periodic
solutions. It is also based on the use of two AGs, one per
nonlinear resonator. However, one AG (AG2) depends on the
other (AG1) [32], which allows limiting the number of outer
tier variables to two variables instead of four variables and
a single outer tier (complex) equation instead of two, thus
enabling the application of the exhaustive contour procedures.
Here, we will generalize the formulation in [32] by considering
the dependence of AG1 on the AG2 voltage and the input
(external) source. This extra dependence enables a system-
atic and broad-scope application but demands a conceptually
different analysis strategy. Besides the two AGs, the imple-
mentation procedure requires certain complementary elements
and functions that will be described here in full detail.

Besides its numerical capabilities (in combination with HB),
the new formulation provides insight into the complex behav-
ior of systems containing nonlinear resonators, as will be
demonstrated here with two different examples. It will be
initially applied to a Fano nonlinear isolator [19], [20], which
will enable a circuit-level understanding of the mechanism for
the nonreciprocal behavior. It will also enable an analytical
quantification of the differences in the power-transfer response
when driving the system in forward and backward sense. Then,
we will address the more complex Lorentzian–Fano nonlinear
isolator [19], [20], [21], [22], [23]; by means of the new
formulation, we will identify the qualitative differences with
the Fano isolator, resulting from the combined action of its two
nonlinear resonators. We will also investigate the system based
on two coupled nonlinear resonators that were proposed in [24]
and [25] for a robust near-field wireless power transfer. When
applied to this system, the new formulation particularizes to
the one in [32]. With the aid of the formulation, it will be pos-
sible to identify the mechanism that, for a given driving power,
enables a significant increase of the distance between the coils.
In the two cases, the results of the new formulation will be
validated with default and optimization-based HB (when con-
vergence is achieved) and with experimental measurements.

This article is organized as follows. Section II presents the
generalized formulation of systems containing two nonlinear
resonators. It includes a detailed description of its implemen-
tation on commercial HB, as well as its particularization to
formulation in [32]. Section III describes its application to
the analysis of a Lorentzian–Fano nonlinear isolator. Finally,
Section IV describes its application to a robust near-field
wireless-power-transfer system.

II. GENERALIZED FORMULATION OF SYSTEMS
CONTAINING TWO NONLINEAR RESONATORS

For the generalized analysis, we will consider the sys-
tem in Fig. 1(a), which contains two nonlinear elements

Fig. 1. Analysis of the circuit with two linear elements NL1 and NL2.
(a) General block diagram considered for the piecewise-type HB formulation
in (1). (b) General circuit described with the equation system (2), at the
fundamental frequency. (c) Setup used for the calculation of the error function
H(|VAG2|, φ) defined in (8). Due to the action of the ideal bandpass filters,
one has a schematic containing the AGs at the fundamental frequency and
the original circuit schematic at the rest of harmonic terms.

(NL1 and NL2), an arbitrary passive-linear embedding net-
work, and an input source Ig . We will first derive the
formulation that enables the new analysis method, based on
the use two AGs. Then, we will present the implementation
on HB and the particularization to the formulation in [32].

A. Calculation of the Steady-State Solutions

For a description of the procedure, we will assume a peri-
odic solution at the input-source frequency ω and a piecewise
HB formulation of the type in [33], [34], and [35]. Thus, the
system can be described as[

V1,k

V2,k

]
+

[
Za11(kω) Za12(kω)

Za21(kω) Za22(kω)

][
I1,k(V 1, ω)

I2,k(V 2, ω)

]
+

[
Zg1(kω)

Zg2(kω)

]
Ig,k = 0 (1)

where k is the harmonic index, V1,k and V2,k are the kth
harmonic components of the voltages [v1(t) and v2(t)] across
the two nonlinear elements NL1 and NL2, respectively, I1,k

and I2,k are the harmonic components of the currents [i1(t)
and i2(t)] entering these elements, and Ig,k are the harmonic
components of the input current, equal to zero for k ̸= ±1.
On the other hand, V i , where i = 1, 2, is the vector containing
the whole set of harmonics of v1(t) and v2(t). Finally, [Zai j ]
is the linear impedance matrix that relates V1,k and V2,k
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to I1,k and I2,k when doing Ig = 0, and [Zgi ] is the linear
column matrix that relates V1,k and V2,k to Ig,k when doing
I1,k = I2,k = 0.

The analysis method requires a special treatment of the
subsystem of (1) at the fundamental frequency ω since the two
AGs operate at this frequency. At the harmonic frequencies,
we will consider the original circuit schematic [Fig. 1(a)].
When using commercial HB, the different treatments at ω

and the harmonic components are enabled by the introduction
of ideal filters. In all cases of practical interest, the 2 × 2
impedance matrix [Zai j (ω)] will be invertible. Multiplying
the two terms of (1) by the admittance matrix [Yai j (ω)] =

[Zai j (ω)]−1, one obtains

Ya11V1 + Ya12V2 + I1(V 1) + A1 Ig = 0 (a)

Ya21V1 + Ya22V2 + I2(V 2) + A2 Ig = 0 (b) (2)

where for simplicity, we do not explicitly show the harmonic
index k = 1 and the dependence on ω. We have also defined

A1 = Ya11 Zg1 + Ya12 Zg2

A2 = Ya21 Zg1 + Ya22 Zg2. (3)

Unlike (1), the two complex equations of (2) depend each
on a single nonlinear current Ii (i = 1, 2). Following (2),
the circuit can be represented with the schematic in Fig. 1(b).
Now, we can solve (2)(b) for V1, which provides

V1 =
−Ya22V2 − I2(V 2) − A2 Ig

Ya21
. (4)

With the above derivation, V1 depends on both V 2 and the
input current Ig , unlike the expression in [32]. Instead, the
one in [32] provides a less general relationship, in which V1
does not depend on Ig . As a result, it may fail under certain
operation conditions, as will be shown in the application
examples.

The relationship (4) will be used to obtain a single outer
tier equation depending on two real state variables only. This
will be achieved by making use of two voltage AGs, which
will be independent and dependent. The independent voltage
AG (AG2) is connected in parallel with the second nonlinear
element, as shown in Fig. 1(c). Note that due to the ideal
filters in the schematic, it only has an effect at the fundamental
frequency. At the rest of harmonic frequencies, the circuit fully
agrees with the original one. At the fundamental frequency,
AG2 will play the role of V2, so we can write

VAG2 = V2,

VAG2 = |VAG2|e j0. (5)

Note that we have arbitrarily imposed a zero-phase value to
AG2 and, thus, we set the phase origin at V2. From Fig. 1(c),
the current flowing up AG2 is

IAG2 = Ya22|VAG2| + I2(|VAG2|) + A2|Ig|e jφ (6)

where I2 also depends on the Fourier coefficients k ̸= 1
of v2(t), which is not shown for notation simplicity. Because
we have set the phase origin at V2 = |VAG2|, the input current
Ig is expressed in terms of its amplitude |Ig| and its phase

shift ϕ with respect to V2. Next, we will apply (4) to obtain
the value of the second voltage AG (AG1). Replacing (5) in (4)

VAG1
(
|VAG2|, |Ig|e jφ)

=
−IAG2(|VAG2|, |Ig|e jφ)

Ya21
. (7)

The voltage VAG1 depends on the current IAG2, which
in turn depends on the control voltage VAG2 [and all the
harmonic terms of v2(t)] and the input generator Ig . Note
that VAG1 is a complex variable. Due to the filters in Fig. 1(c),
AG1 only has an effect at the fundamental frequency, in a
manner like AG2. Using AG1 and AG2 [Fig. 1(c)], we are
directly controlling the two nonlinear elements NL1 and NL2
at the fundamental frequency, which will necessarily limit the
convergence problems associated with turning points.

Once we have the values of the two AGs, we will make
use of (2)(a) to obtain a single outer tier equation in terms of
the independent voltage V2 = VAG2 = |VAG2|e j0 and |Ig|e jφ .
This is given by

H(|VAG2|, φ) = Ya11VAG1(|VAG2|, |Ig|e jφ) + Ya12|VAG2|

+ I1(VAG1) + A1|Ig|e jφ
= 0 (8)

where the dependences on Fourier components k ̸= 1 are not
shown for simplicity. The complex equation (8), in the two
state variables: |VAG2|, φ, constitutes an outer tier equation,
whereas the pure HB system, with as many harmonic terms as
required, acts like an inner tier. To obtain the circuit solutions,
we will first perform a double sweep in |VAG2|, φ to calculate
the functions

Hr (|VAG2|, φ) = Re[H(|VAG2|, φ)]
Hi (|VAG2|, φ) = Im[H(|VAG2|, φ)]. (9)

Then, all the solutions in the considered exploration plane
(defined by 0 < |VAG2| ≤ |VAG2,max| and 0 < φ ≤ 2π) are
given by the intersections of the two following contours:

Hr (|VAG2|, φ) = 0
Hi (|VAG2|, φ) = 0 (10)

where the subscripts r and i indicate real and imaginary parts,
respectively. Multivalued solution curves versus any arbitrary
parameter η, such as the input current |Ig| or frequency ω, are
obtained by representing all the intersection points versus η.

B. Implementation on Commercial HB

For the implementation on commercial HB, we make use
of the schematic of Fig. 1(c), with the represented ideal filters.
At the harmonic terms kω with k ̸= 1, we have the original
circuit with all its elements and connections. At the funda-
mental frequency ω, we must introduce the two AGs shown in
Fig. 1(c) and make use of the passive-linear matrix [Ya] and the
parameters Ai , where i = 1, 2. Both [Ya] and Ai are obtained
from previous (undemanding) analyses of the passive-linear
network. At the fundamental frequency ω, together with AG2,
we have [on the right of Fig. 1(c)] the parallel connection
of the nonlinear element NL2, the passive-linear admittance
one-port block Ya22, and a current-controlled current source
(CCCS) with the value A2|Ig|e jφ . By Kirchoff’s laws, the cur-
rent flowing up AG2 is given by (6). Then, from (7),
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Fig. 2. Four-port block, described with the linear admittance matrix [yp,i j ],
used for the calculation of the output power.

the voltage V1 should be: V1 = −Y −1
a21 IAG2. This is imposed

with AG1, which has the complex value VAG1 = −Y −1
a21 IAG2

and is connected in parallel with NL1, as shown on the left
of Fig. 1(c). Then, we introduce the error function (8) as an
equation in the data display window. Under a given input
amplitude |Ig|, to obtain the solution curve (or curves) versus a
parameter η, we perform, for each η, a double sweep in |VAG2|

and ϕ, and obtain the intersections between the two contours
Re[H(|VAG2|, φ)] = 0 and I m[H(|VAG2|, φ)] = 0. The
parameter η may be |Ig|, the input frequency ω, or an arbitrary
circuit element. These intersections are calculated in in-house
software after exporting the functions Re[H(|VAG2|, φ)] = 0
and I m[H(|VAG2|, φ)] = 0 from commercial HB.

C. Calculation of Insertion Loss/Isolation

Once we have obtained the steady-state solutions of (8)
in terms of VAG1 [from (7)] and VAG2, the variables at
the input–output ports (at the fundamental frequency ω) are
calculated considering the four-port passive-linear network that
connects the two nonlinear elements (NL1 and NL2), the input
generator Ig , and the output load resistor R (Fig. 2). Using the
four-port admittance matrix [yp,i j ], one obtains the following
linear system:

Ig = yp,11Vg + yp,12VAG1 + yp,13VAG2 + yp,14 RL IL

−I1 = yp,21Vg + yp,22VAG1 + yp,23VAG2 + yp,24 RL IL

−I2 = yp,31Vg + yp,32VAG1 + yp,33VAG2 + yp,34 RL IL

−IL = yp,41Vg + yp,42VAG1 + yp,43VAG2 + yp,44 RL IL . (11)

Note that all the variables in (11) are known except the
load current IL and the voltage at the input source Vg . This
is because the steady-state analysis in Section II-B provides
Ig, VAG1, VAG2, I1, and I2. To calculate the output power,
one will simply obtain IL from any two equations of (11),
providing a nonsingular 2 × 2 system. Then, the ratio between
the output power and the available power is

T =

1
2 RL |IL |

2

|Ig |
2

8G

=
4G RL |IL |

2

|Ig|
2 (12)

which agrees with the inverse of the transmission loss. In a
more general way, to obtain a given harmonic component
of any variable, one should extract it from commercial HB
and apply interpolation to obtain its value at each contour
intersection.

D. Particular Case [32]

Depending on the network topology, we can have a simpler
situation in which the current through the first nonlinear
element (NL1) does not directly depend on Ig . This is the case
considered in [32]. Under this assumption, (2) simplifies to

Ya11V1 + Ya12V2 + I1(V 1) + A1 Ig = 0 (a)

Ya21V1 + Ya22V2 + I2(V 2) = 0 (b). (13)

Thus, we have the AG values

VAG2 = |VAG2|e j0

VAG1(|VAG2|) =
−Ya22|VAG2| − I2(|VAG2|)

Ya21
(14)

where VAG1 has been calculated from (13)(b). Again, the
dependences on the harmonic terms and ω have been omitted
for simplicity. Replacing both expressions in (13)(a), we get

Ya11
−Ya22|VAG2| − I2(|VAG2|)

Ya21
+ Ya12|VAG2|

+ I1(|VAG2|, ω) + A1|Ig|e jφ
= 0. (15)

The above equation can be rewritten in terms of a function,
Hp(|VAG2|), that does not depend on the input current Ig ,
by doing

Hp(|VAG2|) = Ya11VAG1(|VAG2|) + Ya12|VAG2| + I1(VAG1)

= −A1|Ig|e jφ . (16)

Under a given input amplitude |Ig|, to obtain the solu-
tion curve (or curves) versus a parameter η, we perform a
double sweep in η and VAG2 and simply trace the contour∣∣Hp(η, |VAG2|)

∣∣ =
∣∣Ig
∣∣ in the plane |VAG2|, η. One advantage is

that we can obtain the solution curve (or curves) in commercial
HB through simple contour tracing. Another advantage is
that we can get the complete family of solution curves VAG2
versus η for different |Ig| values with no need to sweep |Ig|.
This is because these curves agree with the contour plots of∣∣Hp(η, |VAG2|)

∣∣. As stated, the disadvantage is that this method
is not general.

Note that it is possible to know in advance if (16) can be
used. We must directly excite NL1 and NL2 with the two AGs.
In these conditions, to use (16), the voltage at NL1 (V1) must
only depend on the voltage (V2) and current (I2) at NL2. This
implies a coefficient A2 = 0 in system (2). Thus, the voltage
V1 must be fully determined by V2, I2, and the admittance
matrix [Yai j (ω)]. If this is not the case, we must apply the
new method based on the general formulation (8).

To summarize, the main advantage of the new methods is
their systematic nature, just based on either two or three nested
sweeps carried out in commercial HB, to obtain a nonlinear
function, Hp or H. In comparison, the AG optimization [10],
[37], [38] requires the user surveillance of the convergence
process and a manual parameter switch when this convergence
fails. Moreover, the optimization and parameter switching are
not exhaustive and can miss solution curves. This is also
true for in-house HB combined with continuation procedures.
In comparison, the new method enables a global search for
solutions in the exploration space, comprised within the limits
of the sweep intervals. Table I presents a comparison with the
existing HB-based methods to trace multivalued curves.
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TABLE I
COMPARISON OF HB-BASED METHODS TO TRACE MULTIVALUED CURVES

III. LORENTZIAN–FANO NONLINEAR ISOLATOR

Sounas et al. [19], Cotrufo et al. [20], Sounas and Alù [21],
Kord et al. [22], and Cotrufo et al. [23] proposed a nonrecip-
rocal isolator based on the coupling through a transmission
line of two nonlinear resonators of Lorentzian and Fano type
(Fig. 3). Besides its numerical capabilities, the new formu-
lation provides insight into the operation of this nonlinear
isolator at the circuit level. For an easier understanding, the
analysis will be carried out in two stages. We will first address
the Fano isolator and then the Lorentzian–Fano one.

A. Fano Nonlinear Isolator

The Fano nonlinear isolator [Fig. 4(a)] will be described
in terms of the admittance matrix [yi j ], shown in
Fig. 4(b) and (c), which contains the transmission line of
electrical length θ and the two capacitors C1 and C2. In the
two senses (forward and backward), we will formulate the
circuit with a single-variable version of (1). At the fundamental
frequency, we have

V + Za(ω)I (V, ω) + Zg(ω)
∣∣Ig
∣∣e jφ

= 0. (17)

The above equation will now be particularized to operation
in the forward and backward senses. In the forward sense,
we have

H f (V, φ) = V +

(
j L2ω +

1
G + yout

)
I (V, ω)

+

(
y12

y11 + G

)(
1

G + yout

)∣∣Ig
∣∣e jφ

= 0 (18)

where the subscript f indicates forward, G = R−1, and

yout = z−1
out = y22 −

y12 y21

y11 + G
. (19)

Fig. 3. Lorentzian–Fano nonlinear isolator [19], [20], [21], [22], [23]. The
nonlinearities NL1 and NL2 are implemented as antiparallel connected diodes
(Skyworks SMV1232). The rest of element values are shown in the figure.
The connection nodes of the AGs when using the method in [32] and the
new method are indicated. (a) Operation in forward sense. (b) Operation in
backward sense. (c) Photograph of the measured prototype.

In the backward sense, we have

Hb(V, φ) = V +

(
j L2ω +

1
G + yout

)
I (V, ω)

−

(
1

G + yout

)∣∣Ig
∣∣e jφ

= 0 (20)

where the subscript b indicates backward.
Comparing (18) and (20), the only difference is the extra

nondimensional factor χ = −y12(y11 + G)−1 affecting the
current Ig in the case of the forward sense [see (18)]. As a
result, the curve V versus |Ig| will only differ in the scaling
factor |χ |. The output power in the two senses is

Pout, f =
1
2

∣∣V (∣∣Ig
∣∣)+ j L2ωI

[
V
(∣∣Ig

∣∣)]∣∣2
R

(a)

Pout,b =
1
2
|χ |

2

∣∣V (∣∣Ig
∣∣|χ |

−1)
+ j L2ωI

[
V
(∣∣Ig

∣∣|χ |
−1)]∣∣2

R
(b).

(21)
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Fig. 4. Fano nonlinear isolator. (a) Schematic. (b) Admittance matrix [yi j ]
considered in the formulation. It contains the transmission line and the two
capacitors C1 and C2. (c) General schematic, in terms of the admittance
matrix [yi j ].

Also, the respective ratios between the output power and
the available power are

T f = 4

∣∣V (∣∣Ig
∣∣)+ j L2ωI

[
V
(∣∣Ig

∣∣)]∣∣2
R2 = S

(
Pdg
)

Tb = 4|χ |
2

∣∣V (∣∣Ig
∣∣|χ |

−1)
+ j L2ωI

[
V
(∣∣Ig

∣∣|χ |
−1)]∣∣2

R2

= |χ |
2S
(
Pdg|χ |

−2). (22)

From the inspection of (22), in the case of a linear response
I (V, ω) = Ylin(ω)V , the network will be reciprocal since
S
(
Pdg|χ |

−2)
= |χ |

−2S
(
Pdg
)

and T f = Tb. Thus, for a notice-
able nonreciprocal behavior, we must fulfill two conditions.
The first is the operation of the diode in a sufficiently nonlinear
region to obtain a (significantly) different response of (18)
and (20) under the extra factor |χ |

−1 affecting Ig in (18).
The second condition is that |χ | must be sufficiently different
from 1. However, the variation of χ = −y12(y11 + G)−1 will
affect the power transfer; in backward sense, it will modify
the output admittance yout = z−1

out = y22 + χy21 [indicated
in Fig. 4(c)]. With the required large value of |χ |, one may
expect a significant reduction of output power.

To validate the above derivation, we have analyzed the Fano
resonator in Fig. 4 at 750 MHz, using two different sets of
element values, as shown in the caption of Fig. 5. Note that
for this numerical analysis, we have considered full models of
the devices and passive-linear elements, including parasitics.
For the case in Fig. 5(a), we have |χ | = 7.8 dB. In turn,
for the case in Fig. 5(b), we have |χ | = 1 dB. In the two
cases, we compare the power transmission in the forward and
backward senses. Even though, for this analysis, we have con-
sidered full component models, the predictions of (21)–(22)
keep valid, which demonstrates their generality. The results
obtained with (17) are verified with default HB simulations.

Fig. 5. Fano nonlinear isolator. Power transfer curves for two different sets
of parameter values at fin = 750 MHz. The results obtained with (17) are
verified with default HB simulations (squares). (a) C1 = 1.1 pF, G = 1/50 S,
y11 = 2.513 × 10−4

+ j0.023 S, and y12 = −0.001 − j0.076 S, with
|χ | = 7.8 dB. (b) C1 = 11 pF, G = 1/50 S, y11 = 2.489 × 10−5

− j0.007 S,
and y12 = 2.295 × 10−6

+ j0.024 S, with |χ | = 1 dB.

They are overlapped except in the multivalued sections, where
default HB fails to converge. A simple stability analysis
through pole-zero identification [39], [40] demonstrates that
in the two senses, the lower and upper sections of the solution
curve are stable, whereas the section comprised between the
turning points T1f and T2f, in the forward sense, and between
T1b and T2b, in the backward sense, is unstable. Since |χ | > 1,
both the turning points and minimum of the forward curve
occur for lower input power than those of the backward one
(Fig. 5).

The input power (Pin) interval with nonreciprocal operation
is comprised between T1f in the forward sense (which gives
rise to a transition from low power transmission to higher
power transmission) and T1b in the backward sense (which
also gives rise to a transition to higher power transmission).
As in [19], [20], [21], [22], and [23], it is assumed that the
coexisting upper sections of the curves (in the nonreciprocal
interval) are never reached since there is no gradual reduction
of the input power.

As gathered from Fig. 5, for a stronger reciprocity, there are
higher transmission losses, in consistency with the previous
discussion on the impact of |χ |. This agrees with the demon-
stration in [19] for resonators with a Kerr-type nonlinearity,
using coupled-mode theory. The analysis (21) and (22), at the
circuit level, enables an exact quantification of the scaling of
the power-transfer curve in the backward sense, with respect
to the forward one.

Crucial points of the solution curve in both the forward and
backward senses (see Fig. 5 as an example) are the turning
points and the transmission minima. We will first consider
the turning points. The steady-state equations (18) or (20)
(depending on the sense) can be rewritten as

Hγ (V, φ) = V +

(
j L2ω +

1
G + yout

)
I (V, ω) + Aγ

∣∣Ig
∣∣e jφ

= F(V, ω) + Aγ

∣∣Ig
∣∣e jφ

= 0 (23)
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where the subscript γ is f for the forward sense and b for
the backward sense. At the turning points, the Jacobian matrix
associated of the system composed by the real and imaginary
parts of (23) becomes singular. Thus, we have the condition

det


∂ Hγ,r

∂V
∂ Hγ,r

∂φ
∂ Hγ,i

∂V
∂ Hγ,i

∂φ

 = 0 (24)

where the subscripts r and i indicate real and imaginary parts,
respectively. The derivative with respect to the phase ϕ is
given by

∂ Hγ (V, φ)

∂φ
= j Aγ

∣∣Ig
∣∣e jφ

= − j F(V, ω). (25)

Then, the turning-point condition can be written as

det


∂ Fr

∂V
Fi

∂ Fi

∂V
−Fr

 = −
∂(F2)

∂V
= 0. (26)

As gathered from (26), the voltage amplitudes VTP at the
turning points are the same for both the forward and backward
senses since they do not depend on Aγ . However, and in
consistency with the scaling of the power-transfer curve, the
amplitude of the input current Ig at these turning points will
be different and is given by∣∣Ig, f

∣∣ =

∣∣∣∣F(VTP, ω)

(
zout + R

zout R

)∣∣∣∣|χ |
−1(a)∣∣Ig,b

∣∣ =

∣∣∣∣F(VTP, ω)

(
zout + R

zout R

)∣∣∣∣(b). (27)

Next, we will address the transmission minima. When
neglecting the diode losses, there will be a transmission null
(in both the forward and backward senses) when the condition
V + j L2ωI (V, ω) = 0 is fulfilled. In a manner like the turning
points, the voltage V at the transmission null is the same in the
forward and backward senses. However, as in the case of the
turning points, the input current in the forward sense is scaled
by |χ |

−1. Note that in Fig. 5, the minima are not zero (−∞)

due to the influence of the parasitics.

B. Lorentzian–Fano Nonlinear Isolator

The Lorentzian–Fano isolator includes two nonlinear res-
onators (Fig. 3), which, as illustrated by the formulation,
will reinforce the nonreciprocal behavior. In the forward
(subscript f ) and backward (subscript b) senses, the equation
systems are

H1 f = Ya11V1 + Ya12V2 + I1(V 1, ω) + A1, f Ig = 0 (a)
H2 f = Ya12V1 + Ya22V2 + I2(V 2, ω) = 0 (b)

}
H1b = Ya11V1 + Ya12V2 + I1(V 1, ω) + A1,b Ig = 0 (c)
H2b = Ya12V1 + Ya22V2 + I2(V 2, ω) + A2,b Ig = 0 (d)

}
.

(28)

The two systems [(28)(a) and (b) and (28)(c) and (d)]
are identical except for the nondimensional coefficients Ai, f

and Ai,b, where i = 1, 2, that affect the input current. These
coefficients are

A1, f = −
I1

Ig

∣∣∣∣
V1=V2=0

=
−1

1 + G/( jC1ω)

A2, f = −
I2

Ig

∣∣∣∣
V1=V2=0

= 0

A1,b =
−I1

Ig

∣∣∣∣
V1=V2=0

=

−
1

j L2ω

G +
1

j L2ω
+ jC2ω + Yin(θ, C1)

A2,b =
−I2

Ig

∣∣∣∣
V1=V2=0

=
−Yin(θ, C1)

G +
1

j L2ω
+ jC2ω + Yin(θ, C1)

(29)

where Yin(θ, C1) is the input admittance of the transmission
line when terminated in C1. The lack of symmetry when
exciting the system in the forward and backward senses is
due to the difference between A1, f and Ai,b and between
Ya11 and Ya22. However, unlike what happens with the Fano
resonator, each of the two nonlinear elements, NL1 and NL2,
will operate in a qualitatively different manner when exciting
the system in the forward or backward senses. This can be
understood from the differences in V1 when exciting the circuit
in the forward and backward senses

V1, f
(
V2, Ig

)
=

−Ya22|V2| − I2(V2, V
′

2)

Ya21

V1,b
(
V2, Ig

)
=

−Ya22V2 − I2(V2, V
′

2) − A2,b|Ig|e jφ

Ya21
. (30)

On the other hand, neglecting parasitics, the output power
is

Pout, f =
1
2

|V2 + j L2ωI2|
2

R

Pout,b =
1
2

∣∣∣∣ 1
1 + G/( jC1ω)

∣∣∣∣2 |V1|
2

R
=

1
2

∣∣A1, f
∣∣2 |V1|

2

R
. (31)

In the two senses, the transmission zeroes will be given
by the condition V2 + j L2ωI2(V2, ω) = 0. This is because,
under this condition, Ig = I2 and I1 = 0, as easily gathered
from the inspection of the circuit topology. However, the above
transmission zero will be reached for a different input current
in each sense.

The new analysis method will be applied to the circuit
in Fig. 3, considering full models for the varactor diodes
and linear components, as in Section III-A. Note that this is
different from [32], where the main study was carried out
under ideal models. As gathered from (29), to enhance the
nonreciprocal behavior, we should maximize the difference
between the coefficients Ai, f and Ai,b. Fig. 6 presents the
variation of the magnitudes of these two coefficients versus the
transmission-line length l[RO4003C (h = 32 mil) substrate].
From the inspection of the figure, we can expect a pronounced
nonreciprocal behavior about l ∼= 65 mm.

In Fig. 7(a), we present the power-transfer curves obtained
for the transmission-line length: l = 60 mm. We indicate
with “S” (“U”) the sections with a stable (unstable) behavior.
As expected, for too low Pin, the behavior is reciprocal, with a
very low power transfer. Then, as Pin increases, the backward
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Fig. 6. Variation of the magnitudes of Ai, f and Ai,b versus the
transmission-line length l. The biggest differences are obtained about
l ∼= 65 mm.

Fig. 7. Analysis of the Lorentzian–Fano nonlinear isolator versus the input
power Pin for two distinct values of the transmission-line length. (a) l =

60 mm. Comparison with the method in [32], which gives rise to some failures
in the low power-transfer region. (b) l = 60 mm. Comparison with default
HB (black dashed-dotted line), unable to complete the curves. Experimental
results are superimposed. (c) l = 70 mm. Comparison with the method
presented in [32], which gives rise to some failures in the low power-transfer
region. (d) l = 70 mm. Comparison with default HB (black dashed-dotted
line), unable to complete the curves. Experimental results are superimposed.

curve starts to grow and undergoes the turning point T1,b,u.
In the forward sense, the power transfer keeps low up to the
turning point T1,f,u. The occurrence of T1,b,u before T1,f,u can
be related to the larger values of |Ai,b| in comparison with
|Ai, f | observed in Fig. 6 for this length value. To obtain the
solution curves through (8), we have used a sweep in phase
from 0◦ to 360◦, with a 3◦ step (121 pts), and a sweep in
|VAG2| from 0.001 to 8 V, with a 0.05 V step (161 pts). This
double sweep, which takes 33 s in an i9–9940X (32 GB RAM),
is carried out at each |Ig| step.

In Fig. 7(a), we compare the results of the new formulation
with the method in [32], unable to predict the sections with low
power transfer. In the formulation [32], instead of connecting
AG2 in parallel with NL2, we connect it in parallel with
the series branch NL2–L2 (see Fig. 3). Thus, the nonlinear
element NL2 in the second resonator is not directly excited

across its terminals. This gives rise to convergence problems
when the voltage amplitude across the branch NL2–L2 is
small while having a large voltage amplitude across NL2.
We must emphasize that if convergence is achieved during the
variable sweeps, the result is fully correct (not approximate).
In Fig. 7(b), we compare the results of the new formulation
with default HB, unable to complete the solution curves. The
circuit has also been experimentally characterized and the
measurement points are superimposed in Fig. 7(b).

We have performed systematic analyses versus the length l
and the difference between T1,f,u and T1,b,u is always rel-
atively small. However, the power transfer after T1,b,u can
be rather low for some l values, which will lead to a long
Pin interval with nonreciprocal behavior. This is shown in
Fig. 7(c) and (d), corresponding to l = 70 mm. After T1,f,u,
the saturated voltage values in NL2 keep near those ideally
fulfilling V2 + j L2ωI2(V2, ω) = 0, so the output power is very
low. Another advantage is the sharp transition from low power
transmission to high power transmission in the backward
sense, instead of the gradual one observed in Fig. 7(a) and (b).
Thus, we obtain a quite noticeable nonreciprocal behavior.
Note that the transmission loss could be reduced with low-
parasitic devices. Fig. 7(c) compares the results of the new
formulation with those of [32], which is unable to predict
the low amplitude loop. Comparisons with default HB, unable
to complete the solution curves, and with measurements are
presented in Fig. 7(d).

Fig. 8 presents the analysis versus the input frequency ω

at the constant input power Pin = 18 dBm. For the two
length values, l = 60 and 70 mm, the solution curves are
extremely complex. Moreover, for l = 60 mm [Fig. 8(a)], both
in the forward and backward senses, there are isolated closed
curves, detected in this kind of system for the first time to
our knowledge. To better understand the behavior in forward
sense, we have also traced the solution curves in terms of
the voltage V2 [Fig. 8(b)]. The existence of the closed curve
has been validated through the optimization of the two AGs,
in terms of their amplitude and phases, to simultaneously fulfill
the two nonperturbation conditions YAG1 = IAG1/VAG1 = 0
and YAG2 = IAG2/VAG2 = 0. Convergence of this optimization
procedure has only been achieved at two points, indicated
with asterisks. With respect to in-house software, relying on
continuation techniques, the new method has the advantage of
exhaustively providing all the coexistent solutions, which may
belong to solution curves that would otherwise be ignored. The
isolated curves are missed when AG2 is connected in parallel
with the series branch (composed by the inductor L2 and the
diodes D3 and D4), as in [32]. This is because they are caused
by the nonlinear behavior of the diodes when the voltage
amplitude of the series branch is small. When connected in
parallel with the series branch, AG2 is not able to properly
excite the diodes.

For l = 70 mm [Fig. 8(c)], the frequency interval with
low power transfer in the forward sense is broader than the
one obtained for l = 60 mm. We indicate with “S” the
stable section of the lower part of the curve in forward sense.
A better operation is obtained for l = 70 mm both versus input
frequency and power.
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Fig. 8. Analysis of the Lorentzian–Fano nonlinear isolator versus the
input frequency ω for two distinct values of the transmission-line length.
Comparison with default HB (black dashed-dotted line), unable to complete
the curves, and with the method presented in [32], which gives rise to some
failures in the low power-transfer region. The existence of the isolated closed
curves has been verified through AG optimization (asterisks). (a) l = 60 mm.
(b) l = 60 mm. Solution curve(s) in terms of the voltage V2, to better
understand the behavior. (c) l = 70 mm. The stable section of the lower
part of the curve in forward sense is indicated with “S” in (c).

IV. WIRELESS POWER TRANSFER SYSTEM BASED ON
TWO COUPLED NONLINEAR RESONATORS

In this section, we will address the wireless-power-transfer
system based on two coupled nonlinear resonators proposed
in [24] and [25]. The topology is shown in Fig. 9. It can
be seen as a significant evolution/improvement of the one
proposed in [41] and [42], which contained a single nonlinear
resonator in the secondary.

In the system of Fig. 9, we can take the voltage across
the pair of diodes in the first (second) resonator as the
variable V1 (V2). When doing so, we properly excite both NL1
and NL2 and have A2 = 0, so the system can be formulated as
in the particular case (13), which corresponds to the method
in [32]. As already stated, this formulation is computationally
more efficient since the solution curves are obtained through
contour plots instead of contour intersections.

For an intuitive understanding, we will also derive a sim-
plified analytical formulation, assuming L1 = L2 = L and

Fig. 9. Robust wireless-power-transfer system based on two nonlinear
resonators [24], [25]. (a) Schematic. (b) Photograph of the measurement setup.

expressing the nonlinear currents through NL1 and NL2 in
terms of the nonlinear charges. The admittance matrix [Ya] is
given by

[Ya] =


− j(

−k2 + 1
)
Lω

+ G
j(

−k2 + 1
)
Lω

j(
−k2 + 1

)
Lω

− j(
−k2 + 1

)
Lω

+ G

 (32)

where k is the coupling factor. Replacing [Ya] in (13), the
system equations are(

− j(
−k2 + 1

)
Lω

+ G

)
V1 + jωQ1(V1)

= Ig −
jk(

−k2 + 1
)
Lω

V2(a)(
− j(

−k2 + 1
)
Lω

+ G

)
V2 + jωQ2(V2)

= −
jk(

−k2 + 1
)
Lω

V1(b). (33)

Under k = 0, (33)(a) degenerates into an isolated non-
linear resonator, composed by L , Q1, and G, excited by
the current Ig . In turn, the resonator in (33)(b), composed
by L , Q2, and G, becomes undriven, so it provides V2 = 0.
For k > 0, the second resonator receives (due to the inductive
coupling) an input signal from the first one. To perform some
more analytical derivations, we will assume identical nonlinear
charges, given by q(t) = Cov(t)/2 + q3v

3(t), which provide
the describing function: Q(V ) = (Co/2)V + (3/4)q3V 3

=

CV + Q3V 3. Now, we will replace these charge functions
in (33). Solving for V1 from (33)(b) (as done with the
substitution method) provides

V1 =
1
k

{ [(
k2

− 1
)
LCω2

+ 1
]
V2 +

(
k2

− 1
)
L Q3ω

2V 3
2

+ j
(
−k2

+ 1
)
GLωV2

}
.

(34)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: UNIVERSIDAD DE CANTABRIA. BIBLIOTECA UNIVERSITARIA. Downloaded on November 16,2023 at 07:58:25 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Fig. 10. Transferred power versus the coupling factor k obtained with (35).
Solution points obtained with default HB are superimposed with squares.
(a) Input frequency fin = 10 MHz and different input powers. Comparison
of the behavior of the system based on two nonlinear resonators with the one
having a single nonlinear resonator in the secondary (case in [41] and [42]).
(b) Pin = 10 dBm, with fin = 10 and 11 MHz. The simulations are compared
with the experimental results.

As can be seen, one obtains a complex polynomial. When
replacing this expression in (33)(a), the complex polynomial
is of ninth order. In the case of a linear resonator in the
primary, the polynomial keeps of third order of V1 in (34). As a
result, in the case of two nonlinear resonators, we can expect
an earlier occurrence of turning points, due to the stronger
nonlinearity. This will be verified with the analysis method
described in Section II. In this case, we have A2 = 0, so at
the fundamental frequency, the system can be compacted as

F(|V2|, k) + A1(k)|Ig|e jφ
= 0 (35)

where the phase origin is set at V2. Then, performing a double
sweep in k and |V2|, it will be possible to obtain a complete
family of solution curves (for different |Ig| values) as contour
levels of the function

∣∣Hp
∣∣ = |F(V2)/A1|. This can be seen

in Fig. 10(a), where these contours have been represented, for
fin = 10 MHz, in the plane defined by k and the output power,
given by Pout = (1/2)|V2|

2/R. The results are compared with
those obtained when having a single nonlinear element, placed
in the secondary, which is the case considered in [37] and [38].
As can be seen, with two nonlinear elements, we obtain an
earlier saturation and a wider k interval with a low sensitivity.
In a manner like what was observed in Section III, for a certain
Pin interval [see Pin = 6 and 8 dBm in Fig. 10(a)], there are
two isolated curves, which, as shown here, is a common type
of behavior in the presence of two nonlinear resonators.

In Fig. 10(b), we compare the simulations of the system with
two nonlinear resonators with the measured results for two

Fig. 11. Locus of turning points in the plane defined by the coupling
factor k and the input power Pin. It has been obtained from the condition
∂(|F |

2)/∂V2 = 0, interpolating the Pin values that give rise to the zeroes of
the derivative function.

different input frequencies fin = 10 and 11 MHz. The coupling
factor k has been estimated in an empirical manner. We have
used the vector network analyzer Copper Mountain S5048 to
measure the scattering parameters of a two-port network that
included the two coupled coils at different distance values.
For each distance d, a set of S-parameters was obtained. The
experimental S-parameters were compared with those obtained
through the simulation of two mutually coupled ideal inductors
for different values of the coupling factor k. The main source
of error comes from the fact that planar spiral coils are used
in the experiment, whereas ideal inductors are considered in
simulation. As seen in Fig. 10(b), the early saturation and jump
resulting from the lower turning point are well predicted.

The overall behavior is more regular than the one obtained
in the case of the nonlinear isolator. Thus, obtaining the locus
of turning points can be helpful for a global prediction of
the circuit response. The aim is to trace this locus in the
plane defined by Pin and k, which will provide, for each Pin,
the k value at which the upward jump takes place. Through
a derivation analogous to the one in (23)–(26), we obtain
the turning-point condition ∂(|F |

2)/∂V2 = 0. To determine
the locus in the plane (Pin, k), we will perform a double
sweep in k and V and calculate the zero-value contour
∂(|F |

2)/∂V2 = 0. Then, we will interpolate Pin through this
contour. The results are shown in Fig. 11, which compares
the turning-point loci obtained for two nonlinear resonators
(blue solid line) and for a single nonlinear resonator (red
dashed line). The loci accurately predict the turning points
in the power-transfer curves of Fig. 10(a), as easily gathered
by following the vertical axes. In the case of two nonlinear
resonators, we obtained three disconnected loci. The locus L1
in the lower Pin range predicts the turning points in the low
amplitude curves of Fig. 10(a), without practical interest. The
locus L2 (to be compared with the one obtained with a single
nonlinear resonator) demonstrates a general reduction of the
k value at which the upward jump (leading to a high power
transfer) is obtained.

The circuit has also been analyzed versus the input fre-
quency ω. For Pin = 10 dBm and different k values, we obtain
the results in Fig. 12. Again, the performance of the sys-
tem with two nonlinear resonators [Fig. 12(a)] is compared
with that of the system with a single nonlinear resonator
[Fig. 12(b)]. The results obtained with default HB (unable
to complete the curves) are superimposed with squares.
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Fig. 12. Analysis versus the input frequency at the input power Pin =

10 dBm. Solution curves versus the input frequency ω for different values of
the coupling factor k. The results obtained with default HB are superimposed
with squares. (a) With two nonlinear resonators. (b) With a single nonlinear
resonator.

When convergence is achieved, they are overlapped with the
ones obtained with the new method. As can be seen, the
curves with two nonlinear resonators are significantly more
complex than the ones obtained with one nonlinear resonator.
Their turning points give rise to jumps and hysteresis when
varying the input frequency. At a constant input frequency,
their occurrence for low k is what enables the jumps versus
Pin that lead to a high transferred power [see Fig. 10(a)].

V. CONCLUSION

An exhaustive analysis method for circuits/systems contain-
ing two independent nonlinear resonators has been presented.
The method is based on a substitution procedure that makes
use of two AGs. One of these AGs (AG2) is independent,
whereas the other AG (AG1) depends on the AG2 voltage and
the input generator. This additional dependence generalizes the
analysis of previous work and enables a systematic and broad-
scope application, as demonstrated by a rigorous derivation
that departs from a piecewise-type HB formulation. The new
method is compatible with the use of commercial HB. With
respect to in-house HB software combined with continuation
techniques, it has the advantage of exhaustively providing
all the coexistent solution curves. As another advantage,
the method provides insight into the behavior of circuits
with a complex performance. Here, it has been applied to
a Lorentzian–Fano nonlinear isolator and a robust wireless
power-transfer system containing two nonlinear resonators.
The results have been compared with default HB and with
measurements.
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