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Abstract. We show that the following classes of lattice polytopes have unimodular cov-
ers, in dimension three: parallelepipeds, smooth centrally symmetric polytopes, and Cayley
sums Cay(P,Q) where the normal fan of Q refines that of P . This improves results of Beck
et al. (2018) and Haase et al. (2008) where the last two classes were shown to be IDP.
Keywords. Lattice polytopes, unimodular covers, integer decomposition property
Mathematics Subject Classifications. 52B10, 52B20, 52C17

1. Introduction

A lattice polytope P ⊂ Rd has the integer decomposition property if for every positive integer n,
every lattice point p ∈ nP ∩ Zd can be written as a sum of n lattice points in P . We abbreviate
this by saying that “P is IDP”. Being IDP is interesting in the context of both enumerative
combinatorics (Ehrhart theory) and algebraic geometry (projective normality of toric varieties).
It falls into a hierarchy of several properties each stronger than the previous one; see, e.g., [BG09,
Section 2.D], [HPPS21, Sect. 1.2.5], [DLH04, p. 2097], [HHM07, p. 2313]. Let us here only
mention that

P has a unimodular triangulation ⇒ P has a unimodular cover ⇒ P is IDP.

Remember that a unimodular triangulation is a triangulation of P into unimodular simplices,
and a unimodular cover is a collection of unimodular simplices whose union equals P .

∗Santos is supported by grants PID2019-106188GB-I00 and PID2022-137283NB-C21 of MCIN/AEI/
10.13039/501100011033 and project CLaPPo (21.SI03.64658) of Universidad de Cantabria and Banco Santander.
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Oda [Oda08] posed several questions regarding smoothness and the IDP property for lattice
polytopes. Following [HH17, Tsu23], we say that a pair (P,Q) of lattice polytopes has the
integer decomposition property, or that the pair (P,Q) is IDP, if

(P +Q) ∩ Zd = P ∩ Zd +Q ∩ Zd,

where A+B := {a+ b : a ∈ A, b ∈ B} denotes the Minkowski sum of two sets A,B ⊂ Rd.
A lattice polytope Q is called smooth if it is simple and the primitive edge directions at every

vertex form a linear basis for the lattice; equivalently, if the projective toric variety defined by
the normal fan of Q is smooth. The following versions of Oda’s questions are now considered
conjectures [HNPS08, HHM07], and they are open even in dimension three:

Conjecture 1.1. 1. (Related to problems 2 and 5 in [Oda08]) Every smooth lattice polytope
is IDP.

2. (Related to problems 1, 3, 4, 6 in [Oda08]) Every pair (P,Q) of lattice polytopes with Q
smooth and the normal fan of Q refining that of P is IDP.

When the normal fan of a polytope Q refines that of another polytope P , as in the second
conjecture, we say thatP is a weak Minkowski summand ofQ, since this is easily seen to be equiv-
alent to the existence of a polytope P ′ such that P +P ′ = kQ for some dilation constant k > 0.
This property has the following algebraic implication for the projective toric variety XQ: P is a
weak Minkowski summand of Q if and only if the Cartier divisor defined by P on XQ is numer-
ically effective, or “nef” (see [CLS11, Cor. 6.2.15, Thm. 6.3.12], but observe that what we here
call “weak Minkowski summand” is called “N-Minkowski summand” there).

Motivated by these and other questions, several authors have studied the IDP property for
different classes of lattice polytopes, with special attention to dimension 3 (in dimension 2 it
is straightforward that every lattice polygon has unimodular triangulations). For example, very
recently Beck et al. [BHH+19] proved that all smooth centrally symmetric 3-polytopes are IDP.
More precisely, they show that any such polytope can be covered by lattice parallelepipeds (affine
images of 3-cubes) and unimodular simplices, both of which are trivially IDP. In Section 2 we
show:

Theorem 1.2. Every 3-dimensional lattice parallelepiped has a unimodular cover.

This, together with the mentioned result from [BHH+19], gives:

Corollary 1.3. Every smooth centrally symmetric lattice 3-polytope has a unimodular cover.

These results leave open the following important questions regarding parallelotopes:

Question 1.4. Do 3-dimensional parallelepipeds have unimodular triangulations?

Question 1.5. Higher dimensional parallelotopes (affine images of cubes) are IDP. Do they have
unimodular covers?
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The two-dimensional case of Conjecture 1.1(2) is known to hold, with three different proofs
by Fakhruddin [Fak02], Ogata [Oga06] and Haase et al. [HNPS08]. This last one actually shows
that smoothness of Q is not needed. In dimension three, however, the conjecture fails without
the smoothness assumption. Indeed, if we let P = Q be any non-unimodular empty tetrahedron,
thenP is obviously a weak Minkowski summand ofQ but the pair (P,Q) is not IDP. By an empty
tetrahedron we mean a lattice tetrahedron containing no lattice points other than its vertices (see
the proof of Lemma 2.2 for a classification of them).

An alternative approach to Conjecture 1.1(2) is via Cayley sums, which we discuss in Sec-
tion 3. Recall that the Cayley sum of two lattice polytopes P,Q ⊂ Rd is the lattice polytope

Cay(P,Q) := conv(P × {0} ∪Q× {1}) ⊂ Rd+1.

We normally require Cay(P,Q) to be full-dimensional (otherwise we can delete coordinates)
but P or Q do not necessarily need to be full-dimensional. We only require the linear subspaces
parallel to them to span Rd.

As we note in Proposition 3.1, if the Cayley sum of P and Q is IDP then the pair (P,Q)
is IDP. Hence, the following statement proved in Section 3 is stronger than the afore-mentioned
result of [Fak02, HNPS08, Oga06]:

Theorem 1.6. Let Q be lattice polygon, and P a weak Minkowski summand of Q. Then the
Cayley sum Cay(P,Q) has a unimodular cover.

This has the following consequence, also proved in Section 3. Here a prismatoid is a polytope
whose vertices all lie in two parallel facets.

Corollary 1.7. Every smooth 3-dimensional lattice prismatoid has a unimodular cover.

Let us mention that recent work of Gubeladze [Gub21] shows another class of 3-polytopes
admitting unimodular covers: the convex hulls of all lattice points inside an ellipsoid; these had
previously been shown to be IDP by Bruns, Gubeladze and Michałek [BGM16]. To date there
are no known examples of IDP 3-polytopes without a unimodular cover, although such polytopes
exist in higher dimension [BG99].

2. Parallelepipeds

The main tool for the proof of Theorem 1.2 is what we call the parallelepiped circumscribed to
a given tetrahedron, defined as follows:

Definition 2.1. Let T be a tetrahedron with vertices p1, p2, p3, and p4. Consider the points
qi =

1
2
(p1 + p2 + p3 + p4)− pi for each i ∈ {1, 2, 3, 4}, and let

C(T ) = conv(pi, qi : i ∈ {1, 2, 3, 4})

be the parallelepiped with facets conv(pi, pj, qk, ql) for all choices of {i, j, k, l} = {1, 2, 3, 4}.
We call it the parallelepiped circumscribed to T .

For each i ∈ {1, 2, 3, 4}, let Ti = conv(qi, pj, pk, pl), with {i, j, k, l} = {1, 2, 3, 4}; we call
the Ti corner tetrahedra of C(T ). Together with T they triangulate C(T ).
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p1

p2

p3

q1

q2

q4

p4

T4

T

C(T )

Figure 2.1: In red we have a tetrahedron T , in black its circumscribed parallelepiped C(T ), and
in blue the corner simplex T4.

Modulo an affine transformation, the situation of T and C(T ) is exactly that of the regular
tetrahedron inscribed in a cube; see Figure 2.1.

Observe that the points qi need not be lattice points. However, the following lemma shows
that we can find lattice points in each corner tetrahedron.

Lemma 2.2. Let T = conv{p1, p2, p3, p4} be an empty lattice tetrahedron that is not unimodu-
lar. Let C(T ) be the parallelepiped circumscribed to T and let T1, T2, T3 and T4 be the corre-
sponding corner tetrahedra in C(T ). Then, every Ti contains at least one lattice point different
from {p1, . . . , p4}.

Proof. By White’s classification of empty tetrahedra ([Whi64], see also [HPPS21, Sect. 4.1]),
there is no loss of generality in assuming T = conv(p1, p2, p3, p4) with

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 0, 1), p4 = (a, b, 1).

where b ⩾ 2 is the (normalized) volume of T , and a ∈ {1, . . . , b − 1} satisfies gcd(a, b) = 1.
This gives

q1 =

(
1 + a

2
,
b

2
, 1

)
, q2 =

(
a− 1

2
,
b

2
, 1

)
,

q3 =

(
1 + a

2
,
b

2
, 0

)
, q4 =

(
1− a

2
,− b

2
, 0

)
.

Then, the inequalities b ⩾ 1 + a ⩾ 2 imply:

u := (1, 1, 0) ∈ conv(p1, p2, q3) ⊂ T3, v := (0,−1, 0) ∈ conv(p1, p2, q4) ⊂ T4.

Observe that u+v = p1+p2 = q3+q4. This implies that the quadrilateral conv(p1, q4, p2, q3)
contains a fundamental domain for the lattice Z2 ×{0}. Hence, its translate conv(q2, p3, q1, p4)
contains a fundamental domain forZ2×{1} and, in particular, it contains at least one lattice point
other than p3 and p4. By central symmetry around its center

(
a
2
, b
2
, 1
)
, conv(q2, p3, q1, p4) must

contain lattice points in both triangles conv(q2, p3, p4) ⊂ T1 and conv(q1, p3, p4) ⊂ T2.

Lemma 2.3. Let P be a lattice parallelepiped and let T ⊂ P be a tetrahedron. Then, at least
one of the four corner tetrahedra Ti of the circumscribed parallelepiped C(T ) is fully contained
in P .
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Proof. Let us denote the vertices of T by p1, p2, p3, p4 and the vertices of C(T ) not in T
by q1, q2, q3, q4, with the conventions of Definition 2.1.

We call band any region of the form f−1([α, β]) for some linear functional f ∈ (R3)∗ \ {0}
and closed interval [α, β] ⊂ R. We claim that any band containing T must contain at least three
of the qis. This claim implies that the parallelepiped P , which is the intersection of three bands,
contains at least one of the qis and hence it fully contains the corresponding Ti.

To prove the claim, suppose that q1 ̸∈ B := f−1([α, β]) for a certain band B ⊃ T . Without
loss of generality, say f(q1) < α. Then the equalities q1 + qi = pj + pk and q1 + p1 = qi + pi,
where {i, j, k} = {2, 3, 4}, respectively give:

f(qi) = f(pj + pk − q1) = f(pj) + f(pk)− f(q1) > 2α− α = α, (2.1)
f(qi) = f(q1 + p1 − p2) = f(q1) + f(p1)− f(pi) < α+ β − α = β, (2.2)

so that qi ∈ B for i ∈ {2, 3, 4}. This concludes the proof of the claim, and of the lemma.

Corollary 2.4. Let T be an empty lattice tetrahedron contained in a lattice parallelepiped P .
Then, T can be covered by unimodular tetrahedra contained in P .

Proof. We proceed by induction on the (normalized) volume of T , which is a positive integer.
If this volume equals 1 then T is unimodular and there is nothing to prove, so we assume T is
not unimodular. Let p1, p2, p3, p4 denote the vertices of T .

Lemma 2.3 guarantees that one of the corner tetrahedra Ti of the parallelepiped C(T ) is
contained in P . Without loss of generality, suppose T4 = conv(p1, p2, p3, q4) is in P . By
Lemma 2.2, we know that T4 contains a lattice point other than the pis, which we denote
by u. Then S = conv(T ∪ {u}) can be triangulated in two different ways: S = T ∪ T ′

4,
where T ′

4 = conv(p1, p2, p3, u) ⊆ T4 and S = S1 ∪ S2 ∪ S3, with

S1 = conv(p2, p3, p4, u), S2 = conv(p1, p3, p4, u), S3 = conv(p1, p2, p4, u).

Each of the tetrahedra Si has lattice volume strictly smaller than T because, for each i, pi is
the unique point of C(T ) maximizing the distance to the opposite facet conv(pj, pk, pl) of T .
Thus, S1, S2 and S3 cover T and have volume strictly smaller than T . The Si may not be empty,
but we can triangulate them into empty tetrahedra, which by inductive hypothesis can be covered
unimodularly.

Proof of Theorem 1.2. Arbitrarily triangulate the parallelepiped into empty lattice tetrahedra
and apply Corollary 2.4 to these tetrahedra.

Let us say that a lattice 3-polytope P has the circumscribed parallelepiped property if it
satisfies the conclusion of Lemma 2.3: “for every empty tetrahedronT contained inP at least one
of the four corner tetrahedra in C(T ) is contained in P ”. If this holds then P has a unimodular
cover, since then the proofs of Corollary 2.4 and Theorem 1.2 work for P . In turn, our proof
that parallelepipeds have the property (Lemma 2.3) is based on the fact that they have only three
(pairs of) normal vectors. In the following two examples we show a smooth 3-polytope and two
3-polytopes with four normal vectors that do not have the property. The latter are not IDP:
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Example 2.5 (A smooth 3-polytope without the circumscribed parallelepiped property). Let P
be the Cayley embedding of a long horizontal rectangle and a long vertical rectangle. That
is, P = conv([0, a] × [0, 1] × {0} ∪ [0, 1] × [0, b] × {1}), for big a and b. This is smooth
and contains a big empty tetrahedron T with vertices (0, 0, 0), (a, 1, 0), (0, 0, 1), (1, b, 1) which
occupies most of its volume. In particular, none of the corner tetrahedra of T is contained in P .

More explicitly, the remaining vertices qi of the circumscribed parallelepiped are(a+ 1

2
,
b+ 1

2
, 1
)
,
(a+ 1

2
,
b+ 1

2
, 0
)
,
(1− a

2
,
b− 1

2
, 1
)
,
(a− 1

2
,
1− b

2
, 1
)
.

None of these points are contained in P , and therefore none of the corner tetrahedra are either.

Example 2.6 (Non-IDP polytopes with four facet directions). The following triangular prism P
and centrally symmetric octahedron Q are not IDP:

P = conv((0, 1, 1), (1, 0, 1), (1, 1, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1)), (2.3)
Q = conv((0, 1, 1), (1, 0, 1), (1, 1, 0), (0,−1,−1), (−1, 0,−1), (−1,−1, 0)). (2.4)

Indeed, in both cases the point (1, 1, 1) lies in the second dilation but is not the sum of two
lattice points in the polytope.

The following question is weaker than the circumscribed parallelepiped property, but an
affirmative answer to it would still imply that smooth 3-polytopes can be unimodularly covered
and, hence, Conjecture 1.1(1) in dimension three:

Question 2.7. If T is an empty tetrahedron contained in a smooth 3-polytope P , can one guaran-
tee that there is a lattice point of P in the circumscribed parallelepiped of T (apart of the vertices
of T )?

3. Cayley sums

Let P and Q be two lattice polytopes in Rd. We do not require them to be full-dimensional, but
we assume their Minkowski sum is. Remember that the Minkowski sum P + Q and the Cayley
sum of P and Q are defined as:

P +Q := {p+ q ∈ Rd : p ∈ P, q ∈ Q} ⊂ Rd,

Cay(P,Q) = conv(P × {0} ∪Q× {1}) ⊂ Rd+1.

The so-called Cayley Trick is the isomorphism

2Cay(P,Q) ∩ (Rd × {1}) = (P +Q)× {1} ∼= P +Q,

which easily implies:

Proposition 3.1 (see, e.g. [Tsu23, Thm. 0.4]). If Cay(P,Q) is IDP then the pair (P,Q) is IDP.
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The Cayley Trick also provides the following canonical bijections:

polyhedral subdivisions of Cay(P,Q) ↔ mixed subdivisions of P +Q
triangulations of Cay(P,Q) ↔ fine mixed subdivisions of P +Q

unimodular simplices in Cay(P,Q) ↔ unimodular prod-simplices in P +Q.

See [DLRS10] for more details on the Cayley Trick and on triangulations and polyhedral sub-
divisions of polytopes. In fact these bijections can be taken as definitions of the objects in the
right-hand sides. In particular, we call prod-simplices in P + Q the Minkowski sums T1 + T2

where T1 ⊂ P and T2 ⊂ Q are simplices with complementary affine spans. A prod-simplex
is unimodular if the union of edge-vectors from any vertex of T1 and any vertex of T2 form a
unimodular basis.

We now turn our attention to d = 2, in order to prove Theorem 1.6. A triangulation
of Cay(P,Q) ⊂ R3 consists of tetrahedra of types (1, 3), (2, 2) and (3, 1), where the type de-
notes how many vertices they have in P and in Q. Empty tetrahedra of types (1, 3) or (3, 1),
which are Cayley sums of an empty (hence unimodular) triangle in P and a point in Q, or vicev-
ersa, are automatically unimodular. The case that we need to study are therefore tetrahedra of
type (2, 2), which are Cayley sums of a segment p ⊂ P and a segment q ⊂ Q. These correspond
to prod-simplices of two segments in P +Q, which are parallelograms. The following lemma,
whose proof we postpone to Section 4, is crucial to understand how to unimodularly cover these
tetrahedra.

We use the following conventions: if a, b are points, we denote by [a, b] and (a, b) respec-
tively the closed and open line segments with endpoints a, b. Given a segment s = [a, b], we
denote s⃗ the vector b − a and denote ⟨s⃗⟩ the line spanned by s⃗. A lattice parallelogram p + q
is called unimodular if it is a fundamental domain for the lattice. Equivalently, if Cay(p, q) is a
unimodular tetrahedron.

Lemma 3.2. Let Q ⊂ R2 be a two-dimensional lattice polytope and P ⊂ R2 a weak Minkowski
summand of it. Let p = [p1, p2] ⊂ P and q = [q1, q2] ⊂ Q be two primitive and non-parallel
lattice segments, and let ⟨p⃗⟩ and ⟨q⃗⟩ be the vector lines spanned by them. If the parallelo-
gram p+ q is not unimodular, then at least one of the regions

((p1, p2) + ⟨q⃗⟩) ∩ P, and ((q1, q2) + ⟨p⃗⟩) ∩Q

contains a lattice point.

See Figure 3.1 for an illustration of the two regions in the statement, which we call strips.
In this figure and the forthcoming ones in Section 4 we draw p as a vertical segment and q as
a horizontal one for convenience. This is always possible via a linear transformation (which of
course changes the lattice; in the proof we do not assume the lattice to be Z2).

Corollary 3.3. Let T be an empty lattice tetrahedron contained in the Cayley sum Cay(P,Q),
where Q is a lattice polygon and P is a weak Minkowski summand of Q. Then, T can be covered
by unimodular tetrahedra contained in Cay(P,Q).
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Figure 3.1: The strips of Lemma 3.2.

Proof. The proof is by induction on the normalized volume of T , which we assume to
be at least 2. This implies that T is of type (2, 2), since empty tetrahedra of types (1, 3)
and (3, 1) are unimodular. Thus, T is the Cayley sum of primitive segments p = [p1, p2] ⊂ P
and q = [q1, q2] ⊂ Q. Let u be the lattice point whose existence is guaranteed by Lemma 3.2.
Assume (the other case is similar) that

u ∈ ((p1, p2) + ⟨q⃗⟩) ∩ P,

and call t the triangle t = conv(u, p1, p2) ⊂ P .
Let us denote ũ, p̃1, p̃2, q̃1, q̃2 the points corresponding to u, p1, p2, q1, q2 in Cay(P,Q). That

is, p̃i = pi×{1}, q̃i = qi×{0}, and ũ = u×{1}. Observe that the assumption u ∈ ((p1, p2)+⟨q⃗⟩
implies that one of the segments [ũ, q̃i] crosses the interior of one of the triangles conv(p̃1, p̃2, q̃j),
where {i, j} = {1, 2}. Without loss of generality assume that [ũ, q̃2] crosses conv(p̃1, p̃2, q̃1), as
in Figure 3.2.

p̃2ũ

q̃1

q2

Figure 3.2: [ũ, q̃2] intersects conv(p̃1, p̃2, q̃1).

In turn, this means that the polytope conv(ũ, p̃1, p̃2, q̃1, q̃2) = Cay(t, q) has the following
two triangulations:

T + := {Cay(p, q),Cay(t, {q1})} ,
T − := {Cay([p1, u], q),Cay([p2, u], q),Cay(t, {q2})}.
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The tetrahedra Cay(t, {q1}) and Cay(t, {q2}) are unimodular, which implies that T = Cay(p, q)
has volume equal to the sum of the volumes of Cay([p1, u], q) and Cay([p2, u], q). In particular,
we have covered T by the three tetrahedra in T −, which are of smaller volume and hence have
unimodular covers by induction hypothesis.

Proof of Theorem 1.6. Arbitrarily triangulate Cay(P,Q) into empty lattice tetrahedra and apply
Corollary 3.3 to these tetrahedra.

Let us now show how to derive Corollary 1.7 from this theorem. Prismatoids were defined
in [San12] as polytopes whose vertices all lie in two parallel facets. In particular, a lattice pris-
matoid is any d-polytope SL(Z, d)-equivalent to one of the form

conv(Q1 × {0} ∪Q2 × {k}),

where Q1, Q2 are lattice (d − 1)-polytopes and k ∈ Z>0. This is almost a generalization of
Cayley sums, which would be the case k = 1, except the definition of prismatoid requires Q1

and Q2 to be full-dimensional, while the Cayley sum only requires this for Q1 +Q2.

Proposition 3.4. Let Q1, Q2 be two lattice polygons and consider the prismatoid

P := conv(Q1 × {0} ∪Q2 × {k}),

with k ⩾ 2. If P ∩ (R2 × {1}) is a lattice polygon then P has a unimodular cover.

Proof. The condition that P ∩ (R2 × {1}) is a lattice polygon implies the same
for P ∩ (R2 × {i}), for every i. Indeed, the condition implies that every edge of Cay(P,Q) of
the form [u× {0}, v × {k}] has a lattice point in R2 × {i}, and hence it has a lattice point
in P ∩ (R2 × {i}), for every i.

Observe that for every i ∈ {1, . . . , k − 1} the intersection P ∩ (R2 × {i}) has the same
normal fan as Q1 +Q2. Thus, each slice

P ∩ (R2 × [i− 1, i])

is a Cayley polytope. For i ∈ {2, . . . , k−1}, both bases have the same normal fan (and therefore
each is a weak Minkowski summand of the other); for i ∈ {1, k} one base is a weak Minkowski
summand of the other. We can therefore apply Theorem 1.6 to each slice and combine the covers
thus obtained to get a unimodular cover of P .

Proof of Corollary 1.7. The polytope under study satisfies the hypotheses of Proposition 3.4:
the smoothness of the prismatoid implies that every edge of the form [u × {0}, v × {k}] has
lattice points in all slices. Hence,

kP ∩ (R2 × {1}) = (k − 1)Q1 +Q2.
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4. Proof of Lemma 3.2

Let fq be the primitive lattice (affine) functional vanishing on q and fp the one vanishing on p, tak-
ing their signs so that fq(p1) < fq(p2) and fp(q1) < fp(q2). Letw = area(p+q) ⩾ 2, where area
denotes the area normalized to a fundamental domain. In what follows, the width of a func-
tional f on a set S, denoted widthf (S) is defined as the difference supx∈S f(x)− infx∈S f(x).
Then primitiveness of p, q, fp and fq implies that:

w =widthfq(p+ ⟨q⃗⟩) = widthfq(p) = fq(p2)− fq(p1) =

=widthfp(q + ⟨p⃗⟩) = widthfp(q) = fp(q2)− fp(q1).

Since we can perform without loss of generality respective lattice translations to P and to Q,
we assume that p1 lies on the line {fq = −1} and in the strip q + ⟨p⃗⟩. It must then lie in the
interior of the strip, or otherwise we would have that p2 equals one of q1 or q2 and w = 1. That
is, we have that p and q intersect in their relative interiors and that

−1 = fq(p1) < 0 < fq(p1), fp(q1) < 0 < fp(q2).

Our assumption also implies that p1 is the unique lattice point with fq(x) = −1 in q + ⟨p⃗⟩.
Similarly, the unique lattice point in the strip with fq(x) = 1 is q1 + q2 − p1.

Finally, we let H1={fq(x) ⩽ 0} and H2={fq(x) ⩾ 0}; similarly let V1={fp(x) ⩽ fp(p)}
and V2 = {fp(x) ⩾ fp(p)}.1 See Figure 4.1 for an illustration of this setup.

p1

q2q1

p2
V1 ∩H2 V2 ∩H2

V1 ∩H1 V2 ∩H1

fp

fq

Figure 4.1: Setup for the proof of Lemma 3.2.

Proof of Lemma 3.2. Suppose by contradiction that there is no lattice point as described in
the lemma. In particular, no lattice point on the boundary of Q can be in the interior of the
strip q + ⟨p⃗⟩. Thus the boundary of Q contains two primitive segments which each have one
vertex on each side of the strip q + ⟨p⃗⟩; we will call these b = [b1, b2], t = [t1, t2], with b

1Since in our figures p and q are vertical and horizontal, we use the letters V and H for the half-planes they
defined. Similarly, later in the proof we use the letters b, t, r, and l for certain points and segments meaning
“bottom”, “top”, “right” and “left”.
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and t crossing the strip in H1 and H2 respectively and the convention that fp(b2) > fp(b1)
and fp(t2) > fp(t1). This readily implies

fp(t1) ⩽ fp(q1), fp(t2) ⩾ fp(q2),
fp(b1) ⩽ fp(q1), fp(b2) ⩾ fp(q2).

(4.1)

The same holds for P and the strip p + ⟨q⃗⟩, and we call the segments l = [l1, l2]
and r = [r1, r2], with l and r crossing the strip p + ⟨q⃗⟩ in V1 and V2 respectively. The only
difference is that in the case that P is one dimensional we have l = r = p. Again we have

fq(l1) ⩽ fq(p1), fq(l2) ⩾ fq(p2),
fq(r1) ⩽ fq(p1), fq(r2) ⩾ fq(p2).

(4.2)

Observe that a priori one of l and r can coincide with p, if p is on the boundary of P , and
similarly one of t, b might be q, if q is on the boundary of Q.

Claim 4.1. The following inequalities hold,

widthfq(l),widthfq(r),widthfp(t),widthfp(b) ⩾ w.

Each inequality is strict, unless the segment in question coincides with p or q.

Proof. The inequality ⩾ w follows in each case from (4.2) and (4.1).
If one of the inequalities, say the one for l, is not strict, then l has one endpoint on each of

the boundary lines of (p+ ⟨q⃗⟩). Unless l = p, one of the endpoints of l is not an endpoint of p,
say l1 ̸= p1. Thus the triangle T = conv(p2, p1, l1) is contained in P and its edge [p1, l1] is an
integer dilation of q.

SinceT contains p and a copy of q, its area (normalized to a fundamental domain) isw/2 ⩾ 1,
and by Pick’s theorem it must contain a lattice point other than its vertices. Since p and q are
primitive, this lattice point must lie in the interior of the strip.

Claim 4.2. fq(b2− b1) and fq(t2− t1) are non-zero and have the same sign. That is, fq achieves
its maximum over b and over t on the same halfplane V1 or V2.

Proof. Both t and b must cross the interior of p, or otherwise p1 or p2 are the lattice points we
are looking for in Q. To seek a contradiction assume, as in Figure 4.2, that

fq(t2 − t1) ⩽ 0 ⩽ fq(b2 − b1).

That is, fq decreases (perhaps weakly) along t and increases along b, as fp increases on both. This
implies that Q ∩ V2 is contained in the open strip {fq(p1) < fq(x) < fq(p2)}, of width w. This
strip cannot contain a translated copy of r, since widthfq(r) ⩾ w, which gives a contradiction:
since P is a weak Minkowski summand of Q, Q must have an edge parallel to r and with exterior
normal pointing to the right. This edge must lie in V2, which is impossible.

We assume without loss of generality that the maximum on t (and hence on b) is achieved
in V2, that is to say, fp and fq increase in the same direction along t (and hence along b). Other-
wise the following considerations can be applied to V1.
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Figure 4.2: Illustration of the proof of Claim 4.2.

Claim 4.3. Assume without loss of generality that b and t either are parallel or their affine spans
cross in V2 (if they cross in V1, the same claim can be reworded for V1 and l). Then,

1. The intersection of Q with any line parallel to p in V2 has width with respect to fq strictly
smaller than w.

2. fp(r2) > fp(r1), that is, fp achieves its maximum over r in H2.

Proof. Both t and b must intersect p, as said in the proof of Claim 4.2. Their intersections with p
are thus endpoints of a segment of width with respect to fq less than w, the width of p. Since t
and b cross in V2, the same is true for any segment parallel to p contained in Q ∩ V2.

Figure 4.3: Illustration of the proof of Claim 4.3.

For part (2), recall that by Claim 4.1, widthfq(r) ⩾ w. If fp(r2) ⩽ fp(r1), it would be
impossible to fit a translated copy r′ of r in the correct side of Q: since fq increases along t, r′
has width in direction fq smaller than the segment parallel to p with endpoint r′1. This segment
by part (1) has width less than w in direction q, a contradiction.

The last two claims can be summarized as saying that in the pictures b, t and r have positive
slope and that the slope of b is greater or equal than that of t. Observe that this implies that q is
not in the boundary of Q and p ̸= r, so both P and Q are full dimensional.

Let g be the primitive lattice functional constant on [p1, q2] (and therefore constant also
on [q1, q1+ q2−p1]). By the assumption that fq(p1) = −1 the quadrilateral conv(q1, p1, q2, q1+
q2 − p1) is unimodular, so the values of g on the edges [p1, q2] and [q1, q1 + q2 − p1] differ by 1.
We choose the sign of g so that

g([p1, q2]) = g([q1, q1 + q2 − p1])− 1.
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Claim 4.4. g(t1) > g(t2), g(b1) > g(b2), and g(r1) < g(r2).

Proof. Since b and t must respectively separate p1 and q1 + q2 − p1 from the other two vertices
of the parallelogram conv(q1, p1, q2, q1 + q2 − p1), they must respectively intersect its (paral-
lel) edges [p1, q2] and [q1, q1 + q2 − p1], which implies the stated inequalities for b and t. The
same argument applied to the parallelogram conv(p1, q2, p2, p1 + p2 − q2), yields the inequality
for r.

Figure 4.4: Illustration of the proof of Claim 4.4. The functional g is constant along the dashed
diagonal lines.

Let r′ = [r′1, r
′
2] be the segment collinear with r and with endpoints r′1 and r′2 lying respec-

tively on the lines containing b and t. (r′1 must in fact lie in b, but r′2 may be outside t).

Claim 4.5. r′ has at least the same length as r.

Proof. Since the normal fan of Q refines that of P , the boundary of Q must contain an edge
parallel to r on the right. Let r′′ be a primitive segment along this edge. Then r′′ is a translated
copy of r, and parallel to r′.

Now, r′′ is contained also between the lines along b and t, and is to the right of r′ (because r,
hence r′, has q2 on its right, and r′′ has q2 on its left). Our assumption that the lines along b and t
are either parallel or meet in v2 implies the inequality.

We are now ready to show a contradiction. We consider two cases, depending on whether
q1 + q2 − p1 lies “to the right” or “to the left” of p1. That is, whether fp(q1 + q2 − p1) is positive
or negative.

• fp(q1 + q2 − p1) > 0. In this case the line containing r and r′ separates p from q1+q2−p1.
This implies

fq(r
′
2) < fq(q1 + q2 − p1) = 1, fq(r

′
1) > fq(p1) = −1,

while Claims 4.5 and 4.1 imply that widthfq(r
′) ⩾ widthfq(r) ⩾ w ⩾ 2.

• fp(q1 + q2 − p1) ⩽ 0. We observe that g(r2) − g(r1) is positive (and integer) because r
has positive slope and separates p1 from q2. But Claim 4.5 gives

g(r2)− g(r1) ⩽ g(r′2)− g(r′1)

which is in this case strictly smaller than g(q1 + q2 − p1)− g(p1) = 1.
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