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A B S T R A C T   

Machine Learning algorithms are aimed at building generalizable models to provide accurate predictions or to 
find patterns from noisy data. These characteristics are potentially beneficial for the fabrication of steel products. 
In this research, 529 rotating bending fatigue tests (R = -1 and σa = 400 MPa) were carried out on steel sus-
pension spring bars fabricated using different combinations of manufacturing parameters. A reliable regression 
model (R2 

= 0.877 on the test dataset) based on the Gradient Boosting algorithm was obtained. The interpre-
tation of the model was carried out through the Permutation Importance algorithm, revealing the relevance of 
the temperature in the tempering treatment applied after quenching on the fatigue lifespan. This pattern was 
quantitatively described by means of the Partial Dependence Plot of this feature. Besides, a specific study was 
carried out to obtain a reliable interpretation of the results derived from the Machine Learning analysis. In this 
sense, it has been observed that specimens subjected to high temperature tempering display a lower surface 
hardness that provokes a higher surface roughness after shot peening; this, in turn, facilitates the initiation of 
surface cracks during the fatigue tests reducing the fatigue lifespan. This study provides a reliable framework to 
optimize the suspension spring manufacturing conditions to increase their fatigue lifespan as well as an example, 
generalizable to other manufacturing processes, of the potential benefits of Machine Learning.   

1. Introduction 

The Paris Agreement establishes a long-term temperature rise of less 
than 2 ◦C above pre-industrial levels and its conclusions are relevant for 
those economic sectors with intensive greenhouse gas (GHG) emissions. 
Transport accounts for around one-fifth of global CO2 emissions [1]. 
Conventional vehicles, based on the combustion engine, emit GHG 
(mainly CO2, in addition to other gases such as carbon monoxide, ni-
trogen oxides, unburned hydrocarbons, lead compounds, sulfur dioxide 
and solid particles). One of the most effective and realistic measures to 
minimize GHG emissions in this context is to reduce the weight of ve-
hicles. In this sense, many of the components present in cars, mostly 
made of steel until very recently, are being progressively replaced by 
lightweight materials, including metal alloys (aluminum, magnesium), 
plastics or composites. However, this strategy is not applicable to the 
elements of greater structural responsibility where steel is irreplaceable 

due to its high strength and low cost (compared to other structural metal 
alloys, such as nickel or titanium-based ones). The viable alternative is, 
therefore, to reduce the size of the structural components made of steel 
which implicitly requires the improvement of their intrinsic mechanical 
properties to avoid compromising the safety and functionality of the 
vehicle. The pressure to manufacture lighter and less polluting vehicles 
has produced a noticeable weight reduction in the last decades. In this 
scenario, structural materials must be capable of providing the same 
strength with smaller sections. This is relevant for fatigue, which rep-
resents the predominant failure mechanism of suspension springs, due to 
the repetitive loads to which they are subjected under in-service 
conditions. 

Two industrial producers, a steelmaker and a manufacturer of sus-
pension springs, have collaborated in this research. The steel wire rod, 
fabricated by the steelmaker in an electric arc furnace, was supplied to 
the spring manufacturer to apply the quality, mechanical and thermal 
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treatments necessary to obtain a suspension spring. The study is aimed 
at optimizing the fatigue behavior of automotive suspension springs 
using Machine Learning (ML) algorithms to simultaneously model the 
steelmaking and the suspension spring wire manufacturing. This 
approach has been used successfully in previous recent studies [2–4]. 
The scope was designed to produce a number of realistic combinations of 
fabrication parameters during steelmaking and spring fabrication (ful-
filling in all cases their respective quality specifications). These sce-
narios were defined according to the background of the manufacturers 
in their respective sectors. Subsequently, an experimental study was 
carried out in which the fatigue strength of the final steel was charac-
terized by means of rotating bending fatigue tests (mean stress, σm = 0, 
stress ratio R = -1). 

Fatigue crack initiation implies cyclic plastic deformation. For this 
reason, the fatigue performance of spring steels is strongly influenced by 
the presence of defects [5,6]. In this sense, the surface finish and the 
inclusion content represent two competing mechanisms for fatigue 
initiation [7]. Fatigue occurs at stress amplitudes below the yield stress 
where plastic deformation is limited to a small number of grains of the 
material. This microplasticity preferentially occurs in grains at the ma-
terial surface -because they are less constrained by neighboring grains- 
than in subsurface grains [8]. Moreover, fatigue crack nucleation can 
also occur at non-metallic inclusions (NMI) of microscopic size (10 to 
100 μm) because of the stress concentration they induce locally; for the 
sake of completeness, other fatigue crack origins may be present in non- 
conventional materials, such as those manufactured by selective laser 
melting [9]. High-strength steels are particularly sensitive to defects 
(either NMIs or local surface stress concentrators such as roughness) 
because they exhibit high notch sensitivity, even for micronotches, due 
to their high yield stress. In fact, it has been observed that the fatigue 
limit of steel increases approximately proportionally to its tensile 
strength, but at very high values of the tensile strength, this trend does 
not continue and lower fatigue limits are obtained [10]. In addition, 
lifetime can be increased through the application of shot peening 
[11,12]. 

In total, 527 fatigue tests were carried out in this study, corre-
sponding to 27 manufacturing conditions (that is, combinations of 
process parameters, introduced by either the wire rod manufacturer or 
the spring manufacturer). The stress amplitude σa = 400 MPa was 
selected (based on prior knowledge about the fatigue behavior of the 
material) to promote surface crack initiation in all cases. For this reason, 
after each fatigue test, a fractographic examination was carried out 
using Scanning Electron Microscopy (SEM) to verify the initiation 
mechanism. After training and validating a reliable ML model, it was 
possible to identify the most relevant parameters of the manufacturing 
process in the fatigue lifespan. Subsequently, a specific experimental 
study was carried out based on mechanical and metallographic char-
acterization methods to interpret the results derived from the ML study. 

The remainder of the paper is organized as follows: the properties of 
the material, the description of the fabrication process of the steel rod 
and the springs and the ML methods are described in Section 2. The 
experimental results as well as the outcome of the ML models are pre-
sented in Section 3. Finally, the discussion of results and conclusions are 
shown in Section 4. 

2. Materials and methods 

2.1. Steel fabrication and properties 

The experimental scope of this study included the characterization of 
the fatigue strength of C54SiCr6 steel bars, whose specified chemical 
composition can be seen in Table 1, by means of rotating bending tests. 

The fabrication of steel rods for springs comprises the following four 
major stages: electric arc furnace (EAF), ladle furnace (LF), continuous 
casting (CC) and hot rolling (HR). They are briefly described hereafter 
[13–18]:  

• In the EAF, high-current electric arcs melt a mixture of steel scrap, 
direct reduced iron and hot briquetted iron to obtain liquid steel with 
an adequate chemistry and temperature. The formation of slag is 
promoted through the addition of lime and dolomite: this favors the 
refining of steel and reduces heat losses. Molten steel is poured into 
the transportation ladle where ferroalloys and additives are added to 
form a new slag layer.  

• The secondary metallurgy takes place in the LF where the final 
chemical composition and the temperature of the steel are adjusted. 
Deoxidizers, slag formers, and other alloying agents are added for 
refining. Molten steel is stirred by means of a stream of argon to 
homogenize the temperature and composition and to promote the 
flotation of NMIs within the slag.  

• During CC, the solidification of steel in the form of billets occurs after 
pouring the molten material from the ladle into the tundish (a small 
distributer that controls the flow rates and feeds the mold).  

• Rods are obtained from billets through HR. During HR, the steel is 
passed through several pairs of rolls to reduce the cross-section. To 
facilitate the process, the temperature of steel during forming is 
above the recrystallization temperature. Rods are coiled after HR. 

The total number of attributes collected throughout the fabrication 
process of the rods was 277. These attributes will be the features coming 
from the steel fabrication process for the ML analysis. Coil rods, supplied 
to the spring manufacturer by the steelmaker, received the same 
manufacturing process and treatments as the actual springs except for 
the forming stage. This difference should not influence the final 
behavior of the material since, after forming, springs undergo heat 
treatment to relieve residual stresses. For the fabrication of springs, wire 
rods were subjected to the following processes:  

• After straightening the coils, the material was subjected to defect 
inspection by Eddy currents and any defect detected was removed by 
grinding. Then, steel coils were drawn to final spring wire diameter.  

• Then, the material underwent in-line induction quenching and 
tempering heat treatment. This was followed by a second inspection 
for longitudinal defects: in case of detection, the corresponding wire 
rod was rejected. The tensile strength of steel after these heat treat-
ments is about 2000 MPa (approximately twice its initial strength).  

• Finally, a shot-peening treatment was applied. 

During the fabrication of springs, 20 parameters were recorded. 
These were included as features for the ML modelling. Therefore, the 
total number of attributes was 297. Fatigue tests were carried out on 
straight bars with a diameter between 10.0 and 12.5 mm supplied by the 
spring manufacturer. 

Most of these 297 features are not freely modifiable by the 

Table 1 
Specified chemical composition (% weight) of the spring steel C54SiCr6.  

Element Min Max 

C  0.54  0.56 
Mn  0.67  0.72 
Si  1.4  1.5 
P   0.015 
S   0.015 
Cr  0.65  0.7 
Ni   0.08 
Cu   0.08 
Mo   0.02 
Sn   0.015 
Al   0.002 
V   0.01 
N   0.007 
B   0.0005 
Pb   0.03  
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manufacturers, but rather are parameters recorded during the fabrica-
tion process (temperatures, speeds, flows, etc.). To generate the 27 
manufacturing conditions considered in this study, it was decided to act 
on those variables that are, in theoretical terms, potentially influential 
on the fatigue behavior of the steel. Specifically, the steelmaker changed 
the chemical composition of the material -within the specified ranges 
(Table 1)- and also selected billets from different strands and sequences 
at continuous casting (during the fabrication of steel, the molten ma-
terial is distributed by the tundish into six molds giving rise to six 
strands. Steel emerges horizontally in the form of a solid steel strand and 
at this point, it is cut to length to produce billets. The index that defines 
the position of the slab in each strand/line corresponds to the feature 
billet sequence). On the other hand, the spring manufacturer modified 
the parameters of the quenching and tempering heat treatments applied 
to the wire rod. Shot-peening is a standard procedure that is uniform 
among batches and does not introduce variability. In any case, the 
dataset considered for the study included all the 297 attributes recorded 
during fabrication since the manufacturing process itself necessarily 
induces a certain variability in the parameters recorded that could be 
influential on the fatigue performance of the final material. 

2.2. Rotating bending fatigue tests 

The characterization of the fatigue strength was carried out through 
rotating bending tests following the procedure of the standard ISO 1143: 
2010 [19]. This method consists of subjecting a cylindrical bar to uni-
form bending while the specimen is rotating around its axis. In this way, 
each point of the specimen is subjected to alternating axial stresses over 
time (i.e., the mean stress is σm = 0 or, equivalently, the stress ratio is R 
= − 1). As this is a bending state, maximum stresses occur at the contour 
of the specimen. 

In order to establish an unbiased comparison of the fatigue strength 
of each casting and spring fabrication condition, a constant value for the 
stress amplitude was set for the entire test campaign. After reviewing the 
history of tests compiled in the context of quality control of the spring 
manufacturer, an amplitude σa = 400 MPa was established. Under these 
conditions, failure should presumably be initiated at the surface of the 
specimens. The frequency of the tests was 25 Hz in all cases. The 
experimental study enabled the characterization of 27 fabrication con-
ditions through 529 fatigue tests (approximately 20 tests per condition; 
this number was selected to properly consider the intrinsic dispersion of 
fatigue results [20–22]). 

2.3. Machine learning 

The ML models were developed and evaluated in the Python 3 pro-
gramming language using libraries such as Numpy, Pandas, Scikit-Learn 
[23], Matplotlib and Seaborn, among others. The workflow of this ML 
project is summarized [24,25] in the following sections. 

2.3.1. Scope of the analysis 
The objective of regression analysis is to predict a numeric value for 

new input data. Here, the target variable is the fatigue lifespan in 
rotating bending tests, the stress amplitude being σa = 400 MPa. The 
predictors correspond to the 297 features collected by the steel rod and 
spring manufacturers. The dataset included the 527 fatigue tests carried 
out. 

2.3.2. Data preprocessing 
The ability to learn from ML models and the useful information that 

can be derived may be extremely influenced by data preprocessing. This 
consists in cleaning the raw data to enable the optimization of the 
model. Preprocessing includes the following stages [24,25]:  

• Data outliers can mislead the training process resulting in longer 
training times and less accurate models. In this research, outliers 
were defined as data points beyond a z-score |z|>3.0.  

• Multicollinearity is potentially harmful for the performance of the 
model because it may reduce statistical significance and complicate 
the assessment of importance of a feature to the target variable. 
Pearson’s correlation matrix of the dataset was obtained and one of 
the features of every couple with a correlation coefficient exceeding 
(in absolute value) 0.60 was removed (this selection was supported 
with engineering judgement).  

• Standardization / feature scaling of datasets is mandatory for some 
ML algorithms and advisable for others. For this reason, the range of 
all features was normalized so that each one contributes approxi-
mately proportionately to the final distance. In this study, features 
were scaled through the StandardScaler provided by Scikit-Learn 
[23] which standardizes the features by removing the mean and 
scaling to unit variance.  

• Imputation is the process of replacing the missing values of the 
dataset by an educated guess. To avoid sacrificing any instances or 
features, imputation was carried out by means of the KNNImputer 
provided by Scikit-Learn.  

• Ordinal categorical variables were transformed using the Scikit- 
Learn LabelEncoder and nominal categorical variables were sub-
jected to the Scikit-Learn OneHotEncoder.  

• Due to the large number of features (297) as compared to the number 
of instances (529), the RFECV (recursive feature elimination with 
cross-validation) method of Scikit-Learn [23] was implemented for 
feature selection. This technique performs the feature elimination in 
a recursive fashion to determine the optimal number of features. 

2.3.3. ML algorithms 
According to the “No Free Lunch theorem” of ML established by 

Wolpert, “[…] for any two learning algorithms, there are just as many 
situations (appropriately weighted) in which algorithm one is superior 
to algorithm two as vice versa, according to any of the measures of su-
periority” [26]. In other words, “if an algorithm does particularly well 
on average for one class of problems then it must do worse on average 
over the remaining problems. […] Thus comparisons reporting the 
performance of a particular algorithm with a particular parameter 
setting on a few sample problems are of limited utility” [27]. For this 
reason, a number of regression algorithms was implemented in this 
study: Multiple Linear Regression (MLR), K-Nearest Neighbors (KNN), 
Classification and Regression Tree (CART), three Ensemble Methods 
(Random Forest, RF; Gradient Boosting, GB; Adaboost, AB) and Artificial 
Neural Networks (ANNs, in this case, Multi-Layer Perceptron, MLP). A 
brief description of these algorithms is presented hereafter:  

• MLR models the relationship between two or more predictors and the 
response variable by fitting a linear equation to the observed data. 
MLR is considered as a baseline algorithm for regression, i.e., a 
simple model which has a reasonable chance of providing decent 
results. Baseline models are easy to deploy and provide a benchmark 
to evaluate the performance of more complex models.  

• In KNN, regression is carried out for a new observation by averaging 
the output variable of the ‘K’ closest observations (the neighbors) 
with weights either uniform or proportional to the inverse of the 
distance from the query point. KNN is an example of an instance- 
based algorithm which depends on the memorization of the data-
set; predictions are obtained by looking into these memorized ex-
amples. The distance between instances is expressed through the 
Minkowski metric which depends on the power parameter, ‘p’. When 
p = 1, this is equivalent to using the Manhattan distance and for p = 2 
the Euclidean distance.  

• CART: Classification and Regression Trees were introduced in 1984 
by Breiman et al. [28]. In a classification tree the target variable is 
categorical while in a regression tree it is continuous. A CART splits 
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the dataset in the form of a tree structure based on the homogeneity 
of data. The final result is a tree with decision nodes and leaf nodes. 
The Gini index and the entropy are the most common scores to 
measure the homogeneity of a sample and to decide which feature 
should be selected for the next split. Building a decision tree consists 
in finding the attribute that returns the highest information gain 
(which is defined as the entropy of the parent node minus the en-
tropy of the child nodes after the dataset has been split on that 
attribute) or the highest reduction in the Gini index. The main ad-
vantages of decision trees are that the interpretation of results is 
straightforward and that they implicitly perform a feature selection 
since the top nodes of the tree are the most important variables 
within the dataset. The main limitation of CARTs is that when a 
decision tree grows and becomes very complex, it usually displays a 
high variance and a low bias which results in overfitting. This makes 
the model unable to generalize and to incorporate new data.  

• Ensemble learning is a learning paradigm that focuses on training a 
large number of low-accuracy models (weak-learners), combining 
their predictions to obtain a high accuracy meta-model [23]. Shallow 
decision trees are the most widely used weak-learners; the idea 
behind ensemble learning is that, if the trees are not identical and 
they predict slightly better than random guessing, a combination of a 
large number of such trees will give rise to an accurate model. To 
obtain a prediction for an input, the predictions of each weak model 
are combined using some sort of weighted voting. Ensemble methods 
are classified into bagging-based and boosting-based, which are 
designed to reduce variance and bias, respectively. Bagging (which 
stands for Bootstrap Aggregation) is the application of the bootstrap 
procedure (i.e. random sampling with replacement.) to a high- 
variance ML algorithm. Many models are created and every model 
is trained in parallel. Each of the models is trained on a subset of the 
whole dataset composed of a number of observations randomly 
selected with replacement and a subset of features. Prediction is 
obtained as the average of the predictions from all the models. The 
most widely used bagging-based ML algorithm is RF which uses 
classification trees as weak learners. The most important hyper-
parameters to tune in a RF are the number of trees and the size of the 
random subset of the features to consider at each split. By using 
multiple samples of the original dataset, the variance of the final 
model is reduced, as is the overfitting. Boosting consists of using the 
original training data and iteratively creating multiple models by 
using a weak learner. Each new model tries to fix the errors made by 

previous models. Unlike bagging, which aims at reducing variance, 
boosting is mainly focused on reducing bias. In adaptative boosting 
(often called “Adaboost”, AB) and in Gradient Boosting (GB), the 
ensemble model is defined as a weighted sum of weak learners; the 
best ensemble model is determined using an iterative optimization 
process. 

• ANNs are used for data classification, regression and pattern recog-
nition. A basic ANN contains a large number of neurons / nodes 
arranged in layers. A MLP contains one or more hidden layers (as 
well as one input and one output layer). The nodes of consecutive 
layers are connected and these connections have weights associated 
with them. In a feedforward network, the information moves in one 
direction from the input nodes, through the hidden nodes (if any) to 
the output nodes. The output of every neuron is obtained by applying 
an activation function to the linear combination of inputs (weights) 
to the neuron; sigmoid, tanh and ReLu (Rectified Linear Unit) are the 
most widely used activation functions. MLPs are trained through the 
backpropagation algorithm. Gradient descent, Newton, conjugate 
gradient and Levenberg-Marquardt are different algorithms used to 
train an ANN. 

2.3.4. Train, test, validation 
25% of the instances (132 observations) were randomly extracted to 

form a test dataset later used to provide an unbiased evaluation of the 
models. This way, the model’s performance is evaluated on a new set of 
data that were not seen during the training phase. This approach helps in 
avoiding overfitting (in this case, the algorithm learns the noise of the 
training set but fails to predict on the unseen test data). The inconve-
nience of a train/test split is that the results can depend on the particular 
random choice of the test set. To avoid this, Scikit-Learn [23] was used 
to implement 3-fold cross-validation on the 75% of remaining instances 
(397 observations) in order to select the best models and to optimize 
their hyperparameters through training and validation, avoiding over-
fitting. Model selection and hyperparameter optimization were con-
ducted with GridSearchCV. 

2.4. Extended experimental study 

A specific experimental study was carried out to interpret the results 
derived from the ML modelling, including Vickers microhardness tests, 
measures of surface roughness [29] and SEM fractographic examination 
of fatigue-broken specimens. HV0.05 microhardness tests were 

Fig. 1. Boxplot diagram representing the distribution of the fatigue lifespan for each of the 27 combinations of processing variables. A strip plot has been super-
imposed on each boxplot enabling the observations of each group to be fully appreciated. 
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conducted on the surface of the samples using a Qness Q10-Q30 device. 
The surface roughness Ra was determined on selected samples by means 
of a roughness tester PCE-RT 11 and the fractographic study was carried 
out with a Zeiss EVO MA 15 SEM device. 

3. Results 

3.1. Fatigue characterization 

After carrying out each of the fatigue tests, the fracture surface of the 
specimen was examined by SEM microscopy: in all cases the failure 
started on the surface of the sample and no NMI was detected as the 
fatigue initiator. It follows that, for the experimental conditions imposed 
(R = -1 and σa = 400 MPa), the local plasticization state on the surface of 
the bar represents the predominant initiation micromechanism in this 
material. 

The collection of boxplots in Fig. 1 shows, for each one of the 27 
combinations of manufacturing conditions, the fatigue lifespan obtained 

from the rotating bending tests. The most striking aspect that emerges 
from this figure is the substantial variability among different groups in 
comparison with the intrinsic dispersion within each group. Thus, while 
in some cases the average fatigue lifespan is greater than ≈50000 cycles, 
in others it barely reaches ≈25000 cycles. The histogram shown in Fig. 2 
reveals a significantly bimodal distribution for the fatigue lifespan in the 
529 tests carried out, with a first modal value around 30,000 cycles and 
a second one around 50,000 cycles. It is worth noting that a bimodal 
distribution is an absolutely anomalous outcome. Not only there are 
many experimental evidences but also various analytical models in the 
literature [21,22,30] for the distribution the fatigue lifespan under 
ample conditions and in all cases distributions are unimodal. This dif-
ference of approximately 20,000 cycles observed between these two 
modal values will be a reason for consideration in this research. 

Fig. 2. Histogram of the distribution of fatigue lifespan obtained from the 529 tests carried out. Two modal values can be observed that approximately correspond to 
the two families of boxplots that can be discerned in Fig. 1. 

Fig. 3. The negative mean squared error regression loss is plotted against the number of features considered during the RFE process.  
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3.2. Machine learning 

3.2.1. Recursive feature elimination 
RFE [23] is a technique to reduce the dimensionality of a problem by 

feature elimination. In this method the most relevant attributes are 
selected by recursively considering smaller and smaller sets of features. 
First, the estimator is trained on the initial set of features (297 in this 
case) and the importance of each feature is estimated. Then, the least 
important features are pruned from the current set and the procedure is 
recursively repeated. The procedure has been repeated three times using 
RF estimators with different complexities (100, 500 and 1000 trees). 
Results are represented in Fig. 3 where the negative mean squared error 
regression loss is plotted against the number of features. As can be seen, 
the quality of the model does not improve beyond approximately 25 
features, and this outcome is consistent regardless of the estimator. 
Therefore, these 25 features have been identified and selected, and the 
rest of analyses have been carried out on this subset. This reduction of 
dimensionality represents a great advantage in terms of computational 
effort and of interpretability of the model. In this sense, it has been 
observed that these variables are mostly associated with the 
manufacturing process of the spring manufacturer. This result is easily 
interpretable given that, as indicated in Section 2.1, it is at this stage that 
steel is subjected to a series of procedures -such as defect inspection, 
heat treatments and, finally, shot-peening- that may in practice 

Table 2 
Results obtained in the test set from the regression algorithms without hyper-
parameter optimization.  

Regressor R2 RMSE MAE 

Linear Regression  0.703 9893 6987 
K-Nearest Neighbors (KNN)  0.855 6630 4930 
Decision Tree (DT)  0.778 8339 5698 
Support Vector Regressor (SVR)  − 0.057 18,663 14,925 
Random Forest (RF)  0.854 6644 4907 
AdaBoost (AB)  0.718 9633 6560 
Gradient Boosting (GB)  0.859 6607 4966 
Multi Layer Perceptron (MLP)  − 4.199 41,386 37,426  

Table 3 
Results obtained in the test set for the KNN, RF and GB regression algorithms 
optimized by Grid Search and Cross Validation.  

Regressor R2 RMSE MAE 

K-Nearest Neighbors (KNN)  0.868 6598 4840 
Random Forest (RF)  0.850 7022 5029 
Gradient Boosting (GB)  0.877 6354 4584  

Fig. 4. Scatterplot showing the correlation between the experimental results of fatigue lifespan against the predictions obtained from the GB algorithm for the test 
set. The figure includes a 1:1 slope line and two confidence bands separated from the previous one by a distance equal to the RMSE. 

Fig. 5. Classification obtained through the Permutation Importance algorithm of the fabrication variables according to their relevance on fatigue lifespan. The 
importance, represented in the X axis represents the average reduction in R2 after randomly shuffling the column in the dataset corresponding to the feature being 
assessed to generate a corrupted version of the data. 
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influence the final lifespan of the material. 

3.2.2. Results of the regression model 
In a first approximation, an evaluation of the results obtained from 

the eight algorithms described in Section 2.3.3 was carried out, without 
optimizing their hyperparameters, that is, using their default values 
provided by Scikit Learn [23]. For each of them, the coefficient of 
determination R2, the root mean square error (RMSE) and the mean 
absolute error (MAE) have been obtained in the test set, as shown in 
Table 2. It can be seen that, even without optimizing, the KNN, RF and 
GB algorithms display very promising results. 

Consequently, the hyperparameters of these three algorithms were 
optimized using Grid Search and Cross Validation (K-fold, K = 3). The 
results, reproduced in Table 3, highlight that GB is the algorithm with 
best prediction performance. 

Fig. 4 presents a scatterplot where, for the observations belonging to 
the test set, the experimental results obtained for the total fatigue life-
span are compared with the predictions derived from the GB model. As 
can be seen, a very satisfactory agreement has been achieved. The figure 
also suggests the existence of two clusters of observations that approx-
imately correspond to the two modal values shown in Fig. 2. These two 
clusters are approximately separated in Fig. 4 by a horizontal line cor-
responding to a lifespan of ~ 42000 cycles; this is also evident in Fig. 2. 
Roughly, 45% of the instances in this study exhibited a lifespan above 
that separation. 

3.2.3. Assessment of feature importance 
The identification of the features that most influence the fatigue 

lifespan was carried out through the impurity-based and the 
permutation-based algorithms, which were implemented in the Scikit- 
Learn library [23]. Both procedures provided equivalent results, which 
are represented in Fig. 5: features have been sorted by decreasing order 
of importance and, for the sake of simplicity, only the four most relevant 
are included in the figure since the importance attributed to the rest of 
them is negligible. As can be seen, the feature ‘Temperature (◦C)’ clearly 
stands out from the rest: It represents the material temperature during 
the tempering heat treatment applied after quenching which was 
deliberately modified, among other variables, to study its influence on 
fatigue lifespan. 

The forcefulness of the information shown in Fig. 5 is an invitation to 
focus on the attribute ‘Temperature (◦C)’. Its Partial Dependence Plot, 
represented in Fig. 6, shows that for values beyond ≈0.8 standard de-
viations above the mean (X-axis), the fatigue lifespan of the material is 
reduced on average by more than ≈30000 cycles (Y-axis) (for the 
experimental conditions imposed on the rotating bending tests). This 

result is consistent with the lifespan distributions represented in Fig. 1 
and Fig. 2, as well as with the scatterplot in Fig. 3. The values of 
tempering temperature are standardized in Fig. 6 (this is one of the data 
preprocessing procedures previously explained in Section 2.3.2); 
tempering temperatures approximately range between 435 ◦C and 
500 ◦C and the limiting temperature identified in Fig. 6 correspond 
approximately to 475 ◦C. 

3.3. Mechanical interpretation 

As previously seen, the tempering temperature stands out from the 
rest of fabrication attributes regarding the total fatigue lifespan of the 
specimens. To analyze the influence of this treatment properly, it is first 
necessary to understand its nature and the grounds that justify its 
application. 

In this sense, in Fig. 7, the distributions of the fatigue lifespan ob-
tained from the rotating bending tests were represented in the form of 
violinplots, distinguishing between those specimens with low or high 

Fig. 6. The figure displays the Partial Dependence Plot of the feature ‘Temperature (◦C)’, which exerts a marked influence on the total fatigue lifespan. The values of 
the temperature are standardized. 

Fig. 7. These violin diagrams show the distribution of the lifespan in the 
rotating bending fatigue tests for those specimens that were not subjected to 
high tempering temperatures (left) and those subjected to it (right). 
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tempering temperature (below or above 475 ◦C, as explained in Section 
3.2.3). When comparing Fig. 7 with the histogram in Fig. 2, it can be 
seen that the observations that constitute the first modal value 
approximately correspond to those of the diagram on the right in Fig. 7, 
while those of the second modal value can be identified with the vio-
linplot on the left. Therefore, the bimodal distribution presented above 
was nothing else that the superposition of two unimodal distributions. 

The very obvious differences between the distributions observed in 
Fig. 7 cannot, however, be considered as evidence of causality. For this 
reason, a specific empirical study was carried out to evaluate the in-
fluence of the additional tempering on the properties of the material and 
on its fatigue lifespan. 

The Vickers surface microhardness was obtained on a series of 
specimens belonging to the same heat (which, consequently, have been 
subjected to the same fabrication conditions during steelmaking), that 
were split into two groups depending on whether they had or had not 
received high temperature tempering. The microhardness of specimens 
with high temperature tempering were 550 ± 10 HV while in low- 
temperature specimens it was 620 ± 11 HV. 

Fatigue initiation is strongly influenced by the surface finish of the 
material [31]. For this reason, the surface roughness Ra of a series of bars 
from the same heat and previously tested under rotating bending fatigue 
conditions, was determined. The results obtained are shown in Fig. 8 in 
the form of boxplots. There are several aspects worthy of consideration. 
First, the surface roughness of the high-tempering temperature group 
(left) is appreciably higher than the rest (right). A t-test [32] was carried 
out to compare the mean values of the distributions of the pair of box-
plots obtaining a p-value of ≈10-14; therefore, there is strong evidence to 
reject the null hypothesis (equal mean values). Before carrying out the t- 
test, the hypotheses of normality of the distribution of the means and 
homogeneity of the variance required by the test were verified. In the 
first case, the Shapiro test of normality was used and in the second, the 
Levene homoscedasticity test. 

To complete the study, a series of specimens of the same heat, sub-
jected respectively to high and low tempering temperature, were 
selected and subjected to fractographic examination to identify differ-
ential patterns in the failure micro-mechanisms that could justify the 
variations observed in the fatigue lifespan. The most relevant aspect that 

Fig. 8. Boxplots showing the surface roughness, Ra, in samples either subjected (left) or not (right) to high temperature tempering.  

Fig. 9. The figure shows the fractographies of two specimens from the same heat range/group subjected to low (left) or high temperature tempering. In the first case, 
a single initiation site is seen, while the high-temperature tempered bar displays a large population of initiators. 
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was observed, shown in Fig. 9, is associated with the fatigue initiation 
process. Thus, while a single initiator is observed in the left picture, the 
right one shows multiple initiation sites in the contour, giving rise to the 
overlap of crack growth surfaces that converge to one single crack front, 
leading to the final fracture of the bar [8]. These patterns have been 
systematically observed in the rest of the specimens included in the 
fractographic study. 

4. Discussion and conclusions 

The evidence derived from the ML modelling and the experimental 
studies allows the following evidences to be established: 

• Substantial differences were identified in the distribution of the fa-
tigue lifespan depending on whether the specimen had or had not 
undergone high-temperature tempering after quenching (see Fig. 7).  

• Microhardness revealed that the main mechanical effect derived 
from the high-temperature tempering consists of the softening of the 
material (550 ± 10 HV vs. 620 ± 11 HV).  

• Specimens subjected to high-temperature tempering exhibit greater 
surface roughness (Fig. 8).  

• According to the fractographic study, see Fig. 9, the specimens 
treated with high-temperature tempering display a larger number of 
surface initiation fatigue sites. 

All this evidence provides a consistent interpretation based on the 
theoretical and experimental foundations of the phenomenon of fatigue. 
In particular, it is important to distinguish between the initiation of 
fatigue (the generation of a crack from a surface) and its subsequent 
propagation; moreover, it is worth taking into account that, in general, 
initiation consumes most of the fatigue lifespan of a component [8]. 
Initiation from a non-cracked surface requires the confluence of a series 
of conditions to promote the plastification of the material. In particular, 
the local mechanical properties of the steel and the roughness of the 
initiation surface play a relevant role. Thus, a lower yield stress facili-
tates the initiation of fatigue and so does a higher surface roughness, due 
to the induced stress concentration [8] (the pioneering work of De Forest 
[33] revealed this influence of the surface finish on the initiation of 
fatigue). As has been experimentally proved, increasing the tempering 
temperature softens the material and thereby, in accordance with the 
above interpretation, facilitates initiation. The softening induced by the 
tempering heat treatment on steels has been previously reported by 

other authors. Tempering is applied on hardened martensitic steels 
precisely to improve toughness and ductility and lower hardness. As 
explained by Canale et al. [34], “During tempering, solid-state reactions 
occur and the as-quenched martensite is transformed into tempered 
martensite, which, at higher tempering temperatures, is composed of 
highly dispersed spheroids of cementite (carbides) dispersed in a soft 
matrix of ferrite, resulting in reduced hardness and increased tough-
ness”. These authors provide some reference curves that illustrate the 
effect of carbon content and tempering temperature on hardness of 
carbon steels (the higher the carbon content, the higher the initial 
hardness and the more pronounced the softening with tempering tem-
perature). Krauss [35] distinguishes two extreme domains for 
tempering: Low-temperature tempering is typically applied between 
150 and 200 ◦C and produces very high strength steels while high- 
temperature tempering is applied roughly between 500 and 650 ◦C, 
depending on desired properties and alloying. In this sense, the 
tempering treatment applied in this study belongs to the intermediate 
domain. In principle, a trade-off between low and high tempering 
temperature cannot be ruled out since the fracture toughness is expected 
to reduce after increasing the tempering temperature. In our opinion, 
this is not a source of concern for this specific application since fracture 
toughness is relevant for cracked components and steel springs are 
subjected to several quality controls to guarantee the absence of surface 
cracks. For this reason, fatigue lifespan in this case is controlled by the 
initiation process. Another consequence derived from the softening 
experienced by the steel is that the roughness of the specimens increases 
significantly. This is consistent with the multiple initiation sites 
observed in the fractographic analysis on high-temperature treated 
specimens. It has been widely described [31,33] that the number of 
initiators increases with the stress amplitude and that, for low stresses, 
fatigue usually displays a single initiator. In this experimental study, an 
amplitude σa = 400 MPa was applied in all cases, which is relatively 
moderate for a material with a yield stress exceeding 2000 MPa. This 
suggests that the change in local mechanical properties as a consequence 
of the tempering temperature is significantly severe in terms of the 
initiation of fatigue. 

Fig. 10 reveals another relevant aspect. It contains the same infor-
mation as Fig. 1 but, in this case, the datasets (each one corresponding to 
a fabrication condition) were sorted in increasing order of the mean 
value of the number of cycles to failure. A clear positive correlation can 
be seen between the dispersion within each group and its lifespan 
(scatter clearly increases from left to right in the figure). The available 

Fig. 10. Boxplot diagram showing the results obtained for the 27 combinations of manufacturing parameters analyzed. The data sets have been ordered in increasing 
order of the mean fatigue lifespan. 
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empirical evidence [8,31] proves that the typical dispersion along an S- 
N curve is not constant but tends to increase in the region of low 
amplitude, close to the fatigue limit. This empirical regularity is 
explained because large stresses promote the formation of a large 
number of initiators, reducing the variability of the process and, as a 
consequence, the dispersion in the number of cycles to failure. The 
pattern represented in Fig. 10 can be adequately interpreted by 
considering simplistically two materials, namely, one with low and 
another with high temperature hardening, whose hypothetical S-N 
curves are sketched in Fig. 11. As can be seen, for the amplitude imposed 
in the rotating bending fatigue tests, σa = 400 MPa, the material with 
high-temperature tempering would work in the upper part of its S-N 
curve, with reduced dispersion (due to the large number of initiators), 
while the material with low-temperature tempering would be located in 
the lower region of its S-N curve, with appreciable dispersion (due to the 
reduced number of initiators). In short, this mechanistic interpretation 
justifies the relationship observed between the number of cycles to 
failure and the dispersion within each group. In this case, manufacturing 
conditions before code 5,376,620 were subjected to high temperature 
tempering while the rest of combinations received a low temperature 
tempering. 

5. Conclusions 

This paper exemplifies the possibilities that the modelling methods 
based on ML algorithms can provide in the fields of steelmaking and 
design of steel components. The role played by the temperature of the 
tempering treatment applied as a part of the fabrication of springs -that 
has been elucidated through ML algorithms-, has provided a substantial 
improvement of the fatigue strength of the material. Specifically, the 
fatigue lifespan for the experimental conditions imposed (rotating 
bending fatigue tests, R = -1 and σa = 400 MPa) have improved from ~ 
25000 cycles to ~ 50000 cycles. The contributions derived from this 
research that could be beneficial not only for other researchers con-
cerned with the fatigue behavior of steel springs but, in general, with the 
final mechanical properties for materials after a complex manufacturing 
process are threefold: simplification, prediction and improvement. First, 

the implementation of ML algorithms carried out in this study has 
enabled to identify the attributes with the greatest relevance on the 
fatigue lifespan of the suspension springs among the 297 variables 
involved in the whole manufacturing process. To do this, the method of 
recursive feature elimination with cross-validation has been employed 
to aggressively reduce the dimensionality of the problem. Second, a 
reliable predictive ML regression model, based on the GB algorithm has 
been trained and validated, providing a R2 in the test set of 0.877. Third, 
this model has been subsequently exploited to identify the variables of 
the manufacturing process with the greatest influence on the fatigue life 
of the material. In this case, it has been observed that one single attri-
bute, the temperature during the tempering heat treatment of the steel, 
accounts for most of the observed variability, even screening the influ-
ence of the rest of variables. In fact, it has been observed that when this 
temperature exceeds a certain threshold, the fatigue life plummets. In 
this sense, it can be concluded that the manufacturing process would 
benefit notably if the tempering temperature is reduced below the 
indicated threshold. In addition, in this study the data-driven approach 
was combined with an exhaustive experimental study and the inter-
pretation of the results has been based on concepts that belong to the 
subject of mechanics of materials and, especially, to the field of the fa-
tigue behavior of metallic materials. 
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