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Abstract: The superstructure of modern railway lines uses tons of technical polymeric material
spread along the track with mechanical, insulating and damping functions. Many of these parts are
rejected because they do not pass the quality controls, generating a large accumulation of plastic
waste of high economic value. Therefore, this study is aimed at determining the optimum degree of
recyclability by mechanical crushing of geometrically defective (and so rejected) railway fastenings
flanged plates injected with short fiberglass-reinforced polyamide. After recycling, the material must
guarantee its physical and mechanical properties required to ensure the future in-service conditions
of the highly responsible components that guarantee the maintenance of the railway gauge. Viscosity,
mechanical properties (tensile test), Charpy and fracture toughness as well as fatigue performance
were determined for ten successive recyclings. It has been found that the drop of viscosity is the
most restrictive limitation, allowing three recyclings of the material. All the properties measured
have experienced a noticeable reduction after 10 recyclings. Specifically, viscosity is reduced by 15%,
ultimate strength by 70%, yield stress by 41% strain under maximum load lost by 70%, Young’s
modulus lost by 38%, Charpy impact strength by 70%, fatigue resistance by 69% and fracture
toughness lost by 80%. With the development of this study and taking into account that the market
price of the flanged plates is valued at approximately 8 k€/km, of which around 5 k€/km corresponds
to the raw material, the recovery of this material not only represents a great environmental benefit
but also an economic one.

Keywords: recycling; reinforced polyamide; railway fasteners; viscosity; fatigue

1. Introduction

Global polymer production has steadily grown for the last 50 years, increasing from
1.7 million tonnes in 1950 to 360 million tonnes in 2018. The leading end-use markets for
polymers are, respectively, packaging (39.9% of the total demand), construction (19.8%),
automotive (9.9%) and electrical and electronic equipment (6.2%) [1]. Overall, 80% of the
demand corresponds to six large families of resin types: polyethylene, polypropylene,
polyvinyl chloride, polystyrene, polyethylene terephthalate and polyurethane. Polymeric
materials have been integrated and have replaced other traditional materials in many
highly technical industrial applications. These polymers have been generically referred to
as engineering plastics and have proven their capability of meeting the highest technical
requirements of various engineering sectors.

Railway transportation (passengers and freights) is one of the sectors where intensive
investment in this type of technical material occurs. The performance of rail transport has
increased significantly in recent decades due to the gradual introduction of high-speed rails
(HSR) worldwide. Even though there is no single standard, new lines in excess of 250 km/h
and existing lines exceeding 200 km/h are widely considered high speed. In 1964, the first
HSR of the world was inaugurated connecting Tokyo and Osaka (515 km); nowadays, HSR
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is currently in operation in more than 20 countries, the high-speed network covering more
than 35,000 km (with more than 25,000 additional km under construction).

The increase in the speed of rail transport has changed the concept of long distance
due to the reduction in the duration of the trip. Hence, HSR is considered best suited for
journeys of 150–900 km for which the train can beat air and car trip time. In contrast, this
rise of speed supposes an important increase in the loads that the superstructure of the
track must resist, due to which the design of its elements and the selection of materials
acquires an enormous relevance.

The fastening system between the rail and the sleeper is the element of greatest
responsibility in order to guarantee the comfort, safety and reliability that the railway must
provide. HSR tracks incorporate several engineering polymeric elements in its fastening
system. The main function of these reinforced polymeric fasteners is to reduce the dynamic
forces that the rail transmits to the concrete sleeper and to minimize the corresponding
vibrations. The reinforcement of polymeric materials has been shown to improve their
mechanical performance as demonstrated in studies by other authors [2–5]. Moreover, this
system helps electrically isolating the rails as they conduct electrical signals to control the
traffic of the line.

In the VosslohTM Modified (VM) fastening system, widely used in HSR, the rail is
fixed to the concrete sleeper by means of a couple of steel bolts screwed to a dowel inserted
in the sleeper (see Figure 1a). Bolts are placed on both sides of the rail, so they can be
external or internal depending on their position in relation to the axis of the track. As can
be seen in Figure 1b, the VM fastening system includes two prestressed clips (that provide
the track with tightness and elasticity, preventing the displacements or rotations of the rail),
one seat pad that absorbs the vibrations generated by the passing of the trains, and two
flanged plates that keep the track gauge and restraint track sideways.
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Figure 1. High-speed railway fastening system (VM). (a) Scheme of the fastening system. (b) Real
picture of the fastening system.

Additional advantages derived from the use of elastomeric materials (rail seat pad) and
high-performance technical polymers (flanged plate and dowel) in the fastening system rely
on their dielectric nature as well as their excellent noise and vibration damping properties
which guarantee the comfort of the passengers. Despite this, these polymers are not exempt
from some inconveniences related to the cost of raw materials and the difficulties in the
manufacturing process.

This research is focused on the properties of the flanged plates (see Figure 1b) which
are manufactured by injection molding with polyamide 6.6, reinforced (35% weight) with
short fiberglass (average length 200 micras). The final product must satisfy the requirements
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of the Technical Specification of the Administrator of Railway Infrastructures (TS-ADIF) [1].
Therefore, prior to be placed on the track, the flanged plates must be characterized to verify
the physical and mechanical behavior. The parts used in the approval design and quality
control tests as well as the residues that are generated during molding (such as risers) and
off-spec materials are deposited in landfills, which has a significant environmental impact.
This disposed material can reach around the 10% of the production. The hypothesis of this
study is that these materials can be reused to fabricate new parts fulfilling all the required
specifications, with beneficial environmental and economic impacts. Thus, the market
price of the flanged plates for a track section amounts to ≈8k€/km of which ≈5 k€/km
corresponds to the raw material.

The recycling process involves recovering the value of a material in the form of energy
or reusable material. The recovery of plastic materials requires the meticulous cleaning
and efficient sorting of each type of plastic. Once separated and sorted, plastic waste can
be treated by four types of methods: mechanical recycling, chemical recycling, biological
recycling and energy recovery. For this work, mechanical recycling was applied by grinding
the plastic waste into small granules and then forming them. Mechanical recycling is a
simple and economic process that requires crushing the material to be subsequently molded
without any chemical additive. This procedure may be accompanied by the degradation
of the quality of the material, which could reduce the lifespan of the component and/or
its applicability under certain loading conditions [6–8]. For this reason, it is necessary to
perform a physical and mechanical characterization to verify whether the materials injected
with recycled material are suitable for the same industrial use or not.

The possible degradation derived from the mechanical recycling of polyamide 6.6
reinforced (35% weight) with short fiberglass motivates this study. The experimental scope
is aimed at determining the evolution undergone by the physical and mechanical properties
as a function of the number of recyclings the material was subjected to. The viscosity was
selected as the most relevant physical parameter; regarding the mechanical properties,
tensile, Charpy, fracture and fatigue tests were performed. Finally, a fractographic study
was carried out by means of Scanning Electron Microscopy (SEM) as well as an analysis of
the internal microstructure of the samples through micro-computed tomography (µCT).

2. Material and Methods
2.1. Material

The material used in the study comes from HSR flanged plates not previously placed
on the track. The raw material (polyamide 6.6, reinforced (35% weight) with short fiberglass
(average length 200 micras) was supplied by DuPont, BASF and DSM, respectively; see
Tables 1 and 2. Before molding, according to the recommendations of the specialist raw
material manufacturer CEBUTOR PLASTICOS, the plates were cleaned and dried in a
circulating air oven at 100 ◦C for 7 days (this is important, since polyamide is a hygroscopic
material). After drying, the plates in the as-received condition were grinded in a mill with
steel blades until a maximum particle size of 5–6 mm, which is similar to the raw material
particle size. Then, the grinded material was injected (no stabilizing additives, antioxidants,
bonding agents or other products that would help not to degrade the material or improve
its properties or new raw material were added, i.e., only crushed material was injected) into
standard tensile (type B) [9], Charpy impact [10] and fracture toughness [11] test specimens.
The specimens were molded using an Arburg Allrounder 221 K injection molding machine
with a clamping force of 35 tonnes, a maximum injection capacity of 49 cm3 and a screw
diameter of 25 mm. The optimal injection parameters, which are summarized in Table 3,
were determined following the guidelines established in the current standards [12,13], the
injection recommendations published by the manufacturer of the raw material [14,15],
the specifications of the injection machine and the injection variables published by other
researchers [16–18].
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Table 1. Properties of E-glass fiber (G. Lubin, Handbook of composites.: Van Nostrand Rein-
hold, 1983).

Chemical Composition (Weight %) Properties Units Value

SiO2 52.4 Tensile stress (σf) GPa 3.45

Al2O3. Fe2O3 14.4 Modulus of elasticity (Ef) GPa 72.50

CaO 17.2 Deformation at break (εf) % 3.30–4.48

MgO 4.6 Density (ρf) g/cm3 2.60

Na2O. K2O 0.8 σf/ρf (GPa·cm3)/g 1.30

Ba2O3 10.6 Ef/ρf (GPa·cm3)/g 28.00

Fiber diameter (d) µm 3–25

Coeff. linear thermal expansion 10−6/K 5.00

Table 2. General properties of PA6.6GF35 (CAMPUS. (2013) CAMPUS plastics. (Online). http:
//www.campusplastics.com/ (accessed on 13 September 2022)).

Properties
DAM Condition

Standard
(ISO) Units DUPONT BASF DSM

Tensile strength 527-2 MPa 210 210 200

Young’s modulus 527-2 GPa 11.2 11.5 11

Elongation at break 527-2 % 3.2 3 3

Creep modulus 1 h 899-1 GPa 8.4 - -

Resist. impact Charpy
with notch (−30/23 ◦C) 179/1eA kJ/m2 10/15 12/14 11/13

Rockwell hardness (M/R) 2039-2 - 105/125 - -

Melting temperature 11357-3 ◦C 262 260 260

Glass transition temperature 11357-2 ◦C 80 - -

Bending temperature (1.8 MPa) 75-1/2 ◦C 250 250 250

Specific heat - J/(kg·K) 2300 -

Surface resistivity IEC60093 Ω·m >1.0 × 1015 - -

Dissipation facto 1 MHz IEC60250 – 0.014 0.020 0.014

Density 1183 g/cm3 1.41 1.41 1.41

Viscosity no. 307 cm3/g 130 145 155

Water absorption sat. 62 % 5.5 5 5.5

http://www.campusplastics.com/
http://www.campusplastics.com/
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Table 3. Injection molding parameters employed to manufacture the specimens.

Parameter Value

Mold temperature Room temperature

Barrel temperature 300 ◦C

Melt temperature 300 ◦C

Cooling time 30 s

Total cycle time 50 s

Screw speed 29 m/min

Injection speed 18/25 (cm3/s)

Injection pressure 1800 bar

Back pressure 50/400/500 bar

The specimens in the as-received condition were referred to as R0 condition; the
specimens obtained after injecting the grinded material were referred to as R1 condition.
This same notation was applied after successive grindings and injections (up to a total of
10), giving rise to the experimental families R0–R10. All specimens (tensile, Charpy and
fracture) were tested in the dry-as-molded (DAM) condition.

2.2. Viscosity

The mechanical properties of fiber-reinforced polyamide are strongly dependent on
the viscosity of its matrix. The repetitive application of heating and shear stresses due to
the injection during the molding process of the specimens leads to the irreversible breaking
of the molecular chains of the matrix, which is reflected in a reduction in the viscosity
of the material. For this reason, viscosity is a measure of the deterioration undergone
by the material as a result of its recycling as well as an indicator of its ability to resist
mechanical actions. The viscosity measurements were carried out according to the EN ISO
307 standard [19] to obtain the viscosity number (VN).

2.3. Mechanical Tests

To assess the influence of recycling on the mechanical behavior of the material, four
experimental methods have been employed: tensile test, accelerated fatigue test, Charpy
impact test and fracture toughness test, as they are considered to be the most representative
tests affecting the mechanical and fracture behavior of the material according to the material
performance in-service. The environmental conditions in all cases were a relative humidity
of 50 ± 5% and a temperature of 23 ± 2 ◦C.

The static mechanical response was measured through tensile tests following the EN
ISO 527-4 standard [9]. Three tests were performed for each of the material conditions
(R1-R10). The accelerated fatigue LOCATI test [20,21] was employed to determine the
fatigue limit; one of the main advantages of this method is that it allows the fatigue
performance to be determined with one single test per material condition (therefore, a total
of ten tests were conducted for families R1-R10). As can be seen in Figure 2a, the LOCATI
test consists of the successive application of a series of blocks of oscillating loading, all of
them with a constant number of cycles. The minimum load remains constant throughout
the entire test; however, the maximum load increases progressively, from block to block.
The load amplitude in the first block is very small, lower than the fatigue limit of the
material. During the process, the maximum strain for the maximum load (εMAX) of every
cycle is recorded as well as the surface temperature of the specimen; see Figure 2b. As
depicted in Figure 2c, a transient increase in the maximum strain occurs with each change
of block, which is followed by the stabilization of this parameter. However, at a certain
moment (stress amplitude ∆σB-1 in Figure 2c), this stabilization does not occur, which
means that the fatigue limit of the material was exceeded. Conventionally, the fatigue
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strength of the material is identified as the stress amplitude in the immediately preceding
block (∆σB, Figure 2c) [22]. In this study, blocks of 20,000 sinusoidal wave cycles were
applied at a frequency of 5 Hz, between initial tensile loads of 0.5 and 1.5 kN. The maximum
load was increased by 0.25 kN per block. During the test, the strain values and surface
temperature of the specimen were recorded (temperature was measured using infrared
thermography). Both tensile and fatigue tests were conducted on an electric/hydraulic
universal testing machine (SERVOSIS model ME-405/1 series 1709) with a load cell capacity
of 5 kN. In order to determine the strain, an INSTRON extensometer with a gauge length
of 25 mm was employed.
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Impact tests were performed on notched Charpy impact specimens according to EN
IS0 179 standard [10]. An instrumented Charpy pendulum with a load cell capacity of 5J
(INSTRON IMPACTOR II type 7613.000 s/n 21581) was used.

Fracture toughness was obtained from three-point bending tests, following the ASTM
D 5045 standard [11] with the same machine used for static and fatigue tests. The standard
specimens used were SENB notched type with a thickness B = 4 mm, width W = 10 mm
and an initial crack length, a, between 0.45 and 0.55 W; the specimens were placed on
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two cylindrical supports at a distance of 4 W. Two or three tests were conducted for each
material condition (R1–R10) at a constant displacement rate of 10 mm/min.

2.4. Fractography

The fractographic analysis of the fracture surfaces of the specimens subjected to fatigue
tests was performed by means of an optical microscope (Axio Imager microscope metallo-
graphic brand Z1M) as well as with an SEM (Zeiss EVO MA15) considering accelerating
voltage (EHT:10 kV), Iprobe: 500 pA, aperture size: 100 µm and working depth (WD: 8 mm).
A Balzers Union sputtering device, model SCD 040, was used to produce a conductive gold
layer on the fracture sample surfaces.

2.5. Micro-Computed Tomography

The internal microstructure of the material was analyzed by using a Bruker Skyscan
1172 µCT equipped with a 80 kV and 100 µA X-ray source. The detail detectability was
2 µm measured through the image pixel size. After the scanning process, the reconstruction
was performed employing the software NRecon-Bruker.

2.6. Analysis of Data and Statistics

Several material properties (viscosity, tensile parameters, Charpy resilience, fracture
toughness and porosity) were plotted against the number of recyclings the specimens were
subjected to. Linear regression (Y = β0 + β1·X) of the experimental results has been used to
correlate the influence of recycling on these properties. The confidence bounds at the 95%
significance level of the slopes of the fitting lines have been obtained to verify the statistical
significance of the trends detected.

3. Results

The main results obtained in this study are summarized in Sections 3.1–3.7. Their anal-
ysis is developed in Section 4.

3.1. Viscosity

The graph shown in Figure 3 represents the relationship between the number of
recyclings, RN, and the viscosity number, VN. The data were fitted through a straight
line (VN = β0 + β1·RN); the negative slope (β1 = −2.104) proves the detrimental effect of
repetitive recyclings on the viscosity. Considering the distribution of points in the figure,
a second fitting composed of two independent straight lines has been included: the first
fitting includes points R0 to R4 (obtaining β1 = −4.027) and the second points R5 to R10
(with β1 = −0.763). The general impression is that this second fitting reproduces better
the trend followed by the data. The variation undergone by the slope implies that the
damaging effect on the viscosity derived from the recycling of the material attenuates from
the fourth recycling. Table 4 gathers the coefficients, β0 and β1, of the linear fittings carried
out, including their 95% confidence bounds as well as the value of R2. Notice that the
confidence intervals of the slopes of groups R0–R4 and R5–R10 are disjoint, which proves
the different behavior mentioned above.
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Table 4. Summary of results obtained from the linear fitting (VN = β0 + β1·RN) of the viscosity (VN is
expressed in mg/L). The coefficients β0 and β1 are accompanied with their 95% confidence bounds.

Data β0 β1 R2

R0–R10 117.1
(114.7, 119.6)

−2.104
(−2.501, −1.708) 0.8269

R0–R4 125.5
(123.6, 127.3)

−4.027
(−4.741, −3.314) 0.9476

R5–R10 107
(102.1, 111.8)

−0.763
(−1.397, −0.129) 0.3224

3.2. Tensile Tests

Figure 4 shows the experimental curves (stress vs. strain) obtained from the tensile
tests on specimens fabricated after being subjected to different numbers of recyclings. Even
though three tests were carried out for each material condition, for the sake of clarity, only
one of them was included in the figure. The curves show the evident reduction undergone
by three of the most relevant mechanical parameters, namely, the Young’s modulus, the
tensile strength and the strain under maximum load, as the number of recyclings increases.
In this sense, in Figure 5, the values of these three mechanical parameters are represented
as a function of the number of recyclings. The general impression is that the process of
damage undergone by the material continues progressively, without reaching a steady state
after 10 recyclings. The coefficients, β0 and β1 of the linear fittings, including their 95%
confidence bounds, as well as the value of R2 are summarized in Table 5.
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Table 5. Summary of results obtained from the linear fitting (Y = β0 + β1·RN) of the experimental
data. The coefficients β0 and β1 are accompanied with their 95% confidence bounds.

Property β0 β1 R2

E (MPa) 9.909
(9.594, 10.22)

−0.3301
(−0.3801, −0.28) 0.8715

σY (MPa) 123.8
(117.2, 130.3)

−6.016
(−7.191, −4.841) 0.8299

σR (MPa) 168.4
(161.4, 175.4)

−10.31
(−11.42, −9.192) 0.9302

εMAX
3.637

(3.397, 3.877)
−0.2561

(−0.2942 −0.2179) 0.8755

3.3. Charpy Impact Tests

The Charpy test determines the amount of energy absorbed by a material during
fracture. Figure 6 collects the values of the Charpy resilience (energy absorbed per unit
fracture cross-section) as a function of the number of recyclings, RN. An evident reduction
in resilience is appreciated with the number of recyclings. A linear fitting is included in
the figure, considering all the data, R1–R10; in this case, a slope β1 = −0.5 is obtained.
Moreover, a bilinear fitting consisting of two independent straight lines was considered: the
first line includes the points belonging to R0–R7 and the second includes those in R8–R10.
Apparently, this second approach describes the trends more accurately. As can be seen, the
damaging process attenuates, since the slope for group R0-R7 is β1 = −0.6511, whereas for
group R8–R10, it is β1 = −0.055. Table 6 gathers the coefficients, β0 and β1, of the linear
fittings carried out, including their 95% confidence bounds, as well as the values of R2.
Notice that the confidence intervals of the slopes of groups R0–R4 and R5–R10 are disjoint.
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Table 6. Summary of results obtained from the linear fitting (R = β0 + β1·RN) of the resilience. The
coefficients β0 and β1 are accompanied with their 95% confidence bounds.

Group β0 β1 R2

R0–R10 6.112
(5.613, 6.611)

−0.5000
(−0.5803, −0.4204) 0.8529

R0–R7 6.372
(6.032, 7.212)

−0.6511
(−0.7828, −0.5193) 0.8492

R8–R10 2.385
(−0.2234, 4.883)

−0.055
(−0.3375, 0.2275) 0.02938

3.4. LOCATI Fatigue Test

The graphs in Figure 7 show the evolution of the maximum strain, εMAX, and the
surface temperature of the specimen as a function of the number of fatigue cycles, for the
ten recycling conditions (R1–R10). The graph in Figure 8 shows the number of fatigue
cycles as a function of the recycling number. The trends contained in both figures point in
the same direction: the ability of the material to resist fatigue loading is severely penalized
by the application of successive recyclings.
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3.5. Fracture Toughness Test

The testing standard ASTM D5045-14 [11] establishes the procedure and conditions to
be fulfilled to determine the plane–strain fracture toughness of plastic materials. In this
sense, the thickness of the specimen, B, must exceed a minimum value to guarantee that
fracture occurs under plane strain conditions, which is expressed in the following relation:
B > 2.5·(KIC/σy)2. The value of the stress intensity factor at fracture is referred to as KQ;
only when the thickness condition is fulfilled (as well as other validity checks) may the
KQ value be quoted as a fracture toughness result, KIC. The thickness condition was not
fulfilled for material conditions R1 to R5 but for the rest of them. Figure 9 shows the results
of KIC and KQ for different numbers of applied recyclings. It can be observed that the
toughness decreases as the number of recyclings increases, but this phenomenon mitigates
from R6. For this reason, the data were fitted by means of a straight line as well as with two
straight lines including families R1–R5 and R6–R10, respectively. The parameters derived
from the fittings are collected in Table 7.

Table 7. Summary of results obtained from the linear fitting (Y = β0 + β1·X) of the fracture toughness,
KQ or KIc. The coefficients β0 and β1·are accompanied with their 95% confidence bounds.

Group β0 β1 R2

R1–R10 8.119
(7.308, 8.93)

−0.7551
(−0.895, −0.6152) 0.8380

R1–R5 8.258
(7.088, 9.428)

−0.7504
(−1.103, −0.3977) 0.619

R6–R10 3.693
(0.6452, 6.741)

−0.222
(−0.6016, 0.1577) 0.1628
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ples subjected to a large number of recyclings. In contrast, for the low recycling number 
shown in Figure 10c, which corresponds to R1, the large strain undergone by the matrix 
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imen R4; in this case, a crack grows through the cavities left after the fibers are pulled off. 
This mechanism was present for families R1 to R4. 
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3.6. Fractographic Analysis

The fracture surfaces of the samples were observed after the fatigue tests. The SEM
micrographs in Figure 10a,b, show the fatigue failure surface of specimens R10 and R9,
respectively; the large amount of porosity and the brittle appearance of the matrix sur-
rounding the pores can be observed. In Figure 10b, the interconnection of pores through
cracks, with a flat matrix surface, can be seen. These features are common to all the samples
subjected to a large number of recyclings. In contrast, for the low recycling number shown
in Figure 10c, which corresponds to R1, the large strain undergone by the matrix is the
most remarkable property. Figure 10d shows the crack growth mechanism for specimen
R4; in this case, a crack grows through the cavities left after the fibers are pulled off.
This mechanism was present for families R1 to R4.
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The existence of porosity was observed mainly in specimens subjected to a high num-
ber of recyclings. A specific study of the porosity distribution was carried out by cutting 
one fatigue tested specimen for each recycling condition into five different cross-sections. 
Then, they were analyzed with the optical microscope. It was found that the porosity is 
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Figure 10. SEM fractographic analysis. (a) Fatigue failure surface of specimens R10. (b) Fatigue
failure surface of specimens R9. (c) Low recycling number (R1) failure surface. (d) Crack growth
mechanism for specimen R4.

The existence of porosity was observed mainly in specimens subjected to a high
number of recyclings. A specific study of the porosity distribution was carried out by
cutting one fatigue tested specimen for each recycling condition into five different cross-
sections. Then, they were analyzed with the optical microscope. It was found that the
porosity is mainly manifested in high recycling conditions, over R4. The porosity increases
with the distance from the point of injection; moreover, pores are arranged in an annular
region as can be observed in Figure 11.
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3.7. Micro-CT Analysis

In order to define accurately the distribution of porosity in the fatigued samples, the
ten recycling conditions were analyzed through µCT. Figure 12 shows the degree of porosity
in a series of samples (32 mm3) extracted from the specimens. Notice that for R9 and R10,
the level of porosity increases drastically. These results are represented in the graph of
Figure 13, where different patterns can be distinguished: from R0 to R3, porosity is well
below 0.02%; R4 corresponds to a transition region, giving way to the region between R5
and R8 where the porosity is in the range 0.10–0.14%; the results corresponding to R9 and
R10 are not represented in the graph, since their porosity increases dramatically (around
two orders of magnitude, 5.0 and 7.7%, respectively).
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3.8. Fiber Length Analysis

To determine the length distribution of the glass fibers by successive recycling, the
organic matter was volatilized by calcination according to ISO 1172 using a Carbolite Fur-
naces CSF1200 muffle, at 625 ◦C for 3 h. The process was carried out up to a third recycling
as the degradation of the matrix, in terms of viscosity, was found to be excessive. The
length of a population of 100 fibers/recycling was measured with the optical microscope.
The photographs in Figure 14 show an example of the fibers from each recycling. The graph
in Figure 15 shows the distribution of fiber lengths obtained in each case.



Polymers 2022, 14, 4940 17 of 23Polymers 2022, 14, x FOR PEER REVIEW 19 of 26 
 

 

 
mag ×400 

 
R0 (mag: ×400) 

Figure 14. Optical microscope observation and measurement of fibers. Figure 14. Optical microscope observation and measurement of fibers.



Polymers 2022, 14, 4940 18 of 23Polymers 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 15. Short glass fiber length distribution. 

The total fiber length decreases as it is recycled as a result of attrition due to succes-
sive grinding and re-injection. The breakage of a fiber into two or more shorter pieces 
causes an increase in the number of fiber ends, which act as stress concentration sites cre-
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Figure 15. Short glass fiber length distribution.

The total fiber length decreases as it is recycled as a result of attrition due to successive
grinding and re-injection. The breakage of a fiber into two or more shorter pieces causes an
increase in the number of fiber ends, which act as stress concentration sites creating high
shear stresses; in addition, these ends lack a bonding agent, increasing the fiber-matrix
cohesion failure (see Figure 16).
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4. Discussion

The experimental results obtained in this study reveal a noticeable deterioration of
the physical and mechanical properties of polyamide reinforced with short glass fiber
because of the application of successive recyclings based on mechanical grinding of the
flanged plates. The decrease in viscosity due to a recycling process was observed by other
authors [23–25]. From a microstructural viewpoint, this phenomenon is a consequence of
the shortening of the polymeric chains caused by the successive injections. As shown in
Figure 3, the reduction in viscosity is concentrated before the fifth recycling; after that, the
microstructural damage is so pronounced that the effect of the subsequent recyclings is
negligible. The viscosity of the polymer matrix is one of the factors that participates in the
final behavior of the reinforced polyamide. For this reason, it is usual to impose conditions
to guarantee an adequate mechanical behavior. For example, the technical specification
published by ADIF establishes limits in this regard.

Even though the mechanical properties (tensile, Charpy, fatigue and fracture tough-
ness) are all negatively affected by the process of recycling, the specific patterns are slightly
different. The evolution of the mechanical properties represented in Figure 5 shows a
process of continuous deterioration, not attenuated at any time. In this sense, it is worth
noting that the mechanical response for this composite depends on the response of its
constituents (matrix and fibers) as well as in the interaction between them. The viscosity
number provides information about the deterioration undergone by the matrix but, as
shown by Pedroso et al. [17], the mechanical behavior of the reinforce polyamide is strongly
dependent on the length distribution of the fibers as well as on the specific conditions
at the interface between fibers and matrix. One of the consequences of the mechanical
grinding of the plates is the shortening of the glass fibers which, in turn, hampers the
mechanical ability of the material. Fiber shortening has been studied and contrasted in
several works including the authors of the present study [16–18,26,27]. In addition, other
external factors play an important role, such as the porosity of the material [27]. As shown
by means of micro CT (see Figure 13), the porosity of the material continuously increases
with the number of recyclings (up to 8% in the case of R10 condition). The pores act as
preferential paths for the propagation of the cracks. The appearance of a high number of
pores is due to the incorporation of small particles of polyamide (powder size) produced in
the grinding. These particles are thermally degraded by gasification during the injection
process at high temperature. Therefore, sieving the crushed material before its injection
would be advisable to eliminate, or at least, reduce its effect on the porosity.

The fracture surfaces analyzed by SEM show that there are regions of high deformation
produced during the propagation of the crack and regions with brittle appearance due to
the last and instantaneous breakage of the material in the last fatigue cycle. Moreover, the
SEM pictures prove the existence of two different types of fracture micromechanisms after
the LOCATI fatigue test: namely, the thermal failure and the mechanical failure. The SEM
micrographs collected in Figure 10 show the two types of fracture. Thermal fatigue occurs
from recyclings R1 to R4, while from R7 to R10, mechanical failure takes place. Recycling
conditions R5 and R6 are the limit between these two types of failure. Figure 10a represents
the mechanical fatigue failure, where the mechanism of crack growth in the brittle zone
uses the pores as preferred paths (detail Figure 10b) and also, the temperature stabilizes in
every loading block. In this case, the temperature never exceeds 25 ◦C, and the maximum
strain is lower than 1% without any evidence of accelerated increase in the crack growth
rate. Figure 10c, in contrast, represents the type of failure due to thermal fatigue, in which
the cracks use the empty holes of the fibers that have lost their adherence with the matrix
to advance along a plane perpendicular to the one of the break that finally prevails. In this
case, the fracture occurs after a large number of cycles during which the levels of strain
and temperature increase progressively. At this point, the surface temperature and the
maximum strain reach critical values (≈40 ◦C and ≈3%, respectively) corresponding to the
high crack growth rate that announces the imminence of the failure.
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Currently, up to 10% of the raw material (polyamide 6.6 reinforced with short fiber-
glass) used to fabricate the flanged plates of the VM fastening system may go to waste for
several reasons (surplus after molding, parts used for the assurance, etc.). This material
represents up to 0.17 tons per kilometer of track. In this study, the degree of recyclability of
this material has been studied in order to incorporate it back into the process of injection of
flanged plates. The recycling process consisted in the mechanical crushing of the plates
and the subsequent injection of the piece without adding any type of additive. The quality
assurance of the recycled material obtained has been carried out through the study of the
evolution of the physical and mechanical properties and the fractographic and tomographic
analysis of the samples.

The physical-mechanical characterization carried out on standardized samples re-
cycled up to 10 times shows a significant decrease in the mechanical properties of the
composite material that alleviates after the fifth–sixth recycling. However, there are differ-
ent regulations and specifications that limit possible modifications in the behavior of this
material. For example, the technical specification promulgated by ADIF [28] states that
the minimum viscosity must be greater than 90% of the viscosity of the virgin pellets. On
the other hand, there are similar restrictions in the experimental results obtained in this
research; it is admissible to subject the material up to three recyclings.

From the economic point of view of the manufacturer of the flanged plates, the recovery
of this material would imply an estimated saving of 10% in costs of raw material. From
the environmental point of view, recycling the plates by mechanical crushing is a clean
process that reduces different types of pollutions such as air emissions of polymeric dust
and volatile organic compounds (caprolactam and thermal oil), wastewater discharges with
organic (cyclopentanone and hexamethylenediamine) and inorganic (mainly ammonia)
content as well as solid waste. A detailed description of the sources of pollution related to
the fabrication of polyamide can be found in [29].

Due to the recycling process, the glass fiber undergoes significant attrition and reduces
its original average length (around 211 µm). The effect of up to three recyclings (R3) has
been found to be a 30% reduction in the original average fiber length. In general, fiber
breakage results in the formation of a greater number of shorter fiber ends which, in
addition to being devoid of bonding agent, generate a greater number of discontinuities
and potential defect nucleators in the recycled composite material.

As a final summary, the radar graph in Figure 17 allows the evolution of the properties
analyzed in this study to be appreciated as a function of the number of recyclings to which
the material was subjected to.
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5. Conclusions

• The decrease in viscosity is a consequence of the shortening of the polymeric chains
caused by the successive injections and is concentrated before the fifth recycling.
Having studied the effect on the properties of up to 10 recyclings and considering the
restrictive values of the ADIF Technical Specification, up to a third recycling would
be admissible.

• The mechanical properties are all detrimentally affected by the process of recycling.
The mechanical behavior of the reinforce polyamide is strongly dependent on the
shortening of the glass fibers and the length distribution of the fibers as well as on
the specific conditions at the interface between the fibers and matrix. The effect of up
to three recyclings (R3) has been found to be a 30% reduction in the original average
fiber length.

• The porosity of the material, due to the incorporation of polyamide powder pro-
duced in the grinding, continuously increases with the number of recyclings acting as
preferential paths for the propagation of the cracks.
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• SEM analysis evidences the existence of two different types of fracture micromech-
anisms after the LOCATI fatigue test: namely, the thermal failure and the mechani-
cal failure.

• From the economic point of view, the recovery of this material would imply an
important saving of 37% in costs per kilometer.

• From the environmental point of view, recycling the plates by mechanical crush-
ing reduces pollutions such as air emissions of polymeric dust and volatile organic
compounds (caprolactam and thermal oil), wastewater discharges with organic (cy-
clopentanone and hexamethylenediamine) and inorganic (mainly ammonia) content
as well as solid waste.
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