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Abstract
We show an alternative proof of the sharpest known lower bound for the logarithmic
energy on the unit sphere S2. We then generalize this proof to get new lower bounds
for the Green energy on the unit n-sphere Sn .
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1 Introduction

We consider Smale’s 7-th problem [21], that was actually posed by Michael Shub
and Stephen Smale in their search for an algorithm to explicitly generate sequences
of well-conditioned polynomials (see [7, 8, 20]) and is related to the distribution of a
finite number of points on the unit sphere S2:
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Problem 1.1 (Smale’s 7th problem) Can one find N points p1, . . . , pN ∈ S
2 such

that

E(p1, . . . , pN ) ≤ mN + c ln N ,

for c a universal constant?

Here, E(p1, . . . , pN ) is the logarithmic energy:

E(p1, . . . , pN ) =
∑

i �= j

ln
1

‖pi − p j‖ ,

and mN = minp1,...,pN∈S2 E(p1, . . . , pN ). The problem is well known and so are its
origins that can be found in the references above as well as in [10, Section 6.7] and
[4], so we omit the (quite long!) historical perspective in this note.

Smale’s 7th problem, despite the simplicity of its statement, is considered a
extremely difficult question. A major obstacle is that the value of the minimal loga-
rithmic energy on the sphere is not fully known. The current knowledge, after [9, 11,
13, 19, 23, 24], is the following asymptotic expansion:

mN = κN 2 − 1

2
N ln N + ClogN + o(N ),

where κ is the continuous energy

κ = 1

(vol(S2))2

∫

p,q∈S2
ln

1

‖p − q‖dp dq = 1

2
− ln 2,

and Clog is a constant whose value is not known. From [16] and [9] we have

− 0.0568 . . . = ln 2 − 3

4
≤ Clog ≤ 2 ln 2 + 1

2
ln

2

3
+ 3 ln

√
π

�(1/3)
= −0.0556 . . . .

(1.1)

The upper bound has been conjectured to be an equality, and one of the most important
open problems in the area is the exact computation of this constant; see [9, 10, 12, 23]
for context. The lower bound ln 2 − 3

4 ≤ Clog proved by Lauritsen in [16, Appendix
B] follows from an argument in the real plane and then invokes a sophisticated result
by Bétermin and Sandier [9, p. 3, Theorem 1.5] that relates the energy in the 2-sphere
to a certain renormalized energy in the plane, and that is a purely 2-dimensional
argument which does not seem easy to translate to higher dimensions. In these pages,
we describe how the argument by Lauritsen can be directly adapted to work on the
sphere S2 without the use of [9, p. 3, Theorem 1.5] and moreover we also show that
it can be quite straightforwardly extended to spheres of arbitrary dimension.
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2 An Alternative Proof for Lauritsen’s Lower Bound Clog ≥ ln 2 − 3
4

2.1 MeanValues of the Logarithmic Energy in the 2-Sphere

Let B(p0, a) be the geodesic ball centered at p0 ∈ S
2 with radius a > 0, that is,

B(p0, a) = {p ∈ S
2 : dR(p0, p) < a} ⊆ S

2 where dR(·, ·) = arccos〈·, ·〉 is the
Riemannian distance on the unit sphere. Let |Ba | be the volume of this ball. The
following result is known:

Proposition 2.1 Let p0, p ∈ S
2 and a ∈ (0, π). Then, |Ba | = 4π sin2 a

2 and

(i) If p /∈ B(p0, a)

1

|Ba |
∫

q∈B(p0,a)

ln ‖p − q‖dq = ln ‖p − p0‖ − 1

2
− cot2

a

2
ln cos

a

2
.

(ii) If p ∈ B(p0, a)

1

|Ba |
∫

q∈B(p0,a)

ln ‖p − q‖dq = ln 2 − 1

2
− cot2 a

2

2

× ln

(
1 − ‖p − p0‖2

4

)
+ ln

(
sin

a

2

)
.

Proof This result is [3, Proposition 3.2]. Note that in that reference, the result is given
for the radius 1/2 sphere in R

3. The translation to the unit sphere is straightforward.

�

Lemma 2.2 The function F : (0, 2) × (0, π) → R given by

F(t, α) = ln 2 + ln sin
α

2
+ cot2 α

2

2

(
2 ln

(
cos

α

2

)
− ln

(
1 − t2

4

))
− ln t,

is not negative.

Proof It is easy to see that F(t, α) has a minimum in t = 2 sin α
2 for any fixed

α ∈ (0, π). Indeed, limt→0 F(t, α) = limt→2 F(t, α) = ∞ and

∂

∂t
F(t, α) = t

cot2 α
2

4 − t2
− 1

t
, which equals 0 iff t = 2 sin

α

2
,

so the minimum is at t = 2 sin α
2 . Finally, F(2 sin α

2 , α) ≡ 0 and we are done. 
�
Corollary 2.3 Let p0, p ∈ S

2 and a > 0. Then,

1

|Ba |
∫

q∈B(p0,a)

ln ‖p − q‖dq ≥ ln ‖p − p0‖ − 1

2
− cot2

a

2
ln cos

a

2
,

with an equality if p /∈ B(p0, a).

Proof Immediate from Proposition 2.1 and Lemma 2.2. 
�
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2.2 Proof of the Lower Bound of Clog

Let p1, . . . , pN ∈ S
2, and let

I (p1, . . . , pN ) = E(p1, . . . , pN )

+ 2N

vol(S2)

N∑

i=1

∫

q∈S2
ln ‖pi − q‖dq

− N 2

(vol(S2))2

∫

p,q∈S2
ln ‖p − q‖dpdq.

For any p ∈ S
2 we have

1

vol(S2)

∫

q∈S2
ln ‖p − q‖dq = ln 2 − 1

2
= −κ, (2.1)

and hence we immediately deduce that I (p1, . . . , pN ) = E(p1, . . . , pN ) − κN 2.
Define

UBB = − N 2

(vol(S2))2

∫

p,q∈S2
ln ‖p − q‖dpdq (2.1)= κN 2,

Ui = 2N

vol(S2)

∫

S2
ln ‖pi − q‖dq (2.1)= −2κN ,

Ui j = − ln ‖pi − p j‖,
Ûi = 2N

vol(S2)|Ba |
∫

B(pi ,a)

∫

S2
ln ‖p − q‖dpdq (2.1)= −2κN ,

Ûi j = − 1

|Ba |2
∫

B(pi ,a)

∫

B(p j ,a)

ln ‖p − q‖dpdq.

Clearly,

I (p1, . . . , pN )

= UBB +
N∑

i=1

Ûi +
∑

i, j

Ûi j

︸ ︷︷ ︸
α

+
N∑

i=1

(Ui − Ûi )

︸ ︷︷ ︸
β

−
N∑

i=1

Ûii

︸ ︷︷ ︸
γ

+
∑

i �= j

(Ui j − Ûi j )

︸ ︷︷ ︸
δ

.

We proceed to lower bound and, when possible, to calculate exactly, the terms α, β, γ

and δ. From Proposition B.2, and the fact that the logarithmic potential is the Green
function (except multiplicative and additive constant: see (3.1)) we deduce that α ≥ 0.
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Indeed, just take the following measure

μ(p) =
N∑

i=1

1

|Ba |χB(pi ,a)(p) − N

vol(S2)
,

(note that
∫
S2

μ(p)dp = 0) where χA denotes the characteristic function of a subset
A ⊂ S

2, and note that

α = −
∫

S2

∫

S2
ln ‖p − q‖dμ(p)dμ(q).

Moreover, we obviously have β = 0. The explicit expression of γ is obtained imme-
diately using Proposition 2.1, since the value of Ûii does not depend on the point
pi :

γ = N

|Ba |2
∫

B(p1,a)

∫

B(p1,a)

ln ‖p − q‖dpdq

= N

|Ba |2
∫

B(p1,a)

(∫

S2
ln ‖p − q‖dp −

∫

B(−p1,π−a)

ln ‖p − q‖dp
)
dq

= −4πNκ

|Ba | − N

|Ba |2
∫

B(p1,a)

∫

B(−p1,π−a)

ln ‖p − q‖dpdq

= −4πNκ

|Ba | − N (4π − |Ba |)
|Ba |2

∫

B(p1,a)

(
ln ‖ − p1 − q‖ − 1

2
− ln cos π−a

2

tan2 π−a
2

)
dq

= −4πNκ

|Ba | + N (4π − |Ba |)
|Ba |

(
1

2
+ ln cos π−a

2

tan2 π−a
2

−
(
ln 2 − 1

2
− cot2

a

2
ln cos

a

2

))

= N

[
−κ + ln sin

a

2
+ cot2

a

2

(
1

2
+ cot2

a

2
ln cos

a

2

)]
.

Finally, we bound δ. Note that

δ =
∑

i �= j

(Ui j − Ûi j ),

and applying Corollary 2.3 twice we get for all i, j :

Ui j − Ûi j ≥ − ln ‖pi − p j‖ + 1

|Ba |
∫

B(pi ,a)

(
ln ‖p j − q‖ − 1

2
− cot2

a

2
ln cos

a

2

)
dq

≥ −1 − 2 cot2
a

2
ln cos

a

2
.
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(A similar inequalitywith less explicit constants has been given recently in [18, Lemma
3.1]). Therefore, we have obtained that

I (p1, . . . , pN ) ≥ N (N − 1)
(
−1 − 2 cot2

a

2
ln cos

a

2

)

+ N

[
ln 2 − 1

2
+ ln sin

a

2
+ cot2

a

2

(
1

2
+ cot2

a

2
ln cos

a

2

)]
.

This lower bound is valid for any choice of a. Choosing sin2 a
2 = C/N we have:

I (p1, . . . , pN ) ≥ N (N − 1)

(
−1 − N − C

C
ln

(
1 − C

N

))
− 1

2
N ln N

+ N

[
ln 2 − 1

2
+ 1

2
lnC + N − C

C

(
1

2
+ N − C

2C
ln

(
1 − C

N

))]

≥ −1

2
N ln N + N

2 lnC − 2C + 4 ln 2 − 1

4
− C2

2
+ O

(
1

N

)
,

where we have used the elementary inequality

−C

N
− C2

2N 2 − C3

N 3 ≤ ln

(
1 − C

N

)
≤ −C

N
− C2

2N 2 , ∀N ≥ 2C .

Taking C = 1 (which is the optimal value) we conclude that

E(p1, . . . , pN ) = κN 2 + I (p1, . . . , pN )

≥ κN 2 − 1

2
N ln N + N

(
ln 2 − 3

4

)
+ o(N ),

proving Clog ≥ ln 2 − 3
4 as claimed.

3 The Green Function in S
n

How should we extend the logarithmic energy to the unit n-sphere Sn ⊆ R
n+1? In the

literature it is quite frequent to study Riesz potentials and also to use the very same
logarithmic potential in this context. However, in a general Riemannian manifoldM
the Green energy

EM(p1, . . . , pN ) =
∑

i �= j

G(M; pi , p j ),

where G(M; ·, ·) is the Green function in M associated to the Laplace–Beltrami
operator, is a more natural choice since it does not depend on extrinsic quantities, and
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is attracting more attention in the last few years, see [1, 14, 23]. It turns out that the
Green function in S

2 is

G(S2; p, q) = − 1

2π
ln ‖p − q‖ − 1

4π
+ ln 2

2π
. (3.1)

That is, up to multiplicative and additive constants, the Green energy in S
2 is the

logarithmic potential. We claim that the deep reason why the argument by Lauritsen
can be performed directly in S

2 as we have done in Sect. 2.2 is precisely this fact.
Hence, an extension to the Green energy in S

n is possible.
We start by computing an explicit formula for the Green energy in Sn . Let

Vn = vol(Sn) = 2π
n+1
2

�
( n+1

2

) .

Proposition 3.1 The Green function for Sn is G(Sn; p, q) = g(‖p − q‖), where

g(t) = 2

nVn

∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

[(
1 − t2

4

)k+1

− B
( n
2 , n

2 + k + 1
)

B
( n
2 , n

2

)
]

.

(See (A.1) for the definition of the Pochhammer symbol (n)k . Here, B(·, ·) is the beta
function (A.3)).

An alternative and equivalent expression of the Green function for Sn is given in
[1], although with a different normalization.

Proof Following the method in Appendix B.1, we have G(Sn; p, q) =
φ(Sn; dR(p, q)),

φ(Sn; r) =
∫ π

r

2n−1Bcos2 s
2

( n
2 , n

2

)

Vn sinn−1 s
ds + C, C a constant.

(We have also used Lemma A.1). From (A.4) and [15, (9.131.1)] we have

φ(Sn; r) = 1

nVn

∫ π

r
sin s 2F1

(
1, n; n

2
+ 1; cos2 s

2

)
ds + C .

Using (A.2), the half-angle identities and the change of variables t = 1+cos s
2 we get

φ(Sn; r) = 1

nVn

∞∑

k=0

(n)k( n
2 + 1

)
k

1

2k(k + 1)
(1 + cos r)k+1 + C .

It is immediate to check that ‖p−q‖2 = 2(1−〈p, q〉) and r = arccos〈p, q〉. Hence,

(1 + cos r)k+1 = 2k+1
(
1 − ‖p − q‖2

4

)k+1

, p, q ∈ S
n,

123
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and we thus get

G(Sn; p, q) = 2

nVn

∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

(
1 − ‖p − q‖2

4

)k+1

+ C .

It remains to compute C such that G(Sn; p, ·) has zero mean in S
n . Without loss of

generality we take p = (0, . . . , 0,−1) ∈ S
n . Let ϕSn\N be the parameterization of Sn

given by the inverse stereographic projection:

ϕ : R
n → S

n\(0, . . . , 0, 1)
z = (

z1, . . . , zn
) →

(
2z1

1 + ‖z‖2 , · · · ,
2zn

1 + ‖z‖2 ,
‖z‖2 − 1

1 + ‖z‖2
)

,

whose Jacobian equals 2n/(1 + ‖z‖2)n . Then

‖ϕ(0) − ϕ(z)‖2 = 4‖z‖2
1 + ‖z‖2 ,

and so we have

1

Vn

∫

Sn
G(Sn; p, q)dq

= C +
∫

Rn

2

nV 2
n

∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

(
1

1 + ‖z‖2
)k+1 2n

(1 + ‖z‖2)n dz,

which equals 0 if and only if

C = −2n+1

nV 2
n

∫

Rn

∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

(
1

1 + ‖z‖2
)n+k+1

dz.

It suffices to exchange the sumwith the integral and pass to polar coordinates, recalling
the definition of the beta function and the fact that

Vn = 2n−1Vn−1B
(n
2
,
n

2

)
,

to conclude the result. 
�

4 A Lower Bound for the Green Energy on S
n

The search forminimizers of theGreen energy on compact Riemannianmanifolds (see
Appendix B) has been the main subject of a large number of recent research papers.
In fact, from (3.1), it follows that the question of Smale’s 7th problem is equivalent to
the search for minimizers of the Green energy in S

2.
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Baker’s work [2] contains a lower bound (whose value is −cN ln N , with c > 0 a
constant) for the Green energy of P1(K ) with K a field, as well as a historical context
for this result and its applications. The question for complex surfaces was actually first
discussed by Noam Elkies whose work is summarized in [17].

More recently, it has been shown that the points that minimize the Green energy
are asymptotically uniformly distributed in any compact Riemannian manifold (see
the main result in [5] and the sharper version in [22]). In addition, it is proved in [22]
that a lower bound for the Green energy on general compact manifolds is −cN ln N
and −cN 2−2/d in dimensions d = 2 and d ≥ 3, respectively. In particular, upper and
lower bounds for the Green energy in projective spaces have been given in [1]. See
also [6] for the concrete case of the real projective plane.

Recall that given p1, . . . , pN ∈ S
n , their Green energy is ESn (p1, . . . , pN ) =∑

i �= j G(Sn; pi , p j ). The following quantity will play the role of the term “−1/2 −
cot2(a/2) ln cos(a/2)” in Proposition 2.1:

K (Sn, a) = 2

nVn

∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

Bsin2 a
2
( n2 + k + 1, n

2 )

Bsin2 a
2
( n2 , n

2 )
, a ∈ (0, π).

Note that, from Proposition 3.1,

G(Sn; p,−p) = g(2) = −K (Sn, π), ∀p ∈ S
n . (4.1)

We state some basic properties of K (Sn, a). The first one just shows that K (S2, a)

equals−1/2−cot2(a/2) ln cos(a/2) up to themultiplicative constant−1/(2π), which
makes sense in the light of (3.1).

Lemma 4.1 We have K (S2, a) = −1/(2π)(−1/2 − cot2(a/2) ln cos(a/2)) for a ∈
(0, π). Moreover,

K (Sn, a) = a2

(2n + 4)Vn
+ o(a2),

K (Sn, π − a) = K (Sn, π) − a2

(2n − 4)Vn
+ o(a2).

Proof See Sect. 5.1 
�
Our main new result is the following lower bound for the Green energy on S

n .

Theorem 4.2 (Main result) Let p1, . . . , pN be N points in Sn with n ≥ 3. Then,

ESn (p1, . . . , pN ) ≥ − n1+2/n

(n2 − 4)V 1−2/n
n V 2/n

n−1

N 2−2/n + o(N 2−2/n),

where, recall, Vn is the volume of Sn.

The proof of Theorem 4.2 proceeds exactly as in Sect. 2.2, changing S
2 to Sn :
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(A) Wewrite the analogous to Proposition 2.1, Lemma2.2 andCorollary 2.3: as before,
let B(p0, a) be the geodesic ball centered at p0 ∈ S

n with radius a > 0 and let
|Ba | be the volume of this ball.

Proposition 4.3 (Sn-analogous of Proposition 2.1) Let p0, p ∈ S
n and a ∈ (0, π).

Then, |Ba | = 2n−1Vn−1Bsin2 a
2

( n
2 , n

2

)
and moreover

(i) If p /∈ B(p0, a):

1

|Ba |
∫

q∈B(p0,a)

G(Sn; p, q)dq = G(Sn; p, p0) + K (Sn, a).

(ii) If p ∈ B(p0, a):

1

|Ba |
∫

q∈B(p0,a)

G(Sn; p, q)dq = −
Bcos2 a

2

( n
2 , n

2

)

Bsin2 a
2

( n
2 , n

2

)

× (
G(Sn; p,−p0) + K (Sn, π − a)

)
.

Proof See Sect. 5.2. 
�
Lemma 4.4 (Sn-analogous of Lemma 2.2) The function F : [0, 2]×[0, π ] → R given
by

F(t, α) = g(t) + K (Sn, a) +
Bcos2 a

2

( n
2 , n

2

)

Bsin2 a
2

( n
2 , n

2

)
(
g

(√
4 − t2

)
+ K (Sn, π − a)

)
,

with g(t) as in Proposition 3.1, is not negative.

Proof See Sect. 5.3. 
�
Corollary 4.5 (Sn-analogous of Corollary 2.3) Let p0, p ∈ S

n and a > 0. Then,

1

|Ba |
∫

q∈B(p0,a)

G(Sn; p, q)dq ≤ G(Sn; p, p0) + K (Sn, a),

with an equality if p /∈ B(p0, a).

Proof Immediate from Proposition 4.3 and Lemma 4.4. 
�
(B) We write the Green energy as follows:

ESn (p1, . . . , pN ) =
∑

i �= j

G(Sn; pi , p j )

− 2N

Vn

N∑

i=1

∫

q∈Sn
G(Sn; pi , q)dq
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+ N 2

V 2
n

∫

p,q∈Sn
G(Sn; p, q)dpdq.

Note that from Definition B.1, these two new integrals are equal to zero.
(C) Let

UBB = N 2

V 2
n

∫

p,q∈Sn
G(Sn; p, q)dpdq = 0,

Ui = −2N

Vn

∫

Sn
G(Sn; pi , q)dq = 0,

Ui j = G(Sn; pi , p j ),

Ûi = − 2N

Vn|Ba |
∫

B(pi ,a)

∫

Sn
G(Sn; p, q)dpdq = 0,

Ûi j = 1

|Ba |2
∫

B(pi ,a)

∫

B(p j ,a)

G(Sn; p, q)dpdq.

Define α, β, γ and δ by

ESn (p1, . . . , pN )

= UBB +
N∑

i=1

Ûi +
∑

i, j

Ûi j

︸ ︷︷ ︸
α

+
N∑

i=1

(Ui − Ûi )

︸ ︷︷ ︸
β

−
N∑

i=1

Ûii

︸ ︷︷ ︸
γ

+
∑

i �= j

(Ui j − Ûi j )

︸ ︷︷ ︸
δ

.

Again α ≥ 0 from Proposition B.2, β = 0 and as in Sect. 2.2:

γ = − N

|Ba |2
∫

B(p1,a)

∫

B(p1,a)

G(Sn; p, q)dpdq

= − N

|Ba |2
∫

B(p1,a)

(∫

Sn
G(Sn; p, q)dp −

∫

B(−p1,π−a)

G(Sn; p, q)dp

)
dq

= N |Bπ−a |
|Ba |2

∫

B(p1,a)

(
G(Sn;−p1, q) + K (Sn, π − a)

)
dq

= N |Bπ−a |
|Ba |

(
K (Sn, π − a) + K (Sn, a) + G(Sn;−p1, p1)

)

(4.1)= N |Bπ−a |
|Ba |

(
K (Sn, π − a) + K (Sn, a) − K (Sn, π)

)
.

We bound δ also following the same method as in Sect. 2.2: for each i �= j , from
Corollary 4.5 we have

Ui j − Ûi j = G(Sn; pi , p j ) − 1

|Ba |2
∫

B(pi ,a)

∫

B(p j ,a)

G(Sn; p, q)dpdq
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≥ G(Sn; pi , p j ) − 1

|Ba |
∫

B(pi ,a)

(G(Sn; p j , q) + K (Sn, a))dq

≥ −K (Sn, a) + G(Sn; pi , p j ) − (G(Sn; p j , pi ) + K (Sn, a))

= −2K (Sn, a).

All in one, we have

δ ≥ −2N (N − 1)K (Sn, a),

and hence we conclude:

ESn (p1, . . . , pN ) ≥ −2N (N − 1)K (Sn, a)

+ N |Bπ−a |
|Ba |

(
K (Sn, π − a) + K (Sn, a) − K (Sn, π)

)
.

(D) The inequality above is valid for any a ∈ (0, π). Taking a = C1/2N−1/n it is clear
that, if n ≥ 3, a lower bound for ESn (p1, . . . , pN ) is

(
) = −2N 2K (Sn, a) + nN 2Vn
Vn−1Cn/2

(
K (Sn, π − a) + K (Sn, a) − K (Sn, π)

) + l.o.t.

Using Lemma 4.1 we conclude that, if n ≥ 3,

(
) = −N 2−2/n

n + 2

(
C

Vn
+ 2nC1−n/2

(n − 2)Vn−1

)
+ o(N 2−2/n).

We are free to choose C > 0. The optimal value C =
(

nVn
Vn−1

)2/n
yields

(
) = − n1+2/n

(n2 − 4)V 1−2/n
n V 2/n

n−1

N 2−2/n + o(N 2−2/n),

finishing the proof of Theorem 4.2.

In the light of (1.1), we see that the lower bound provided by the argument above
in the case n = 2 is surprisingly sharp. In the case of Sn for n ≥ 3 we have not
found upper bounds on the Green energy to compare with, so we have performed
some numerical experiments to provide some insight on the sharpness of our result.
In Fig. 1we plot the (numerically found by a standard Riemannian-gradient method)
minimal value of the Green energy for n = 4 for an increasing number of points. This
graphic suggests that our lower bound is again quite sharp in higher dimensions.
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Energy of computed minimal energy points
Lower bound from Theorem 4.2

Fig. 1 The minimum of the Green energy for increasing values of the number of points N is compared to
the lower bound provided by Theorem 4.2 (solid line) in the case n = 4. The minimal energy points have
been obtained using Matlab’s function fminsearch, and crosses in the same vertical lines correspond to
local minima found by Matlab for different starting points

5 Proof of the Technical Results

5.1 Proof of Lemma 4.1

If n = 2, denoting s = sin2 a
2 we have

K (S2, a) = 1

4πs

∞∑

k=0

sk+2

(k + 1)(k + 2)
.

Now, the infinite sum is an analytic function in the complex unit disk and its second
derivative is

∑
k≥0 s

k = 1/(1− s), and we deduce the value of the infinite sum above
which is s + (1 − s) ln(1 − s). All in one, we have

K (S2, a) = 1

4π
+ cos2 a

2 ln cos
2 a
2

4π sin2 a
2

,

and the first claim is proved. For the second one, note that K (Sn, a) is complex analytic
in the unit disk so we can just compute its Taylor series at a = 0 term by term, and
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only the term k = 0 has a nonzero second derivative at a = 0 which yields

K (Sn, a) = 2

nVn

Bsin2 a
2
( n2 + 1, n

2 )

Bsin2 a
2
( n2 , n

2 )
+ o(a2) = a2

(2n + 4)Vn
+ o(a2).

The second asymptotic requires some more work. Denote

L(n) = lim
a→0

1

a2
(
K (Sn, π) − K (Sn, π − a)

)
.

Using (A.5) it is clear that L(n) = L1(n) + L2(n) where

L1(n) = −2

nVn
lim
a→0

1

a2

∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

Bsin2 a
2
B( n2 , n

2 )B
( n
2 + k + 1, n

2

)

Bcos2 a
2
( n2 , n

2 )B( n2 , n
2 )

,

L2(n) = 2

nVn
lim
a→0

1

a2

∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

Bsin2 a
2
( n2 , n

2 + k + 1)

Bcos2 a
2
( n2 , n

2 )
.

The elementary upper bound from Lemma A.2 implies that L1(n) = 0 if n ≥ 3. As
for L2(n), the asymptotic a/2 ∼ sin a/2, the definition of the incomplete beta func-
tion, the Monotone Convergence Theorem and the change of variables t = u sin2 a

2
successively yield

L2(n) = lim
a→0

∞∑

k=0

1

sin2 a
2

∫ sin2 a
2

0

t
n
2−1(1 − t)

n
2−1

2nVnB( n2 , n
2 )

(n)k(1 − t)k+1
( n
2 + 1

)
k (k + 1)

dt

= lim
a→0

1

sin2 a
2

∫ sin2 a
2

0

t
n
2−1(1 − t)

n
2−1

2nVnB( n2 , n
2 )

∞∑

k=0

(n)k(1 − t)k+1
( n
2 + 1

)
k (k + 1)

dt

= lim
a→0

∫ 1

0

(u sin2 a
2 )

n
2−1(1 − u sin2 a

2 )
n
2−1

2nVnB( n2 , n
2 )

∞∑

k=0

(n)k(1 − u sin2 a
2 )k+1

( n
2 + 1

)
k (k + 1)

du.

From the upper bound of Lemma C.1, the inner function is bounded above by some
constant C(n) whose value we do not need to know. Hence, we can interchange limit
and integral by Lebesgue’s Dominated Convergence Theorem getting

L2(n) =
∫ 1

0

1

2nVnB( n2 , n
2 )

lim
a→0

((
u sin2

a

2

) n
2−1 ∞∑

k=0

(n)k(1 − u sin2 a
2 )k+1

( n
2 + 1

)
k (k + 1)

)
du.

Finally, fromLemmaC.2, the inner limit is constantly equal to�( n2+1)�( n2−1)/�(n),
which yields

L2(n) = �( n2 + 1)�( n2 − 1)

2nVnB( n2 , n
2 )�(n)

= 1

(2n − 4)Vn
,
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and the lemma follows.

5.2 Proof of Proposition 4.3

Let S(p0, r) ⊂ S
n be a geodesic sphere contained in S

n and |Sr | its volume. Since
S(p0, r) is a (n−1)-dimensional sphere of radius sin r , its volume is vol(S(p0, r)) =
Vn−1 sinn−1 r . The volume of the geodesic ball is then (using Lemma A.1):

|Ba | =
∫ a

0
vol(S(p0, r)) dr = Vn−1

∫ a

0
sinn−1 r dr = 2n−1Vn−1Bsin2 r

2

(n
2
,
n

2

)
.

The mean value equality if p /∈ B(p0, a) is essentially a known result (at least the
existence of the constant K (Sn, a), although its exact value seems not to be present
in the literature): consider the function H(q) = G(Sn; p, q) −G(Sn;−p0, q). Then,
since p,−p0 /∈ B(p0, a), we conclude that �H ≡ 0 in that ball. From [25, Theorem
1], the mean value of H on S(p0, r) with r < a is equal to H(p0) = G(Sn; p, p0) −
G(Sn;−p0, p0). That is,

∫

q∈S(p0,r)
(G(Sn; p, q) − G(Sn; p, p0))dq

=
∫

q∈S(p0,r)
(G(Sn;−p0, q) − G(Sn;−p0, p0))dq.

The integral of G(Sn; p, q) − G(Sn; p, p0) when q ∈ B(p0, a) then equals

∫ a

0

∫

q∈S(p0,r)
(G(Sn; p, q) − G(Sn; p, p0))dq dr

=
∫ a

0

∫

q∈S(p0,r)
(G(Sn;−p0, q) − G(Sn;−p0, p0))dq dr .

In other words, we can assume that p = −p0 to finish the mean value computation.
Now this is a straightforward computation: denote

A = |Ba |−1
∫

q∈B(p0,a)

(G(Sn;−p0, q))dq − G(Sn;−p0, p0)

and note that

A = 1

|Ba |
∫ a

0

∫

q∈S(p0,r)
G(Sn;−p0, q)dq − G(Sn;−p0, p0)

= 1

|Ba |
∫ a

0
vol(S(p0, r))

2

nVn

∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

sin2k+2 r

2
dr

= 2

2n−1nVnBsin2 a
2

( n
2 , n

2

)
∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

∫ a

0
sinn−1 r sin2k+2 r

2
dr
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= 2

nVnBsin2 a
2

( n
2 , n

2

)
∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

∫ a

0
sin2k+n+1 r

2
cosn−1 r

2
dr

= 2

nVnBsin2 a
2

( n
2 , n

2

)
∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

∫ sin2 a
2

0
uk+

n
2 (1 − u)

n
2−1 du

= 2

nVnBsin2 a
2

( n
2 , n

2

)
∞∑

k=0

(n)k

(k + 1)
( n
2 + 1

)
k

Bsin2 a
2

(
k + n

2
+ 1,

n

2

)

= K (Sn, a),

as claimed.
Now, suppose that p ∈ B(p0, a). Then,

∫

q∈B(p0,a)

G(Sn; p, q)dq =
∫

q∈Sn
G(Sn; p, q)dq −

∫

q∈B(−p0,π−a)

G(Sn; p, q)dq

= −
∫

q∈B(−p0,π−a)

G(Sn; p, q)dq

since G(Sn; p, ·) has zero mean for all p ∈ S
n . From the previous claim we have:

∫

q∈B(−p0,π−a)

G(Sn; p, q)dq = |Bπ−a |
(
G(Sn; p,−p0) + K (Sn, π − a)

)
,

which readily gives the second item.

5.3 Proof of Lemma 4.4

Carefully collecting the terms and writing down the definition of g(t) and K (Sn, a),
Lemma 4.4 is implied by the following.

Proposition 5.1 The function F : [0, 1] × [0, 1] → R given by

F(s, α) =
∞∑

k=0

(n)k

( n2 + 1)k(k + 1)
Qk(s, α), where

Qk(s, α) = (1 − s)k+1Bα

(n
2
,
n

2

)
+ sk+1B1−α

(n
2
,
n

2

)

+ Bα

(n
2

+ k + 1,
n

2

)
− Bα

(n
2
,
n

2
+ k + 1

)
,

is not negative.

Proof We first fix s and look for minima in Qk(s, α) with respect to α. We have

∂

∂α
Qk(s, α) = α

n
2−1(1 − α)

n
2−1[(1 − s)k+1 − sk+1 + αk+1 − (1 − α)k+1],
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which readily implies that Qk(s, α) is a decreasing function of α in [0, s] and a
increasing function of α in [s, 1]. That is, Q(s, α) has a global minimum at α = s and
consequently so does F(s, α). Hence it suffices to check that F(s, s) ≥ 0, ∀s. From
(A.4) and [15, p. 1008, (9.131.1)], we have

∂

∂s
F(s, s) =

∞∑

k=0

(n)k

(n/2 + 1)k

(
sk B1−s

(n
2
,
n

2

)
− (1 − s)k Bs

(n
2
,
n

2

))

= B1−s

(n
2
,
n

2

)
2F1(1, n; n/2 + 1; s)

− Bs

(n
2
,
n

2

)
2F1(1, n; n/2 + 1; 1 − s)

= 0.

We will prove that lims→0 F(s, s) = 0 to conclude the result. To this end, we define

T1(s) = Bs

(n
2
,
n

2

) ∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

(1 − s)k+1,

T2(s) = B1−s

(n
2
,
n

2

) ∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

sk+1,

T3(s) =
∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

Bs

(n
2

+ k + 1,
n

2

)
,

T4(s) =
∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

Bs

(n
2
,
n

2
+ k + 1

)
.

So F(s, s) = T1(s)+T2(s)+T3(s)−T4(s), and it suffices to check that each Ti (s) → 0
as s → 0, which is quite immediate from Lemmas A.2 and C.1:

T1(s) ≤ C(n)s
n
2 Sn(1 − s) ≤ C(n)s,

T2(s) ≤ C(n)Sn(s) ≤ C(n)s

(1 − s)
n
2−1

,

T3(s) ≤
∞∑

k=0

(n)k( n
2 + 1

)
k (k + 1)

s
n
2+k+1 = s

n
2 Sn(s) ≤ s

n
2+1C(n)

(1 − s)
n
2−1

,

T4(s) ≤
∫ s

0
t
n
2−1(1 − t)

n
2−1Sn(1 − t)dt ≤ C(n)

∫ s

0
(1 − t)n/2dt ≤ C(n)s,

where each apparition of C(n) may be a different constant. This finishes the proof. 
�
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Appendix A. Some Special Functions

The contents of this appendix are standard and are mainly taken from [10] and [15].
Recall the Pochhammer symbol, defined for n ∈ C and k ≥ 0 an integer:

(n)k = n(n + 1) · · · (n + k − 1), (n)0 = 1. (A.1)

Clearly, (1)k = k!, and if n, n + k are not zero or negative integers, then

(n)k = �(n + k)

�(n)
.

A.1. The Gaussian Hypergeometric Series

Recall that the Gaussian hypergeometric series is analytic in |z| < 1 and defined by
the power series

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k! . (A.2)

It is undefined for integer c ≤ 0.

A.2. The Beta Function

Euler’s beta function is

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt =

∫ +∞

0

tα−1

(1 + t)α+β
, Re(α), Re(β) > 0,

(A.3)

and clearly satisfies B(α, β) = B(β, α). The incomplete beta function

Bx (α, β) =
∫ x

0
tα−1(1 − t)β−1dt = xα

α
2F1(α, 1 − β;α + 1; x), (A.4)
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satisfies

B(α, β) = Bx (α, β) + B1−x (β, α). (A.5)

Lemma A.1 For all r ∈ [0, π ] we have
∫ r

0
sinn−1 t dt = 2n−1Bsin2 r

2

(n
2
,
n

2

)
,

∫ π

r
sinn−1 t dt = 2n−1Bcos2 r

2

(n
2
,
n

2

)
.

Proof In both cases, the functions involved have the same value at r = 0 or r = π

respectively, they are smooth and their derivatives coincide, hence they are equal. 
�
Lemma A.2 For 0 < s < 1 and α, β ∈ (0,∞) we have:

(1 − s)β−1sα

α
= (1 − s)β−1

∫ s

0
tα−1 ≤ Bs(α, β) ≤

∫ s

0
tα−1dt = sα

α
.

Appendix B. The Green Function in a Compact RiemannianManifold

The Green function is a natural potential on any compact manifold.

Definition B.1 The Green energy of N points p1, . . . , pN on a compact Riemannian
manifold M is

EM(p1, . . . , pN ) =
∑

i �= j

G(M; pi , p j ),

where G : M × M\{(p, p) : p ∈ M} → R is the unique function, known as Green
function (potential), with the following properties:

(1) �qG = Sp(q) − vol(M)−1, with Sp the Dirac’s delta function, in the sense of
distributions.

(2) Symmetry: G(M; p, q) = G(M; q, p).
(3) G(M; p, ·) has mean zero ∀p ∈ M, i.e.,

∫
q∈M G(M; p, q)dq = 0.

We follow the convention that the Riemannian Laplacian is given by � = −div∇.

Proposition B.2 Let G(M; p, q) be the Green function of a manifold M and ν any
finite signed measure such that ν(M) = 0, i.e.,

∫
M νdvol = 0. Then,

∫

p,q∈M
G(M; p, q)dν(p)dν(q) ≥ 0,

with an equality if and only if ν = 0.

Proof See [5, p. 166, Definition 3.2] and [5, p. 175, Proposition 3.14]. 
�
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B.1 Computation of the Green Function in Compact Harmonic Manifolds

The Green function of a general Riemannian manifold can be very hard to compute.
In [5], a method is given to compute it in compact harmonic manifolds, that is to say,
in spheres and projective spaces (see [1] for an alternative, equivalent method). We
have used it to get the explicit expression of G(Sn; p, q) in Proposition 3.1.

Given a compact harmonic manifold M, its Green function G(M; p, q) is given
by G(M; p, q) = φ(M; dR(p, q)) = φ(M; r) for all p, q ∈ M, where φ(M; r)
satisfies

φ′(M; r) = −
∫ D
r tn−1�(t)dt

Vrn−1�(r)
.

Here, V is the volume of M, D its diameter, r = dR(p, q) the Riemannian distance
and �(t) is the volume density function, that in the case of the sphere Sn satisfies

rn−1�(r) = sinn−1 r .

(See [5] for the density functions of the projective spaces, and note that there are some
ambiguities in the choice of the normalization that produce constant factors as powers
of 2: these constants do not affect the computation of the Green function).

Appendix C. A Bound on a Function Given by Its Series

We have used several times the function

Sn(s) =
∞∑

k=0

(n)k

( n2 + 1)k(k + 1)
sk+1 = s +

∞∑

k=1

(n)k

( n2 + 1)k(k + 1)
sk+1, s ∈ [0, 1).

(C.1)

In this section we show some elementary bounds and asymptotics regarding Sn(s).
Recall Stirling’s formula, valid for x > 0:

√
2π

x

( x
e

)x ≤ �(x) ≤
√
2π

x

( x
e

)x
e

1
12x ,

from which we immediately deduce that if k ≥ 1, n ≥ 2:

(n)k

( n2 + 1)k(k + 1)
= �(n + k)�( n2 + 1)

�(n)�( n2 + k + 1)(k + 1)
= �( n2 + 1)

�(n)
k

n
2−2 + O(k

n
2−3).

(C.2)
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Lemma C.1 Let p > −1. Then

∞∑

k=1

k psk+1 ≤ sC(p)

(1 − s)p+1 , s ∈ [0, 1),

for some constant C(p) depending only on p. In particular, for n ≥ 3,

Sn(s) ≤ sC(n)

(1 − s)
n
2−1

,

where Sn(s) is given in (C.1).

Proof There is no harm in assuming s > 0. Let f (x) = x psx+1. If p ∈ (−1, 0] then
f (x) is a decreasing function and

∞∑

k=1

k psk+1 ≤
∫ ∞

0
f (x) dx = s�(p + 1)

(ln 1
s )

p+1
≤ sC(p)

(1 − s)p+1 .

If p > 0, f (x) attains its global maximum

s

(
p

e ln 1
s

)p

at xmax = p/(ln 1
s ). The comparison of the sum with the integral must be done in the

two intervals separated by this point since in one side the terms are increasing and in
the other side they are decreasing. All in one, we have

∞∑

k=1

k psk+1 ≤ 3s

(
p

e ln 1
s

)p

+
∫ xmax

1
x psx+1 dx +

∫ ∞

xmax

x psx+1 dx

≤ sC(p)
(
ln 1

s

)p +
∫ ∞

0
x psx+1 dx

= sC(p)
(
ln 1

s

)p + s�(p + 1)

(ln 1
s )

p+1
,

and the lemma follows. The same comparison argument also yields

∞∑

k=1

k psk+1 ≥ − sC(p)
(
ln 1

s

)p + s�(p + 1)

(ln 1
s )

p+1
.


�
A finer analysis of the approximation argument above unveils the asymptotics of

Sn as its argument approaches 1:
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Lemma C.2 The following asymptotic equality holds for n ≥ 3:

lim
s→0

s
n
2−1Sn(1 − s) = �( n2 + 1)�( n2 − 1)

�(n)
.

Proof From (C.2) we have for some constant C(n) > 0:

s
n
2−1Sn(1 − s)

(C.2)≤ �( n2 + 1)

�(n)
s
n
2−1

∞∑

k=0

k
n
2−2

(
1 + C(n)

k

)
(1 − s)k+1.

Now, Lemma C.1 implies that the sum with the C(n)/k term is bounded above by a
constant divided by s

n
2−2, which becomes irrelevant in the limit. Hence,

lim
s→0

s
n
2−1Sn(1 − s) ≤ lim

s→0

�( n2 + 1)s
n
2−1

�(n)

∫ ∞

1
x

n
2−2(1 − s)x+1 dx

= lim
s→0

�( n2 + 1)s
n
2−1�( n2 − 1)

�(n) ln
(

1
1−s

) n
2−1

= �( n2 + 1)�( n2 − 1)

�(n)
.

The lower bound is proved the same way (this time the constant C(n) is negative, but
again it plays no role in the limit). 
�
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