Structural Correlations in Jahn-Teller Systems

of Mn³⁺ and Cu²⁺: Unraveling Local Structures

through Spectroscopic Techniques

Marina T. Candela^a, Enrique Jara^b, Fernando Aguado^b, Rafael Valiente^a, Fernando

Rodríguez^{b,*}

^aApplied Physics Department, Facultad de Ciencias, University of Cantabria, 39005

Santander, Spain

^bMALTA Consolider Team, Earth Science and Condensed Matter Physics Department

(DCITIMAC), Facultad de Ciencias, University of Cantabria, 39005 Santander, Spain.

* Corresponding author: Fernando Rodríguez

E-mail: rodriguf@unican.es

S1

Supporting Information Content

- **1.** Electronic *d*-orbital structure of Cu²⁺ in KZnF₃:Cu²⁺ and K₂ZnF₄:Cu²⁺ from optical spectroscopy. Page S3
- **2.** Electron Paramagnetic Resonance of (CH₃NH₃)₂CdCl₄: Cu²⁺: temperature dependence of the gyromagnetic principal values. Page S4.
- **3.** Electron Paramagnetic Resonance of (C₃H₇NH₃)₂CdCl₄: Cu²⁺: temperature dependence of the gyromagnetic principal values. Page S5.
- **4.** Electron Paramagnetic Resonance of $(C_2H_5NH_3)_2CdCl_4$: Cu^{2+} : temperature dependence of the gyromagnetic principal values and ferromagnetic resonance. Page S6.
- **5.** Jahn-Teller and crystal anisotropy (stress) effects on the local structure of MX_6 (M: Cu²⁺, Mn³⁺; X: F⁻, Cl⁻) in ABX_3 :M perovskite-type structures. Page S7.

References. Pages S8-S9.

1. Electronic *d*-orbital structure of Cu^{2+} in $KZnF_3:Cu^{2+}$ and $K_2ZnF_4:Cu^{2+}$ from optical spectroscopy.

Figure S1

(a) Low-temperature emission and excitation spectra of KZnF3:Cu²⁺ and K₂ZnF4:Cu²⁺ showing a double-band structure associated mainly with the splitting of the parent octahedral e_g (red) and t_{2g} (blue) orbitals, Δ_e and Δ_t caused by the low-symmetry JT distortion of the CuF₆ polyhedron. Note that the splitting in excitation corresponds to the splitting of the octahedral ${}^2T_{2g}$ excited state at the equilibrium geometry of the 2E_g ground state distorted by the Jahn-Teller effect ($E\otimes e$) and crystal anisotropy (in K₂ZnF₄): Δ_t^{g5} . In the emission spectra, the observed double band structure corresponds to transitions from the ${}^2T_{2g}$ excited state to the octahedral 2E_g ground state split by the low-symmetry crystal field at the equilibrium geometry of the excited state ($E\otimes t$): Δ_e^{es} . It must be noted that observed emission splitting in emission, named Δ_e^{es} , corresponds to the tetragonal splitting of the octahedral e_g orbitals at the excited-state equilibrium geometry. It is different from the splitting $\Delta_e = \Delta_e^{gs}$ observed in absorption as it does really correspond to the e_g splitting at the ground-state equilibrium geometry. Indeed, Δ_e^{gs} is missed ue to experimental difficulties and limitations of signal detection in the long wavelength spectral range.

(b) Q_{θ} -mode configuration energy diagram illustrating the ground and excited states splittings responsible for the emission and excitation band structure. Note that Δ_{e}^{es} is slightly smaller than Δ_{t}^{gs} in spite of $\Delta_{e}^{gs} > \Delta_{t}^{gs}$ ($\Delta_{e}^{gs} = 3.1 \, \Delta_{t}^{gs}$ from Fig. 4 of the manuscript).

Adapted from Figure 1 of reference² with permission of Elsevier Publishing, 1989.

2. Electron Paramagnetic Resonance of (CH₃NH₃)₂CdCl₄: Cu²⁺: temperature dependence of the gyromagnetic principal values.

Figure S2
EPR spectra of Cu²⁺ introduced as a substitutional impurity in the layer perovskite (CH₃NH₃)₂CdCl₄.

- (a) The plot shows the Cu^{2+} concentration dependence of single crystals of $(CH_3NH_3)_2(Cd_{1-x}Cu_x)Cl_4$ for x=0.0001, 0.01, and 1 (pure copper crystal) at 175 K (single crystal) and 110 K (powder). Note that the spectra for the pure copper sample were obtained in single crystal and powder for comparison purposes. Besides the characteristic exchange averaged EPR spectra for x=1, the characteristic signal of isolated Cu^{2+} become visible on decreasing the Cu^{2+} concentration. Only Cu^{2+} monomers are observed for x=0.0001, while a mixture of monomers and aggregated phases are observed for intermediate concentrations. The lower the Cu^{2+} concentration the higher monomer to aggregate ratio. The monomer EPR spectrum (x=0.0001) with the magnetic field applied perpendicular to the a,b plane of the layered perovskite is shown at 175 K (Tetragonal $(P4_2/ncm)$ and 15 K (Monoclinic $P2_1/b$).³⁻⁴ The local gyromagnetic values $g_{z'}$ and $g_{y'}$ are indicated. The in-plane elongated Cu-Cl bond is along z, while the two short Cu-Cl bonds are along y (nearly in a,b plane) and x (nearly perpendicular to plane, or parallel to c).
- **(b)** Schematic representation of the Cu^{2+} local structure in pure $(CH_3NH_3)_2CuCl_4$ (left) and $(CH_3NH_3)_2CdCl_4:Cu^{2+}$ (right). Note that the impurity system resembles the antiferrodistortive structure exhibited by the pure crystal but monomer displays a dynamical Jahn-Teller distortion among these two locally elongated coordination geometries.
- (c) Variation of the principal gyromagnetic values of Cu^{2+} monomer with temperature. It must be noted that in the time scale of GHz radiation (10^{-9} s) the equilibrium geometry of Cu^{2+} corresponds to a rhombic local coordination geometry with the two nearly in-plane elongated Cu-Cl bonds with $g_z = 2.33$, and the two short Cu-Cl bonds associated with $g_y = 2.12$ (nearly in plane larger bond) and $g_x = 2.055$ (nearly perpendicular to the crystal layer). The g values change with temperature according to a dynamically-induced geometrical exchange between the two in-plane elongated geometries. The in-plane g_y values evolve up to collapse to an average value $g_{z,y} = 2.24$, while g_x varies from 2.055 to 2.09 at high temperature, reflecting the actual nearly tetragonal symmetry at Cd^{2+} site. Interestingly, the variation of the principal g-values with the temperature, which are mainly governed by the energy barrier associated with the two in-plane elongated dynamical configurations, is affected by the structural phase transition sequence of the host crystal $(CH_3NH_3)_2CdCl_4$. This sequence favors the trend to a dynamically averaged configuration towards higher temperature phases. The energy barrier tends to decrease along the phase transition sequence: Monoclininc $(P2_1/b) 160$ K— Tetragonal $(P6_2/ncm) 283$ K Orthorhombic (Abma). $^{3-6}$

3. Electron Paramagnetic Resonance of (C₃H₇NH₃)₂CdCl₄:Cu²⁺: temperature dependence of the gyromagnetic principal values.

Figure S3 (a) EPR spectra and (b) gyromagnetic values of Cu^{2+} introduced as a substitutional impurity in the layer perovskite $(C_3H_7NH_3)_2CdCl_4$ as a function of temperature.

EPR spectra of diluted $(C_3H_7NH_3)_2CdCl_4:Cu^{2+}$ taken with the magnetic field perpendicular to the a,b plane of the layered perovskite (Orthorhombic Pbca at 120 K)⁷ at different temperatures between 120 K and 320 K. Note that the low temperature spectrum exhibits the hyperfine and superhyperfine structures characteristic of a Cu^{2+} monomer hexacoordinated by six Cl^- with two nearly in-plane elongated Cu-Cl bonds ($g_z = 2.33$) and two short Cu-Cl bonds, one nearly in-plane ($g_y = 2.12$) and the other one nearly perpendicular to plane (along c). Interestingly, the evolution of the EPR spectra with temperature renders a nice example of a 2D dynamical Jahn-Teller effect between the two equivalent in-plane elongated Cu^{2+} geometries which are stabilized when Cu^{2+} replaces Cd^{2+} at the compressed Cd^{2+} site (the four long Cd-Cl bonds lie in the a,b plane while the two sort Cd-Cl bonds correspond to terminal ligands aligned perpendicular to it—nearly along c—). $^{7-10}$

Similar to the isomorphous $(C_3H_7NH_3)_2CdCl_4$, the evolution of the g values with temperature reflects the 2D dynamical Jahn-Teller effect tending to converge to an average g -value when the thermally activated exchange rate is shorter than the time scale of the microwave radiation (X-band). Nevertheless, the energy barrier associated with the dynamical exchange for Cu^{2+} in $(C_3H_7NH_3)_2CdCl_4$ is smaller than those attained in $(C_3H_7NH_3)_2CdCl_4$ where averaged spectra are observed above 283 K. In present $(C_3H_7NH_3)_2CdCl_4$: we do also observe an abrupt reduction of g_z and a concomitant jump of g_y at the structural phase transition of the host: Orthorhombic (Pbca) – 158 K – Orthorhombic incommensurate with $q \approx 0.42b^*$ (Abma), 7,11,12 and a complete collapse at the structural phase transition to the Orthorhombic commensurate (Abma) phase at 183 K. 11,12 Given that transition temperatures in $(CH_3NH_3)_2CdCl_4$ are lower than corresponding transition temperatures in $(CH_3NH_3)_2CdCl_4$ we conclude that energy barriers for dynamical exchange are reduced in the propylammonium crystal with respect to methylammonium one.

4. Electron Paramagnetic Resonance of (C₂H₃NH₃)₂CdCl₄: Cu²: temperature dependence of the gyromagnetic principal values and ferromagnetic resonance

Figure S4 Structural characterization of Cu^{2+} introduced as a substitutional impurity in the layer perovskite $C_2H_5NH_3CdCl_4$ by means of EPR.

EPR spectra of diluted $(C_2H_5NH_3)_2CdCl_4:Cu^{2+}$ taken with the magnetic field perpendicular to the a,b plane of the layered perovskite (Monoclinic $B2_1/\alpha$)¹³ at different temperatures between 5 K and 35 K (a). This Monoclinic phase is stable up to 114 K.13-16 Note that similar to (CH₃NH₃)₂CdCl₄:Cu²⁺ and $(C_3H_7NH_3)_2CdCl_4:Cu^{2+}$, the low temperature spectrum of $(C_2H_5NH_3)_2CdCl_4:Cu^{2+}$ exhibits the hyperfine and superhyperfine structures characteristic of a Cu²⁺ monomer hexacoordinated by six Cl⁻ with two nearly inplane elongated Cu-Cl bonds ($g_z = 2.33$) and two short Cu-Cl bonds, one nearly in-plane ($g_v = 2.12$) and the other one nearly perpendicular to the crystal layer. Besides the 2D dynamical Jahn-Teller effect at higher temperatures, a relative intense single EPR peak is observed below 10 K (b). We associate this peak with a ferromagnetic resonance coming from marginal small (C₂H₅NH₃)₂CuCl₄ aggregates. This interpretation is based on the fact that this kind of aggregates are formed upon increasing the Cu2+ concentration, the exchange-narrowed gyromagnetic ratio (the ferromagnetic resonance magnetic field) increases (decreases) with decreasing temperature below the Curie temperature, which is $T_{\rm F}$ = 10.2 K for bulk $(C_2H_5NH_3)_2CuCl_4$. The line intensity falls down at the Curie temperature. The variation of I(T) suggest that the actual Curie temperature might be a few degrees higher than bulk probably due to the small size of aggregates or the slightly lower exchange interactions provoked by the larger (C₂H₅NH₃)₂CdCl₄ lattice in comparison to (C₂H₅NH₃)₂CuCl₄.

5. Jahn-Teller and crystal anisotropy (stress) effects on the local structure of MX_6 (M: Cu²⁺, Mn³⁺; X: F-, Cl-) in ABX_3 : M perovskite-type structures.

Figure S5 (a) Effect of crystal anisotropy represented through an effective axial stress in the ground-state energy in $(Q_{\theta},Q_{\epsilon})$ -space given by the $E\otimes e$ Jahn-Teller theory. $^{10,18\text{-}20}$ (b) $(Q_{\theta},Q_{\epsilon})$ -space ground-state energy surface. Note the evolution from elongated-to-compressed coordination geometry upon increasing the axial stress. The collapse into the compressed geometry takes place at $S_{\text{crit}} = 9\beta$. The parameter β (> 0 for elongated geometry minima) contains anharmonic and second-order JT interactions yielding warping of the Mexicanhat-type energy surface in $(Q_{\theta},Q_{\epsilon})$ -space. 2β corresponds to the energy barrier for jumping among energy minima at S=0. (c) Structures illustrate the $\text{CuF}_6^{4^-}$ equilibrium geometries predicted by the perturbed JT model. $^{18\text{-}20}$ The stress parameter is introduced in the Jahn-Teller model as $S=\pm A_e$ ρ_0 , with A_e and ρ_0 being the electron-lattice coupling constant associated with the $E\otimes e$ Jahn-Teller effect and the low-symmetry coordinate at the host site with plus or minus depending on whether the type of tetragonal distortion is compressed (compressive stress) or elongated (tensile stress), respectively. 20

SI References

- [1] Dubicki, L.; Riley, M. J.; Krausz, E. R. Electronic Structure of the Copper(II) Ion Doped in Cubic KZnF₃. *J. Chem. Phys.* **1994**, *101*, 1930.
- [2] Dubicki, L.; Krausz, E. R.; Riley, M. J.; Yamada, I. Structured d-d Fluorescence from CuF₆+ Doped in Cubic and Tetragonal Perovskites. *Chem. Phys. Lett.* **1989**, *157* (4), 315–320.
- [3] Valiente, R.; Rodriguez, F. Polarized Electronic Spectra of the (CH₃NH₃)₂Cd₁₋₃Mn₃Cl₄ (x = 0–1) Perovskite Layer Doped with Cu²⁺: Study of the Cl⁻ to Cu²⁺ Charge Transfer Intensity Enhancement along the Series. *J. Phys. Chem. Sol.* **1996**, *57*, 571–587.
- [4] Chapuis, G.; Arend, H.; Kind, R. X-Ray Study of the Structural First-order Phase Transition (Cmca-P4/ncm) in (CH₃NH₃)₂CdCl₄. *Phys. Stat. Sol.* **1975**, *31*, 449–454.
- [5] Mokhlisse, R.; Couzi, M. .; Lassegues, J. C. Lattice Dynamics and Structural Phase Transitions in Perovskite-Type Layer Compounds. I. The Low-Frequency Inelastic Neutron Scattering and Raman Spectra of the Ordered Monoclinic Phase of (CH₃NH₃)₂MnCl₄ and (CH₃NH₃)₂CdCl₄. *J. Phys. C Solid State Phys.* **1983**, *16*, 1353–1366.
- [6] Mokhlisse, R.; Couzi, M.; Loyance, P. L. Lattice Dynamics and Structural Phase Transitions in Perovskite-Type Layer Compounds. I. The analysis of the temperature-dependent Raman spectra of (CH₃NH₃)₂CdCl₄. *J. Phys. C Solid State Phys.* **1983**, *16*, 1367–1384.
- [7] Ecolivet, C.; Kusto, W. Brillouin scattering in (C₃H₇NH₃)₂CdCl₄. Ferroelectrics **1990**, 125, 285–290.
- [8] Valiente, R.; Rodríguez, F.; Moreno, M.; Lezama, L. Vibronic Interactions: Jahn-Teller Effect in Crystals and Molecules; NATO Science Series, 2001; pp 221–228.
- [9] Hitchman, M. A. The Influence of Vibronic Coupling on the Spectroscopic Properties and Stereochemistry of Simple 4- and 6- Coordinate Copper (II] Complexes. *Comments Inorg. Chem.* **1994**, *15* (3–4), 197–254.
- [10] Rodríguez, F. Unveiling the Local Structure of Cu²+ Ions from D-Orbital Splitting. Application to K₂ZnF₄:Cu²+ and KZnF₃:Cu²+. *Inorg. Chem.* **2017**, *56* (4), 2029–2036.
- [11] Chapuis, G. Study of the first-order phase transition of (C₃H₇NH₃)₂CdCl₄ at 183 K by X-ray diffraction of the two phases, *Acta Cryst. B* **1978**, 34,1506–1512.
- [12] Doudin, B.; Chapuis, G. Study of the Modulated Phase of (C₃H₇NH₃)₂CdCl₄ by X-ray diffraction, *Acta Cryst. B* **1988**, 44,495-502.
- [13] Hagemann, H.; Bill, H. Raman investigation on structural phase transitions in (C₂H₂NH₃)₂CdCl₄, *Chem Phys. Lett.* **1982**, 93, 582-585.
- [14] Mohamed, C.B.; Karoui, K.; Saidi, S.; Guidara, K.; Rhaiem, A.B. Electrical properties, phase transitions and conduction mechanisms of the [C₂H₃NH₃)₂CdCl₄ compound. *Physica B* **2014**, *451*, 87–95.

- [15] Yadav, R.; Swain, D.; Kundu, P.P.; Nair, H.S.; Narayana, C.; Elizabeth, S. Dielectric and Raman investigations of structural phase transitions in (C₂H₃NH₃)₂CdCl₄. *Phys. Chem. Phys.* **2015**, *17*, 12207–12214.
- [16] Lefi, R.; Naser, F.B.; Guermazi, H. Structural, optical properties and characterization of (C₂H₃NH₃)₂CdCl₄, (C₂H₃NH₃)₂CuCl₄ and (C₂H₃NH₃)₂Cd₀₃Cu₀₃Cl₄ compounds. *J. Alloys Compd.* **2017**, 696, 1244–1254.
- [17] De Jongh, L. J.; Botterman, A. C.; De Boer, F. R.; Miedema, A. R. Transition Temperature of the Two-Dimensional Heisenberg Ferromagnet with S=1/2. J. Appl. Phys. **1960**, 40, 1363–1365.
- [18] Aguado, F.; Rodríguez, F.; Valiente, R.; Señas, A.; Goncharenko, I. Three-dimensional magnetic ordering in the Rb₂CuCl₄ layer perovskite—structural correlations. *J. Phys.: Condens. Matter* **2004**, 16, 1927–1938.
- [19] Rodríguez, F.; Aguado, F. Correlations between Structure and Optical Properties in Jahn–Teller Mn³ Fluorides: A Study of TlMnF₄ and NaMnF₄ under Pressure. *J. Chem. Phys.* **2003**, *120*, 10867–10875.
- [20] Aguado, F.; Rodríguez, F.; Valiente, R.; Itié, J. P.; Munsch, P. Pressure-Induced Jahn-Teller Suppression in Rb₂CuCl₄(H₂O)₂: Pseudo-Jahn-Teller Effect. *Phys. Rev. B* **2004**, *70*, 214104 (9 pages).