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Abstract

Torus networks of moderate degree have been widely
used in the supercomputer industry. Tori are superb
when used for executing applications that require
near-neighbor communications. Nevertheless, they
are not so good when dealing with global commu-
nications. Hence, typical 3D implementations have
evolved to 5D networks, among other reasons, to re-
duce network distances. Most of these big systems
are mixed-radix tori, which are not the best option
for minimizing distances and efficiently using network
resources. This paper is focused on improving the
topological properties of this kind of networks.

By using integral matrices to deal with Cayley
graphs over Abelian groups, we have been able to
propose and analyze a family of high-dimensional
mesh-based interconnection networks. As they are
built over n-dimensional grids that induce a regular
tiling of space, these topologies have been denoted
lattice graphs. Higher dimensional networks can be
composed over these graphs by means of a lift oper-
ation, which is also introduced in the paper. Easy
network partitioning and minimal routing algorithm
are also provided for these topologies based on this
new network operation. Later we focus on cubic crys-
tal lattices for modeling symmetric 3D networks and
to show how lattice graphs can help in the design of
twisted interconnection networks. In all cases, the

networks obtained are better, in topological terms,
than their standard tori counterparts. Finally, some
practical issues such as implementability and prelim-
inary performance evaluations have been addressed
at the end of this work.

1 Introduction and Related

Work

Interconnection networks are critical subsystems in
modern supercomputers. Powerful supercomputers
such as Cray XK7, IBM BluGene/Q and K comput-
ers use moderate degree networks. The Cray employs
a 3D torus whereas BlueGene uses a 5D one [14] [12].
The K computer employs small 3D meshes (that can
also be seen as 4 x 3 tori) connected by a bigger 3D
torus [1]. All these topologies are mixed-radix tori, as
they have dimensions of different sizes. For example,
a configuration for a Cray Jaguar can be 25 x 32 x 16
and a BlueGene configuration 16 x 16 x 16 x 12 x 2.
The 88,128-node K computer installed at Riken, is
compatible with a 17 x 18 x 24 torus connecting 3D
meshes of 12 nodes. Mixed-radix tori are not edge-
symmetric, which can lead to unbalanced use of their
network links. However, these big systems are typ-
ically divided into smaller partitions which enables
them to be used by multiple users. Hence, providing
symmetry, at least, in typical network partitions is


http://dx.doi.org/10.1109/TPDS.2014.2355827

an advisable design goal.

Tori are not well suited to support global and re-
mote communications. Their relatively long paths
among nodes, especially their diameter and average
distance, incur high latencies and limited through-
put. Thus, reducing topological distances in the net-
work should be pursued. The way to achieve net-
work distance reductions is by changing the topol-
ogy. Topological changes depend on the router de-
gree. If the router degree must be kept within moder-
ate values, that is about 12, it would be interesting to
preserve the good topological properties of tori such
as grid locality, easy partitioning and simple rout-
ing. Hence, practicable topological changes should
not be radical. A typical technique employed to this
end has been twisting the wrap-around links of tori
[3, 28] 4, 22]. Interestingly, this twisting also allows
for edge-symmetric networks of sizes for which their
corresponding tori are asymmetric [7, [9]. Twisting
2D tori is nearly as old as the history of supercom-
puters. The Illiac IV developed in 1971 already em-
ployed a twisted network. Many works dealing with
twisted 2D tori have been published since then. How-
ever, when scaling dimensions, the problem of finding
a good twisting scheme becomes harder. Very few so-
lutions are known for 3D, with the one presented in
[7] being a practicable example. Exploring the effect
of twists in higher dimensions remains, to our knowl-
edge, an unexplored domain. A target of this paper
is to improve current topologies for moderate degree
interconnection networks. By twisting tori links, dis-
tance properties are improved and graph symmetry
can be enforced. Both topological parameters have
impact on performance, as demonstrated in the Sec-
tion VI. If the router degree can be increased, a radi-
cally different solution for reducing network diameter
can be used in high-degree hierarchical networks [17].
These direct networks employing high-degree routers
are beyond the scope of this paper.

It has been recognized for a long time that Cayley
graphs are well suited to interconnection networks.
Actually, the widely used rings and tori are Cay-
ley graphs. Nowadays, rings are common in on-chip
networks [26] and, as stated previously, tori domi-
nate high-end supercomputing. In [I8], Fiol intro-
duced multidimensional circulant graphs as a new al-

gebraic representation for Cayley graphs over Abelian
groups. This representation has proved its suitability
for studying and characterizing 2D mesh-based net-
works in [9]. In this paper, lattice networks are intro-
duced as multidimensional circulants with orthonor-
mal adjacencies, that is, multidimensional meshes
plus additional wrap-around links that complete their
regular adjacency. Therefore, this work is devoted to
the study of high dimensional twisted tori topologies
by means of lattice graphs. Special emphasis on the
study of network upgrading and sub-network decom-
positions is done. Later, special attention will be
devoted to symmetric 3D networks, which were com-
pletely characterized in [I0]. Thus, the main contri-
butions of this paper are:

e The proposal of lattice graphs as good models
for interconnection twisted-tori-like networks.

e The introduction of the projecting operation
of lattice networks to study embedded sub-
networks.

e The definition of the lift and the common lift
operations for building lattice networks of higher
degree that embed other ones.

e A generic routing algorithm for lattice networks
that comes from the projecting operation.

e A complete study of a subfamily of 3D symmet-
ric networks, i.e. cubic crystal graphs.

o A first approach to practical issues such as imple-
mentability and a preliminary performance eval-
uation of these networks, which includes both
topological models and empirical simulations.

The remainder of this paper is organized as fol-
lows. Section [2] defines lattice graphs. In Section
the concepts of graph lift, common lift and projec-
tion are given and some network examples are pro-
vided. Section [4] presents minimal routing algorithms
for lattice networks. Section [ focuses on 3D net-
works, describes symmetric lattice graphs and consid-
ers the particular family of the cubic crystal graphs.
Then, the two previous methods for scaling lattice
networks to higher dimensions are applied to crystal



networks and some examples are presented. Section[f]
discusses implementability and performance issues of
cubic crystal networks. Finally, Section [7] concludes
the paper summarizing its main findings.

2 Lattice Graphs

In this section we introduce lattice graphs, which will
be used to model interconnection networks of any fi-
nite dimension. The lattice graph is not a new con-
cept; in fact, it has different uses. In its most com-
mon use, which is also considered in this paper, is a
graph built over an n-dimensional grid that induces
a regular tiling of the space. In [I8], multidimen-
sional circulants were defined as lattice graphs but
for any set of adjacencies (not only the orthonor-
mal adjacencies leading to the grids considered in this
work), which a priori seemed to be a wider family of
graphs. However, it can be proved that any multidi-
mensional circulant can be transformed into a lattice
graph. Hence, the study presented in this section is
devoted, in fact, to the family of Cayley graphs over
finite Abelian groups [10].

Lattice graphs are defined over the integer lattice
Z". Hence, their nodes are labelled by means of
n-dimensional (column) integral vectors. A lattice
graph can be intuitively seen as a multidimensional
grid with additional wrap-around links between op-
posite faces that complete its regular adjacency. Be-
fore proceeding with their formal definition, first we
introduce some notation.

Notation 1. The following notation will be used
throughout the article:

e Lower case letters denote integers: a, b, ...

Bold font denotes integer column vectors: v, w,

Capitals correspond to integral matrices: M, P,

e; denotes the vector with a 1 in its i-th compo-
nent and 0 otherwise.

To define the finite set of nodes of these graphs
and their wrap-around links, a modulo function us-
ing a square integer matrix will be used. Hence, con-
gruences modulo matrices are introduced in the next
definition.

Definition 2. [18] Let M € Z™*" be a non-singular

square matriz of dimension n. Two vectors v,w €

Z" are congruent modulo M if and only if we have
u1

U2
€ Z™ such that:

Up,
V—W=umj+ usms +---+u,m, = Mu

where m; denotes the j-th column of M. We will
denote this congruence as v =w (mod M) and the
congruence class of v by (v (mod M)).

The set of nodes of a lattice graph will be the ele-
ments of the quotient group
Z"/MZ" ={v (mod M) |veZ"}
generated by the equivalence relation induced by M.
As was proved in [I8], Z"/MZ™ has |det(M)| ele-
ments. Now, we can proceed with a formal definition
of a lattice graph.

Definition 3. Given a square non-singular integral
matric M € Z"*", we define the lattice graph gener-
ated by M as G(M), where:

i) The vertex set is Z"/MZ™ = {v (mod M) | v €
YASS

it) Two nodes v and w are adjacent if and only if
v —w = +e; (mod M) for somei=1,...,n.

From here onwards, all matrices will be consid-
ered to be non-singular, unless the contrary is stated.
Note that, since Z™/MZ"™ has | det(M )| elements, this
will be the number of nodes of G(M). Moreover, since
any vertex v is adjacent to v £e; (mod M), the lat-
tice graph G(M) is, in generaﬂ regular of degree 2n,

!Unless e; = +e; (mod M) or 2e; = 0 (mod M) for some
i,j €{1,...,n}.



that is, any node has 2n different neighbours. Next
we show that the family of lattice graphs contains
tori of any dimension.

Definition 4. The n-dimensional torus graph of
sides ay,...,an, denoted by T(aq,...,a,) is defined
as a graph with vertices x € Z" such that 0 < x; < a;.
Two vertices x and 'y are adjacent if and only if they
differ in exactly one coordinate, let us say i, for which
z; =y; £1 (mod a;).

Theorem 5. The torus graph T(ai,..
morphic to the lattice graph G(diag(ai,...,an)),
where diag(ay,...,a,) denotes the square diagonal
matriz with diagonal equal to ay, ..., ay,.

Q) 18 1S0-

Proof. Clearly the vertex space of both graphs is the
same. In the following we check that adjacencies are
preserved. If x is connected to y in the torus then
it holds that y — x = (y; — x;)e; Then for some in-
teger k, y —x = (£1 + ka;)e; = *e; + kae; =
+e; + diag(a,...,an)ke;. Hence y — x = +e;
(mod diag(as,...,an)). O

Example 6. Let us consider the circulant graph
C17(1,3,7).  This graph has as set of nodes the
group Zi7, and every node n is adjacent to the other
siz nodes n+1,4+3,+7 (mod 17). As it was shown
in [18] every circulant graph is a multidimensional
graph. Hence, this graph is the lattice graph gener-
ated by matriz

—_

7
0
0

o = W
= O

3 Projections and Lifts of Lat-
tice Graphs

In this section, the concepts of projection and lift of
a lattice graph will be stated. Projecting a lattice
graph allows the study of the different lattice graphs
of smaller dimensions that are embedded on it, while
lifting a lattice graph will be used for increasing its
dimension. In this aim, we next recall some known
results from [I8] about right-equivalent matrices.

Definition 7. M is right equivalent to My, which
1s denoted by My = Ms, if and only if there exists a
unitary matric P € 2Z"*™ such that: M, = MsyP.

As was proved in [18], if M; = Ms then the graphs
G(M;y) and G(Ms) are isomorphic. Moreover, swap-
ping two rows and changing the sign of one row also
preserve isomorphism.

Now, performing Gaussian elimination by columns
in a matrix is a right-equivalent operation. There-
fore, after one step of Gaussian elimination in the
generating matrix of a lattice graph gives isomorphic
graphs. The resulting matrix would be:

(B c
w=(i )

where B € Z" 7=l is a matrix of smaller di-
mension, ¢ € Z" ! is a column vector and a is a
positive integer. As a consequence, we obtain that
| det(M)| = | det(B)|a, that is, the number of nodes
of G(M) can be expressed in terms of G(B) and
the integer a. Moreover, the lattice graph G(B) is
isomorphic to the subgraph of G(M) generated by
{te1,tes,...,+e,_1}, which allows us to state the
following definition.

Definition 8. Let M € Z™*"™ be non-singular and
G(M) be its lattice graph. Let us consider M =
B ¢
0
will say that a is the side of G(M) and G(B) its pro-
jection over e,. Moreover, we will call G(M) a lift

of G(B).

In particular, any lattice graph can be considered
to be generated by its unique Hermite matrix, which
may be convenient as Examples and attempt
to show. Before stating the examples, we recall the
Hermite normal form of a matrix.

such that a is a positive integer. Then, we

Definition 9. A matriz H is said to be in Hermite
normal form if it is upper triangular, has positive di-
agonal and each H; ; with j > i lies in a complete set
of residues modulo H; ;.

Definitions [§] and [9] allow us to consider a help-
ful graphical visualization of any lattice graph that



will also be used for routing in Section [@ First, lat-
tice graphs and their subgraphs can be seen as n-
dimensional spaces whose dimensions are sized by the
elements in the principal diagonal of M. Each column
vector in M represents a graph dimension, signaling
the point in the space at which a new copy of the
tile induced by M is located; this is important as col-
umn vectors dictate the pattern of the wrap-around
connections of each dimension.

Moreover, from the cardinal equality |G(M)| =
|G(B)|a, the lattice graph G(M) can be seen as com-
posed of a disjoint copies of its projection G(B). One
or several parallel cycles connect these disjoint copies
completing the adjacency pattern. The length of
these cycles can be computed as ord(e;,), which is
the order of the element e,, in the group Z"/MZ".
According to [I8], the order of any element x can be
computed as

dlx) — det (M)
ord(X) = < et (M), ged(det (MM 1))

Note that the second ged (greatest common divisor)
in the fraction corresponds to the ged of the elements
of a vector. The number of vertices of each cycle lying

in each copy of G(B) can be calculated as the length
ord(ey)

a

of the cycle over the side of the graph, that is

Example 10. Let us consider the rectangular
twisted torus of size 2a X a and twist a, denoted as
RTT(a) in [7]. A graphical representation of RT'T (4)
can be seen in Figure |1l This graph is generated by

2a

0
seen as a mesh of 2ax a (h11 X haga). In the previous
representation, wrap-around links in ey (first) dimen-
sion conserve their horizontality since ha 1 = 0; wrap-
around links in es (second) dimension do not con-
serve their verticality but suffer a twist of a columns
since hi 2 = a. According to Deﬁm’tion@ the projec-
tion over ex of RTT(a) is a cycle of 2a nodes. As
the side of RTT (a) is a, it will have a disjoint cycles
of 2a nodes. As ord(ez) (the element representing a
Jump in ey dimension) is 2a, the graph will have a
parallel cycles of length 2a in that dimension. Fach
of these a cycles contains two vertices of each projec-
tion.

the matriz H = . Using H, the graph can be

@
,_

Figure 1: Two perpendicular cycles of length 8 in the
RTT(4).

Example 11. Let us now consider the lattice graph

s
4 0 0
G(M) with M = [0 4 2. Note that M is in
0 0 4
Hermite form. G(M) can be seen as a 4 x 4 x 4 cubic
grid. Three sets of wrap-around links, each one con-
necting opposite faces, have to be added to the grid-
based cube. Wrap-around links in e1 always remain
horizontal by construction, as imposed by the n — 1
zeros in the first column vector of any Hermite ma-
triz. Wrap-around links in the es dimension remain
vertical in this graph because my o = 0 but, in general,
they can undergo only a twist over the e, dimension
of mi2 units. Finally, wrap-around links in the e
dimension can undergo twists over both e; and ey di-
mensions. In the graph of this example, no twist is
applied in e3 over e; because mi 3 =0 and a twist of
2 units is applied over the ey dimension as ma 3 = 2.
As can be seen in Figure [3, the projection of G(M)
is G (é 2 , a 2D torus T(4,4). Thus, the graph is
composed of 4 disjoint copies of its projection, each of
them connected by a cycle of length 8, as represented
in the figure. Note that for every vertex in the graph
there will be a similar cycle with the same pattern as
the one represented in the figure. The cycle intersects
in two vertices with each copy of the projection. For
the sake of the clarity, only one cycle between copies

g <3 g) has been represented.



Figure 2: The cycle (e3) joining the disjoint copies of
the projection.

Note that we can project over any e;, simply by
swapping rows ¢ and n (which gives an isomorphic
graph) and then, project over e,. Moreover, as we
will see later, symmetries will make irrelevant over
which dimension we project, so we will consider e,
by default. The resulting projection can again be
projected over another vector, which results in a pro-
jection over a plane of the lattice graph. Clearly, pro-
jecting over a pair of vectors {e;,e;} can be done in
any order, since projecting first over e; and then over
e; results in the same graph as projecting first over
e; and then over e;. Following the same idea, we can
project over several dimensions iteratively. There-
fore, we will call the result of projecting iteratively
over the vectors in the set {e;,,...,e; } the projec-
tion of G(M) over the set. In this case we will call it
an r-dimensional projection which turns into a lattice
graph generated by a (n —r) X (n — r) matrix.

Now, we consider a new way of lifting lattice
graphs. In this new operation, given two lattice
graphs we will look for another one which has them
as projections but minimizing the resulting degree.

Definition 12. The lattice graph G(M) is a common
lift of G(M1) and G(Ms) if both can be obtained as
projections of G(M).

Remark 13. There are several ways of obtaining dif-
ferent common lifts of two given lattice graphs. A
straightforward one is to consider the lattice graph

G(M, @ M) generated by the direct sum of the matri-
ces. As we state next, this option leads to the Carte-
sian product of the two given lattice graphs.

Lemma 14. G(M; ® Ms) is a common lift of G(M7)
and G(Ms) and G(M1® M) = G(M;) x G(Ms), which
denotes the Cartesian product of G(My) and G(Ms).

As we will see next, there exist other common lifts
that obtain G(M;) and G(Ms) as projections but gen-
erating a lattice graph of smaller dimension. Note
that this would be beneficial for cost aspects, such as
minimizing the degree of the network routers, and to
provide a good relation between the size of the graph
and its projections.

Theorem 15. Given two lattice graphs G(My) and
G(Ms), we consider the lattice graph G(M,BMs) that
1s obtained as follows: Let My = Hy and My = Hy
with Hy and Hs in Hermite normal form. Let C
be the submatrix with the first common columns of

H, and Hy. Then H; = (g @f‘) and Hy =
(g RBB>, where A and B are square matrices.
Then
C Ra Rp
MiBM,=(0 A 0
0 o0 B

It is obtained that:
i) G(My B M) is a common lift of G(M;) and
G(Mz)

i) max(dim(G(My)), dim(G(Ms))) < dim(G (M, B
My)) < dim(G(My © My))

Proof. The first item is obtained by con-
struction. For the second one, consider
max(dim(G(My)),dim(G(Mz))) < dim(G(M; B

—dim(G(C)) <

My)) = dim(G(Mn)) + dim(G(Mz))
m Q(M1 EBMQ)) O

dim(G(My)) + dim(G(My)) = di

A~ —

Note that when the matrices M; and M have no
common columuns, both G(M; B M) and G(M; ® M)
coincide. Moreover, by construction, the operation
G(M7H M>) provides a lift that minimizes its dimen-
sion. Although in upcoming sections several exam-
ples will be considered, the next one tries to clarify
this definition.



Example 16. Let us consider My = (QOQ 20a> and

My = 20a “ Clearly, G(My) is the 2D-torus of
side 2a and G(Ms) the RTT. Then if we consider
20 0 a
M1 H M2 == 0 2a 0
0 0 a
graph of degree 6 having both graphs as its projections.

, the resulting is a lattice

4 Routing in Lattice Graphs

Most interconnection networks use routing tables but
their size can compromise system scalability. In this
section routing algorithms for lattice graphs are pre-
sented. In this way, algorithmic routing can be used
to avoid the need of tables. If tables are to be
used, the algorithms presented can be employed to
fill them.

Routing in circulant graphs was first related to the
Closest Vector Problem (CVP) in [6] for the I;-norm.
Later, this fact was used to optimize a routing algo-
rithm for circulants of degree four in [20]. Following
the same ideas, similar complexity for the CVP can
be inferred for routing in lattice graphs. As proved in
[15] and [16], CVP can be solved with asymptotical
complexity 2°(") . However, algorithms for particular
graphs can be improved. In this subsection we con-
sider how to appropriately choose the projection of
the lattice graph in order to obtain the best routing
algorithm among all the possibilities.

Our routing algorithm is based on the hierarchy
induced by the projecting operation. Routing in a
lattice graph can be done by routing in its projection
and in the ring defined by its side. First, we state
the node labelling adopted and present a hierarchi-
cal routing. Then, we establish the general routing
algorithm. Finally, complexity and implementation
aspects are considered.

For solving the routing problem over lattice graphs
we need first to state which labelling set will to be
applied. A labelling set is the set that contains the
labels for the vertices of the graph. There are many
choices for the labelling set. In the 2D case, several
approaches to the routing problem have been made

in [19, 27, @]. In those articles, several labellings such
as the one given by the fundamental parallelogram
of the lattice, the set of integers modulo N or the
set of minimum norm residues have been considered.
Anyway, for labelling a lattice graph of dimension n,
a subset of Z™ will be needed. In particular, we define
it as follows.

Definition 17. Given a lattice graph G(M) of di-
mension n a labelling set of the graph is L C Z"™ such
that |L] = | det(M)| and for every pair 11,1y € L we
have 1y Z 1y (mod M).

If vg,vqg € L, where v, labels the source node and
vg labels the destination node, we will call any vector
r € Z" a routing record when

(mod M)

Vi— Vg =T

with vq — v, € Z" such that:

vi—vseEL-L={x—-y|x,y €L}

From a design perspective, it is convenient to label
the graph nodes according to their positive coordi-
nates. Hence, we will consider the labelling given by
the Hermite normal form of the generating matrix.
Therefore, let us assume that H is the Hermite nor-
mal form of M and

L‘,:{XEZ"|O§$¢<H¢J}.

The differences set that will be the input for any of
the considered routing algorithms will be:

E*EZ{X‘ *Hi7i<.’[i<Hi,i}~

Each component of a routing record indicates the
number of hops in the corresponding dimension and
its sign, the direction of the hops. The length of a
path associated with a routing record is given by its

l1-norm:
el = Iril
i
As minimal routing requires shortest paths, minimum
norm routing records should be obtained. Hence, the
routing problem over G(M) can be stated as fol-
lows:



Algorithm 1: Hierarchical Routing in Lattice
Graphs
Input: v, source, v destination
Output: r minimum routing record from v, to
Vd
Let y be the last component of v;
vs + C is the cycle translated to vy;
foreach vertex c; of the cycle in the copy
¢(B)], do
rf: Route in the cycle from v, to vertex c;;
rf(B): Route in [G(B)], from c; to vg;
end
Return the routing record that minimizes the

L9(B)
weight of < i ) ;
i
input: vi=vg—v,eL—-L
output: argmin  (|r|)

r=v (mod M)

where argmin states for the element in the set {r €
Z" | r=v (mod M)} minimizing |r|.

Our routing approach takes advantage of the hi-
erarchical nature of lattice graphs. The idea is that
routing in a lifted graph can be done by routing in
its projection and in the cycle that joins the disjoint
projections. Remember that the lattice graph G(M)

with M = (? Z) has a disjoint copies of its projec-
tion G(B) embedded, which are connected by ‘ff;((é\fgl

parallel cycles. The cycles have length ord(e;,). The
number of vertices belonging to a cycle that lies in
the same copy of G(B) is %. Hence, we can sep-
arately consider the elements of the routing record in
the following way:

g . Then, if Las

denotes the labelling set G(M) and Lp denotes the
labelling set of its projection G(B) we deduce that

[,M:{(;> |xe£B,O§y<a}.

Now, we can state the following main result:

Proposition 18. Let M =

Theorem 19. If [G(B)], is the projection G(B) of
G(M) that contains ye,, C denotes the cycle gener-
ated by e, and, given a vertexr v € Z"™, v+ C denotes
the translation of the cycle to this vertex. Algorithm
gives minimum routing records in any lattice graph.

Proof. Since the algorithm composes routing records
from two subgraphs, then the result is indeed a rout-
ing record. We need to see that a minimum one is
found.

Let r™™ be one of the routing records with mini-
mum norm. Since v+ r®® is in the cycle mentioned
in the algorithm, then there is an index ¢ such that
r?i“ is the minimum route in the cycle from v to c;.
As r™i" is minimal, we find that the minimal routing
from c¢; to vg does not use the n dimension. Thus,
routing in [G(B)], gives the minimum. By composing
both, the algorithm finds the minimum routing r™»
and returns it or another one with same norm. O

Remark 20. In the last step of Algorithm[1] there can
sometimes be several routing records with the same
weight. In this case it is advisable to choose one of
them at random, thus balancing the use of the paths.

Remark 21. Let us assume the lattice graph G(M)

with M = ﬁ

gorithm is O(C%), where C' denotes the com-
plexity of routing in [G(B)],. If routing is done with
the same algorithm by means of recursive calls, the
final complezity would be O(]\, %‘;Ml)) where
M; are the successive projections, a; denotes the
side of G(M;) and ord(e;, M;) the order of e; in
G(M;). In the worst case, this complexity would at-
tain O(det(M)™). However, in some families the or-
der of e; is upper bounded, thus obtaining good com-
plexities for this recursive version of the routing al-
gorithm, as it will be seen in the following section.

Clearly, the complezity of Al-

7

5 Symmetric Lattice Graphs

Symmetry is a desirable property for any network
as it impacts on performance and routing efficiency.
Many interconnection networks have been based on
vertex-symmetric graphs, but less attention has been



devoted to edge-symmetric networks. Square and cu-
bic tori have been the networks of choice for many
designs as they are symmetric (vertex and edge sym-
metric). For this reason, symmetric lattice graphs
will be considered in this section. Hence, we next
introduce the concept of a symmetric graph.

A graph G = (V, E) is vertez-symmetric (or vertez-
transitive) if for each pair of vertices (z,y) € V,
there is an automorphism ¢ of G such that ¢(z) = y.
Also, G is edge-symmetric (or edge-transitive) if for
each pair of edges ({z1,22},{y1,92}) € E, there is
an automorphism ¢ of G such that ¢({z1,22}) =
{d(x1),p(z2)} = {y1,y2}. Finally, G is said to
be symmetric when it is both vertex-symmetric and
edge-symmetric. Since every Cayley graph is vertex-
symmetric [2], we will focus on edge-symmetry.
Clearly, vertex-symmetry implies that all vertices
have the same degree. As was shown in [§], the con-
sideration of non-linear automorphisms in the edge-
symmetry characterization leads to marginal fami-
lies of graphs that do no exemplify the general be-
haviour. Hence, in this paper we will refer only to
automorphisms that are linear applications, that is,
oz +vy) = ¢(x) + ¢(y). Therefore, in an abuse
of notation, symmetric graphs will refer to those in
which there exist a linear automorphism fulfilling the
previous definition. The group of automorphisms is
denoted by Aut(G(M)). Next, an interesting result
about symmetric graphs is stated.

Theorem 22. The projections of a symmetric lattice
graph are all isomorphic.

Proof. Let us denote proj;(G(M)) to be the projec-
tion of G(M) over e; and B,, the n-dimensional or-
thonormal basis. We know proj;(G(M)) is isomor-
phic to the subgraph of G(M) generated by B, \ {e;}.
As G(M) is symmetric we know ¢ € Aut(G(M))
such that ¢(e;) = *e;. As e; is the only genera-
tor not in proj;(G(M)), e, is the only generator not
in ¢(proj;(G(M))). Hence, as ¢ is an automorphism,
we deduce that proj;(G(M)) = proj;(G(M)). O

Now, we concentrate on 3D symmetric graphs. In
[10] it is proved that the only symmetric 3D lattice
graphs are the ones given by the matrices described
in the next result.

Theorem 23. Let M € Z3*3. Then, the lattice
graph G(M) is symmetric if and only if it is isomor-
phic to G(M') where:

a ¢ b a b c
M e b a cl|,|a c —-b—c
c b a a —-b-—c b

The previous characterization gives us a broad fam-
ily of symmetric graphs. Note that the side of ma-

a c b
trix [ b a ¢ | isged(a,b,c). Thus, maximizing the
c b a

side implies b, ¢ € {0,a}. This is exactly the case of
cubic crystal lattices [21], which are:

a 0 0
e Primitive Cubic Lattice: [0 a 0
0 0 a
a a 0
e Face-centered Cubic Lattice: |a 0 a
0 a a
¢ Body-centered Cubic Lattice:
—-a a a
a —a a
a a —a

In the rest of the paper we will concentrate on cu-
bic crystal lattice graphs for three major reasons. As
we will see next, these lattice graphs have all their
projections also symmetric. Moreover, the routing
algorithm in these cases is optimal since the side is
maximized, thus minimizing the recursive call in the
hierarchical algorithm. We also select this family of
3D symmetric lattice graphs to exemplify how the
previously introduced graph operations can be ap-
plied to construct a wide variety of new topologies
for interconnection networks.

In the following two subsections we will consider
the lattice graphs defined by cubic crystal lattices,
their isomorphisms with previously studied network
topologies and a comparison among them in terms of
their distance properties. Once we have character-
ized 3D symmetric topologies and detailed the spe-
cial case of the cubic crystal graphs we will consider
their upgrading process. As we have asserted before,



symmetry could help when the application runs on
the whole network. However, in big systems the user
typically only has a partition of the complete machine
assigned. Therefore, looking for symmetry in higher
dimensions cannot be prioritized. Nevertheless, re-
ducing the distance properties of the whole network
would be still beneficial since applications and sys-
tem software sometimes run over the entire network.
Consequently, what we look for are higher dimen-
sional networks embedding the previous crystal cubic
lattice graphs. Therefore, two more subsections are
included in which we explore two different methods
for upgrading cubic crystal lattice graphs. The first
one is to consider the lifting of crystal graphs, which
results in 4D topologies. Whenever possible, the lift
is done in such a way that the resulting eight-degree
topology preserves symmetry. We will introduce a
tree that represents the process of network upgrad-
ing, preserving symmetry. The second one presents
the common lifts of lattice graphs and the resulting
hybrid graphs, since several lattice graphs of different
nature (symmetric or non-symmetric) and degrees
are embedded on them. The section finishes with
a routing discussion subsection.

5.1 Cubic Crystal Lattice Graphs

We define the Primitive Cubic Lattice Graph
PC(a) as the lattice graph generated by the matrix
associated with the primitive cubic lattice, that is:

o o e

0 0
a O
0 a

Clearly, the number of nodes of the graph is a3,
which is the determinant of the diagonal matrix. Ac-
cording to Theorem|[5|, PC/(a) is isomorphic to the 3D
torus of side a, or equivalently, the a-ary 3-cube.

Lemma 24. The projection of PC(a) is the 2D torus
graph of side a or g((a 0))

0 a
The Face-centered Cubic lattice graph
FCC(a) of side a can be defined as the lattice graph

10

generated by the matrix associated with the face-
centered cubic crystal lattice, that is:

2a

0
0

Il

Q@ O

0
a
a

[ecRES S
o 2 Q2
Q@ O

The number of nodes of the graph is | det(M)]
2lal®.

Lemma 25. The projection of FCC(a) is the rect-
angular twisted torus graph of side a, RTT(a).

Proof. After performing Gaussian elimination, on the
right of the previous expression we obtained the Her-
mite form of the matrix. It is easy to see that its

2a a

projection is generated by < 0 . As we have seen

before and was proved in [9], this graph is isomorphic
to the rectangular twisted torus RT'T(a) of side a or
the Gaussian graph generated by a + ai [24]. O

A FCC(a) is isomorphic to the prismatic doubly
twisted torus of side a (PDTT(a)), introduced in [7],
as the next Proposition proves.

Proposition 26. F'CC(a) is isomorphic to the pris-
matic doubly twisted torus of side a, PDTT (a).

Proof. The PDTT (a) was defined in [7] as a graph
in which the connectivity of each plane is a RTT(a),
hence the isomorphism is immediate once we have
proved that all the projections of FCC(a) are isomor-
phic to RTT'(a). Note that this fact can be inferred
from Lemma [25] and Theorem O

The Body-centered Cubic lattice graph
BCC(a) of side a can be defined as the lattice graph
generated by the matrix:

—a a a 20 0 a
a —a a =210 2a a
a a —a 0 0 a

The number of nodes of the graph is 4a3. As far as we
know, this graph has not previously been considered
for interconnection networks. However, as we will
see later, the graph not only meets the symmetry
requirements but also has a better nodes/diameter



Figure 3: The three Cubic Crystal Graphs: PC, FCC and BCC.

ratio than PC and FCC, as it will be explained later.
Moreover, it embeds 2D symmetric tori as is proved
in:

Lemma 27. The projection of BCC(a) is the 2D
torus graph T'(2a,2a)

Proof. Tt can be verified that after performing Gaus-
sian elimination over the original matrix, it is easy

2a 0)

to see that its projection is generated by ( 0 %
O

which is the 2D torus of side 2a.

A graphical representation of the three topologies
introduced in this subsection is presented in Figure

Bl

5.2 Cubic Crystal Lattice

Comparison

Graph

Among the three different 3D symmetric topologies
based on cubic crystal lattices, two of them —the 3D
torus or PC and the PDTT or FCC-, were previ-
ously known, and the last one, that is the BCC), is a
new proposal introduced in this paper. In this sub-
section, our aim is to consider their distance prop-
erties and to perform a first comparison in terms of
diameter, average distance and projections.

11

First of all, we would like to highlight that a cubic
crystal lattice graph exists for any number of nodes
that is a power of two. This is important because we
can gracefully upgrade a network in three steps while
conserving symmetry. If ¢ is a positive integer, then:

e There exists a primitive cubic lattice graph with
23 nodes.

e There exists a face-centered cubic lattice graph
with 23+ nodes.

e There exists a body-centered cubic lattice graph
with 2312 nodes.

Although this fact provides practical versatility, it
complicates the comparison among networks.

In Table [I| the distance properties for the three
graphs are summarized. For an easier comparison,
note that average distance values are given as ap-
proximations. Mixed-radix torus graphs that have
the same number of nodes of the FCC and BCC
crystals have been also added in the table for compar-
ison. Clearly, crystals have better distance properties
than their corresponding torus networks. Moreover,
BCC is more dense than the other two cubic crys-
tals since, for the same diameter, it attains a greater
number of nodes. Finally, as we have seen in previ-
ous subsections, while F'C'C has the twisted torus as



dge-asymmetric networks such as mixed-radix tori.

Topology Nodes Diameter Average Distance 5
PC(a) 3|4 ~3a=075a |
T(2a,a,a)  2a® a+2|% =~a 4
FCC(a) 2a3 |2a] ~ La =0.875a [
T(2a,2a,a) 4a® |2a] 2a=1.25a 1
BCC(a) 4a3 |3a] ~ 3= 1.09375a g

n that case, it can be seen that throughput is in-
versely proportional to the maximum average dis-

ance per dimension, namely

, as inferred from
n max
7. Network throughput for both T'(2a,a,a) and
12
['(2a,2a,a) is bounded by 3a a
a

iven that their longest dimensions are 2a-node rings.

— as kmam ~

Table 1: Distance properties of cubic
graphs

crystal lattice

its projection, both PC' and BCC' are lifts of a 2D
symmetric torus graph.

Having considered distance-related parameters for
comparing crystals, let us also take into account other
topological parameters to complete the study. In net-
working literature, the bisection bandwidth (BB) is
used to obtain an upper bound for the network load
under uniform random traffic. However, it was shown
in [7] that in rectangular twisted tori some minimal
routes between pairs of vertices in opposite network
partitions could traverse the bisection twice. Hence,
this work proved that BB is not a tight bound for
network throughput in twisted topologies. Indeed,
the same happens with any non-torus lattice graph.

There is another way to accurately bound network
throughput under uniform traffic under ideal condi-
tions. Throughput is inversely proportional to av-
erage distance, k, in symmetric networks. As, un-
der uniform traffic at rate [, [ phits are injected into
each node each cycle, we have a total of [Nk links
being used each cycle. Any link can only transfer
2 phits (one in each way) each cycle, which implies
INk < 2|E| = AN, where A denotes the graph de-
gree and N and E denote the number of nodes and
the edge set, respectively. Thus, it must be high-

A
lighted that network throughput is bounded by T

For lattice graphs, A = 2n where n is the number of
dimensions. Hence, in FCC(a) maximum through-

4 192
put will be bounded by 7—8 and in BCC(a) by )
a

350"
Nevertheless, the previous count cannot be applied to

12

This leads to an improvement in maximum through-
put under uniform traffic of 71% when comparing
FCC(a) to T(2a,a,a) and 37% for BCC(a) versus
T(2a,2a,a).

Being symmetric has more positive impact when
the number of nodes is 2a3. In T(2a, a,a), when the
links in the longest dimension are fully utilized, links
in the other two shortest dimensions are used at 50%.
This is because, on average, the length of the paths
in the longest dimension doubles the length of the
shortest ones. When the number of nodes is 4a3,
T(2a,2a,a) uses its resources better as only links in
one dimension operate at half rate.

5.3 Symmetric Lifts of Cubic Crystal
Graphs

First, we consider the PC. There is a straightforward
way of lifting a PC(a) to 4D, which is the Cartesian
product of the PC' by one cycle of length a, thus
obtaining the generator matrix:

0
0
a
0

o O O
o o O
Q O O O

The 4D torus generated by the previous matrix is
completely symmetric. However, the lifting technique
can be used to embed the completely symmetric 3D
torus in a different lattice graph. We will denote the
body centered hypercube lattice graph as 4D-BCC,
that is, the lattice graph generated by matrix:

2 0 0 a
0 22 0 a
0 0 2a a
0O 0 0 a



Proposition 28. 4D-BCC(a) is a symmetric lattice
graph of side a and projection PC(2a).

i+
0 0 01
. . |1 0 0 O
¢ has an associated matrix P = 010 0
0 010
00 -1 0
1 0 -1 0
_ —1 _ . .
As Q = M PM = 0 1 -1 of Banin
00 2 1

teger matrix we conclude that ¢ is an automor-
phism of 4D-BCC' [§]. In the group generated by
¢ there are enough automorphisms to provide the
edge-symmetry. It should be note that the projec-
tion is straightforward as the matrix is triangular su-
perior. O

Now, if we want to lift the FFCC, there are two
ways of doing so which make the lifted graph sym-
metric. The first one will be denoted as 4D-FCC' (4-
dimensional face-centered cubic lattice graph), that
is, the lattice graph generated by matrix:

20 a a a
0 a 0 O
0 0 a O
0 0 0 a

Proposition 29. 4D-FCC(a) is a symmetric lattice
graph of side a whose projection is a FCC(a).

Proof. Exactly like the proof of Proposition [28] the

matrix Q = M ~'PM is different but still with integer
entries. O

The second way to lift a FFCC'is introduced below.

Proposition 30. The lattice graph generated by the

a —a —a -—a
) a —a ) s
matrix a s a symmetric lifting of
a —a a a

the FCC(2a).
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Proof. First, the following two matrices are right-
equivalent:

a —a —a —a 2a —2a 0 —a
a a —-a a | |0 2a —2a a
a a a —al” |2a 0 2a —a
a —a a a 0 0 0 a

Hence, the corresponding lattice graphs are isomor-
phic. Note that the (4,4)-minor corresponds with the
generating matrix of FCC(2a). Finally, for symme-
try, the procedure described in the proof of Proposi-
tion [28|is repeated. O

This second lifting relates the graphs obtained to
the family of Lipschitz graphs and quaternion alge-
bras, introduced in [23], for obtaining perfect codes
over 4D spaces. This graph will be denoted as Lip(a).

Finally, there are several ways of lifting the BCC,
although none of them preserves symmetry as proved
in the next theorem.

Theorem 31. Any lift of BCC' vyields a non-edge-
symmetric graph.

20 0 a
Proof. Let M = [ 0 2a a|, BCC(a) ~ G(M).
0 0 a
Assume that exists a symmetric lift G(L) of BCC(a).
20 0 a =
10 2a a y
L=1o 0 a -
0 0 0 ¢

In Hermite form we have 0 < z,y < 2a and 0 < z <
a. For symmetry, the gcd of every row must be the
same (map e; into e,, and Gauss-reduce), hence ¢ di-
vides all the other entries of L and without loss of
generality we assume ¢ = 1. By [8] we know that au-
tomorphisms are matrices P satistying the condition
that L~ PL is an integer matrix where P is unitary
and has only £1 entries. Both, the sets of these ma-
trices that would give edge-transitivity, and the pos-
sible lifts, are finite. Hence we can run a computation
that gives the negative result. O

As we have concluded before, there is no decisive
interest in obtaining a symmetric graph in 4D such
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that its 3D partitions remain themselves symmet-
ric. Therefore, we could explore which of the lattice
graphs whose projection is a BC'C would be the most
interesting.

Figure [4] summarizes how the previous construc-
tions can be generalized to any number of dimensions.
The procedure is represented in a tree. In this tree,
nodes are the matrices of the lattice graphs. Note
that, for an easier visualization, matrices have been
normalized by multiplying by 1. Hence, each child is
a lift of its parent. Moreover, we have restricted lifts
to those whose side is greater or equal to the half
of the side of its projection, otherwise many more
graphs would appear.

The root of the tree is the matrix associated with
a cycle. The lifts of the cycle conserving symmetry,
and fulfilling the restrictions mentioned above, are
the torus and the twisted torus introduced in Sec-
tion[2] Then, as we have seen in Section [5] the cubic
crystal lattice graphs are lifts of these two. The two
branches show that only two families are obtained.
The left branch consists of the infinite family of sym-
metric tori or n-dimensional PC's; and each nD-PC
has a nD-BCC sibling that is a leaf, without any fur-
ther symmetric lift. The right branch is the family of
the n-dimensional FCC's; the nD-FCC' always has
the (n + 1)D-FCC as a symmetric lift. Moreover,
there are some dimensions (4 and 6 in the figure) in
which a different lift exists. Interestingly, two non
right-equivalent matrices generate isomorphic graphs
(denoted with ~). The two branches in the tree are
really different and, as we show next, they can be
used to obtain new hybrid lattice graphs.

5.4 Hybrid Graphs: Common Lift of
Crystal Graphs

In this subsection a different approach for embedding
crystal graphs is considered, that is, to create com-
mon lifts that do not necessarily combine symmetric
graphs. As shown in the next example, to handle
graphs using the H operator that belong to the same
branch of the tree in Figure |4 has some advantages.

Example 32. The first one is the hybrid graph ob-
tained as a common lift of the PC(2a) and BCC(a).
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The calculation described in the Theorem [13 leads to
the matriz

2% 0 0 2a 0 a 20“ 20a 8 Z

0 2a¢ 0 |H| O 2a =

0 0 2a 0 0 00 2a 0
0 0 0 a

which corresponds to a 4D lattice graph. On the other
hand, if we make the common lift of PC(2a) and
FCC(a):

2¢ 0 0 a

2 0 O 20 a a 0 22 0 O
0 2¢« 0 )HB[O @ O0]=]0 0 2a¢ O
0 0 2a 0 0 a 0 0 0 a
0O 0 0 O

which generates a 5D lattice graph. In this case,
the common lift has one extra dimension since the
graphs considered belong to different branches of the
tree. The same happens with the miz FCC(a) and
BCC(a), as shown next:

2a¢ a a 0 a

2a a a 2a¢ 0 a 0O a 0 0 O
0 a OJH[O 220 al=]10 0 a 0 O
0 0 a 0 0 a 0 0 0 2a a
0 0 0 0 a

Finally, we present in Table [2] a selection of lat-
tice graphs composed following the guidelines pre-
sented in this section. The table also includes their
main topological characteristics. Depending on the
focus some of them outperform the others. For ex-
ample, if we are looking for a 4-dimensional topol-
ogy that embeds tori networks, 4D-BCC(a) and
PC(2a)B BCC(a) must be considered. Both topolo-
gies equal their number of nodes, so if we want to
minimize distance properties, 4D-BCC/(a) should be
a good candidate. On the other hand, if we are inter-
ested on 5 dimensions and a great number of differ-
ent embedded topologies, PC(2a) B FCC(a) would
be a good choice having a good nodes/distance ratio.
Therefore, what we want to show with these exam-
ples is the wide range of possibilities that provides
the previous H-operation.

QO OO



Topology Dimension Nodes Projection Diameter Average Distance
T(2a,2a) BRTT(a) 3 4a® vary 2a ~ 1.14877a
4D-FCC(a) 4 2a* FCC(a) 2a ~ 1.10396a
4D-BCC(a) 4 8at T(2a,2a,2a) 2a ~ 1.5379a

Lip(a) 4 16a*  FCC(2a) 3a ~ 1.815a

PC(2a) BBCC(a) 4 8a’ vary 2.5a ~ 1.59715a
PC(2a)BFCC(a) 5 8a® vary 3.5a ~ 1.87856a
BCC(a)BFCC(a) 5 4a® vary 2.5a ~ 1.52522a

Table 2: Distance properties of several lattice graphs

5.5 Routing Discussion

First, note that following the ideas in Section [ we
can infer the impact of routing complexity for the dif-
ferent lifts of crystal lattice graphs. As we have seen,
% determines the number of intersections of the
cycle with the destination projection, which dictates
the number of nested routing calls. First, % =1

in nD-PC. Second, 2%ex) — 2 in nD-BCC and
nD-FCC. Clearly, these are constant values, which
imply just one or two calls to the routing of dimen-
sion n—1 in Algorithm[I] Therefore, if the algorithm
is used in a recursive form, we have that:

e The routing in nD-PC can be done immediately
with n comparisons in parallel.

e The hierarchical routing in nD-BCC requires 2
calls to the routing algorithm for (n — 1)D-PC.

e The hierarchical routing in nD-FCC requires 2
calls to the (n — 1)D-FCC, which accumulates
into 2”2 calls to 2D-FCC or RTT. These last
routing calls will be performed by Algorithm 2,
found in the appendix.

Specialized routing algorithms for FCC and BCC
can be found in the appendix. As is can be noted, all
the routing algorithms presented there have constant
complexity.

Finally, let us consider the case of hybrid graphs.
As we have seen in Section [3] hybrid graphs are ob-
tained as common lifts of different lattice graphs.
Therefore, given a hybrid graph G(M) there would be

several possible lattice graphs that could be consid-
ered as its projection. Since the heaviest computation
part in Algorithm [I] corresponds to the routing calls
in the projection, that projection should be carefully
chosen. For example, let G(M) be given by

20 0 0 a

0 22 0 a

M = 0O 0 2a O
0 0 0 a

As we have previously seen, this graph is ob-
tained as the common lift of PC(2a) and BCC(a).
Clearly, taking BCC(a) as the projection, would
complicate the routing function. Hence, we should
choose PC(2a) as its projection, in which dependen-
cies among dimensions do not exist and routing will
be less laborious.

6 Some Practical Issues

This work has been conceived to study the funda-
mentals of twisting wrap-around links in multidimen-
sional torus networks. Nevertheless, this research has
been motivated by the widespread presence of mod-
erate degree tori in the supercomputing market. Al-
though Fujitsu has recently entered in this terrain
with its K system, traditionally Cray and IBM are
the two major companies standing out for years in
the development of interconnection networks based
on torus networks. Hence, this section will be de-
voted to discuss certain practical aspects. The first
one is related to physical network deployment and the

16



second consists of a preliminary performance evalua-
tion.

6.1 Physical Organization

It is not difficult to conceive a package hierarchy
and a 3D physical organization to deploy systems
based on lattice graphs. For illustrating this orga-
nization, let us first consider the approach followed
by manufacturers. Cray uses a straightforward struc-
ture. For example, an actual configuration [5], was a
T(25, 32,16) packaged on a 200 rack system arranged
as an 8 x 25 rectangle. We can see the system as:

e System of 25 x 8 x 1 racks.
e Racks of 1 x 4 x 16 nodes.

That is, the third dimension is completely inside the
racks and the first dimension is formed entirely join-
ing racks. However the second dimension is partially
inside the rack and requires connecting rack columns
by rings. Taking into account forthcoming improve-
ments in integration and packaging technologies, it
could be expected that a 4D torus would have two
dimensions internal to the racks and the other 2 ex-
ternal to the racks. This idea generalizes to lattice
graphs. If G(M) is a 4D lattice graph, its 2D projec-
tions would be built inside racks, which would be a
torus or a twisted torus. Then it becomes a question
of completing the lattice by adjusting the offsets of
the cables connecting the racks. Moreover, folding
techniques for 3D networks presented in [7] can also
be of application in our case and easily generalized
to higher dimensions.

IBM presents a more elaborated organization in
the Blue Gene family [I3]. Although the complete
network is a torus, each midplane (half of a rack) has
additional edge hardware that enables the midplane
to disconnect from the remainder of the network and
to be itself a small torus. By arranging several mid-
planes, this additional hardware enables a multitude
of different tori shapes to be connected. With slight
modifications to such hardware it is possible to allow
each group to be a symmetric crystal (or another lat-
tice if desired) instead of a mixed-radix torus. This
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hardware changes its configuration only between dif-
ferent application runs. Then, the potentially added
functionality would not have any negative impact on
the system.

6.2 Evaluation Compared to Cur-
rently Used Topologies

Most evaluations of big networks have relied on
measuring their behavior when managing synthetic
traffic loads. Typical experiments are based on
simulation. Notwithstanding, the work presented
in [1I] evaluates different routing algorithms re-
porting maximum achievable loads on a real IBM
BlueGene/Q system. They make runs on machines
whose topologies are the tori 7'(8,8,8,4,2) and
T(16,8,8,8,2). We shall ignore the last dimension of
size 2 and treat them as four dimensional networks;
the last small dimension comes from the inside of
computing nodes, fixed by computer technology. We
have simulated the same tori plus symmetric lattice
graphs of the same sizes. We evaluate 4D-BCC(4)
compared to T'(8,8,8,4) and 4D-FCC(8) compared
to T(16, 8,8, 8).

The torus 7'(8,8,8,4) contains 2048 vertices, has
diameter 14 and an average distance of 7.0. On the
other hand, 4D-BC(C(4) contains has the same num-
ber of vertices, but it has diameter 8 and average
distance 6.1. In addition the torus is not symmet-
ric while the body-centered is, thus it is expected
an increase of more than 7.0/6.1 = 1.15 for uniform
loads. For the large size, T(16,8,8,8) contains 8192
vertices with diameter 20 and average distance 10.0;
while 4D-FCC(8) has diameter 16 and average dis-
tance 8.8. In this subsection simulation results show
that better distance properties plus symmetry trans-
late into a better performance of symmetric networks.

We have used the same synthetic traffic patterns
as in [11]:

e uniform Each node generates packets to any
other node, at random with a uniform proba-
bility distribution.

e antipodal Each node generate traffic to the



most distant one. Also known as furthest-node
PaLTing.

centralsymmetric Once a center of symmetry
is fixed, each node has as its destination the sym-
metric one. It is the immediate generalization of
diagonal pairing.

randompairings The network is divided into
pairs in a random uniform way, which then com-
municate for all the simulation.

Simulations have been conducted using INSEE (In-
terconnection Network Simulation and Evaluation
Environment) [25]. Their basic units are the cycle
for measuring time and the phit for measuring infor-
mation. Each network link (edge of the graph) can
send one or zero phits in each cycle. The network load
is the amount of information injected per time unit.
We measure the network load in phits/(cycle - node).
Nodes (vertices of the graph) generate packets com-
posed of an integral number of phits (typically con-
stant) to be sent to other network nodes. For any
provided traffic up to load [, a packet is injected each

cycle in each node with probability —, where s is the

size of a packet measured in phits. The accepted traf-
fic or throughput is the total of phits received divided
by the total simulation time and by the number of
nodes N. Simulation parameters are shown in Table
We have simulated 100,000 cycles for statistics,
preceded by a network warmup. At least 5 simu-
lations are averaged for each point. The BlueGene
family of supercomputers implements a congestion
control mechanism that prioritizes in-transit traffic
over new injections, which is also implemented in our
router model.

Figures [f] and [6] show results of accepted load in
the four networks. Under uniform traffic, results ex-
hibit gains of 27% in the small case (4D-BCC) and
49% in the large one (4D-FCC). In random pairings,
the throughput is consistently higher, with gains of
15% and 2% respectively. The other two traffic pat-
terns show congestion at high loads for all the net-
works considered. Nevertheless, the peak throughput
for the antipodal traffic improves by 95% and 43%
respectively. Under central symmetric traffic, gains
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Injectors 6

Packet size 16 phits
Queues 4 packets
Deadlock avoidance Bubble
Virtual Channels 3

flow control Virtual Cut-through
Routing Mechanisms DOR
Arbitration mechanism random

Table 3: Simulation parameters
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uniform antipodal centralsymmetricandompai

traffic pattern

Figure 5: Throughput peak in 7'(16,8,8,8) and 4D-
FCC(8) under several synthetic traffics.

are 29% in the small case and 34% in the large one.
Figures [7] and [§] show average packet latencies. The
different curves demonstrate the superior behavior of
lattice topologies. Gain values are coherent with the
topological analysis presented in Subsection [5.2

7 Conclusions

This research has been focused on the study and pro-
posal of new multidimensional twisted torus intercon-
nection networks. Due to their complex spatial char-
acteristics, their analysis is far from being straight-
forward. Nevertheless, we have taken advantage of
an algebraic tool based on integral square matrices
presented in [I8]. Such matrices define the graph
and its topological characteristics. Adequate alge-
braic manipulations of the matrices enable a better
understanding of different network properties. For
example, when using the Hermite normal form, ma-

ring
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uniform
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Figure 6: Throughput peak in 7(8,8,8,4) and 4D-
BCC(4) under several synthetic traffics.

trices reveal the subgraphs naturally embedded in the
network.

Using this tool, several networks have been pro-
posed and analyzed in this paper. We have in-
troduced two graph lifting methods that allow for
higher dimensional networks that embed lattice sub-
networks. Complementarily, the use of graph pro-
jections facilitates the conception of routing algo-
rithms for these networks. Based on this graph oper-
ation, minimal routing schemes have been proposed
for all the topologies. Then, we focus on 3D sym-
metric networks as alternatives to mixed-radix tori
that are not edge-symmetric. Taking the matrices
that define cubic crystallographic lattices, we were
able to evaluate and compare their associated inter-
connection networks. If symmetry is desired, the best
path when upgrading 3D systems clearly seems to be
PC(a) - FCC(a) - BCC(a) — PC(2a), that is,
duplicating the machine size on each step and main-
taining most of the original connections. Although
we have focused on typical network configurations de-
rived from powers of two, our results remain valid for
any other network size.

The paper preliminarily addresses some practical
issues. Physical packaging and system organization
in racks have been taken into account, concluding
that, for deploying networks based on lattice graphs,
very few changes over typical tori would be nec-
essary. In addition to the algebraic analysis car-
ried out through the paper, an empirical evaluation
of different interesting topologies has been carried
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out. Comparisons with current machines have certi-
fied that hyper-dimensional twisted tori clearly out-
perform their standard (not twisted) counterparts.
Noticeable gains were exhibited by twisted lattice
topologies for both configurations under considera-
tion. These preliminary experiments motivate a thor-
ough network evaluation that will be reported in a

antipodal centralsymmetri(randompairilférthcoming work.
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