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Abstract Hydrological signatures are now used for a wide range of purposes, including catchment
classification, process exploration, and hydrological model calibration. The recent boost in the popularity
and number of signatures has however not been accompanied by the development of clear guidance on
signature selection. Here we propose that exploring the predictability of signatures in space provides
important insights into their drivers and their sensitivity to data uncertainties and is hence useful for
signature selection. We use three complementary approaches to compare and rank 15 commonly used
signatures, which we evaluate in 600+ U.S. catchments from the Catchment Attributes and MEteorology for
Large-sample Studies (CAMELS) data set. First, we employ machine learning (random forests) to explore
how attributes characterizing the climatic conditions, topography, land cover, soil, and geology influence
(or not) the signatures. Second, we use simulations of the Sacramento Soil Moisture Accounting model to
benchmark the random forest predictions. Third, we take advantage of the large sample of CAMELS
catchments to characterize the spatial autocorrelation (using Moran’s I) of the signature field. These three
approaches lead to remarkably similar rankings of the signatures. We show (i) that signatures with the
noisiest spatial pattern tend to be poorly captured by hydrological simulations, (ii) that their relationship to
catchments attributes are elusive (in particular they are not well explained by climatic indices), and (iii) that
they are particularly sensitive to discharge uncertainties. We suggest that a better understanding of the
drivers of hydrological signatures and a better characterization of their uncertainties would increase their
value in hydrological studies.

1. Introduction

Hydrological signatures (indices characterizing hydrologic behavior) are now commonly used to understand
space-time variability in hydrological processes (e.g., Sawicz et al., 2011; Troch et al., 2009) and to diagnose
weaknesses in hydrological models (e.g., Euser et al., 2013; Gupta et al., 2008; Vrugt & Sadegh, 2013).
Signatures can be computed using a wide range of data sources, but in practice they are most often com-
puted using discharge time series (e.g., Yilmaz et al., 2008) and referred to as streamflow indices or stream-
flow characteristics. Hydrological signatures are particularly useful to characterize and compare the
dynamics of large samples of catchments, for which observations are typically limited only to streamflow
(streamflow is measured, but evapotranspiration, snow water equivalent, tracer concentrations, or water
table level are usually not measured). In a sense, hydrological signatures are an indirect way to explore hydro-
logical processes, when those processes cannot be isolated because of the lack of measured data. This
enables in particular catchment classification (Sawicz et al., 2011) and provides insights into hydrological
behavior in places where little to no data are available apart from streamflow (Kuentz et al., 2017).
Hydrological signatures are also increasingly used for model calibration (Euser et al., 2013; Hrachowitz
et al., 2014) and model selection (Clark et al., 2011; McMillan et al., 2011; Schaefli, 2016).

A profusion of hydrological signatures already exists, and more are being developed. The diversity of hydro-
logic signatures enables the characterization of a wide variety of hydrological features, but at the same time,
makes selecting appropriate signatures challenging (McMillan et al., 2017). There are some general selection
criteria; for instance, it is desirable that (i) signatures can be related to hydrological processes to enable a bet-
ter understanding of particular aspects of catchment behavior, (ii) they are sensitive to processes occurring
over different periods (from the subdaily to the decadal time scale, e.g., Shamir et al., 2005), and (iii) they

ADDOR ET AL. 8792

Water Resources Research

RESEARCH ARTICLE
10.1029/2018WR022606

Key Points:
• We used machine learning and a

hydrological model to simulate 15
hydrological signatures over 600+
catchments in the United States

• The predictability of the signatures is
highly correlated with the
smoothness of their spatial pattern,
which we quantified using Moran’s I

• Poorly predicted signatures vary
abruptly in space, they are
particularly sensitive to streamflow
errors, and their links to catchment
attributes are elusive

Supporting Information:
• Supporting Information S1

Correspondence to:
N. Addor,
n.addor@uea.ac.uk

Citation:
Addor, N., Nearing, G., Prieto, C.,
Newman, A. J., Le Vine, N., & Clark, M. P.
(2018). A ranking of hydrological
signatures based on their predictability
in space. Water Resources Research, 54,
8792–8812. https://doi.org/10.1029/
2018WR022606

Received 17 JAN 2018
Accepted 21 AUG 2018
Accepted article online 4 SEP 2018
Published online 9 NOV 2018

©2018. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0002-6057-3930
http://orcid.org/0000-0001-7031-6770
http://orcid.org/0000-0002-6693-0396
http://orcid.org/0000-0001-8796-0861
http://orcid.org/0000-0002-1492-447X
http://orcid.org/0000-0002-2186-2625
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973
http://dx.doi.org/10.1029/2018WR022606
http://dx.doi.org/10.1029/2018WR022606
http://dx.doi.org/10.1029/2018WR022606
http://dx.doi.org/10.1029/2018WR022606
http://dx.doi.org/10.1029/2018WR022606
mailto:n.addor@uea.ac.uk
https://doi.org/10.1029/2018WR022606
https://doi.org/10.1029/2018WR022606
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2018WR022606&domain=pdf&date_stamp=2018-11-09


are not redundant (i.e., they do not share information content). Yet signature selection is essentially dealt with
on a case-by-case basis, different studies invariably use different signatures, and the same signatures may be
computed in different ways (e.g., the baseflow index). While it is normal that each study selects signatures to
meet its specific needs, there is a need to develop general guidance on the selection of hydrologic signatures.

Here we propose that signature selection can be informed by considering a key, yet usually overlooked,
aspect: the spatial predictability of signatures. Signatures in ungauged basins have been widely predicted
based on climatic and physiographic attributes (i.e., regionalized, see Hrachowitz et al., 2013) typically follow-
ing one of these three approaches: (i) by employing a statistical model using catchment attributes as predic-
tors (Beck et al., 2013, 2015; Kuentz et al., 2017; Lacey & Grayson, 1998; Nathan &McMahon, 1992; Yadav et al.,
2007), (ii) by transferring signatures from gauged catchments considered similar based on their attributes
(Burns, 1990; Holmes et al., 2002; Westerberg et al., 2016), or (iii) by running a hydrological model with para-
meters regionalized based on catchment attributes (Andréassian et al., 2006; He et al., 2011; Ragettli et al.,
2017; Sefton & Howarth, 1998; Wagener & Wheater, 2006; Young, 2006). Over the last decades, the scope
of regionalization studies expanded, and the number of signatures, catchment attributes, and basins
increased. Three of these studies (Beck et al., 2015; Kuentz et al., 2017; Westerberg et al., 2016) assess the
regionalization of several signatures over a large number of gauging stations (3,000 to 4,000 depending on
the signature, 1,366 and 43, respectively) in different regions (global, Europe and United Kingdom) and using
different techniques (neural network ensembles, multiple regression models and a weighted-pooling-group
approach). Despite these different setups, these three studies demonstrate that there are significant differ-
ences in the predictability of hydrological signatures. The number of signatures they have in common is mod-
est, but some signatures were considered by the three studies and interestingly, there is some consistency in
their ranking. In particular, the mean streamflow and high flow indices tend to the better predicted than low
flow indices and the baseflow index. This study aims to synthesize the factors leading to good and poor pre-
dictability for a wide range of signatures, to explore how the predictability can be improved, and to discuss
the implications of poor predictability for signature use in hydrological studies. The experimental setup was
designed to address three interrelated research questions:

1. How well can signatures be predicted using landscape characteristics? We used a machine learning algo-
rithm (random forests) to relate catchments attributes to hydrological signatures. To explore how the
interplay of landscape attribute shapes hydrological behavior, we quantified the relative influence of
the landscape attributes in the random forests (i.e., how strongly landscape attributes influence the pre-
dictions of the hydrological signatures). We leveraged the hydrometeorological times series and catch-
ment attributes of recently released and particularly exhaustive data set covering 671 basins in the
United States (the CAMELS [Catchment Attributes and MEteorology for Large-sample Studies] data set,
Addor et al., 2017b; Newman et al., 2015).

2. How well can signatures be simulated by a calibrated conceptual hydrological model? We ask whether
explicitly accounting for hydrological processes (instead of adopting a purely statistical, data-driven
approach) improves the signature predictions. There is a growing recognition of the utility of benchmarks
in hydrology (Best et al., 2015; Newman et al., 2017; Seibert, 2001; Seibert et al., 2018), we use these hydro-
logical simulations to evaluate the predictions of our random forests, keeping in mind that random forests
are significantly quicker to setup and run than calibrated hydrological models.

3. Why are some signatures better regionalized than others? It is known that the accuracy of the regionaliza-
tion varies from signature to signature, but it is unclear why this is the case. Here we rank the signatures
based on their predictability in space and explore whether their predictability is related to data uncer-
tainty and lack of process understanding.

The remainder of this paper is organized as follows: The data and methods are presented in section 2; the
ranking of signatures is presented in section 3; the reasons behind this ranking and implications for signature
use are discussed in section 4; conclusions and future research needs are presented in section 5.

2. Data and Methods
2.1. The CAMELS Data Set

All the data used in this study come from the CAMELS data set. The CAMELS data set covers 671 catch-
ments in the contiguous United States (CONUS) and consists of two types of data: daily time series of
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observed atmospheric forcing, observed discharge, and simulated discharge (Newman et al., 2014, 2015
referred to as N15 below) and catchment attributes selected to provide a quantitative description of land-
scape features likely to influence hydrological processes (Addor et al., 2017a, 2017b). CAMELS is a unique
combination of a large number of diverse catchments (671 U.S. catchments with long streamflow time ser-
ies, minimally impacted by human activities, and covering a wide range of hydroclimatic conditions), 15
hydrological signatures characterizing a wide range of hydrograph features, and 43 climatic and physio-
graphic attributes based on recent and well-documented data sets and computed in order to enable direct
basin comparisons (the same data sets were used for all the catchments, and the attributes were computed
over the same period). The hydrometeorological time series and catchment attributes are described in sec-
tions 2.2 and 2.3, respectively.

2.2. CAMELS Hydrometeorological Time Series

The hydrometeorological time series include both daily meteorological forcing and observed discharge
time series, as well as daily hydrological simulations. Precipitation and temperature at the catchment scale
were retrieved from the Daymet data set (Thornton et al., 2012). Potential evapotranspiration was esti-
mated based on Priestley and Taylor (1972). The hydrologic simulations were produced using the
Sacramento Soil Moisture Accounting model (Burnash et al., 1973) combined with the SNOW-17 snow
accumulation and ablation model (Anderson, 1973), with streamflow being routed using a unit-hydrograph
model. Hereafter this modeling setup is referred to as SAC. SAC was calibrated using the shuffled complex
evolution (SCE, Duan et al., 1992) global optimization routine, minimizing the root-mean-square error
(RMSE) of the discharge simulations. Simulations started on 1 October 1980 for the 598 basins (out of
671) for which discharge measurements started on or before that date. For the other basins, simulations
started on the first 1 October after the start of the discharge records. SAC was calibrated over the first
15 years of the simulation for each catchment, meaning that different periods were used for different
catchments. For each catchment, SCE was started from 10 different random seeds, which led to 10 opti-
mized parameter sets. Further details on the hydrometeorological time series are provided in Newman
et al. (2015).

The selection of SAC for this study was motivated by the availability of SAC simulations for the CAMELS catch-
ments. We do not claim that SAC is more adapted to these catchments than other hydrological models, and
we recognize that using RMSE as an objective function favors the simulation of specific signatures (such as
the mean and peak discharge). We think, however, that such a modeling setup constitutes a useful bench-
mark for the random forest predictions, since hydrological models of similar complexity and calibrated in a
similar way are widely used.

2.3. CAMELS Catchment Attributes

The landscape of each catchment was described using a wide range of attributes, which can be divided into
five classes:

1. topographic characteristics: features such as catchment area and mean elevation, extracted from the
United States Geological Survey (USGS) data base;

2. climatic indices: indices such as aridity and the frequency of high precipitation events, computed using
the Daymet (Thornton et al., 2012) daily time series extracted by Newman et al. (2015);

3. land cover characteristics: attributes such as the maximum leaf area index and the rooting depth, esti-
mated using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery;

4. soil characteristics: variables such as the soil depth and the sand fraction, extracted from the State Soil
Geographic Database (Miller & White, 1998) and from Pelletier et al. (2016);

5. geological characteristics: characteristics such as the dominant geology class and the subsurface perme-
ability, retrieved from Global Lithological Map (GLiM Hartmann & Moosdorf, 2012) and GLobal
HYdrogeology MaPS (GLHYMPS, Gleeson et al., 2014).

The complete list of catchment attributes, as well as details on the methods and data used to compute them,
is provided in Table 1. Note that not all of the CAMELS attributes were used. We excluded the following attri-
butes to avoid redundant information and clarify the result of the statistical analysis: the leaf area index dif-
ference and green vegetation fraction difference (both are highly correlated with the leaf area index
maximum), soil porosity and conductivity (both are highly correlated with the sand fraction because of their
estimation relying on sand fraction), and the second dominant geological class of the Global Lithological Map
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data set (as it is unavailable for 138 catchments, which are entirely covered by a single class). Further details
on the data and methods used to compute the catchment attributes and hydrological signatures are pro-
vided in Addor et al. (2017b).

2.4. Signature Regionalization Using Random Forests and Hydrological Modeling

To characterize the hydrological behavior of the catchments, we used 15 hydrological signatures com-
puted for the CAMELS data set. Those signatures were selected because they characterize different parts
of the hydrograph, and they are sensitive to processes occurring over different time scales. They are also
commonly employed in the literature, so we used this study as an opportunity to compare them. The sig-
natures we considered are described in Table 2. We computed them using the observed discharge and the
discharge simulated using the SCE parameter set leading to the lowest RMSE—we also performed the ana-
lysis using the mean of the 10 simulations (one per parameter set); the results did not change significantly.
We also predicted these signatures based on catchment attributes using random forests (section 2.5). We
evaluated the signatures simulated by calibrated SAC and predicted by random forests by computing the
fraction of variance (R2) of the observed signatures that they explain. The number of stations used for R2

computation varies slightly from signature to signature (see section 2.5) The number of catchments for
each signature is however always greater than 600. R2 is unitless, which enables the direct comparison
of different signatures. All the signatures were computed using daily discharge data scaled by the
catchment area.

2.5. Random Forests to Predict Hydrological Signatures Using Catchment Attributes

We used random forests to predict hydrological signatures using catchment attributes. Random forests are a
machine-learning algorithm relying on a large number of regression trees to produce an ensemble of predic-
tions. They have been successfully used in a various fields of geosciences, for instance, to predict hydrological
signatures (Booker & Woods, 2014; Snelder et al., 2009) and soil characteristics (Chaney et al., 2016; Hengl
et al., 2017). We provide a brief introduction to random forests in Appendix A. For more detailed information,
we refer the reader to Breiman (2001). We developed random forests in R (R Core Team, 2017) using the pack-
age randomForest (Liaw & Wiener, 2002). For an introduction to random forests using R, we recommend
James et al. (2013).

We selected random forests for the data mining of the CAMELS data set for the following reasons:

1. Random forests allow for multiple predictors and nonlinear relationships: It is common to use a single
characteristic (typically aridity or the baseflow index) to summarize hydrological behavior and differenti-
ate between catchments. Yet catchment behavior is never determined by a single attribute but instead
reflects the interplay of numerous attributes. Beck et al. (2015) explored streamflow characteristics for
thousands of catchments and concluded that “the individual relationships between catchment attributes
and Q characteristics were generally weak, suggesting the need for models incorporating multiple predic-
tors to estimate Q characteristics.” Random forests are well adapted for this task because they allow for
multiple predictors, and since they are constructed using a series of thresholds, they are more adapted
to capture the nonlinear relationships between attributes and hydrological signatures than classical multi-
ple linear regressions.

2. Random forests are not limited by our understanding of catchment behavior: Random forests are a flex-
ible statistical model, which is not constrained by any physical principles or assumptions on hydrological
processes. We see it as an advantage, as data exploration using random forest can potentially reveal rela-
tionships, which are not commonly acknowledged, although they can be explained a posteriori from a
physical perspective.

3. Reduced risk of data overfitting: Random forests are an ensemble of regression trees, which gives them
more robustness than individual regression trees. Randomness is introduced when they are con-
structed so that their predictions are not overly influenced by specific catchments or predictors
(Appendix A).

4. Transparency and interpretability: When producing multivariable predictions, it is important to be able to
assess which predictors have the greatest influence on the response variables. The interpretation of the
influence of each predictor in the random forest using IncMSE is straightforward (IncMSE is the relative
increase in the mean squared error of the prediction when the values of the predictor of interest are
shuffled; see Appendix A).
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5. Good performance in prediction mode and reliable uncertainty estimates: Random forests and similar
machine learning techniques (such as neural network, e.g., Beck et al., 2015) can deliver accurate predic-
tions for little computation effort (growing each forest takes a few seconds). Further, each random forest
relies on an ensemble of trees that can be used to estimate the uncertainty of the prediction (those uncer-
tainty estimates can be very reliable; see Figure A1d).

We argue that these advantages justify the use of random forests in our study. It is however fair to acknowl-
edge that random forests also have drawbacks. Critically, they are highly parameterized, as each regression
tree uses on the order of 10 thresholds. In this study, we used 500 trees to predict each of the 15 hydrological
signatures, which leads to about 75,000 parameters (thresholds on predictors). This number of parameter is
impractical to analyze on an individual basis, but the relative influence of the predictors on each signature
can be quantified using the IncMSE (see Appendix A).

The random forest predictions were evaluated using a tenfold cross-validation: A random forest was trained
using 90% of the basins, and its predictions were evaluated using the remaining basins; this procedure was
then repeated nine additional times in order to cover all the basins. The results showed hereafter are for the
validation phase, not for the training phase. Random forests require all the predictors to be available for each
catchment. This restricted our analysis to the 643 catchments for which all the attributes could be quantified.
For the slope of the flow duration curve, catchments for which a third or more of the streamflow values were
equal to 0 (causing the signature to be undefined) had to be excluded, reducing the number of catchments
to 617.

To assess the value of each class of attributes for the prediction of hydrological signatures, we produced the
random forests for five predictor groups (PGs). We started using only the climatic indices (PG1), then added
the topographic indices (PG2), the soil characteristics (PG3), the land cover characteristics (PG4), and finally

Table 2
Hydrological Signatures - Computed Over the Period 1989/10/01 to 2009/09/30

Attribute Description Unit Data source References

q_mean Mean daily discharge mm/day N15—USGS data
runoff_ratio Runoff ratio (ratio of mean daily discharge to

mean daily precipitation)
— N15—USGS data Eq. 2 in Sawicz et al. (2011)

stream_elas Streamflow precipitation elasticity (sensitivity
of streamflow to changes in precipitation at
the annual time scale)

— N15—USGS data Eq. 7 in Sankarasubramanian et al. (2001),
the last element being P=Q not Q=P

slope_fdc Slope of the flow duration curve (between
the log-transformed 33rd and 66th
streamflow percentiles)

— N15—USGS data Eq. 3 in Sawicz et al. (2011)

baseflow_index Baseflow index (ratio of mean daily baseflow
to mean daily discharge, hydrograph separation
performed using Ladson et al., 2013 digital filter)

— N15—USGS data Ladson et al. (2013)

hfd_mean Mean half-flow date (date on which the
cumulative discharge since October first reaches
half of the annual discharge)

day of year N15—USGS data Court (1962)

Q5 5% Flow quantile (low flow) mm/day N15—USGS data
Q95 95% Flow quantile (high flow) mm/day N15—USGS data
high_q_freq Frequency of high-flow days (>9 times the

median daily flow)
days/year N15—USGS data Clausen and Biggs (2000), Table 2

in Westerberg and McMillan (2015)
high_q_dur Average duration of high-flow events

(number of consecutive days >9 times the
median daily flow)

days N15—USGS data Clausen and Biggs (2000), Table 2
in Westerberg and McMillan (2015)

low_q_freq Frequency of low-flow days (<0.2 times the
mean daily flow)

days/year N15—USGS data Olden and Poff (2003), Table 2
in Westerberg and McMillan (2015)

low_q_dur Average duration of low-flow events
(number of consecutive days <0.2 times the
mean daily flow)

days N15—USGS data Olden and Poff (2003), Table 2
in Westerberg and McMillan (2015)

zero_q_freq Frequency of days with Q = 0 mm/day % N15—USGS data

Note. USGS = United States Geological Survey; N15 = Newman et al. (2015).
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the geology characteristics (PG5). We started with climatic indices because the data required for their com-
putation are comparatively easy to access: Many atmospheric forcing data sets are available; they are well
documented and evaluated, and often, catchment-averaged time series can be obtained from previous stu-
dies. Further, climatic indices have been shown to be good predictors of streamflow indices (Beck et al., 2015;
Kuentz et al., 2017). In contrast, soil, land cover, and geological characteristics are usually less readily available
at the catchment scale, and their predictive power tends to be weaker. Using these five PGs for the signatures
predictions is a way to assess how far we can get using climatic indices only and to estimate the added value
of the other attribute classes. We consider the predictions based on climatic data only as a baseline, that is,
what we expect the signature to be solely based on climate. When the observed signature significantly
departs from this baseline, one explanation is that the signature is significantly influenced by other attributes
that were not considered (e.g., soil attributes). Progressively adding attributes and monitoring if they signifi-
cantly improve the predictions enables us to assess the value of different data sets for signature regionaliza-
tion and can provide insights into which hydrological processes drive the signatures.

3. Results

The presentation of the results is organized as follows. We first present spatial maps for a subset of commonly
used signatures (mean discharge, slope of the flow duration curve, and the baseflow index), and then we pre-
sent statistics for the full set of 15 signatures. Finally, we show the influence of individual catchment attri-
butes on random forest predictions of different signatures.

3.1. Simulation, Prediction, and Spatial Smoothness of Hydrological Signatures—Introduction

Figure 1 illustrates predictions of three example hydrologic signatures (mean annual discharge, slope of
the flow duration curve, and the baseflow index) from both random forests and the SAC model. Mean dis-
charge can be predicted very well by a random forest based on catchment descriptors (R2 = 0.92) and can
be also simulated remarkably well by the conceptual hydrological model SAC calibrated by minimizing the
RSME (R2 = 0.98). In contrast, the performance of both the random forest and SAC is poor when it comes
to the slope of the flow duration curve (R2 = 0.31 and R2 = 0.18, respectively). The baseflow index is pre-
dicted (by the random forest) and simulated (by SAC) better than the slope of the flow duration curve but
worse than the mean annual discharge (R2 = 0.65 and R2 = 0.84, respectively). Note that for these three
signatures, the performance of the random forest and of SAC are related: Both methods perform well
for the mean annual discharge, reasonably well for the baseflow index and poorly for the slope of the flow
duration curve.

Interestingly, the performance of both the random forest and SAC is also related to the spatial smoothness of
the hydrological signatures. Note how the mean discharge field varies smoothly across space, whereas the
slope of the flow duration curve exhibits large changes over short distances (first row of Figure 1). To quantify
the spatial smoothness, we usedMoran’s I to measure the spatial autocorrelation (Appendix B). I enables us to
quantify features that are clear visually and to compare signatures based on the spatial smoothness of their
field. The spatial smoothness is the highest for the mean discharge (I = 0.51), intermediate for the baseflow
index (I = 0.16) and the lowest for the slope of the flow duration curve (I = 0.09). This ranking is the same as
the ranking based on the performance of the random forest and SAC. In other words, Figure 1 suggests that
signatures with lower spatial smoothness may be harder to relate to catchment characteristics and to simu-
late using our modeling setup.

3.2. Simulation, Prediction, and Spatial Smoothness of Hydrological Signatures—Evaluation for
15 Signatures

Figure 2 shows that there is a strong three-way relationship between how well signatures can be pre-
dicted based on catchment attributes, how well they can be simulated by SAC, and the smoothness of
their spatial variability over the CONUS. The signatures in Figure 2 are ordered from left to right based
on how well they can be predicted using a random forest. Like for Figure 1, we compared the observed
and predicted signatures from the random forest by computing the coefficient of determination R2, shown
in light blue in Figure 2. R2 varies from 0.92 (mean annual discharge) to 0.29 (no flow frequency). The per-
formance of the random forest is compared to that of SAC, shown in dark blue in Figure 2. It is clear that
hydrological signatures that can be accurately predicted from catchment attributes by the random forest
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can also be well simulated by SAC. Indeed, the performance of the random forest and that of SAC, each
described by 15 R2 values, are highly correlated (ρ = 0.90). Several signatures we considered were also
predicted by Beck et al. (2015) using characteristics from thousands of catchments from across the
world and neural networks. They also find that some signatures are better predicted than others, and
interestingly, it appears that if they had ranked signatures based on the R2 they report in their Table 5,
the ranking would have been very similar to what we propose (with the mean annual flow and half-
flow date being best predicted, followed by the high-flow quantile, and finally the low-flow quantile
and the baseflow index). Note that the hydrological simulations stem from a single model structure
calibrated using a single objective function, and the results for each signature may be different for
another modeling setup.

Figure 1. Comparison of the observed, predicted, and simulated (first, second, and third rows, respectively) mean annual discharge, baseflow index, and slope of the
flow duration curve (first, second, and third columns, respectively). The spatial autocorrelation quantified using Moran’s I is indicated for the maps of top row. The
last row combines and compares the data from the three maps of the same column and indicates the coefficient of determination R2 for the random forest
predictions and SAC simulations computed over all the catchments.
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The random forest predictions of the mean annual discharge, mean winter discharge, mean half-flow date,
Q95 and runoff ratio are all very good, with R2 > 0.8. They are almost as good as the simulations produced
by the SAC, although SAC was calibrated for each basin individually while the same random forest is used
for the entire country. The mean summer discharge, baseflow index and Q5 are satisfactory predicted
(R2 > 0.6) but are better captured by SAC. For the other signatures, the predictions of the random forests
are worse. SAC performs particularly poorly for the mean duration of low-flow events, the slope of the flow
duration curve and the no-flow frequency, reflecting that using a general metric such as RMSE can deliver a
good overall performance according this to specific metric but does not provide enough constrains to capture
specific parts of the hydrograph defining catchment behavior (De Boer-Euser et al., 2017). For these metrics,
the random forests perform better than SAC but can only explain a limited fraction of the observed variability.

Furthermore, the spatial smoothness measured by Moran’s I (shown in green in Figure 2; see Figure S1 for
the Moran’s I computed for each signature) is almost systematically greater for signatures that can be
accurately predicted by the random forest and well simulated by SAC. In fact, the correlation between
the performance of the random forest and spatial smoothness is strong (ρ = 0.90). This suggests that ran-
dom forests fail to capture sudden (small-scale) changes in hydrological signatures over short distances.
The spatial smoothness also appears to be a good predictor of how well hydrological signatures are cap-
tured by SAC (ρ = 0.78). The relationship between spatial smoothness and predictability is discussed in
section 4.2.

3.3. Strong and Weak Predictors of Hydrological Signatures

Recall from Figures 1 and 2 that hydrological signatures well predicted by random forests tend to have a
smooth pattern. This can be explained by the strength of the climate signal: climatic indices have a smooth
pattern over the CONUS, and when they are highly correlated to signatures, those signatures inherit their
smooth pattern. This is clear in Figure 3: The spatial patterns of climate indices shown in the first row (origin-
ally selected by Berghuijs et al., 2014) are similar to the signatures in the second row. The maps of mean
annual discharge and the runoff ratio show very similar patterns to that of the aridity map, while the half-flow
date principally reflects the precipitation seasonality and the fraction of precipitation falling as snow. In
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Figure 2. Illustration of the strong three-way relationship between how well signatures can be predicted based on catch-
ment attributes using a random forest (R2 between the observed and predicted signatures, light blue), how well they can
be simulated by SAC (R2 between the observed and simulated signatures, dark blue), and the smoothness of their
spatial variability over the CONUS (Moran’s I, green). The correlations between these variables are indicated in the upper-
right corner. The signatures are ordered from left to right based on how well they can be predicted using a random forest
based on all the predictors (PG5).
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contrast, the maps in the bottom row of poorly predicted signatures show a noisier spatial pattern and lack a
clear relationship to the climatic indices shown in the first row.

To better understand why some signatures were better predicted than others, we explored which predictors
were preferentially used by the random forest. To this end, we consider the increase in the mean square error
(IncMSE) of the prediction when the value for each predictor were shuffled. IncMSE is indicated by the size of
the dots in Figure 4. The color of the dots indicates the Spearman rank correlation coefficient between each
attribute and signature. Most of the influential predictors in the random forest are climatic variables. If we
restrict attention to the 14 pairs of catchment attributes-hydrological signatures with IncMSE >20%, 11 of
them involve a climatic variable (aridity alone accounts for six pairs). In this respect, the climatic indices exert
a stronger influence on hydrological signatures than the topographic, soil, land cover, and geological
attributes combined.

We found that climatic indices have by far the greatest influence on selected hydrological signatures,
while the attributes characterizing the land cover, soil, geology, and topography have a much weaker
influence. The lack of dark colors in the corresponding columns of Figure 4 indicate that those attributes,
when considered individually, are not strongly correlated to hydrological signatures. Even when those
attributes are combined with other attributes using a random forest, their influence, beyond the influence
that is already captured indirectly by climate indices, is generally insignificant, as shown by the lack of the
large circles in the same columns. The relative strength of climatic variables when compared to other

Figure 3. Comparison of the spatial patterns in climatic indices (top row), well-predicted hydrological signatures (middle row) and poorly predicated hydrological
signatures (bottom row). We used the same color scheme for all the maps to underscore similarities between them. Note that units and break values vary. The
break values were chosen so that each color class encompasses about one sixth of the total number of catchments (except for the no flow frequency).
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catchment attributes has the following implication. When a hydrological signature is strongly linked to one
or several climate indices, it is well predicted, and conversely, weak links lead to poor predictions. Hence,
climatic attributes strongly condition how well hydrological signatures can be predicted by the random
forest. Some signatures like the slope of the flow duration curve are not well constrained by climate
variables, and the random forest is not able to extract relevant information from the predictors we
are using.

Figure 5 summarizes the value of the five classes of attributes for the regionalization of signatures using ran-
dom forests. For most signatures, the predictions using climatic indices only (PG1) are only marginally poorer
than the predictions using all the attributes (PG5), meaning that the value of topographic, soil, land cover,
and geological attributes is low. For well-predicted signatures (left part of Figure 5), using climatic indices
only already delivers good predictions, and for poorly predicted signatures (right part of Figure 5), adding
nonclimatic attributes (PG2 to PG5) once climatic indices have been considered is not enough to significantly
improve the predictions. The baseflow index is the signature benefiting most from the addition of noncli-
matic attributes, yet none of these attribute classes contribute as much to the predictions as the
climatic attributes.

Figure 4. Comparison of the influence of each catchment attributes (x axis) on each hydrological signature (HS, y axis) in
the random forest. Their influence of each attribute is measured using IncMSE and is proportional to the size of the dots.
The signatures are ordered vertically based on how well they are predicted by random forests (same order as for Figure 2).
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4. Discussion
4.1. How to Improve the Predictability of Signatures Not Directly Related to Climatic Indices?

The key influence of climatic conditions on hydrological behavior is not new. Aridity is commonly regarded as
the main driver of water partitioning at the land surface (Budyko, 1974; Hrachowitz et al., 2013). The influence
of climate on hydrological regimes (Berghuijs et al., 2014) and the water balance (Padrón et al., 2017) is well
acknowledged, yet it is debated whether this influence is direct, via the water balance, or indirect, via the
long-term influence of climate on the landscape (Harman & Troch, 2014). Importantly, climatic variables do
not only drive current but probably also trends induced by climate change (Rice et al., 2016). Figure 4 reflects
the control aridity exerts on the water balance, yet it also reveals that several hydrological variables, which
reflect key aspects of hydrological dynamics, are poorly predicted by aridity alone, or even by a combination
of several climatic indices. For instance, random forests were unable to clearly relate climate indices to the
precipitation-streamflow elasticity, the slope of the flow duration curve or the no-flow frequency. In other
words, the number of hydrological signatures that can be well predicted based on climatic indices alone
is limited.

Interestingly, signatures for which climatic indices are weak predictors do not have other strong predictors. In
particular, the land cover, soil, and geology are, for most variables, poor predictors; their added value is low
(Figure 5). These results are consistent with those of Beck et al. (2015), who predicted a range of hydrological
signatures using catchment attributes and reported that climate indices exerted the strongest influence,
while predictors related to soils and geology were less important. Merz and Blöschl (2009) similarly showed
that event runoff coefficients in 459 Austrian catchments were barely influenced by land cover, soil types, and
geology andwere better explained by climate-related indices. In contrast, when exploring and classifying 116
near-natural catchments in the United Kingdom, Chiverton et al. (2015) found that geology, the depth to
gleyed layer in soils, and the percentage of arable land were good discriminants. Likewise, Singh et al.
(2014) found geology and land use do matter when choosing donor catchments, but their influence depend
on the region.

We are not concluding that nonclimatic drivers are irrelevant but rather that it is challenging to capture their
influence on hydrological signatures at the catchment scale. The influence of land cover, soil, and geology
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Figure 5. Exploration of the predictive value added by each class of attributes. The signatures are ordered based on their
predictability using all the predictors (PG5, same as in Figure 2). The light blue bars show the same information as the light
blue bars in Figure 2.
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attributes can be missed by the random forests for several reasons. First, there is currently a lack of data
uncertainty estimates in large-sample hydrological data sets, which comes in part from the lack of uncer-
tainty estimates in standard products (exceptions being SoilGrids [Hengl et al., 2017] and POLARIS
[Chaney et al., 2016], currently not used for CAMELS). Data quality has been brought up to explain
why soil and geological data are not good predictors of hydrological signatures (Beck et al., 2015). It is
indeed likely that issues related to data collection (see discussion in Addor et al., 2017b) limit the predic-
tive power of soil data. Accounting for the uncertainty of soil characteristics may for instance make the
influence of soils on water dynamics clearer and improve the predictions. This highlights the urgent need
for uncertainty estimates to be provided with time series (e.g., streamflow observations, see section 4.1)
and landscape attributes (e.g., land cover and geological variables) and to be included in large-sample
hydrological data sets. Second, the scale on which vegetation, soil, and geological processes occur is
several orders of magnitude smaller than what our finest data sets or models can capture. Key properties
are difficult to upscale in a way that preserves their influence on water dynamics, which stresses the impor-
tance of upscaling methods capture landscape properties across scales (Rakovec et al., 2016; Samaniego
et al., 2010). Note that in CAMELS all attributes are basin averages, and the heterogeneity within each
catchment is not considered. Third, we have not included predictors that have been shown to influence
catchment behavior. For instance, we are not considering attributes characterizing the network or the
shape of the catchment, because their computation and validation for the CAMELS catchment is still
ongoing. Finally, predictions could be improved by training the random forests over smaller regions
(Kuentz et al., 2017; Nearing et al., 2016), but this would be done at the expense of the generality of the
statistical model.

4.2. Poorly Predicted Signatures Are Particularly Variable in Space. Is there a Link?

Using a large sample of catchment enabled us to consider the smoothness of the spatial field of signatures
and to quantify it usingMoran’s I. We showed that signatures with a noisy pattern tend to be poorly predicted
by random forests and poorly simulated by SAC. We are not aware of other studies quantifying the spatial
smoothens of signatures and showing that it is related to their predictability. As discussed above, signatures
with a smooth pattern tend to be highly correlated with climatic indices (Figure 3). We propose that signature
with a noisy pattern tend to (i) be particularly affected by errors in observed signatures and (ii) result from
competing processes.

In this study, we do not explicitly characterize errors in discharge time series resulting from rating curve
uncertainties nor how those uncertainties propagate into hydrological signatures. These aspects were how-
ever investigated by Westerberg et al. (2016) for 43 U.K. catchments. They report that some signatures, such
as the mean discharge, are far less sensitive to rating curve uncertainty than others, such as the slope of the
flow duration curve. Similarly, low-flow signatures are more sensitive to data errors than high-flow signatures.
Here we show that the signatures they identified as sensitive to rating curve uncertainty tend to vary abruptly
over short distances (low Moran’s I, Figure 2). This suggests that part of the spatial variability is noise, that is,
stems from variations caused by the data collection and processing (formulation of the signature) and do not
reflect differences in the hydrological behavior of the catchments. These errors in streamflow measurements
impact the evaluation of the SAC simulations and the random forest predictions, which contributes to explain
why both methods encounter similar difficulties in capturing the observed signatures and why the ranking of
signatures using each method is so similar (Figure 2).

It is noteworthy that signatures varying abruptly in space have been shown to be difficult to regionalize.
Westerberg et al. (2016) relied on a weighted-pooling-group approach, in which each signature was esti-
mated using the weighted mean of its value in similar catchments. Their regionalization performs better
for high flows than for low flows, and better for the mean discharge than for the slope of the flow duration
curve (their Figure 8). This is not only consistent with the sensitivity of the signatures to rating curve uncer-
tainties they determined but also the spatial smoothness of their field. Signatures with a smooth field would
be well regionalized when selecting the closest catchments as donors. It is likely that the sudden variations
over space for some signatures, which we argue make regionalization difficult, come in part from discharge
uncertainties, as discussed above.

Noisy spatial patterns are not only caused by errors in streamflowmeasurements. An indication of that, is that
signatures computed using SAC simulations can also vary significantly over short distances (see, e.g., Figure 1k),
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although they are free of streamflowmeasurement errors. This suggests that instead of being driven by a lim-
ited number of first order processes (e.g., water balance prescribed by aridity or snow accumulation/melt),
the signature is the result of a myriad of processes interacting in complex ways and difficult to disentangle
(think about the range of processes influencing the slope of the flow duration curve). These interactions
can lead to sudden changes in space, and it is not surprising that they are not satisfactorily captured by a ran-
dom forest not accounting for any hydrological process or by a hydrological model calibrated by optimizing
an objective function that does not account for the internal consistency of the system. As a consequence of
this diversity of processes, it is difficult to establish clear links between landscape attributes and
hydrological signatures.

4.3. Many Signatures Are Poorly Predictable. How Well Do we Understand Them?

Part of our motivation to assess the spatial predictability of signatures comes from the idea that “the ability to
accurately predict behavior is a severe test of the adequacy of knowledge in any subject” put forward by
Crawford and Linsley (1966). Our study showed that many signatures commonly used in hydrological appli-
cations are poorly predictable based on catchment attributes. This makes it difficult to explain why these sig-
natures vary in space and makes us wonder how well we understand them. To give one example, the
precipitation-discharge elasticity is commonly used to anticipate the future impacts of climate change on dis-
charge, yet even recent research recognizes that “it is difficult to identify physical reasons for the spatial var-
iations in elasticity values” (Andréassian et al., 2016). We believe that a better understanding of the drivers of
elasticity would improve the reliability of the projections and would be useful to assess whether climate and
hydrological models correctly capture the impacts of changes in precipitation on streamflow (Vano
et al., 2015).

Another way to approach the lack of predictability of signatures, and the implications for signature interpre-
tation, is to consider the noise in maps of signatures. For instance, the slope of the flow duration curve is
poorly predictable (Figure 2) and is also known to be particularly sensitive to streamflow uncertainties
(Westerberg et al., 2016). A crucial question is to which extent the abrupt changes between two neighboring
catchments (see e.g., Figure 1i) truly reflect hydrological differences between these catchments and to which
extent they are artifacts resulting from data errors (Kennard et al., 2011). Although the slope of the flow dura-
tion curve is commonly used in catchment classification (Sawicz et al., 2011) and model evaluation studies
(Euser et al., 2013), its discriminatory power is debated (McMillan et al., 2017), and it is our impression that
the community would benefit from a better understanding of what it reflects.

We are not advocating against the use of the poorly predictable signatures. In contrast, we think they deserve
more attention. Low-flow metrics (frequency of low flow, persistence of low flow, and slope of the flow dura-
tion curve) are not well captured by our setup, but it is possible that some studies may choose to focus on
these signatures specifically (e.g., if their particular focus was on ecology or if their aim was to improve
rainfall-runoff structures by focusing on simulation deficiencies). Our study illustrates that these signatures
are less constrained by landscape characteristics than other signatures and that they are more challenging
to explain, so there is a need for a better understanding of the processes driving them. These signatures have
also been shown to bemore sensitive to streamflow uncertainty, so for progress to bemade, these uncertain-
ties have to be characterized and accounted for.

5. Conclusions and Outlook

We systematically explored how landscape attributes influence (or not) hydrological signatures. We
described the landscape of 600+ catchments in the CONUS using five classes of attributes (topography, cli-
matology, land cover, soil, and geology) and summarized catchment behavior using 15 hydrological signa-
tures. Random forests allowed us to combine these landscape characteristics in nonlinear ways and to
quantitatively explore their relative influence on hydrological signatures. We found that climatic attributes
are by far the most influential predictors for signatures that can be well predicted based on catchment attri-
butes (such as the mean annual discharge or the half-flow date). Several other signatures, such as the slope of
the flow duration curve or the streamflow-precipitation elasticity were poorly predicted based on catchments
attributes, and in particular, could not be satisfactorily predicted by climatic indices alone. Overall, we found
the predictive power of land cover, soil and geology attributes to be low.
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Using a large sample of catchments enabled us to explore the spatial patterns of hydrological signatures over
the CONUS and to characterize their spatial smoothness (autocorrelation) using Moran’s I. We found that spa-
tial smoothness is a simple yet powerful way to gain insights into the drivers of hydrological signatures.
Signatures with smooth spatial variations are typically those with a high spatial predictability and a strong
dependence on climatic conditions. In contrast, when signatures exhibit abrupt changes over short distances,
those changes usually cannot be related to catchment attributes using random forests and they are also
poorly captured by hydrological simulations from a conceptual model. These sudden variations make signa-
ture regionalization difficult if neighboring catchments are used as donors.

In summary, we found strong relationships between (i) our ability to capture hydrological signatures using
simulations from a conceptual hydrological model (SAC), (ii) our ability to predict them using catchment char-
acteristics as predictors in a machine learning algorithm (random forests), (iii) the spatial smoothness of the
maps of these signatures, and (iv) the strength of the climate influence on those signatures. The strong con-
sistency between these four aspects enabled us to rank hydrological signatures. Signatures poorly related to
catchment attributes are also poorly captured by SAC, their spatial pattern is noisy, and based on results from
other studies, they are particularly susceptible to discharge uncertainties and difficult to regionalize. We pro-
pose that these poorly-predicted signatures deserve more attention, as signatures directly related to the
water balance are already well explained by climatic indices. This implies an improved understanding of
the drivers of poorly-predicted signatures, a better exploitation of the value of nonclimatic attributes (such
as soil, land cover, and geology), and a more systematic characterization of the uncertainties in both signa-
tures and catchment attributes.

Appendix A: An Introduction to Regression Trees and Random Forests

We chose to use a machine learning tool (random forests, Breiman, 2001) to explore how the interplay
between landscape attributes shapes hydrological behavior. Machine learning algorithms are gaining in
popularity as the quantity and diversity of data to process increase. Machine learning algorithms have been
shown to be powerful prediction techniques, including in hydrologic studies (e.g., Beck et al., 2015;
Gudmundsson & Seneviratne, 2013). Here we present a brief introduction to random forests, which may be
useful for the interpretation of our results.

A random forest relies on an ensemble of regression trees to relate predictors (here catchment attributes) to a
response variable (here a hydrological signature). In a regression tree, the prediction is made based on a ser-
ies of threshold-based conditions on the predictors. The prediction scheme is initiated at the top of the tree
(in the example shown in Figure A1a, the question at the top split is whether the mean elevation is greater
than 1,151 m). The prediction is then refined using other thresholds on other (and sometimes the same) pre-
dictors at lower levels of the tree. The influence of each predictor on the response variable can be estimated
based on its position in the regression tree: predictors appearing higher in the tree have a higher
separating/predictive power (Figure A1a indicates that mean elevation is a strong predictor of the baseflow
index, likely because it conditions the formation of a snow pack, which increases the baseflow index). Note
that regression trees are typically not symmetrical (different variables are used in different parts of the tree).

Regression trees are grown following a recursive binary splitting approach. The procedure starts at the top of
the tree and at each split, one variable and one threshold are selected in order to minimize the MSE of the
prediction. The prediction is the mean value of the predictor for all the elements (catchments) falling in each
class. As a consequence, the predictions of a decision tree are discrete values (one per terminal node, such as
0.4801 for the left-most terminal node of the tree shown in Figure A1a, which leads to the horizontally aligned
back points in Figure A1b). Trees are grown and then pruned by minimizing the cross-validated MSE in order
to reduce the risk of overfitting. While regression trees are intuitive to interpret and can deal with nonlinear
relationships between variables, they typically lack robustness. We found regression trees produced by ran-
domly excluding half of the catchments to be quite different in the predictive variables they selected and in
the position of these variables in the tree.

To overcome this limitation, we used random forests instead of single regression trees. Random forests are an
ensemble of regression trees (here we used 500 trees per forest). The robustness of the forest comes from the
way each tree is grown. At each split, a subsample of predictors is randomly excluded and the prediction
must be done using solely the remaining predictors. This implies that strong predictors, which otherwise
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might have been used for this specific split, will be excluded. This introduces differences between the trees,
making the prediction more robust than if all the trees were similar. The number of trees N and the number of
predictors P excluded at each split are variables defined by the user. We found that variations around the
default value for P (a third of the total number of predictors) has little influence on our predictions, and
that N = 500 is adequate because it leads to better predictions than small forests, but more trees did not
improve the predictions.

Since it is not practical to inspect each tree to determine which variables are used for the prediction, the rela-
tive influence of the predictors of a random forest is measured in an automated way. Once the forest has
been grown, each predictor is considered individually and its values are shuffled (their statistical distribution
remains the same but their order is now random). The relative drop in prediction accuracy (expressed in per-
centage) indicates how influential this predictor is (large increases in MSE indicate influential predictors).
Figure A1c shows that for the prediction of the baseflow by a random forest, the fraction of precipitation fall-
ing as snow is the most influential predictor.

An advantage of growing a random forest is that the ensemble of trees can be used to characterize the uncer-
tainty in the prediction. We used QQ plots to assess the reliability of the ensembles and found that for all the
hydrological signatures except the fraction of no flow, the ensembles are remarkably reliable (Figure A1d).
Although this is not a feature we use in this study, we consider important to stress this finding, as it can be

Figure A1. (a) Example of a pruned regression tree trained to predict the baseflow index (see Table 1 for variable names).
(b) Comparison of baseflow index observations to predictions from the regression tree shown in (a) and from a random
forest, whose most influential predictors are shown in (c). (c) Assessment of the relative influence of the random forest
variables for the prediction of the baseflow index, the predictors are ordered from the most to least influential (top to
bottom). (d) QQ plot for the 15 hydrological variables, lines close to the diagonal indicate reliable ensembles; the only line
significantly departing from the diagonal is the fraction of no flow; see Laio and Tamea (2007) or Renard et al. (2010) for
more details on how to interpret this plot.
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relevant in other contexts to characterize uncertainties in regionalized hydrological signatures. Finally, note
that because the deterministic prediction of each random forest is the mean prediction of its regression trees,
the predictions are continuous values. This reduces the granularity of the predictions when compared to
regression trees, which only predict a limited number of discrete values (Figure A1b).

Appendix B: Moran’s I as a Measure of Spatial Smoothness

When a variable is plotted on a map for numerous catchments, spatial patterns can appear and help with the
formulation of starting hydrological hypotheses. A fundamental advantage of large-sample hydrology over
small-sample hydrology is that, when maps are produced using hundreds of catchments, the spatial patterns
are clearer than if the maps were based on a handful of.

In this study, we explore and quantify regional variability in hydrological signatures using ameasure of spatial
smoothness. Addor et al. (2017b) observed that maps of climate indices generally exhibit smoother patterns
than maps of hydrological signatures, whose patterns tend to be noisier (with potentially strong differences
between adjacent catchments). Similar differences in spatial variability can also be observed among hydro-
logical signatures: Some signatures vary gradually across the landscape, while others exhibit abrupt changes
over short distances. This is already apparent in earlier studies. Figure 2 of Sawicz et al. (2011) indicates for
instance that the runoff ratio over the Eastern United States varies more smoothly in space than the slope
of the flow duration curve.

To quantify the smoothness of spatial patterns in maps of hydrological signatures, we measure the spatial
autocorrelation using Moran’s I (Legendre & Legendre, 1998; Moran, 1950):

I ¼
1
W ∑Ni¼1∑

N
j¼1wi;j xi � xð Þ xj � x

� �

1
N ∑

N
i¼1 xi � xð Þ2 ;

where x is the variable of interest with N elements (here N is the number of catchments), x is its mean,w is the
weight associated with each pair of catchments (here w = 1/d, where d is the distance along a great circle
between the two catchments, the diagonal elements of the matrix w being set to 0), and W is the sum of
all the weights. Spatial correlation can be related to temporal autocorrelation: If all the pairs of data points
close in space (in time) have a similar value, then the field is spatially (temporally) autocorrelated.
Differences (or similarities) between points far apart have a comparatively small influence on I because of
the distance-based weighting system selected. I values close to 0 indicate no spatial correlation. The higher
the value I, the greater the spatial autocorrelation and the smother the spatial patterns (compare Figures 1a,
1e, and 1i for an example). Note that in contrast to correlation coefficients, |I| can exceed 1 (de Jong et al.,
1984).

Note that the random forests in this study do not directly account for spatial structure, since we do not use
the basins spatial coordinates as predictors. In other words, the spatial proximity of the basins cannot be used
by the random forests and nor can the spatial smoothness of any field.
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