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We report the extension of the density-functional theory plus Hubbard U (DFT+U) method to the case of 
non-collinear magnetism and spin-orbit coupling in a framework of numerical atomic orbitals. Both the 
Hubbard repulsion term U , and the exchange J parameters are explicitly included and treated separately. 
The occupation numbers of the localized orbitals belonging to the correlated shell are computed from 
the projections of the Kohn-Sham eigenfunctions onto a set of non-overlapping, orthogonal, localized 
projectors. We provide the detailed expressions for the total energy, forces and stresses including the 
Pulay corrections. Our implementation on the version 5.0 of the siesta package has been validated 
with simulations carried out in isolated atoms and bulk solids including atoms with a strong spin-orbit 
coupling.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Since the advent of the density functional theory (DFT) in the mid-sixties [1,2], this method has become the most widely used 
framework for first-principles material simulations. Although the exact expression of the total energy functional is unknown, some of 
its properties are well characterized. One of them is the piece-wise linear dependency of the total energy with respect to the number 
of electrons (N): the energy profile should consist of a series of straight segments joining the energies corresponding to integer occupa-
tions [3]. This fact immediately translates to the appearance of discontinuities in the derivative of the energy as a function of the number 
of electrons at integral values of N . The discontinuities also appear in the one-electron potential, defined as the functional derivative of 
the total energy with respect to the electron density, and are responsible for large contributions in the opening of band gaps [4].

Some of the actual and most extended approximations to the DFT, such as the local density approximation (LDA; based on the homoge-
neous electron gas limit), does not present such discontinuities: the approximated energy functional is continuous with all the derivatives 
continuous as a function of N . Besides, these approximate functionals fail to cancel out the electronic self-interaction contained in the 
classical Hartree term (portions of the charge density associated with the same electron repel each other), producing over-delocalization 
of the valence electrons and the over-stabilization of metallic ground states. As a result, LDA fails while describing band gaps of Mott 
insulators or other systems with localized electrons.

A correction was proposed by Anisimov and coworkers [5] by adding an orbital-dependent correction to LDA potentials (the so-called 
LDA+U method), that allowed the orbital polarization and the Mott-Hubbard gap opening in the single-particle spectrum. The main idea 
behind the method is to separate the electrons in two subsystems: the “strongly correlated” electronic states (typically, localized d or 
f orbitals) using the Hubbard model, whereas the rest of the delocalized valence electrons are described at the level of “standard” 
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approximate orbital-independent one-electron potential coming from DFT functionals. Exchange and non-sphericity of the interactions 
were later included by Anisimov et al. in Ref. [6]. Finally, a unitary-transformation-invariant formulation of LDA+U was introduced in 
Ref. [7], borrowing expressions for the energy from Hartree-Fock theory. Within this methodology, the total energy of the system is 
written as

EDFT+U
[
ρσ (r),nI,σ

mm′
]

= EDFT [
ρσ (r)

] + EHub
[
{nI,σ

mm′ }
]
− Edc

[
{nI,σ }

]
. (1)

In Eq. (1), EDFT is the total energy coming from the approximated DFT functional, that can be computed from the charge density for 
the spin-σ . EHub is the term that contains the Hubbard Hamiltonian to model correlated states. Finally, we have to subtract from the 
approximate DFT functional the part of the interaction energy that will be directly taken into account by EHub. This is done with the 
double-counting term Edc. nI,σ

mm′ are occupation numbers of localized orbitals states.
A few years later, Dudarev et al. [8] proposed a simplified rotationally invariant expression of the Hubbard plus the double counting 

terms, where the exchange parameter J was set to zero, and the Coulomb interaction is introduced through an effective Ueff = U − J . 
This simplified version becomes very popular because it produces similar results as the fully rotational invariant formulation [7]. However, 
some works have pointed the inadequacy of neglecting the explicit dependence on the exchange interaction J to deal with non-collinear 
magnetism [9] or other systems subject to spin-orbit coupling.

It is not the goal of this paper to review all the approaches that have appeared to overcome the problem of making DFT+U compatible 
with spin-orbit coupling, including different choices of the double-counting correction terms in Eq, (1). We address the attention of the 
interested reader to more comprehensive reviews, such as the one in Ref. [10]. Our goal is to explain how the formalism presented 
in Ref. [9] has been adapted to the framework of a numerical atomic orbital method, as implemented in siesta code [11,12]. Similar 
approaches have recently appeared in the literature, related with other codes such as openmx [13], or abacus [14].

The rest of the paper is organized as follows. In Sec. 2 we explain the methodology behind the approach for the case of collinear 
magnetism, to set up the notation and to clarify some of the concepts in an easier environment. The Hubbard and double-counting 
contribution (within the fully localized limit) to the self-consistent potential are described in Sec. 2.1.1 and Sec. 2.1.2, respectively. A 
practical equation to compute the total energy coming from the Hubbard and double-counting contribution is presented in Sec. 2.1.3. The 
corresponding generalizations to the case of non-collinear magnetism, following the recipe given in Ref. [9], is the topic of Sec. 2.2. In 
Sec. 2.3 we summarize how the integrals related with the on-site electron-electron interactions are computed. The contribution to the 
forces is given in Sec, 2.4. Finally, we validate the implementation (available in the version 5.0 of the siesta code) with two practical 
examples (an isolated atom and a solid) in Sec. 3.

2. Methods

2.1. Collinear magnetism

2.1.1. The Hubbard contribution to the self-consistent potential
The starting point is the Hubbard Hamiltonian to model correlated states proposed by Liechtenstein and coworkers [7]

EHub
[
{nI,σ

mm′ }
]

= 1

2

∑
I

∑
σ

∑
{m}

{〈m,m′′|V ee|m′,m′′′〉nI,σ
mm′n

I,−σ
m′′m′′′

+ (〈m,m′′|V ee|m′,m′′′〉
− 〈m,m′′|V ee|m′′′,m′〉)nI,σ

mm′n
I,σ
m′′m′′′ }, (2)

where, following the notation of Ref. [10], I runs over atoms, located at RI , containing correlated shell of electrons, the state index m runs 
over the eigenstates of Lz for a given angular quantum number l, and σ refers to the spin of the electron. The V ee integrals represent 
electron–electron interactions that are expressed as the integrals of the Coulomb kernel on the wave functions of the correlated shell. We 
shall devote Sec. 2.3 to explain in detail how they are estimated. It is important to note how self-interaction is absent in the Hubbard 
energy given in Eq. (2).

Within siesta, the occupations nI,σ
mm′ are computed from the projections of Kohn-Sham eigenfunctions onto a set of non-overlapping 

(i.e. orthogonal) localized projectors |φ I
m〉, as

nI,σ
mm′ = 〈φ I

m|ρ̂σ |φ I
m′ 〉

=
∑

k

∑
i

〈φ I
m|ψσ

ki〉 f σ
ki〈ψσ

ki|φ I
m′ 〉, (3)

where f σ
ki represents the occupation of the Kohn-Sham states, labeled by k-point, band i, and spin σ indices, and we have defined the 

one-particle density operator, ρ̂σ , as ρ̂σ = ∑
k
∑

i |ψσ
ki〉 f σ

ki〈ψσ
ki |. Practically, these projectors can be computed in the same way as the 

numerical atomic orbitals of the basis set, but with shorter ranges. This differs from the Mulliken charge projector algorithm followed in 
Ref. [13], and Ref. [14].

In siesta [11], the Bloch eigenstates are expanded as a linear combination of strictly localized numerical atomic orbitals, φμ , as

ψσ
ki(r) =

∑
μ

eik·Rμcσ
μi(k)φμ(r), (4)

where μ ≡ {Ilmζ }, with ζ being the index that label the functions with the same angular dependence (determined by l, and m) but 
different radial dependency, cσ

μi(k) = 〈φμ|ψσ
ki〉, and φμ is the dual orbital of φμ , 〈φμ|φν〉 = δμν . Thus, introducing twice the projector 

operator into the space spanned by the numerical atomic orbitals basis set, the populations of Eq. (3) can be computed as
2
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nI,σ
mm′ = 〈φ I

m|
⎛
⎝∑

μ

|φμ〉〈φμ|
⎞
⎠ |ρ̂σ |

(∑
ν

|φν〉〈φν |
)

|φ I
m′ 〉

=
∑
μν

〈φ I
m|φμ〉〈φμ|ρ̂σ |φν〉〈φν |φ I

m′ 〉

=
∑
μν

〈φ I
m|φμ〉ρσ

μν〈φν |φ I
m′ 〉

=
∑
μν

S I
mμρσ

μν S I
νm′ , (5)

where the density matrix elements are written in terms of the duals of the numerical atomic orbitals [15] (ρσ
μν = 〈φμ|ρ̂σ |φν〉) and we 

have introduced the notation S I
mμ = 〈φ I

m|φμ〉 to denote the overlap between the projectors used to compute the occupations and the 
atomic orbitals of the basis.

Replacing Eq. (5) into Eq. (2) we arrive to the following expression for the Hubbard energy

EHub = 1

2

∑
μν

∑
σ

V Hub,σ
νμ ρσ

μν = 1

2

∑
σ

Tr
(

V̂ Hub,σ ρ̂σ
)

, (6)

where

V Hub,σ
νμ =

∑
I

∑
{m}

[
〈m,m′′|V ee|m′,m′′′〉

(
nI,−σ

m′′m′′′ + nI,σ
m′′m′′′

)

−〈m,m′′|V ee|m′′′,m′〉nI,σ
m′′m′′′

](
S I

mμS I
νm′

)
. (7)

This potential must be added to the usual DFT effective single particle potential in the self-consistency procedure. It is important to 
notice how there might be non-zero potential matrix elements, V Hub,σ

νμ , even between pairs of orbitals ν and μ that do not belong to 
the correlated subspace. If the basis set would be orthonormal with the projectors, then 〈φ I

m|φμ〉 = δ I
mμ , and 〈φν |φ I

m′ 〉 = δ I
νm′ , and Eq. (7)

would transform into the expression given in Eq. (3) of Ref. [9].

2.1.2. The double-counting contribution to the self-consistent potential
Besides the Hubbard contribution, we have to consider the double-counting energy that, following Eq. (13) of Ref. [16], in the fully 

localized limit takes the form

Edc = 1

4

∑
I

[
2U InI (nI − 1) − 2 J InI

(
nI

2
− 1

)
− J I mI · mI

]
, (8)

where

nI =
∑
σ

∑
m

nIσ
mm. (9)

Assuming collinear spin, then mI = (
0,0,mI

z

) = (
0,0,nI,↑ − nI,↓)

, so Eq. (8) reduces to

Edc =
∑

I

[
U I

2
nI (nI − 1) − J I

2

[
nI,↑ (

nI,↑ − 1
)

+ nI,↓ (
nI,↓ − 1

)]]
, (10)

that corresponds with the double counting term of Eq. (4) in Ref. [7]. Replacing Eq. (9) into Eq. (10), and taking the functional derivatives 
with respect to the density matrix, we arrive to the contributions of the double-counting terms to the self-consistent potential

V dc,σ
νμ = δEdc

δρσ
μν

=
∑

I

∑
m

U I
(

S I
mμS I

νm

)(
nI − 1

2

)

−
∑

I

J I

⎡
⎣

(∑
m

(
S I

mμS I
νm

))⎛
⎝∑

m′

∑
μ′ν ′

ρσ
μ′ν ′ S I

m′μ′ S I
ν ′m′ − 1

2

⎞
⎠

⎤
⎦ . (11)

2.1.3. Contribution to the energy
The contribution to the total energy can be computed from a direct evaluation of Eq. (2) and Eq. (8) for the Hubbard and double-

counting contributions, respectively. Alternatively, it can be written as the half trace of the product of the potential times the density 
matrix plus some correction terms, as
3
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EHub − Edc =1

2

∑
σ

Tr
[(

V Hub,σ + V dc,σ
)
ρσ

]

−
∑

I

1

4

(
U I − J I

)
nI . (12)

2.2. Non collinear magnetism

2.2.1. The Hubbard and double-counting contributions to the self-consistent potential
The previous formalism for collinear spins can be extended to the case of noncollinear magnetism. In this case, we have to take into 

account that the density matrix between two atomic orbitals μ and ν is a complex (2 × 2) matrix

ρμν =
(

ρ
↑↑
μν ρ

↑↓
μν

ρ
↓↑
μν ρ

↓↓
μν

)
. (13)

This immediately translates into the fact that the occupations introduced in Eq. (5) are also complex (2 × 2) matrices,

nI
mm′ =

(
nI,↑↑

mm′ nI,↑↓
mm′

nI,↓↑
mm′ nI,↓↓

mm′

)
. (14)

From this, the total number of correlated electrons, nI , and the magnetic moment, mI , of every individual atom I can be computed as

nI =
∑

m

Tr
(
1nI

mm

)
=

∑
m

(
nI↑↑

mm + nI↓↓
mm

)
, (15a)

mI
x =

∑
m

Tr
(
σxnI

mm

)
=

∑
m

(
nI↑↓

mm + nI↓↑
mm

)
, (15b)

mI
y =

∑
m

Tr
(
σynI

mm

)
=

∑
m

i
(

nI↑↓
mm − nI↓↑

mm

)
, (15c)

mI
z =

∑
m

Tr
(
σznI

mm

)
=

∑
m

(
nI↑↑

mm − nI↓↓
mm

)
, (15d)

where σx, σy , and σz representing the (2 × 2) Pauli matrices. The generalization of the DFT+U potential, also expressed in the two-
component spin space as,

Vνμ =
(

V ↑↑
νμ V ↑↓

νμ

V ↓↑
νμ V ↓↓

νμ

)
, (16)

was done by Bousquet and Spaldin [9]. Every potential matrix element is the sum of the corresponding Hubbard and double-counting con-
tribution. Each element of the (2 × 2) matrix can be computed as a functional derivative of the energy with respect to the corresponding 
density matrix term

V αβ
νμ = δE

δρ
βα
μν

. (17)

For the diagonal components, they are the same as the ones obtained in Eq. (7) and Eq. (11) of Sec. 2.1, respectively, and can be 
generalized as

V Hub,↑↑(↓↓)
νμ =

∑
I

∑
{m}

[
〈m,m′′|V ee|m′,m′′′〉

(
nI,↓↓

m′′m′′′ + nI,↑↑
m′′m′′′

)

−〈m,m′′|V ee|m′′′,m′〉nI,↑↑(↓↓)

m′′m′′′
](

S I
mμS I

νm′
)

, (18a)

V dc,↑↑(↓↓)
νμ =

∑
I

∑
m

U I
(

S I
mμS I

νm

)(
nI − 1

2

)

−
∑

I

J I

⎡
⎣

(∑
m

(
S I

mμS I
νm

))⎛
⎝∑

m′

∑
μ′ν ′

ρ
↑↑(↓↓)

μ′ν ′ S I
m′μ′ S I

ν ′m′ − 1

2

⎞
⎠

⎤
⎦ , (18b)

For the off-diagonal terms, we follow the expressions given by Bousquet and Spaldin in Ref. [9]

V Hub,↑↓(↓↑)
νμ = −

∑
I

∑
{m}

[
〈m,m′′|V ee|m′′′,m′〉nI,↑↓(↓↑)

m′′m′′′
]

S I
mμS I

νm′ , (19a)

V dc,↑↓(↓↑)
νμ = −

∑
I

J I

⎡
⎣

(∑
m

(
S I

mμS I
νm

))⎛
⎝∑

m′

∑
μ′ν ′

ρ
↑↓(↓↑)

μ′ν ′ S I
m′μ′ S I

ν ′m′

⎞
⎠

⎤
⎦ , (19b)

Both the Hubbard and the double counting matrix elements must be computed self-consistently. It is important to note here how both 
the potential [Eq. (16)] and the density matrix [Eq. (13)] are globally Hermitian (ραβ

μν = ρ
βα∗
νμ ).
4
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2.2.2. Contribution to the energy
The contribution to the energy can be computed following the Eq. (12), but now the trace has to be extended to the multiplication of 

the (2 × 2) matrices as

EHub − Edc =1

2

∑
μν

(
ρ

↑↑
μν V ↑↑

νμ + ρ
↑↓
μν V ↓↑

νμ + ρ
↓↑
μν V ↑↓

νμ + ρ
↓↓
μν V ↓↓

νμ

)

−
∑

I

1

4

(
U I − J I

)
nI . (20)

In Eq. (20) we have considered that Vνμ is the sum of the Hubbard and the double-counting contributions.

2.3. Integrals of the electron-electron interaction

In the previous Sections, the integrals related with the electron-electron interaction,

〈m,m′′|V ee|m′,m′′′〉 =∫
d3r

∫
d3r′ψ∗

lm(r)ψ∗
lm′′(r′) e2

|r − r′|ψlm′(r)ψlm′′′(r′), (21)

remain to be determined. Here we follow the recipe given in Ref. [7]. Assuming that the functions of the kind ψlm involved in Eq. (21)
are atomic-like d or f states, then they can be written as the product of a radial part times a real spherical harmonic, that can be 
trivially expressed as a linear combination of complex spherical harmonics. The Coulomb kernel can also be expanded in a basis of complex
spherical harmonics as [17],

e2

|r − r′| = 4πe2
∞∑

l=0

l∑
m=−l

1

2l + 1

rl
<

rl+1
>

Y ∗
lm(θ ′, φ′)Ylm(θ,φ), (22)

where r< (respectively r>) is the smaller (respectively larger) of |r| and |r′|. Then, the electron-electron interaction integrals can be 
factorized in the product of a radial and an angular contribution

〈m,m′′|V ee|m′,m′′′〉 =
∑

k

ak(m,m′,m′′,m′′′)F k, (23)

where k is an even integer in the range 0 ≤ k ≤ 2l, with l being the angular momentum number of the localized manifold with −l ≤ m ≤ l.

2.3.1. Angular contribution
The ak terms in Eq. (23) represent the angular factors and corresponds to products of three complex spherical harmonics (Gaunt 

coefficients)

ak(m,m′,m′′,m′′′) = 4π

2k + 1

k∑
q=−k

〈lm|Ykq|lm′〉〈lm′′|Y ∗
kq|lm′′′〉, (24)

that can be simplified as a simple expression involving only a normalization constant and two Wigner 3 j symbols,

〈lm|Ykq|lm′〉 =
2π∫
0

π∫
0

Y ∗
l,m(θ,φ)Yk,q(θ,φ)Yl,m′(θ,φ) sin θdθdφ

=
2π∫
0

π∫
0

(−1)mYl,−m(θ,φ)Yk,q(θ,φ)Yl,m′(θ,φ) sin θdθdφ

= (−1)m

√
(2l + 1) × (2k + 1) × (2l + 1)

4π

(
l k l
0 0 0

)(
l k l

−m q m′
)

. (25)

A similar expression is obtained for the second product of the three spherical harmonics in Eq. (24). The Gaunt integrals are different 
from zero if and only if q + m′ = m ⇒ q = m − m′ , and −q + m′′′ = m′′ ⇒ q = m′′′ − m′′ . The 3- j symbols are given in terms of the 
Clebsch–Gordan coefficients by(

j1 j2 j3
m1 m2 m3

)
≡ (−1) j1− j2−m3

√
2 j3 + 1

〈 j1m1 j2m2| j3(−m3)〉, (26)

where the Clebsch–Gordan coefficients can be taken from the Racah formula [18].
5
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Finally, Eq. (24) transforms into [7]

ak(m,m′,m′′,m′′′) =
k∑

q=−k

(2l + 1)2(−1)m+q+m′′

×
(

l k l
0 0 0

)2 (
l k l

−m q m′
)

×
(

l k l
−m′′ −q m′′′

)
. (27)

2.3.2. Radial contribution
The quantities F k in Eq. (23) are the Slater integrals involving the radial part of the atomic wave functions Rnl (n indicating the atomic 

shell they belong to). They have the following expression [10]

F k = e2
∫

d3r

∫
d3r′r2r′2 R2

nl(r)
rk
<

rk+1
>

R2
nl(r

′). (28)

For d electrons, only F 0, F 2, and F 4 are needed to compute the V ee matrix elements (for higher k values the corresponding ak vanish), 
while the f electrons also require F 6.

In practice, the Slater integrals given in Eq. (28) are not computed. They can be estimated from the Coulomb U and Stoner J parameters 
through [7]

U = F 0, (29a)

J = F 2 + F 4

14
, (29b)

while the ratio F 4/F 2 = 0.625 is taken as a constant, a good approximation for d-electron systems [7] (the ratio between F 4 and F 2

for all the 3d ions is between 0.62 and 0.63 [19]). Therefore, given U and J as parameters,

F 0 = U , (30a)

F 2 = 14 × J

(1 + 0.625)
, (30b)

F 4 = 0.625 × F 2. (30c)

Similarly, for f -orbitals the ratio of F 4 and F 6 with respect to F 2 can be fixed, respectively to, F 4/F 2 ≈ 0.67 and F 6/F 2 ≈ 0.49 [20]. 
The U and J parameters are given in these cases as,

U = F 0, (31a)

J = 286F 2 + 195F 4 + 250F 6

6435
, (31b)

and writing U and J in terms of the Slater integrals,

F 0 = U , (32a)

F 2 = 6435

286 + 195 × 0.67 + 250 × 0.49
J , (32b)

F 4 = 0.67 × F 2, (32c)

F 6 = 0.49 × F 2. (32d)

Once the electron-electron interaction integrals [Eq. (23)] are computed in a basis of complex spherical harmonics from the expressions 
given in Eq. (27) (angular contribution) and Eqs. (30a)-(30c) [radial contribution, alternatively for f-orbitals Eqs. (32a)-(32c)], then we can 
transform back to a basis of real spherical harmonics as the ones used in the expansion of the atomic orbitals.

As a final verification of the implementation, we checked the following average relationships that result from the properties of the 
Clebsh-Gordan coefficients [6,21]

U = 1

(2l + 1)2

∑
m,m′

〈m,m′|V ee|m,m′〉 = F 0

U − J = 1

2l(2l + 1)

∑
′

(〈m,m′|V ee|m,m′〉 − 〈m,m′|V ee|m′,m〉) . (33)

m,m
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Table 1
Reference configuration, cutoff radii and matching radius between the full core charge and the partial core 
charge for the pseudopotentials used in our study. Units are in bohr.

Reference Ir O Mn

6s2,6p0,5d7,5 f 0 2s2,2p4,3d0,4 f 0 4s2,4p0,3d5,4 f 0

Core radius s 2.20 1.50 2.00
p 2.80 1.60 2.00
d 1.30 1.40 2.00
f 2.00 1.15 2.00

Relativistic? yes yes yes
Non-linear core corrections (NLCC)? yes yes yes
Matching radius NLCC 1,40 1.20

2.4. Atomic forces and stresses

Atomic forces and stresses are obtained by direct differentiation of the energy [Eq. (20)] with respect to atomic positions. The Pulay 
corrections, due to the fact that the basis set functions explicitly depend on the ionic positions, are automatically included. The force 
terms containing ∂ρμν/∂RK are exactly multiplied by the corresponding potential matrix elements. This contribution to the forces takes 
the shape 

∑
μν Vνμ∂ρμν/∂RK and, thus, can be computed by the orthogonality forces as explained in Appendix A of Ref. [11]. The 

remaining contributions to the forces coming from the Hubbard and double counting terms that are explicitly taken into account are 
summarized below.

F Hub = − 2
∑

I

∑
μν

∑
{m}

[
〈m,m′′|V ee|m′,m′′′〉

(
nI,↑↑

m′′m′′′ + nI,↓↓
m′′m′′′

)

−〈m,m′′|V ee|m′′′,m′〉nI,↑↑
m′′m′′′

] ∂ S I
mμ

∂RK
S I
νm′ρ

↑↑
μν

− 2
∑

I

∑
μν

∑
{m}

[
〈m,m′′|V ee|m′,m′′′〉

(
nI,↑↑

m′′m′′′ + nI,↓↓
m′′m′′′

)

−〈m,m′′|V ee|m′′′,m′〉nI,↓↓
m′′m′′′

] ∂ S I
mμ

∂RK
S I
νm′ρ

↓↓
μν

+ 2
∑

I

∑
μν

∑
{m}

〈m,m′′|V ee|m′′′,m′〉∂ S I
mμ

∂RK
S I
νm′

(
nI,↑↓

m′′m′′′ρ
↓↑
μν + nI,↓↑

m′′m′′′ρ
↑↓
μν

)
,

F dc =
∑

I

∑
μν

∑
m

ρ
↑↑
μν

∂ S I
mμ

∂RK
S I
νm

[(
−U I + J I

)
+ 2U InI − 2 J InI,↑↑]

+
∑

I

∑
μν

∑
m

ρ
↓↓
μν

∂ S I
mμ

∂RK
S I
νm

[(
−U I + J I

)
+ 2U InI − 2 J InI,↓↓]

−
∑

I

∑
μν

∑
m

2 J I
∂ S I

mμ

∂RK
S I
νm

(
ρ

↑↓
μνnI,↓↑ + ρ

↓↑
μνnI,↑↓)

.

Following the same spirit, the stress tensor is obtained by a direct differentiation of the energy with respect to the strain tensor. 
Numerically, they can be computed with a very little extra effort from the calculation of the forces, following the same recipe given in 
Ref. [11].

3. Results

3.1. Computational details

3.1.1. siesta

Exchange and correlation were treated within the generalized gradient approximation (GGA) to the density functional theory (DFT) [1,
2]. We used the Perdew-Berke-Ernzerhof (PBE) functional [22] for the Mn atom and with the revised PBEsol functional for bulk IrO2 [23]. 
The off-site implementation of the spin-orbit coupling as implemented in Refs. [24,25] has been employed.

Core electrons were replaced by ab initio norm conserving pseudopotentials, generated using the Troullier-Martins scheme [26] in the 
Kleinman-Bylander fully non-local separable representation [27]. The reference configuration and cutoff radii for each angular momentum 
shell for the pseudopotentials used in this work can be found in Table 1.

The one-electron Kohn-Sham eigenstates were expanded in a basis of strictly localized numerical atomic orbitals [28,29]. For Mn, both 
single-ζ and double-ζ -polarized basis sets with the default values to define the range of the orbitals were used. For IrO2 , the quality of 
the basis was fixed to double-ζ -polarized. All the parameters that define the shape and range of the basis functions for Ir and O were 
obtained by a variational optimization of the enthalpy [30,31] with a pressure of 0.3 GPa.

The electronic density, Hartree, and exchange-correlation potentials, as well as the corresponding matrix elements between orbitals, 
were calculated in a uniform real-space grid, with an equivalent plane-wave cutoff of 600 Ry in the representation of charge density. In 
7
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Fig. 1. (a) Crystal structure of simple tetragonal IrO2. The blue balls represent Ir while the red balls represent O. (b) The primitive Brillouin zone indicating the k-path used 
in this study. The corresponding k-path is �-X-M-�-Z-R-A-M.

the case of bulk IrO2, for the Brillouin zone integrations we use a Monkhorst-Pack sampling [32] of 8 × 8 × 12 k-points. A Fermi-Dirac 
distribution was chosen for the occupation of the one-particle Kohn-Sham electronic eigenstates, with a very low electronic temperature 
(1 K).

To simulate the isolated Mn atom, a cubic box of 12 Å of size was defined. For IrO2, the experimental coordinates taken from Ref. [33,
34] in the rutile (tetragonal) structure were chosen as the initial configuration for a conjugate gradient minimization (Fig. 1). Then, the 
atomic coordinates and the lattice vectors were relaxed until the maximum components of the force on any atom and of the stress tensor 
were smaller than 10 meV/Å and 1 × 10−4 eV/Å3, respectively.

For the Mn atom, a Coulomb U = 3.0 eV, and exchange J = 0.3 eV parameters were selected. For bulk IrO2, in order to correctly 
describe the correlated Ir 5d electrons, the onsite Coulomb interaction U was set to 2 eV and the exchange parameter J to 0 eV. This 
value, smaller than the typical ones used for 3d transition metal oxides, is justified by the spatial extension of the Ir valence 5d orbitals. 
The range of these 5d orbitals is comparable to the Ir-O bond distances, so that d-d overlaps are much larger, yielding to much wider d
conduction band widths [33].

3.1.2. vasp

Bulk IrO2 simulations were also carried out using the vasp code [35,36]. Within this framework, the same valence electrons as in 
Table 1 were retained in the calculation using the projector augmented-wave (PAW) method [37]. Highly converged results were achieved 
by extending the set of plane waves up to a kinetic energy cutoff of 500 eV. In the relaxed configurations, the forces on the atoms 
are less than 0.006 eV/Å and the deviation of the stress tensor from a diagonal hydrostatic form is less than 0.1 GPa. The rest of the 
technicalities were kept the same as for the siesta case. The electronic total density of states was calculated by doubling the k-points 
grid used previously for self-consistency. The spin-orbit coupling effect was also included in the density of states and band structure 
calculation.

3.1.3. quantum espresso

For further comparison, the simulations on bulk IrO2 we also carried out with the plane-wave based methodology as implemented 
in the Quantum Espresso package [38,39]. Ultrasoft pseudopotentials [40] taken from the pslibrary [41] were employed, with the same 
valence configuration as the one shown in Table 1. The kinetic energy cut-off was set to 50 Ry. Full structural optimization including atomic 
positions were carried out with electronic convergence criteria set to 1.0 × 10−8 eV and the forces optimized to less than 1.0 × 10−6 eV/Å. 
The rest of the technicalities were kept the same as discussed in Sec. 3.1.1.

3.2. Isolated atoms

As a first trivial test, we have carried out simulations on an isolated Mn atom. The main goal was to check the rotational invariance of 
the formulation. We confirmed that the total energy was totally independent of the direction of the spin, up to numerical noise smaller 
than 1 μeV after the self-consistency loops. Different initial spin configurations were tried, differing in the magnitude and direction. While 
the direction was preserved, the magnitude always saturated to the expected value of 5 μB for the d5 atomic configuration of Mn. Also, 
imposing a magnetic field through a Zeeman term in the Hamiltonian, we could check how the spin rotated during the self-consistency 
to align its direction with the external field.

3.3. Bulk IrO2

We have also relaxed the atomic structure and computed the band structure of bulk IrO2, one of the most active catalysts for water 
splitting and the only known catalyst capable of producing O2 in acidic conditions [33]. The optimized lattice constants and internal 
parameters of IrO2 in the rutile structures are shown in Table 2 for different packages, pseudopotentials, basis sets, and functionals. 
8
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Table 2
Optimized lattice constants (a, and c), and internal parameter (u) of bulk IrO2 in the rutile (tetragonal) structure. PW stands for 
Plane Waves. Units of the lattice constant in Å.

Method Pseudopotential Basis set Functional a c u

siesta Norm-conserving Local atomic orbitals PBEsol 4.497 3.164 0.3085
PBEsol+U 4.503 3.159 0.3081
PBEsol+U+SOC 4.507 3.159 0.3081

vasp PAW PW PBEsol+U+SOC 4.482 3.150 0.3083
quantum espresso Ultrasoft PW PBEsol+U+SOC 4.536 3.178 0.3082
crystal [33] Core effective potentials Local atomic orbitals PBE 4.519 3.196 0.3087
quantum-espresso [33] Ultrasoft PW PBE 4.538 3.183 0.3083
Experiment [34] 4.505 3.159 0.3077

Fig. 2. Band structures of bulk IrO2 at the theoretical relaxed structures. DFT+U (without spin-orbit) bands are plotted in (a) siesta, (b) vasp and (c) quantum espresso. 
Once spin-orbit coupling is switched on, the corresponding band structures are replotted in (d) siesta, (e) vasp and (f) quantum espresso. The red dashed horizontal lines 
correspond to the Fermi energy, EF, taken to be the origin of energies.

The differences in the lattice constants (internal geometries) differed at most by 1.5% (0.13%) between the different codes, despite the 
large differences in the methodologies. The relaxed structure obtained within the siesta code at 0 K is in very good agreement with the 
experimental observations at 300 K [34].

The band structure of IrO2, computed at the relaxed theoretical structure, is shown in Fig. 2. Considering the formal oxidation states, 
the oxygen atoms would be O2− , while the iridium atoms should be considered as Ir4+ . That means that five electrons are expected to 
occupy the Ir-d levels that are split due to the strong crystal field splitting of the distorted octahedral field into three t2g states and two 
eg states. With the t2g band partially occupied (five electrons for a maximum occupancy of six), the Fermi level is expected to cross near 
the top of the t2g band, making IrO2 metallic. This metallicity is clearly shown in Fig. 2, in good agreement with previous simulations [42]. 
The most important effect of the spin-orbit coupling is the lifting of the degeneracy of the bands along the high-symmetry Z − R − A
path. Its contribution in other paths is minimal. Therefore, the SOC in bulk IrO2 is not large enough to yield a splitting of the bands at 
the Fermi energy, giving rise to a spin-orbit Mott insulating state [42,33]. But, for the purpose of this work, the most important result is 
the fact that the band structures produced by three different codes such as siesta, vasp and quantum espresso are nearly identical. Very 
similar results are also obtained with the abacus code [14].

4. Conclusions

We have particularized the formalism developed by Bousquet and Spaldin [9] to deal with density-functional theory plus Hubbard U 
(DFT+U) method for the case of noncollinear magnets to a framework of numerical atomic orbitals. Non-overlapping orthogonal projectors, 
that can be defined in the same way as the basis atomic orbitals with shorter ranges, are used to map the full Kohn-Sham orbital space 
into the correlated shell. Expressions for the single-particle potential to be included during the self-consistent cycles, energy and stresses 
are given. The implementation in the version 5.0 of siesta of the former equations are validated in two practical cases. The first is an 
isolated atom, where the total energy is proven to be independent of the spin direction. The second is the case bulk solid of IrO2 , where 
the same kind of spin-orbit splitting due to the Ir atom as in former calculations (both with plane waves as in vasp or with numerical 
atomic orbitals as in abacus) are found.
9
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