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1. Introduction and statement of the main results

Let T ≥ 2M be two positive integers and consider the complex Grassmannian Gr(M,CT ), i.e. the space

of M–dimensional complex vector subspaces of CT . Finite collections of points (also called codes or

packings) in Gr(M,CT ) with different desired separation properties have been investigated by several

authors (in Section 1.3 we describe some relevant references). The limitation T ≥ 2M is motivated by

information-theoretic arguments, cf. [25], otherwise one would have a scenario in which any two points

in the Grassmannian packing would generically intersect, as linear subspaces, in 2M −T dimensions.

The most frequent criterion for “well–separated” codes is the maximization of the minimal mutual

squared chordal distance, which is the sum the squared sines of the principal angles of two subspaces.

However, following [11, 15, 18, 20] (see also Section 1.1 below), a more relevant measure for its

application to information theory is given by the chordal product energy, related to the product of the

squared sines of the principal angles, which justifies its name. Given a code [X1], . . . , [XK ]∈Gr(M,CT ),

its chordal product energy with integer parameter N is

E (X1, . . . ,XK) = ∑
i̸= j

det(IM −XH
i X jXH

j Xi)
−N , (1.1)

where IM is the identity matrix and we have chosen T × M matrices Xi as representatives of each

point [Xi] satisfying XH
i Xi = IM , where (·)H stands for conjugate transpose. Note that the energy is

well-defined in the sense that it does not change if other representatives with that property are cho-

sen. An elementary computation shows that, if UDVH is the SVD decomposition of XH
i X j, then the

diagonal elements of D are the cosines of the principal angles between the subspaces [Xi] and [X j],

cosθ1, . . . ,cosθM , so each determinant in the chordal product energy reduces to a product of terms

1− cos2 θ1, . . . ,1− cos2 θM , i.e.:

det
(
IM −XH

i X jXH
j Xi

)
= det

(
IM −D2)= M

∏
k=1

sin2
θk, (1.2)

while the squared chordal distance between the two subspaces [Xi] and [X j] is given by ∑
M
k=1 sin2

θk.

The sum in (1.1) is a pairwise interaction energy in the spirit of the well–studied Riesz or logarithmic
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energies of importance in Potential Theory (see [7] for a complete monograph dedicated to energy

minimization in the sphere and other spaces). We refer to the function (again, choosing representatives

A and B such that AHA = BHB = IM)

[A], [B] ∈Gr(M,CT ) 7→ det(IM −AHBBHA) = det(IM −BHAAHB), (1.3)

as the chordal product determinant or, simply, the chordal product, and note that it is not a metric in

Gr(M,CT ), for it may happen that [A] ̸= [B] and yet det(IM −AHBBHA) = 0, if the intersection of [A]

and [B] is nontrivial.

In this paper we perform the first theoretical study of the chordal product energy (for numerical

results, see [11] and references therein). We start by describing the context where the problem arises,

following [15]. The organization of the paper is as follows: in Sec. 1.1 we describe the role of Grass-

mannian codes in information theory models, both with and without noise, relating the asymptotic

pairwise error probability to the chordal product energy. In Sec. 1.2 we state the main result giving a

complete statistical characterization of the chordal product as a product of beta-distributed random vari-

ables, including an upper bound on the energy and a Gilbert-Varshamov lower bound. In Sec. 1.3 we

briefly put these results in a historical context. In Sec. 2 we provide the proof of the main theorem, and

in Sec. 3 the probability density function of the chordal product is derived. Then in Sec. 4 we prove the

Gilbert-Varshamov bound. Finally, in Appendix A, an alternative parametrization of the Grassmannian

is introduced.

1.1. The importance of Grassmannian codes in information theory

Consider a transmitter, i.e. some device that is able to send a signal, which here means a collection

of numbers ordered in a complex T ×M matrix X. Physically, this corresponds to the setting where

the transmitter has M antennas and there is a total amount of T time slots where the communication

channel is assumed to be constant (i.e. the contour conditions of the communication are considered

constant during the time that these T M numbers are sent). At each time instant, a complex number is

sent through each of the M antennas, i.e. a row of the transmitted matrix X is sent in each time slot (this
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corresponds to the sampling period in a practical digital processor). After T time slots or channel uses,

the whole matrix X has been transmitted. The receiver is another device, that we consider equipped

with N antennas, and the signal it receives is

Y = XH+

√
M
T ρ

W,

where H is an unknown M ×N matrix (termed the channel), W is an unknown T ×N matrix that

describes the noise and ρ , called the signal-to-noise-ratio (SNR), measures the magnitude of the signal

against the noise. Hence, the receiver acquires over the T time slots, synchronously with the transmitter,

a distorted version, Y, of the transmitted matrix, X, and the decoding process to decide which matrix

was sent starts. Notice that the pairwise error probability of this decision depends on the packing from

which X is chosen. In particular N is always a positive integer. In this paper, we will assume that H and

W are independent and have complex Gaussian C N (0,1) entries. This assumption for H is reasonable

to model the effect of heavily built-up urban environments on radio signals, and this assumption for W

mimics the effect of many random natural noise sources.

1.1.1. The zero–noise case

Since H is unknown (it is common to assume that it has random complex Gaussian entries), even in the

event that W = 0 the receiver cannot recover the whole matrix X:

• If two matrices X1 and X2 have the same column span, then one can easily find an full–rank matrix

H such that X1H = X2H, hence the receiver just cannot distinguish which of these two matrices was

the original signal.

• On the other hand, if two matrices X1 and X2 have the property that the intersection of the column

span of X1 and X2 is trivial, the the receiver can easily distinguish if a given matrix Y has been

constructed by X1H or by X2H: if the column span of Y intersected with the column span of X1

(resp. X2) is nontrivial, then X1 (resp. X2) was sent.
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Summarizing, if a previously agreed code of possible signals [X1], . . . , [XK ] ∈Gr(M,CT ) is fixed with

the property that the column spans of Xi and X j have trivial intersection for i ̸= j, the receiver will

be able to recover, at least in the zero–noise scenario, the element of the Grassmannian represented

by the sent signal, but not the concrete representative of that element. Hence, collections of points in

Gr(M,CT ) are searched with that property.

1.1.2. The general case

In the more realistic context of the presence of non–zero noise, the analysis is quite more involved

since there is always a non–zero probability of error in the detection procedure. The pioneer work [15]

showed that, in order to recover the element Xi of Gr(M,CT ) just by knowing Y, the optimal method

is to use the so called maximum–likelihood decoder:

i = argmax j=1,...,K tr(YHX jXH
j Y) = argmax j=1,...,K tr(XH

j YYHX j).

Then, [8] showed that if only 2 codewords are permitted, i.e. if K = 2, and assuming that the entries of

H and W are complex Gaussian C N (0,1) numbers, then the probability Pe(X1,X2,ρ) of erroneously

decoding X1 if X2 was sent can be given by a (quite complicated) formula involving the residues of a

certain rational function. Luckily, the asymptotic expansion of this Pairwise Error Probability (PEP) in

the case ρ → ∞ (which is the vanishing noise scenario, ideal for communications), called the high-SNR

asymptotic analysis, admits a much more concise expression, see [11, 18]:

Pe(X1,X2,ρ)≈Cρ
−NM det(IM −XH

1 X2XH
2 X1)

−N , ρ → ∞, (1.4)

where C = 1
2

( 4M
T

)NM (2NM−1)!!
(2NM)!!) . It is assumed that any two distinct points have trivial intersection as

linear subspaces (which relates to the requirement T ≥ 2M), and the representatives Xi of each [Xi]

are such that XH
i Xi = IM . If we have K elements [X1], . . . , [XK ] in the code of possible signals and we

send one of them at random, all with equal probability 1/K, then the total probability of erroneously
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decoding a signal is bounded above by the so-called Union Bound (UB)

Pe ≤
1
K

K

∑
i=1

K

∑
j=i+1

Pe (Xi,X j,ρ) (1.5)

where Pe is the total probability of erroneusly decoding a signal, which is then asymptotically

approximated by

1
K ∑

i< j
Pe(Xi,X j,ρ)≈

C
K

ρ
−NM

∑
i< j

det(IM −XH
i X jXH

j Xi)
−N . (1.6)

The determinant in (1.4) is the chordal product (1.3) and the sum in the right–hand side in (1.6) is the

energy (1.1).

1.1.3. Criteria for the design of Grassmannian codes

It follows from the previous discussion that reasonable criteria for the design of a code [X1], . . . , [XK ]

would be to maximize the minimum pairwise chordal product (1.3), or to minimize the chordal product

energy (1.1). In [11], these approaches are considered, numerically showing that the obtained codes

are very well suited for their use in non–coherent communications, in which neither the transmitter nor

the receiver have any knowledge about the channel matrix H except from its probability distribution,

with a slight advantage in the use of the chordal product energy. Yet, little to no theory exists about the

behavior of the optimal pairwise chordal product or energy. The main purpose of this paper is to put the

basis for the study of these questions.

1.2. Main results of the paper

We will start our study by computing the moments of the chordal product when [B] is fixed and [A]

is chosen at random uniformly in Gr(M,CT ), w.r.t. the unique, standard rotation–invariant probability

measure. This yields a complete statistical characterization of the chordal product as a product of beta–

distributed random variables:
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Theorem 1 Assume that T ≥ 2M. Let p ∈ (2M − T − 1,∞) (notice that p may be negative and/or

noninteger). Let [B]∈Gr(M,CT ) be any fixed element and let [A]∈Gr(M,CT ) be uniformly distributed

on the Grassmannian. Then, the p–th moment of det(IM −BHAAHB) is:

EA[det(IM −BHAAHB)p] =
M

∏
m=1

Γ(T −m+1)Γ(T + p−m−M+1)
Γ(T −m−M+1)Γ(T + p−m+1)

, (1.7)

where Γ(·) is Euler’s Gamma function. Moreover, det(IM −BHAAHB) is distributed as the product

of M independent beta random variables, zm, with parameters αm = T −M + 1 −m and βm = M,

m = 1, . . . ,M, i.e.

det(IM −BHAAHB)∼
M

∏
m=1

zm, zm ∼ Beta(T −M+1−m,M). (1.8)

An immediate consequence is that, at least for moderate values of N, we can upper bound the

energy (1.1) and hence the probability of error (1.6) of random codes [X1], . . . , [XK ] when they are all

independently and uniformly distributed:

Corollary 1 Assume that N ≤ T − 2M. For i.i.d. chosen [X1], . . . , [XK ], the expected value of the

chordal product energy (1.1) is

K(K −1)
M

∏
m=1

(T −m)!(T −N −m−M)!
(T −m−M)!(T −N −m)!

,

In particular, there exists a code such that the upper bound in the union bound (1.5) is at most:

C(K −1)ρ−NM
M

∏
m=1

(T −m)!(T −N −m−M)!
(T −m−M)!(T −N −m)!

,

where C = 1
2

( 4M
T

)NM (2NM−1)!!
(2NM)!!) .

In Section 3 we use Theorem 1 to compute exactly the probability density function and the cu-

mulative density function of the random variable det(IM −BHAAHB) in the same hypotheses of the
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Figure 1. Probability density functions of det(IM −BH AAH B), when [B]∈Gr(M,CT ) is fixed and [A]∈Gr(M,CT ) is uniformly
distributed on the Grassmannian.

theorem. The expressions we get are exact and can be obtained in closed form for any fixed value of M.

A reduced version of that result for M = 2 is now shown:

Corollary 2 Fix any [B] ∈ Gr(2,CT ) with T ≥ 4. The probability that a randomly chosen [A] ∈

Gr(2,CT ) satisfies det(I2 −BHAAHB)≤ δ ∈ (0,1] is exactly:

F2(δ ,T ) =
1
2
(T −1)(T −2)2(T −3)δ T−3

(
1

T −3
− 2δ

(T −2)2 − δ 2

T −1
+

2δ logδ

T −2

)
,

See the complete result in Corollary 4. As an illustrative example, Figs. 1 and 2 depict, respectively,

the computed pdf and cdf of the chordal product for different values of T and M.

Using the statistical characterization above, we have derived a lower bound on the number of ele-

ments in any code in the Grassmannian with a given minimum value of chordal product δ . Following

[4], we call this result a Gilbert-Varshamov bound since its proof mimics the argument of that classical

result.

Corollary 3 (Gilbert–Varshamov lower bound) Assume that T ≥ 2M. For any fixed K ≥ 2, there exists

a code [X1], . . . , [XK ] ∈Gr(M,CT ) such that det(IM −XH
i X jXH

j Xi)≥ δ where δ is the unique solution
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Figure 2. Cumulative distribution function of det(IM −BH AAH B), when [B] ∈ Gr(M,CT ) is fixed and [A] ∈ Gr(M,CT ) is
uniformly distributed on the Grassmannian.

of the equation:

FM(δ ;T ) =
1
K

; that is δ = F−1
M

(
1
K

;T
)

Equivalently, given δ ∈ (0,1), there exists a code consisting of K ≥ 1
FM(δ ;T ) elements and satisfying

det(IM −XH
i X jXH

j Xi)≥ δ for i ̸= j.

Example 1 In the case M = 1 we have that

det(IM −XH
i X jXH

j Xi) = sin2
θ ,

where θ ∈ [0,π/2] is the principal angle between the one-dimensional subspaces [Xi] and [X j] in

G(1,CT ). That is to say, the chordal product coincides with the squared chordal distance. For uniformly

distributed subspaces, the squared sine of the pairwise principal angle has cdf F1(δ ,T ) = δ T−1. The

Gilbert-Varshamov bound shows that, for δ ∈ (0,1), there exist codes with cardinality K and minimum

chordal product δ = sin2
θ such that

K > δ
−(T−1) = (sinθ)−2(T−1) . (1.9)
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This result provides a valid bound also for small values of T whereas, for example, in [4, Eq. 6] only

asymptotic lower bounds on the so-called transmission rate, R =
log2 K

T , are computed for a packing

problem on CT with T → ∞.

Example 2 Let us now take T = 10,M = 2. Assume that we want to allocate K = 29 points in

Gr(M,CT ). Then, Corollary 3 says that there exists a code [X1], . . . , [XK ] such that for all these points

the chordal product is at least δ , the unique solution of:

1
2
(T −1)(T −2)2(T −3)δ T−3

(
1

T −3
− 2δ

(T −2)2 − δ 2

T −1
+

2δ logδ

T −2

)
=

1
K
,

that is

log2

(
2016δ

7
(

1
7
− 2δ

64
− δ 2

9
+

δ logδ

4

))
=−9,

which yields δ ≈ 0.2129. The numerical algorithm in [11] produces in this case [X1], . . . , [X29 ] with

minimum determinantal value 0.3958 > 0.2129.

1.3. Historical discussion

There exist several results on packings on Grassmannian spaces but they are rather centered on finding

codes such that the mutual chordal distance between different elements [Xi], [X j] is close to maximal.

For example, in [21] the author finds bounds for the mutual distance of any code with a fixed number

of elements (this is known as the Rankin bound). Gilbert–Varshamov bounds have also been obtained

for that chordal distance by resorting to calculations of the volume of a metric ball of radius δ in

Gr(M,CT ), see [4] and [12]. The case that δ is sufficiently small was analyzed in [12], [14], and the

real case has also been studied, see [10] and references therein. However, to our knowledge, our results

are the first theoretical bounds on codes focusing on the explicit use of the chordal product, which is the

key figure of merit in non–coherent communications. The statistics of the chordal product can also be

studied in the real case, for which there are known formulas describing the joint density of the principal

angles between two random real subspaces, see [2, Appendix D.3] or [9]. However, the relevance of
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that study is not clear from the point of view of communications theory and hence we do not pursue it

here.

In the case M = 1 the Grassmannian becomes the projective space, the chordal product equals the

squared chordal distance, and the literature is much more prolific, going back to [22] (although Shannon

studied the case of the geodesic, not chordal, distance), [4] for the chordal and the geodesic distance,

and more recently [17], where a more complete set of references can be found. The optimal value of

(1.1) in this case has been studied in [6] and [3] as a case of Riesz energy, showing that the minimum

value is equal to the average computed in Corollary 1, minus a term of the form

O
(

K1+ N
T−1

)
= o(K2), for N ≤ T −2.

2. Proof of Theorem 1

First assume that p is an integer in the range of the hypotheses. Let E(p,T ) be the expected value in

the theorem (we omit the dependence on M in the notation). By unitary invariance, we can assume that

B =
(IM

0
)
. If we write the expected value using Proposition 1 and we pass to polar coordinates we get

E(p,T ) =C(T )
∫

Ã∈C(T−M)×M

det
(
IM − (IM + ÃHÃ)−1

)p

det(IM + ÃHÃ)T
dÃ

=C(T )
∫

Ã∈C(T−M)×M

det
(
AHÃ

)p

det(IM + ÃHÃ)T+p
dÃ

=C(T )
∫

∞

0
ρ

2M(T−M)+2pM−1
∫

Ã∈C(T−M)×M

∥Ã∥F=1

det(ÃHÃ)p

det(IM +ρ2ÃHÃ)T+p
dÃdρ,

where we omit the dependence on M in the constant:

C(T ) =
1

Vol(Gr(M,CT ))

Lemma 1
=

(T −M)! · · ·(T −1)!
πM(T−M)1! · · ·(M−1)!

.

Since the integrand of the inner integral depends only on the singular values of Ã, we can take it

to the set S+M consisting of ordered tuples of positive numbers σ1 > .. . > σM with the property that
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σ2
1 + · · ·+σ2

M = 1, see for example [5, Th. 3.3], that yields

E(p,T ) = D(T )×∫
∞

0
ρ

2M(T−M)+2pM−1
∫
S+M

(σ1 · · ·σM)2p+2T−4M+1
∏ j ̸=k(σ

2
k −σ2

j )
2

∏
M
m=1(1+ρ2σ2

m)
T+p

dσ1 · · ·dσM dρ,

where

D(T ) =
C(T )Vol(UT−M)Vol(UM)

Vol(UT−2M)2M(T−M)πM
,

and Uk is the unitary group of degree k. It follows immediately that E(p,T )/D(T ) =E(0,T + p)/D(T +

p) = 1/D(T + p), that is,

E(p,T ) =
D(T )

D(T + p)

=
C(T )Vol(UT−M)Vol(UM)

2M(T−M)Vol(UT−2M)

2M(T+p−M)Vol(UT+p−2M)

C(T + p)Vol(UT+p−M)Vol(UM)

=
(2π)Mp(T −M)! · · ·(T −1)!Vol(UT−M)Vol(UT+p−2M)

Vol(UT−2M)(T + p−M)! · · ·(T + p−1)!Vol(UT+p−M)
.

The volume of the unitary group is known (see [5, p. 28]):

Vol(Uk) =
(2π)k(k+1)/2

1! · · ·(k−1)!
.

The theorem (for integer p in the range) follows by substituting the known values in the constants above.

On the other hand, it is known that the pth moment of a beta distributed random variable with

parameters α > 0 and β > 0 denoted as x ∼ Beta(α,β ) is [24]

E[xp] =
Γ(α +β )Γ(α + p)
Γ(α +β + p)Γ(α)

, (2.1)
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so the mth product term in (1.7) corresponds to the pth moment of a beta distributed random variable

with parameters αm = T − M + 1 − m and βm = M, thus proving that the distribution of det(IM −

BHAAHB) is equivalent to the distribution of the product of M independent beta random variables

(this is an instance of the Hausdorff moments problem, hence the distribution is uniquely determined

by its moments). Notice that (2.1) is valid for p+α > 0, and since m can get up to M this entails to

p > 2M−T −1. Now that we have characterized det(IM −BHAAHB) as a product of beta distributed

random variables, we can write down the formula for its moments for noninteger p > 2M − T − 1,

finishing the proof of the theorem.

3. Probability density function of the chordal product

Can we effectively recover the pdf of the random variable x = det(IM −BHAAHB) from its moments?

If the density function is f (x) and the moments are Mn then we have the classical formula (see, e.g.,

[19, Sec. 5-5]):

f (x) =
∫

∞

−∞

e2iπxs
∞

∑
n=0

(−2iπs)n

n!
Mn ds. (3.1)

Following [23, Th. 7] a closed-form expression for the pdf can actually be written down in terms of

certain special functions called Meijer G–functions. However, this expression is quite involved and

requires extra work in practice for the derivation of bounds. In the following, we show that we can

obtain simpler closed-form formulas for small values of M = 1,2,3. They represent the most practical

use cases in noncoherent communications. Moreover, we also provide a general recursive procedure to

obtain the pdfs for higher values:

Corollary 4 Let T ≥ 2M. The probability density function (pdf) of det(IM −BHAAHB), when [B] ∈

Gr(M,CT ) is fixed and [A] ∈Gr(M,CT ) is uniformly distributed on the Grassmannian, for M = 1,2,3
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is:

M = 1 → f1(x;T ) =(T −1)xT−2,

M = 2 → f2(x;T ) =
1
2
(T −1)(T −2)2(T −3)xT−4 (1− x2 +2x logx

)
,

M = 3 → f3(x;T ) =
1

288
(T −1)(T −2)2(T −3)3(T −4)2(T −5)xT−6×

(
1+80x−162x2 +80x3 + x4 +24x logx−24x3 logx−36x2 log2 x

)
The cumulative distribution function (cdf) FM(x,T )=

∫ x
0 fM(s,T )ds for these three cases is respectively:

M = 1 →F1(x;T ) = xT−1

M = 2 →F2(x;T ) =
1
2
(T −1)(T −2)2(T −3)xT−3

(
1

T −3
− 2x

(T −2)2 − x2

T −1
+

2x logx
T −2

)
M = 3 →F3(x;T ) =

1
288

(T −1)(T −2)2(T −3)3(T −4)2(T −5)xT−5 ×Q,

with

Q =
1

T −5
+

80x
T −4

− 24x
(T −4)2 − 162x2

T −3
− 72x2

(T −3)3 +
80x3

T −2

+
24x3

(T −2)2 +
x4

T −1
+

24x logx
T −4

+
72x2 logx
(T −3)2 − 24x3 logx

T −2
− 36x2 log2 x

T −3
.

For arbitrary higher values of M the pdf has the form:

fM(x;T ) = (T −M)M
M−1

∏
m=1

(T −m)m(T −M−m)M−m·[
M

∑
m=1

m

∑
l=1

Aml(−1)l−1

(l −1)!
xT−m−1 logl−1 x+

M−1

∑
m=1

M−m

∑
l=1

Bml(−1)l−1

(l −1)!
xT−m−M−1 logl−1 x

]

where the M2 coefficients Aml ,Bml can be obtained (e.g. with the aid of symbolic computation software)

by solving the linear system of M2 equations resulting from equating coefficients on both sides for the
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polynomial identity:

M

∑
m=1

m

∑
l=1

Aml(x−m)m−l
M

∏
i ̸=m

(x− i)i
M−1

∏
i=1

(x−M− i)M−i+

+
M−1

∑
m=1

M−m

∑
l=1

Bml(x−M−m)M−m−l
M

∏
i=1

(x− i)i
M−1

∏
i̸=m

(x−M− i)M−i = 1.

PROOF.

For M = 1 and integer p ≥ 0 note that

∫ 1

0
xp (T −1)xT−2︸ ︷︷ ︸

f1(x;T )

dx =
T −1

T + p−1
,

and hence the claimed pdf satisfies Theorem 1 and must be the searched distribution. With the help of

some integral formulas for the log function it is easy to check that

∫ 1

0
xp f2(x;T )dx =

(T −1)(T −2)2(T −3)
(T + p−1)(T + p−2)2(T + p−3)

,

which again satisfies Theorem 1 and we are done. A more lengthy but trivial computation gives the case

M = 3.

These formulas and the general case for higher values of M can be derived from the following

procedure. The moments of the chordal product determinant from Theorem 1 are

Mp(T,M) =
M

∏
m=1

(T −m)!(T + p−m−M)!
(T −m−M)!(T + p−m)!

.

By expanding the factorials and collecting terms in the product, this can be rewritten as

Mp(T,M) =
M

∏
m=1

(
T −m

T + p−m

)m

·
M−1

∏
m=1

(
T −M−m

T + p−M−m

)M−m
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so the denominator D is the value at x = T + p of the polynomial

D(x) =
M

∏
m=1

(x−m)m
M−1

∏
m=1

(x−M−m)M−m.

Notice that this is a product of all-different real root factors (x−α) with varying multiplicities, so its

inverse has a partial fraction decomposition

1
D

=
M

∑
m=1

m

∑
l=1

Aml

(x−m)l +
M−1

∑
m=1

M−m

∑
l=1

Bml

(x−M−m)l ,

for some coefficients Aml , Bml ∈R. Following one of the usual procedures to solve for these coefficients,

for general x, multiplying by D(x) on both sides yields the polynomial equation of order M2 −1:

M

∑
m=1

m

∑
l=1

Aml(x−m)m−l
M

∏
i̸=m

(x− i)i
M−1

∏
i=1

(x−M− i)M−i+

+
M−1

∑
m=1

M−m

∑
l=1

Bml(x−M−m)M−m−l
M

∏
i=1

(x− i)i
M−1

∏
i̸=m

(x−M− i)M−i = 1.

Expanding and gathering terms by powers of x, one can equate the coefficient of x0 to 1 and the coeffi-

cients of xn, for n = 1, . . . ,M2 −1, to 0 to obtain a linear system of M2 equations in the M2 coefficients

Aml , Bml , and solve for them.

Now, notice that by the Laplace transform properties for a,b nonnegative integers

∫ 1

0
xa logb xdx = (−1)bL [tb](a+1) = (−1)b b!

(a+1)b+1 ,

and thus
1

(T + p−m)l =
(−1)l−1

(l −1)!

∫ 1

0
xpxT−m−1 logl−1 xdx.
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Hence, by expressing every term of the partial fraction decomposition in this integral form, the function

fM(x;T ) can be identified inside the moment function written as an integral:

Mp(T,M) =(T −M)M
M−1

∏
m=1

(T −m)m(T −M−m)M−m·

·
∫ 1

0
xp

[
M

∑
m=1

m

∑
l=1

Aml(−1)l−1

(l −1)!
xT−m−1 logl−1 x+

M−1

∑
m=1

M−m

∑
l=1

Bml(−1)l−1

(l −1)!
xT−m−M−1 logl−1 x

]
dx,

where the factors in front of the integral all come from the numerator over D in Mp(T,M). This finishes

the proof of the corollary.

4. Proof of Corollary 3

Let δ be the unique solution of the equation FM(δ ;T ) = K−1. Let G be the maximum number of points

in Gr(M,CT ) that can be allocated with the claimed property. We must prove that G ≥ K. Indeed,

assume that G < K an let X1, . . . ,XG be a code with det(IM −XH
i X jXH

j Xi)≥ δ for all 1 ≤ i, j ≤ G. We

note that

1
Vol(Gr(M,CT ))

Vol
(
∪G

i=1{[A] ∈Gr(M,CT ) : det(IM −XH
i AAHXi)≤ δ}

)
≤

1
Vol(Gr(M,CT ))

G

∑
i=1

Vol
(
{[A] ∈Gr(M,CT ) : det(IM −XH

i AAHXi)≤ δ}
)
=

GFM(δ ;T ) =
G
K

< 1,

and we thus deduce that there exists [A] ∈Gr(M,CT ) such that

det(IM −XH
i AAHXi)> δ ∀ 1 ≤ i ≤ G.
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But then the code X1, . . . ,XG,XG+1 with XG+1 = A also satisfies the claimed property and has G+ 1

points, which contradicts the definition of G.

A. Alternative parameterization of the Grassmannian and the density function of Ã in(IM
Ã

)
∈Gr(M,CT )

We recall the volume of the Grassmannian for completeness.

Lemma 1 The volume of the Grassmannian Gr(M,CT ) is:

Vol(Gr(M,CT )) =
πM(T−M)1! ·2! · · ·(M−1)!

(T −M)! · (T −M+1)! · · ·(T −1)!
.

Moreover, the mapping sending [A] to the projection matrix A(AHA)−1AH defines a homothety with

factor
√

2.

PROOF. This is a classical fact: since the Grassmannian is formally defined as a quotient of the

Stiefel manifold St(M,CT ) (i.e. the set of T ×M complex matrices X such that XHX = IM) by the

unitary group UM , the volume of Gr(M,CT ) is the quotient of the volumes of the Stiefel and unitary

matrices which is well–known, see for example [16] (note that there exist several normalizations for the

Riemannian structure of the classical groups, leading to different volume formulas. We use the standard

that considers St(M,CT ) and UM as submanifolds of their ambient affine spaces, with the inherited

structure). The same identification gives the tangent space, see for example [13], since the tangent space

to Gr(M,CT ) is then identified with the tangent vectors to St(M,CT ) which are Hermitian orthogonal

to the nullspace of the quotient, that is, to the set of Ḃ ∈ T[A]St(M,CT ) such that Ḃ = AU̇ with U̇ an

M×M skew-Hermitian matrix. In other words,

T[A]Gr(M,CT )≡ {Ȧ : ȦHA+AHȦ = 0,⟨Ȧ,AU̇⟩F = 0, ∀U̇ ∈ CM×M s.t. U̇+ U̇H = 0},
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where ⟨A,B⟩F denotes the Frobenius inner product between matrices A and B. It is immediate to see

that {Ȧ ∈ CT×M : AHȦ = 0} is contained in this tangent space, and a dimensional argument shows

that the two spaces are actually equal. For the last claim of the lemma, note that the derivative of the

mapping A → A(AHA)−1AH applied to a tangent vector Ȧ such that AHȦ = 0 equals ȦAH +AȦH . By

unitary invariance we can assume that A =
(IM

0

)
which shows that the derivative, applied at a tangent

vector Ȧ =
(0

B
)
, gives 0 BH

B 0

 ,

thus defining a homothety as claimed.

Recall that a n× p complex matrix X is distributed as a complex matrix-variate t distribution with

ν degrees of freedom when its density is given by

p(X) =C−1 det(Ip +XHX)−(ν+p+n−1). (A.1)

where C is a constant to make X distributed with respect to a probability measure.

Proposition 1 Let T ≥ 2M. If [A] is uniformly distributed in Gr(M,CT ) and we write [A] =

IM

Ã


(note that there exists a unique representative of that form), then Ã has density

1
Vol(Gr(M,CT ))det(IM + ÃHÃ)T

. (A.2)
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Hence, Ã ∈ C(T−M)×M follows a matrix–variate t distribution with ν = 1 degrees of freedom. In other

words, for any measurable non–negative or integrable function f : Gr(M,CT )→ C,

∫
[A]∈Gr(M,CT )

f ([A])d[A] =
∫

Ã∈C(T−M)×M

f
(IM

Ã

)
det(IM + ÃHÃ)T

dÃ

=
∫

Ã∈C(T−M)×M

f
( (IM+ÃH Ã)−1/2

Ã(IM+ÃH Ã)−1/2

)
det(IM + ÃHÃ)T

dÃ.

PROOF. This result has been proved in [1, Prop. 1 and Cor. 1], by showing that both sides of the

equality are equal to ∫
W∈C(T−M)×M ,∥W∥op<1

f

√IM −WHW

W

 dW,

with ∥ · ∥op the operator norm. However, for completion of this paper, we sketch an elementary proof:

from the second part of Lemma 1, it suffices to see that the Jacobian of

Ã → φ(Ã) =

(
IM

Ã

)(
IM + ÃHÃ

)−1
(IM ÃH)

is equal to 2M(T−M)/det(IM + ÃHÃ)T . The derivative of φ is easy to compute:

Dφ(Ã) ˙̃A =

(
0
˙̃A

)(
IM + ÃHÃ

)−1
(IM ÃH)+

(
IM

Ã

)(
IM + ÃHÃ

)−1
(0 ˙̃AH)

−
(

IM

Ã

)(
IM + ÃHÃ

)−1
( ˙̃AHÃ+ ÃH ˙̃A)

(
IM + ÃHÃ

)−1
(IM ÃH).

The unitary invariance of the determinant is then clear: det(Dφ(Ã)) = det(Dφ(UÃV)) for any unitary

matrices U,V of respective sizes T −M and M. Hence, we can assume that Ã =
(D

0

)
with D the diagonal

matrix containing the ordered singular values of Ã. The rest of the proof is a long computation: consider

the basis given by δi j (i.e. the (T −M)×M zero–matrix with its (i, j) entry equal to 1) and jδi j, consider

the set of vectors Dφ(Ã)δi j and Dφ(Ã)jδi j and compute the volume of the parallelepiped they span in
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R2T 2 ≡ CT×T . This task is tedious but easy since they are all pairwise orthogonal. That volume, which

is equal by definition to the determinant of Dφ(A), is 2M(T−M)/det(IM + ÃHÃ)T as claimed.

Note that the two integrals on C(T−M)×M in the last part of the lemma are equal since f is a func-

tion defined in the Grassmannian and hence its value is independent of the choice of representatives.

Moreover, the advantage of the last expression in the proposition is that

X =

(
(IM + ÃHÃ)−1/2

Ã(IM + ÃHÃ)−1/2

)

is a Stiefel matrix, i. e. it satisfies XHX = IM .
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