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Abstract. We show that, for points along the moment curve, the bar-and-joint rigidity
matroid and the hyperconnectivity matroid coincide, and that both coincide with
the Cd−2

d−1 -cofactor rigidity of points along any (non-degenerate) conic in the plane. For
hyperconnectivity in dimension two, having the points in the moment curve is no loss of
generality.

We also show that, restricted to bipartite graphs, the bar-and-joint rigidity matroid is
freer than the hyperconnectivity matroid.
Keywords. Rigidity, hyperconnectivity, moment curve, cofactor rigidity
Mathematics Subject Classifications. 52C25, 52B40

1. Introduction

Rigidity matroids were introduced by Graver in [Gra91] as a way to formalize and generalize
rigidity theory. Besides the matroids associated to (infinitesimal) bar-and-joint rigidity they
include two other important examples: the matroids of Cd−2

d−1 -cofactor rigidity introduced by
Whiteley [Whi96] and of the hyperconnectivity introduced by Kalai [Kal85]. See the precise
definitions below.
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FPU19/04163 of the Spanish Government and by project CLaPPo (21.SI03.64658) of Universidad de Cantabria
and Banco Santander.
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We show an interesting case in which the three theories are equivalent:

Theorem 1.1. Let d be a positive integer and let t1, . . . , tn ∈ R be (distinct) real numbers. Then,
the following three d-dimensional rigidity matroids coincide:

• The Cd−2
d−1 -cofactor matroid of points {(ti, t2i )}ni=1 along the standard parabola.

• The bar-and-joint matroid of points {(ti, . . . , tdi )}ni=1 along the moment curve.

• The d-hyperconnectivity matroid of vectors {(1, ti, . . . , td−1
i )}ni=1, which, if no ti equals

zero, is equivalent to that of {(ti, . . . , tdi )}ni=1.

The moment curve {(t, . . . , td) : t ∈ R} ⊂ Rd is an important curve from several points
of view. From the perspective of algebraic geometry, it is the rational normal curve of degree d
(in a specific embedding, but any other embedding is algebraically isomorphic to it). From
the perspective of polytope theory, any finite subset of n points in the moment curve defines a
cyclic polytope, an example of a neighborly polytope: a d-polytope with n vertices that attains
the maximum possible number of faces of each dimension. From the perspective of rigidity
theory, one important property of the moment curve is that it is contained in many (linearly
independent) quadrics. By a result of Bolker and Roth [BR80] this has drastic consequences for
the bar-and-joint rigidity of bipartite graphs embedded with vertices in it. See Lemma 4.7 and
Remark 4.8.

For d = 2 the moment curve is the standard parabola. Since the three forms of rigidity are
projectively invariant, any non-degenerate conic can be substituted for the standard parabola, for
arbitrary d in part (1), or for d = 2 in parts (2) and (3).

Let us recall some of the needed rigidity concepts. Good comprehensive references for back-
ground are [NSW21, Whi96]; [CJT22] also contains everything we need. For hyperconnectivity
see [Kal85] or [JT21].

A point configuration is a finite list of distinct points p = (p1, . . . ,pn) in Rd. A framework
on p is a simple graph with vertex set {p1, . . . ,pn}. Since the points in p are labelled by [n], we
identify frameworks on p with subsets of

(
[n]
2

)
. The bar-and-joint (infinitesimal) rigidity matrix

of p is the following
(
n
2

)
× nd matrix:

R(p) :=



p1 − p2 p2 − p1 0 . . . 0 0
p1 − p3 0 p3 − p1 . . . 0 0

... ... ... ... ...
p1 − pn 0 0 . . . 0 pn − p1

0 p2 − p3 p3 − p2 . . . 0 0
... ... ... ... ...
0 0 0 . . . pn−1 − pn pn − pn−1


That is to say, each row rij of R(p) ({i, j} ∈

(
[n]
2

)
) consists of n blocks of size d and has zeroes

everywhere except in the ith and jth blocks, where it has, respectively, pi − pj and pj − pi.



combinatorial theory 3 (1) (2023), #15 3

Definition 1.2. The bar-and-joint rigidity matroid of p is the linear matroid of rows of R(p),
with ground set

(
[n]
2

)
. We denote it Rd(p). A framework on p is called rigid (respectively stress-

free, isostatic) if the corresponding set of rows is spanning, (respectively independent, a basis)
in the rigidity matroid.

The reason for this terminology is that, if R(p)|G denotes the row-submatrix of R(p) corre-
sponding to a framework G, then the kernel of R(p)|G are the infinitesimal motions of the points
(“joints”) that preserve lengths of all edges in G (“bars”); the kernel of its transpose are the equi-
librium stresses on G: assignments of extension/contraction forces to the edges that cancel out
at every vertex, so that the system is in equilibrium.

We can also give up symmetry and directly define the following hyperconnectivity matrix
of p, introduced by Kalai [Kal85]:

H(p) :=



p2 −p1 0 . . . 0 0
p3 0 −p1 . . . 0 0
... ... ... ... ...
pn 0 0 . . . 0 −p1

0 p3 −p2 . . . 0 0
... ... ... ... ...
0 0 0 . . . pn −pn−1


.

Definition 1.3. We call hyperconnectivity matroid of p, and denote it Hd(p), the linear matroid
of rows of H(p).

For even d, Hd(n) coincides with the algebraic matroid of skew-symmetric matrices of rank
at most d, of interest in low-rank matrix completion problems. See, e.g., [Ber17]. This relation
is well-known, but we offer a proof in Proposition 3.1. In the case d = 2 this is, in turn, the
same as the algebraic matroid of the Plücker embedding of the Grassmaniann Gr(2,R) in R(

n
2).

The following combinatorial characterization of H2(n) is known [Ber17]: a graph G ⊂
(
[n]
2

)
is

independent in H2(n) if, and only if, G admits an acyclic orientation with no alternating closed
walk.

Finally, for a point configuration p ⊂ R2 in the plane and a positive integer d we define the
cofactor rigidity matrix of degree d− 1,

Cd(p) :=



c(p1 − p2) −c(p1 − p2) 0 . . . 0 0
c(p1 − p3) 0 −c(p1 − p3) . . . 0 0

...
...

...
...

...
c(p1 − pn) 0 0 . . . 0 −c(p1 − pn)

0 c(p2 − p3) −c(p2 − p3) . . . 0 0
...

...
...

...
...

0 0 0 . . . c(pn−1 − pn) −c(pn−1 − pn)


,

where c(x, y) = (xd−1, xd−2y, . . . , xyd−2, yd−1).

Definition 1.4. We call cofactor rigidity matroid of p, and denote it Cd−2
d−1(p), the linear matroid

of rows of Cd(p).
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This formalism was introduced by Whiteley in the 1990’s [Whi96], elaborating on previous
work of Billera on smooth bivariate splines [Bil88]. The notation Cd−2

d−1 comes from the relation
of this theory to Cd−2-splines of degree d− 1.

The three rigidity theories share important properties. Let p and q be two point configura-
tions of size n ⩾ d in general position in Rd and R2 respectively.1 Then:

1. rank(Rd(p)) = rank(Hd(p)) = rank(Cd−2
d−1(q)) = nd−

(
d+1
2

)
.

2. Every copy of the complete graph Kd+2 is a circuit in Rd(p), Hd(p) and Cd−2
d−1(q). (And

hence every copy of Km, with m ⩽ d+ 1, is independent).

By a theorem of Nguyen [Ngu10], matroids on the ground set
(
[n]
2

)
and satisfying these two

properties coincide exactly with the abstract rigidity matroids of dimension d introduced by
Graver [Gra91].

For reasons that will become apparent in the proof, we call the matroid in Theorem 1.1
the polynomial rigidity matroid of degree d− 1 with parameters t1, . . . , tn (Definition 2.4). We
denote itPd(t1, . . . , tn). Since points on the moment curve are in general position,Pd(t1, . . . , tn)
is an abstract rigidity matroid too.

There is some interest among the experts on the relations between the three matroids Hd(p),
Rd(p), and Cd−2

d−1(q) in the case when p and q are generic. We denote these matroids Hd(n),
Rd(n), and Cd−2

d−1(n), and denote by Pd(n) the generic case of Pd(t1, . . . , tn).
It is conjectured that Cd−2

d−1(n) is freer than Rd(n) and that the latter is freer than Hd(n)

(Conjecture 4.3). It is also conjectured that Cd−2
d−1(n) is the freest abstract rigidity matroid and

that Hd(n) is the freest matroid in which every Kd+2 and every Kd+1,d+1 are circuits (Conjec-
tures 4.1 and 4.2). We recall what is known about these conjectures in Section 4, including a
proof of the following result which is, to the best of our knowledge, new: restricted to bipartite
graphs, Hd(n) coincides with Rd(p) where p has the points of the two parts lying in two hy-
perplanes, but otherwise generic. In particular, on bipartite graphs Rd(n) is freer than Hd(n)
(Theorem 4.4 and Corollary 4.5).

We hope that our new matroid Pd(n) may help shed light on these conjectures, since it shows
a case where the three rigidity theories coincide. We finish Section 4 and the paper proving
several properties that are common to Hd(n) and Pd(n) (Corollary 4.9 and Propositions 4.10
and 4.11). This suggests that perhaps Hd(n) = Pd(n) (Question 4.6). For d = 2 this is true, by
the invariance of Hd(n) under linear scaling of the positions of points (Theorem 2.2).

2. Proof of Theorem 1.1

The matroids Cd−2
d−1 and Rd are invariant under projective transformation in RPd ⊃ Rd, see

e.g. [NSW21]. Hd is, as far as we know, only invariant under linear transformation or, rather,
under projective transformation in RPd−1 as a quotient space of Rd \ {0}:

1For Rd and Cd−2
d−1 we here mean affine general position; that is, all affinely dependent subsets are affinely

spanning. For Hd we mean linear general position: all linearly dependent subsets are linearly spanning.
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Lemma 2.1. Let p = (p1, . . . ,pn) and q = (q1, . . . ,qn) be point configurations in Rd and
assume that q is obtained from p by one of the following two procedures:

1. A global linear transformation l : Rd → Rd with l(pi) = qi for all i.

2. Multiplication of each pi by a non-zero scalar αi, so that qi = αipi for each i.

Then, Hd(p) = Hd(q).

Proof. In the first case, the matrix H(q) is obtained from H(p) multiplying on the right by a
block-diagonal matrix having (the matrix of) l in each block. In the second case, it is obtained
by first multiplying each row (i, j) by αiαj and then dividing each column in block i by αi.
Multiplying rows or columns by non-zero scalars does not change the matroid.

This implies that H2 coincides with P2:

Theorem 2.2. Let p = (p1, . . . ,pn) be points in (R \ {0})2, with pi = (ai, bi). Let ti = bi/ai
for i = 1, . . . , n. Then, H2(p) equals P2(t1, . . . , tn). In particular, H2(n) = P2(n).

Proof. Apply Lemma 2.1 with αi = bi/a
2
i .

Let R[t]<d denote the d-dimensional vector space of univariate polynomials of degree less
than d with real coefficients. For each choice of parameters t1, . . . , tn and choice of one ba-
sis F i(t) = (f i

1(t), . . . , f
i
d(t)) of R[t]<d for each i, construct the following polynomial rigidity

matrix of degree d− 1:

PF 1,...,Fn(t1, . . . , tn) :=



F 1(t2) −F 2(t1) 0 . . . 0 0
F 1(t3) 0 −F 3(t1) . . . 0 0

... ... ... ... ...
F 1(tn) 0 0 . . . 0 −F n(t1)

0 F 2(t3) −F 3(t2) . . . 0 0
... ... ... ... ...
0 0 0 . . . F n−1(tn) −F n(tn−1)


.

Lemma 2.3. The linear matroid of rows of PF 1,...,Fn(t1, . . . , tn) is independent of the choice of
bases F 1, . . . , F n.

Proof. Given two choices of bases (F 1, . . . , F n) and (G1, . . . , Gn), the matrix corresponding
toG can be obtained from that ofF multiplying on the right by the nd×nd block-diagonal matrix
that has in the i-th diagonal block the d× d matrix that changes from basis F i to basis Gi.

Definition 2.4. We denote this matroid Pd(t1, . . . , tn) and call it the polynomial rigidity matroid
of degree d− 1 with parameters (t1, . . . , tn).

Theorem 1.1 follows from the following more precise statement:

Theorem 2.5. The three matroids of Theorem 1.1 coincide with Pd(t1, . . . , tn).
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Proof. Consider the following bases of R[t]<d, depending on ti:

F ti(t) =

(
tki − tk

ti − t

)
k=1,...,d

, Gti(t) =
(
(ti + t)k−1

)
k=1,...,d

.

Then, PF t1 ,...,F tn (t1, . . . , tn) equals the bar-and-joint rigidity matrix of points along the mo-
ment curve, except each row (i, j) has been divided by ti − tj , which does not affect the ma-
troid. Similarly, PGt1 ,...,Gtn (t1, . . . , tn) equals the cofactor rigidity matrix of points along the
parabola, except each row (i, j) has been divided by (ti − tj)

d−1. For the latter, observe that for
points (xi, yi) = (ti, t

2
i ) along the parabola we have

(xi − xj)
d−k(yi − yj)

k−1 = (ti − tj)
d−k(t2i − t2j)

k−1 = (ti − tj)
d−1(ti + tj)

k−1.

Finally, the hyperconnectivity matrix of {(1, . . . , td−1
i )}i∈[n] equals PF,...,F (t1, . . . , tn) where we

choose all bases equal to the monomial basis F = (1, t, t2, . . . , td−1).

3. Hyperconnectivity and low rank skew-symmetric matrices

Recall that the algebraic matroid of an irreducible variety V ⊂ RN is the matroid with ground
set N and in which a subset of coordinates is independent if there is no (non-trivial) polynomial
relation among them on V . Put differently, X is independent if I(V ) ∩ R[X] = 0. When V
is parametrized by a polynomial map T : RM → V ⊂ RN , the algebraic matroid of V equals
the linear matroid of rows of the Jacobian of T at a sufficiently generic point of RM [Ros14,
Proposition 2.5]. (It is important that we are looking at algebraic varieties over R. Algebraic
matroids over finite fields are not all representable as linear matroids over those same fields).

We are interested in the variety Sd(n) ⊂ R(
n
2) of skew-symmetric matrices of rank (at

most) d, where each matrix is represented as the list of its entries with 1 ⩽ i < j ⩽ n. We
denote Sd(n) its algebraic matroid and we assume d even, since every skew-symmetric matrix
has even rank. The following statement seems to be known, but we have not found an explicit
proof of it.

Proposition 3.1. For even d, Hd(n) = Sd(n).

Proof. Let d = 2k. Every skew-symmetric matrix of rank ⩽ 2k can be expressed as

k∑
l=1

(aT
l bl − bT

l al)

for some a1,b1, . . . , ak,bk ∈ Rn (see, e.g., [rgomr10, Lemma 1.3] or [PS05, Theorem 3.23]).
Thus, writing al = (al,1, . . . , al,n) and bl = (bl,1, . . . , bl,n) we have a surjective map

T : (Rn)2k → S2k(n) ⊂ R(
n
2)

(a1,b1, . . . , ak,bk) 7→
k∑

l=1

(al,ibl,j − al,jbl,i)1⩽i<j⩽n . (3.1)
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For each (al,bl)l=1,...,k ∈ (Rn)2, we denote by J((al,bl)l=1,...,k) the Jacobian matrix of T
at that point; hence, S2k(n) equals the linear matroid of rows of J((al,bl)l=1,...,k) for a suf-
ficiently generic choice of (al,bl)l=1,...,k. Now, from Eq. (3.1) it is straightforward to check
that J((al,bl)l=1,...,k) is the hyperconnectivity matrix of (p1, . . . ,pn) where

pi = (b1,i,−a1,i, . . . , bk,i,−ak,i).

Thus, H2k(n) also equals the linear matroid of rows of J((al,bl)l=1,...,k) for a sufficiently generic
choice of (al,bl)l=1,...,k.

Observe that for d = 2 the map T in the above proof is the Plücker embedding of Gr(2,R)
into R(

n
2). Hence, H2(n) = P2(n) is also the algebraic matroid of Gr(2,R).

4. The generic case

4.1. The three generic rigidity matroids

Let Rd(n), Hd(n) and Cd−2
d−1(n) denote the generic bar-and-joint, hyperconnectivity and cofactor

rigidity matroids of dimension d for n points; that is, the matroids Rd(p), Hd(p) and Cd−2
d−1(q)

for sufficiently generic choices of p ∈ (Rd)n and q ∈ (R2)n. There are the following conjectures
relating them:

Conjecture 4.1 ([Whi96, Conjecture 11.5.1]). Cd−2
d−1(n) is the freest matroid in which ev-

ery Kd+2 is a circuit. In particular, it is the freest among all abstract rigidity matroids of di-
mension d.

Conjecture 4.2 ([JT21, Conjecture 6.6(a)]). Hd(n) is the freest matroid in which every Kd+2

and every Kd+1,d+1 are circuits.

Here, we say that N is freer than M and write M ⩽ N , where N and M are two matroids
on the same ground, if every independent set of M is also independent in N . Equivalently, if
the rank function of M is bounded above by that of N .

Of course, Conjecture 4.1 would imply that Cd−2
d−1(n) is freer than both of Rd(n) and Hd(n).

In turn, a positive answer to [Kal02, Problem 3] would imply Rd(n) is freer than Hd(n)
(see [Kal02, Section 2.7] for the reason of the implication), so we consider this a conjecture
as well:

Conjecture 4.3 (Kalai and Whiteley). For every n and d,

Hd(n) ⩽ Rd(n) ⩽ Cd−2
d−1(n).

All these conjectures are trivial for d = 1: the three matroids coincide with the graphic
matroid, which is the only rigidity matroid in dimension one and satisfies that K2,2 is a circuit.

For d = 2, Conjecture 4.2 is open (see partial results in [JT21, Section 6.3.1]), but the rest
hold true. Indeed, Conjecture 4.3 follows from the more precise statement

H2(n) < R2(n) = C0
1(n).
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The equality on the right is trivial from the definitions, and the strict inequality on the left fol-
lows from combining Laman’s characterization (which gives H2(n) ⩽ R2(n)) with the fact
that Kd+1,d+1 is a circuit in Hd(n) for every d while K3,3 is a basis in R2(n). The Laman char-
acterization implies also Conjecture 4.1.

In dimension 3 or higher only the following is known:

• Conjecture 4.1 has recently been proven in dimension 3 by Clinch, Jackson and Tani-
gawa [CJT22], but is open in higher dimensions.

• That result implies R3(n) ⩽ C1
2(n), and it is conjectured that R3(n) = C1

2(n) [Whi96,
Conjecture 10.3.2]. In higher dimension we know thatRd(n) ̸= Cd−2

d−1(n), since the (d−4)-
th cone over K6,7 is a basis in Cd−2

d−1(n) and dependent in Rd(n) [Whi96, Section 11],
but Rd(n) ⩽ Cd−2

d−1(n) is open.

• Whether Hd(n) is less free than Rd(n) and/or Cd−2
d−1(n) is open even for d = 3, but we do

know graphs that are dependent in Hd(n) and independent in the other two. For example,
no bipartite graph can be spanning in Hd(n) (see Corollary 4.9 below, which essentially
follows [Kal85, Theorem 6.1]); hence, Kd+1,(d+1

2 ) is dependent in it, while it is a basis
in Rd(n) and Cd−2

d−1(n) [Whi96, Sect. 11].

A technique similar to the proof of Theorem 1.1 gives us the following result, supporting the
conjecture that Hd(n) < Rd(n) for all d ⩾ 3:

Theorem 4.4. Let V = X∪̇Y be a vertex set with a given bipartition and let {pi : i ∈ V } ⊂ Rd−1

be positions for the vertices. Then, restricted to bipartite graphs with that bipartition the follow-
ing two d-dimensional rigidity matroids coincide:

1. the bar-and-joint matroid of the points {(pi, 0) : i ∈ X} ∪ {(pj, 1) : j ∈ Y }.

2. the hyperconnectivity matroid of the points {(pi, 1) : i ∈ V }.

Proof. Let E = X × Y be the edge set of the complete bipartite graph KX×Y .
For each point pi, choose a linear basis F i = (f i

1, . . . , f
i
d) of the space of affine functions

f : Rd−1 → R. For each such choice of bases F = (F i)i∈V we define the following affine
rigidity matrix of (F ,p), of size |E| × |V |d: in the row indexed by the edge (i, j) ∈ E, put the
vector F i(pj) in block i, the vector −F j(pi) in block j, and zeroes elsewhere.

With the same argument of Lemma 2.3, the linear matroid of rows of this matrix is indepen-
dent of the choice of bases. Now, we have that:

• The choice F i(x) = (x − pi, 1) for i ∈ X and F j(x) = (x − pj,−1) for j ∈ Y makes
the row of edge (i, j) have the vector (pj − pj, 1) in block i and the vector (pi − pj,−1)
in block j.

• The choice F i(x) = (x, 1) for every i makes the row of edge (i, j) have the vector (pj, 1)
in block i and the vector (−pi,−1) in block j.



combinatorial theory 3 (1) (2023), #15 9

Observe that in this proof we only use bipartiteness for the construction inRd, but not forHd.
That is, the affine rigidity matroid of the point set {p1, . . . ,pn} constructed in the proof coincides
with Hd({(pi, 1)}i=1,...,n) on all graphs, not only bypartite ones.

Corollary 4.5. Restricted to bipartite graphs we have that Hd(n) ⩽ Rd(n).

Proof. ConsiderHd(n) realized with generic pointsq1, . . . ,qn ∈ Rd. By Lemma 2.1, there is no
loss of generality in assuming that they all have last coordinate equal to 1, so we
writeqi = (pi, 1)withpi ∈ Rd−1. The previous theorem tells us thatHd(n) = Hd(q), restricted
to bipartite graphs, coincides with Rd on the point set {(pi, 0) : i ∈ X} ∪ {(pj, 1) : j ∈ Y },
which is less free than the generic Rd(n).

4.2. Where does Pd(n) lie.

We can similarly consider the generic polynomial rigidity matroid of degree d − 1, that we de-
note Pd(n), defined as the matroid Pd(t1, . . . , tn) for a sufficiently generic choice of (t1, . . . , tn).
It is obvious that Hd(n), Rd(n) and Cd−2

d−1(n) are freer than Pd(n), and the last two strictly so
since K(d+1

2 ),d+1 is a basis in both Rd and Cd−2
d−1 , but it is dependent in Pd for d ⩾ 2 by Corol-

lary 4.9 below. But we do not know of any graph that is independent in Hd(n) and dependent
in Pd(n). It is thus plausible that the answer to the next question is positive:

Question 4.6. Is Pd(n) = Hd(n) for every n and d?

In this section we show some common properties of Pd(n) and Hd(n). Our first result is that
every complete bipartite graph has the same rank in both. It follows from the following lemma,
which generalizes [Kal85, Theorem 6.1] (Kalai considers only generic positions).

Lemma 4.7. Let G = Kn1,n2 be a complete bipartite graph, call n = n1 + n2 and
let p1, . . . , pn ∈ Rd be positions in linear general position (no d of them lie in a linear hy-
perplane). Then, the rank of G in Hd(p) equals:

1. n1n2 (that is, G is independent) if min{n1, n2} ⩽ d.

2. dn− d2 if min{n1, n2} ⩾ d.

Proof. In part (1) we have that all edges have an endpoint of degree at most d, and edges incident
to an endpoint of such low degree are automatically independent of the rest as long as they are
linearly independent among them, which in our case is guaranteed by general position.

For part (2), an independent subgraph of G with dn−d2 edges can be obtained starting with
a Kd,d (independent by part (1)) and adding the rest of vertices one by one, connecting each new
vertex to d previously added vertices.

As the rigidity matrix has n1n2 rows, to finish the proof we only need to show that the or-
thogonal complement of the column space has dimension at least (n1−d)(n2−d). We consider
columns as living in Rn1 ⊗ Rn2 in the natural way, with the entry in row (i, j) representing
the coordinate ei ⊗ ej . Regarded in this way, every tensor product l ⊗ m of a linear depen-
dence l among the points in one part of G(p) and a linear dependence m among the points
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in the other part lies in the orthogonal complement of the columns. By general position, we
have n1 − d and n2 − d dimensions to choose l and m from, giving a tensor product space of
dimension (n1 − d)(n2 − d).

Remark 4.8. Observe that in part (1) general position is equivalent to “p is affinely independent”,
and in the proof of part (2) we only use that each part of (G,p) linearly spans Rd, a condition
weaker than general position. In fact, the same proof gives the more general result: the rank
of Kn1,n2 in Hd(p) equals n1n2− (n1− d1)(n2− d2) where d1 and d2 are the dimensions of the
linear spans of the points in the two parts of the framework (Kn1,n2 ,p).

This result is the analogue in Hd of the main result of [BR80]. Although [BR80, Theo-
rem 5.9] gives the rank of Kn1,n2 in Rd(p) for any choice of p, we here state only the cases
analogue to the ones in Lemma 4.7:

1. If min{n1, n2} ⩽ d and each part is in general position (that is, affinely independent)
then Kn1,n2 is independent in Rd(p); its rank equals n1n2.

2. If min{n1, n2} ⩾ d and each part affinely spans Rd then the rank of Kn1,n2 in Rd(p)
equalsnd−

(
d+1
2

)
minus the number of linearly independent quadrics containingp. That is:

if no quadric contains p (for which a necessary condition is n1+n2 ⩾
(
d+2
2

)
) then Kn1,n2

is spanning in Rd(p); from there each quadric containing p lowers rank by one.

The d-dimensional moment curve is contained in
(
d
2

)
quadrics: for each 2 ⩽ i ⩽ d we have

the quadric xi = x1xi−1 (d − 1 quadrics) and for each 2 ⩽ i ⩽ j ⩽ d − 1 we have the
quadric x1xi+j−1 = xixj if i + j ⩽ d + 1 or the quadric xdxi+j−d = xixj if i + j > d + 1
(
(
d−1
2

)
quadrics). Hence, the result of Bolker and Roth recovers that the generic rank of Kn1,n2

in Pd(n) (that is, the rank in Rd(p) for p generic along the moment curve) equals

nd−
(
d+ 1

2

)
−
(
d

2

)
= nd− d2,

as stated in Lemma 4.7.

Corollary 4.9. Every complete bipartite graph has the same rank in Hd(n) and Pd(n), given by
the formulas in Lemma 4.7. In particular, in these matroids no bipartite graph is spanning and
every Kd+1,d+1 is a circuit.

For our next result, recall that a vertex d-split on a graph G is the following operation:
choose a vertex v of degree at least d− 1 with its neighbors divided in three parts A, B, and C
with |B| = d − 1; remove all edges of the form (v, w) with w ∈ C and insert a new vertex v′

with neighbors B ∪C ∪{v}. Vertex d-splits are known to preserve generic independence in Rd

and Cd−2
d−1 . The same holds for Pd and Hd as we now show. We call corank of a subset X of a

matroid the difference |X| − rank(X).

Proposition 4.10. Corank does not increase under vertex d-split neither in Hd nor in Pd. In
particular, vertex splits of independent graphs are independent.
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Proof. The standard proof that vertex split preserves independence in Rd [Whi90] carries over
as follows. To fix notation, let B = {v1, . . . , vd−1} be the neighbors of v that are joined to both v
and v′ after the split, and let G′ be the graph obtained by the split.

Letp be arbitrary positions for the vertices ofG, and denotepw the position of each vertexw.
Let p′ be positions for G′ defined by p′

w = pw for every vertex in G and p′
v′ = pv. Assuming

that pv,pv1 , . . . ,pvd−1
are linearly independent (that is, a basis of Rd) we have that every vector

orthogonal to all rows of the matrix H(p) becomes orthogonal to all rows of H(p′) by simply
repeating in the block of v′ what was in the block of v. Conversely, every vector orthogonal to
all rows of H(p′) has the same content in the blocks of v and v′. Indeed, if we call u, u′ ∈ Rd

what the vector has in the blocks of v and v′, the vertex split construction implies that u and u′

have the same scalar product with the vectors pv,pv1 , . . . ,pvd−1
.

That is, as long as pv,pv1 , . . . ,pvd−1
are a basis, the coranks of G in Hd(p) and of G′

inHd(p
′) coincide. In particular, this holds for generic positions (matroidHd(n)) and for generic

positions along the moment curve (matroid Pd(n)). Of course, the positions p′ are not generic
since p′

v = p′
v′ , but perturbing p′ to be generic can only increase the rank of G′ and decrease its

corank.

The following is an example where a vertex split makes the corank decrease in H2: Let G
be the graph with edges {12, 23, 34, 14, 15, 25, 35, 46, 56}. It is a basis (in any abstract rigidity
matroid of dimension 2) since vertices 6, 4 and 3, deleted in this order, remove two edges each
and result in a K3. Let G′ be the vertex split of 5 in G with A = {1, 3}, B = {6} and C = {2}.
This is again a basis by the proposition above. It turns out that G′ is isomorphic to the vertex
split of any vertex in K3,3 with |A| = |B| = |C| = 1; since K3,3 is a circuit, this vertex split
decreases the corank from one to zero.

A variation of vertex split is what we here call a diamond d-split: choose again a vertex v, now
of degree at least d and with its neighbors divided in three parts A, B, and C with |B| = d. Then
remove all edges of the form (v, w) with w ∈ C and insert a new vertex v′ with neighbors B∪C.
Observe that we now do not insert the edge vv′. The following result is proved in [KNN16,
Lemma 3.8] in a context that includes Hd, but restricted to bipartite graphs:

Proposition 4.11. Corank does not increase under diamond d-split neither in Hd nor in Pd. In
particular, diamond splits of independent graphs are independent.

Proof. The proof is very similar to the previous one, and left to the reader. The only significant
difference is that now we call B = {v1, . . . , vd} and assume {pu : u ∈ B} to be a linear basis,
instead of {pu : u ∈ B ∪ {v}}.

Let us finish by summing up what these results give as for d = 2, in which P2 = H2. In
this case all bases of H2 are Laman graphs, and they include all planar Laman graphs (since
every planar Laman graph can be obtained from K3 by vertex splits [FJW04]), but no bipartite
Laman graph (since bipartite graphs cannot be rigid inHd for any d ⩾ 2). Theorem 6.9 in [JT21],
taking into account that independence in H2 is preserved under 0-extensions and diamond splits,
implies that the case d = 2 of Conjecture 4.2 holds if, and only if, it has the property that every
dependent flat is a union of copies of K4 and K3,3.
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