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Abstract

Multi-dimensional panel data sets are routinely employed to identify marginal effects in

empirical research. Fixed effects estimators are typically used in order to deal with potential

correlation between unobserved effects and regressors. Nonparametric estimators for one-way

fixed effects models exist, but are cumbersome to employ in practice as they typically require

iteration, marginal integration or profile estimation. We develop a nonparametric estimator

that works for essentially any dimension fixed effects model, has a closed-form solution and can

be estimated in a single-step. A cross-validation bandwidth selection procedure is proposed

and asymptotic properties (for either a fixed or large time dimension) are given. Finite sample

properties are shown via simulations, as well as with an empirical application which further

extends our model to the partially linear setting.
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1 Introduction

The growing availability of large data sets has given rise to multi-dimensional panel methods being

employed in empirical studies. For example, these methods are being used to study phenomena

such as salary data of firms’ employees over time (three-dimensional panel), sectoral level trade

between countries or regions (three-dimensional panel), air passenger traffic between multiple hubs

served by different airlines (four-dimensional panel) and so on (e.g., see Balazsi et al. (2017)).

Fixed effects specifications are primarily used to take into account unobserved heterogeneity in

these data sets. The introduction of said models enlarges the possibilities of handling large data

sets, but theoretical problems arise. Davis (2002) considers estimation of a linear parametric three-

dimensional additively separable panel data model with fixed effects. Balazsi et al. (2015) and Ye

and Wu (2014) extend this model to allow for additive interaction terms in a three-dimensional

model.
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In many areas of economics, especially in applied microeconomics, interest primarily hinges

on the gradient of the conditional mean (i.e., marginal effects). In the hedonic price literature,

the gradient of the conditional mean is used to recover preferences of individuals. For example,

Bishop and Timmins (2018) use the gradients from a hedonic price model to determine preferences

for clean air. In the risk and uncertainty literature, gradients are required in order to estimate

individual attitudes towards risk (e.g., see Chiappori et al. (2009)). These marginal effects are

trivial to calculate in linear parametric models as they are simply the estimated slope coefficients.

Economic theory typically does not provide enough information to fully specify a parametric

model. Nonparametric and semiparametric regression models can be specified and estimated with

much less information. In this paper, we consider the specification and estimation of gradients in

multi-dimensional nonparametric fixed effect models.[1] More precisely, we discuss the estimation

procedure, the assumptions needed to achieve consistency, derive the asymptotic distribution

of the nonparametric estimator (for a fixed or large time dimension) and develop a bandwidth

selection procedure. To the best of our knowledge, no other studies in this literature consider

estimation of these types of models.

There is a relatively large literature in nonparametric and semiparametric panel data models.

Surveys on the topic exist and we suggest the interested reader to consult Ai and Li (2008),

Henderson and Parmeter (2015), Li et al. (2015), Parmeter and Racine (2018), Rodriguez-Poo

and Soberon (2017) and/or Su and Ullah (2011) and the references within. Even though there

is a large literature, nearly all work has focused on models with solely individual effects (i.e.,

one-way error component models) and are typically cumbersome to estimate under fixed effects.

For example, Henderson et al. (2008) require iterative methods and Qian and Wang (2012) use

marginal integration. A potentially useful strand of the literature, starting with Su and Ullah

(2006), uses profile least-squares (see also Gao and Kunpeng (2013)), but these methods require

estimation of the fixed effects. Even in the single-dimensional case, these individual effects are

typically considered to be nuisance parameters and the number of individual effects tends towards

infinity asymptotically. In addition, for identification reasons, these methods require assumptions

on these fixed effects (mean zero), which are not testable. Alternatively, Lee et al. (2019) consider

nonparametric estimation of the marginal effect using a local-within transformation to deal with

the presence of fixed effects. They show that the resulting estimator satisfies standard properties of

the local linear estimator, but is subject to possible random denominator problems. A modification

of the proposed weight is required to overcome it. Given the difficulty of these estimators, it is

not surprising that these methods have not been extended for a general case multi-dimensional

panel data model.

In this paper, we provide a direct estimation procedure for the gradient of the conditional mean

in a multi-dimensional nonparametric panel data model, once the unobserved heterogeneity has

been deleted using a pairwise transformation. Under rather weak assumptions, we show that our

[1]Although our interest is in the gradient, researchers may also be interested the conditional mean. We discuss
how to estimate the unknown function in Section 2.4.
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estimator is consistent, asymptotically normal and can be extended to semiparametric models

(for essentially any dimension panel), for example, semiparametric partially linear models (see

Section 6.1). Further, it is also possible to prove that, in only one-step, our resulting estimator

almost achieves optimality.

In order to showcase the applicability of our estimator, we consider an empirical application.

Specifically, we extend our model to the partially linear setting to look at the relationship between

the price of rental housing and housing vouchers. A heterogeneous result with respect to the ratio

of the rent of a rental unit to the US Department of Housing and Urban Development fair market

rent has been observed in the literature (Eriksen and Ross (2015)), but has been achieved by

arbitrary splits of the sample. Here we avoid these arbitrary splits by adopting a semiparametric

approach whereby we obtain an elasticity for each rental unit in the sample and confirm existence

of both negative and positive impacts of housing vouchers on the price of rental housing. We

find that positive elasticities are concentrated in the Western United States and specifically in

areas which are more supply inelastic, but overall, negative elasticities are more prominent in

this dataset. This suggests that increasing rents for those who do not receive subsidies are likely

localized and not predominant in the U.S.

The remainder of this paper proceeds as follows: Section 2 sets up the econometric model,

proposes the pairwise estimator and develops its asymptotic theory. Section 2.4 shows how to

recover the unknown function, while Section 3 develops a cross-validation method to select the

bandwidths. Section 4 considers extensions to interactive fixed effects. Section 5 uses simulations

to determine the finite sample properties of our estimator and Section 6 provides the empirical

application. Section 7 concludes. All proofs can be found in the Appendix.

2 Model and estimation procedure

With the aim of estimating the gradient of the conditional mean function (i.e., marginal effects), in

this section we outline a pairwise differencing procedure that enables us to deal with the presence

of several unobserved effects and, at the same time, obtain a direct nonparametric estimator that

almost achieves the optimal rate of convergence for this type of problem (i.e.,
√
N1N2T |H|H

for T large) in a single-step. Further, it leads to some efficiency gains in finite samples since

this transformation enables us to consider all time-dependencies within the observations of each

individual.[2]

[2]In a previous version of the paper, a fixed effects estimator using a within transformation to deal with the
presence of the individual effects was proposed. However, a high-dimensional kernel weight was required to deal with
the well-known non-negligible asymptotic bias of this type of differencing estimator. The resulting nonparametric
estimator was subject to a large variance and slow rate of convergence. The theoretical and simulation results for
our multi-dimensional within estimator are available upon request.
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2.1 Multi-dimensional models

Two-dimensional fixed effects panel data models (see Baltagi (2015) and Hsiao (2014)) control

for unobserved heterogeneity by introducing a time effect, λt, and an individual effect, µi. The

availability of big datasets which contain information on multiple dimensions require the use of

multidimensional panel data methods. These methods allow for analysis of complex big data sets,

as they control for several sources of unobserved heterogeneity. For example, three-dimensional

panel data models are employed to study phenomena in many economic fields, such as interna-

tional trade, transportation, labor, housing and migration (see Mátyás (2017) for a recent review).

The most common three-dimensional panel data model is given as

Yijt = X>ijtβ + µi + γj + λt + εijt, i = 1, . . . , N1, j = 1, . . . , N2, t = 1, . . . , T, (2.1)

where the µi, γj , and λt parameters are the cross-sectional (i and j) and time-specific fixed effects

(t), εijt is the idiosyncratic error term, the Xijt variables are the usual covariates (of dimension

d), and β is the d× 1 vector of structural parameters.

In the trade literature, Mátyás et al. (1997) proposed this model and subsequent authors

proposed extensions of this model to take into account unobserved bilateral heterogeneity by

including bilateral specific (i.e., µij , γjt, λit) effects (see Egger and Pfaffermayr (2003), Chen and

Wall (2005), Baltagi et al. (2003), and Baier and Bergstrand (2007)). In the two-dimensional

setting, there are only four types of fixed effects specifications. Nevertheless, as Balazsi et al.

(2017) point out, in the three-dimensional models there are (26) possible ways to formulate the

unobserved fixed effects. The most commonly used specifications in the empirical studies are

Yijt = X>ijtβ + µij + εijt, (2.2)

Yijt = X>ijtβ + µij + λt + εijt, (2.3)

Yijt = X>ijtβ + γjt + εijt, (2.4)

Yijt = X>ijtβ + µij + γjt + εijt, (2.5)

Yijt = X>ijtβ + µij + γjt + λit + εijt. (2.6)

Note that these fixed effects specifications are appealing from an empirical point of view as

they are implied via economic theory. For example, if Yijt represents the exports from country i to

country j in year t, the gravity literature (Anderson and van Wincoop (2003)) argues that country

fixed effects are relevant variables as they represent unobservable multilateral resistance levels. If

the multilateral resistance levels are time-varying (i.e., µit and γjt), trade theory would support

Models 2.5 and 2.6. Another relevant example can be found in the price dispersion literature.

If Yijt is the Gini log-odds ratio for carrier i, for route j, in time period t, Gerardi and Shapiro

(2009) find that price dispersion in the airline industry increases with competition. This model

requires that the fixed effects are unique to ij pairs (i.e, the γij are defined as carrier-route fixed

effects) and λt is the time effect, and Model 2.3 would be appropriate.
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In order to avoid possible misspecification in the functional form, we consider nonparametric

estimation of the most general formulation (2.1). In particular, the prime interest of this paper is

the local marginal effect (i.e., the first derivative of the nonparametric function). As noted in Lee

et al. (2019), estimation of the local behavior of the slope of a regression function (i.e., elasticity or

marginal effects) without assuming a pre-specific parametric functional form, is of great interest

in many areas of economics (e.g., applied microeconomics or policy evaluation). For example, we

may be interested in studying marginal propensity to consume and save in consumer economics,

the elasticity of capital and/or labor in production economics, and recovering the preferences of

individuals in the hedonic price literature.

For the sake of simplicity, in the following subsection, we develop an estimation technique

that leads to consistent estimators of the gradient of the nonparametric especification of (2.1). It

is straightforward to extend the procedure to the corresponding nonparametric specifications of

models (2.2)-(2.6) (see Section 4) or even higher dimensions of the data.[3], [4]

2.2 Pairwise estimator of the gradient function

We start by assuming that data are available from a three-dimensional panel data model of the

form

Yijt = m(Xijt) + µi + γj + λt + εijt, i = 1, . . . , N1, j = 1, . . . , N2, t = 1, . . . , T, (2.7)

where index t refers to time periods, indexes i and j denote cross-sectional units, Xijt is a d× 1

vector of explanatory variables, and m(·) is a smooth unknown function. µi, γj , and λt are

fixed effects (for example, firm i producing commodity j in time period t), and εijt are the i.i.d.

idiosyncratic disturbance terms. µi, γj and/or λt are allowed to be correlated with Xijt.
[5],[6]

Our main interest is in the local marginal change of the conditional mean of Yijt in (2.7) with

respect to an element of Xijt, i.e.,

Dm(x) = (∂m(x)/∂x1, . . . , ∂m(x)/∂xd)
>

for a given x = (x1, . . . , xd)
> in a compact support X ∈ IRd of Xijt, for some d ≥ 1.

The large number of dummy variables that characterize these multidimensional panel data

models can make the estimation procedure computationally difficult when the dimensionality

[3]For example, a fourth order model can be given as Yijlt = X>ijltβ + µi + γj + ηl + λt + εijlt, where l represents
a third cross-sectional dimension and ηl is its corresponding fixed effect.

[4]See Mundra (2005), Lee et al. (2019), Qian and Wang (2012) or Rodriguez-Poo and Soberon (2015) for non-
parametric estimation in a two-dimensional setting.

[5]Given that the fixed effects are additively separable, it can be argued that this is a semiparametric model. We
nonetheless follow the literature and refer to this as a nonparametric fixed effects model.

[6]An interesting paper by Freyberger (2018) proposes a nonparametric panel data model with two-dimensional,
unobserved (interactive) individual effects that enter non-additively with a fixed time dimension. In the case where
the individual effects enter in this particular non-additive structure, this estimator would be preferable. That being
said, our primary interest lies in higher-dimensional panel and while it may be feasible to extend this estimator to
the higher-dimensional panel data models we have in mind, this is beyond the scope of this paper.
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of the data is three or more as we have to deal with the incidental parameter problem (e.g.,

see Lancaster (2000)). To identify the fixed effects and avoid asymptotically biased estimators,

authors usually impose restrictions on the fixed effects. Typically authors either normalize the

fixed effects (i.e., set their average to zero) or leave out parameters belonging to the last (or

first) individual or time period (e.g., see Balazsi et al. (2015)). Instead, we propose a differencing

transformation in (2.7) that enables us to remove all fixed effects simultaneously without having

to impose any identification conditions related to the fixed effects in (2.7).

To removed the fixed effects, we first perform a within transformation: Yijt − Y t, where

Y t = (N1N2)
−1∑N1

i=1

∑N2
j=1 Yijt is the cross-sectional average, to remove the time fixed effects

(i.e., λt). Second, inspired by Stromberg et al. (2000), Honoré and Powell (2005) and Soberon

et al. (2020) (in a different context), a pairwise differencing transformation is proposed to remove

the cross-sectional heterogeneities (i.e., µi and γj), simultaneously.[7] Hence, subtracting from

time t of (Yijt − Y t), time s, for s 6= t, we get

Ỹijts = (Yijt − Y t)− (Yijs − Y s).

Applying this transformation to the regression model (2.7) and rearranging terms leads to

Ỹijts = m(Xijt)−m(Xijs)−
1

N1N2

N1∑
i=1

N2∑
j=1

[m(Xijt)−m(Xijs)] + ε̃ijts,

i = 1, . . . , N1, j = 1, . . . , N2, t = 1, . . . , T, t < s, (2.8)

where ε̃ijts = (εijt − εt)− (εijs − εs).
Assuming that m(·) is sufficiently smooth, we consider a Taylor expansion of each element of

m(·) in (2.8) around x obtaining

m(Xijt)−m(Xijs)−
1

N1N2

N1∑
i=1

N2∑
j=1

[m(Xijt)−m(Xijs)]

= X̃>ijtsDm(x) +Rmijts(x),

where X̃ijts = (Xijt −Xt)− (Xijs −Xs), Dm(x) = vec(∂m(x)/∂x>) is a d× 1 vector of gradient

functions in (2.8), and Rmijts(x) is the remainder term from the Taylor expansion[8] (see the

Appendix).

[7]Alternative transformations are proposed in the literature for this type of multi-dimensional problem. For a
fully parametric model, Balazsi et al. (2017) suggest the following transformation

Ỹijt = Yijt − Y i·· − Y ·j· − Y t + 2Y ,

where Y i·· = (N2T )−1∑
jt Yijt and Y ·j· = (N1T )−1∑

it Yijt. However, its extension to the nonparametric frame-
work is not straightforward as we would have to use a kernel weight that controls the distance among all time
periods and cross-sectional units to avoid the non-negligible asymptotic bias pointed out in Mundra (2005) for
these types of differencing specifications.

[8]See Fan and Gijbels (1995b) or Ruppert and Wand (1994) for further details.
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This suggests that we can estimate the unknown gradient directly by regressing the trans-

formed dependent variable on the right-hand side of this approximation with kernel weights.

However, if we consider kernels only around Xijt, the remainder term in the Taylor expansion

will not vanish asymptotically since the distance between any of the terms in Xijs and x cannot

be controlled by a fixed bandwidth. This phenomena was pointed out in Mundra (2005) and Lee

et al. (2019), and was solved in Rodriguez-Poo and Soberon (2015) for a two dimensional panel.

To overcome this issue, we propose to use a kernel weight which controls the distance between

any (Xijt, Xijs). Then, for Xijt and Xijts in a neighborhood of x, the unknown vector of gradient

functions Dm(x) can be estimated by minimizing the objective function

N1∑
i=1

N2∑
j=1

T−1∑
t=1

T∑
s=t+1

[
Ỹijts − X̃>ijtsDm(x)

]2
KH(Xijt − x)KH(Xijs − x), (2.9)

where H is a d× d bandwidth matrix that is symmetric and positive definite and each K(·) is a

non-negative product kernel function such as, for each u, it holds that

KH(u) = |H|−1/2
d∏
l=1

k(H−1/2ul), u = (u1, . . . , ud)
>,

where k(·) is a univariate kernel function. The above exposition suggests D̂m(·) as an estimator

for Dm(·).
Assuming that

∑
ijtsKH(Xijt−x)KH(Xijs−x)X̃ijtsX̃

>
ijts is non-singular, and letting D̂m(x,H)

be the minimizer of (2.9), the nonparametric pairwise least-squares estimator of Dm(x) is

D̂m(x;H) =

 N1∑
i=1

N2∑
j=1

T−1∑
t=1

T∑
s=t+1

KH(Xijt − x)KH(Xijs − x)X̃ijtsX̃
>
ijts

−1

×
N1∑
i=1

N2∑
j=1

T−1∑
t=1

T∑
s=t+1

KH(Xijt − x)KH(Xijs − x)X̃ijtsỸijts, (2.10)

where we emphasize that this general form results in a closed-form solution that is based on the

product of 2d kernels. Note that it is straightforward to redefine X̃ijts and Ỹijts for essentially

any dimension panel with the necessary transformation (see Section 4). Further, selection of the

bandwidth via data-driven techniques will be developed in Section 3.

2.3 Asymptotic development

To simplify notaton, we define IN = N1N2.
[9] This notation simplifies the discussion on the

asymptotic properties, since it implicitly allows us to write IN → ∞ when both N1 and N2

diverge to infinity, or when one of these dimensions is fixed and the other grows to infinity. In

[9]Using this notation makes the theory more general for additional dimensions.

7



practice, it is often the case that only one dimension is large (e.g., firm-commodity linked data

when the number of commodities is much larger than the number of firms). Thus, one dimension,

say N1, might be considered fixed, while the other, say N2, is considered large. However, the

notation used in this paper to establish the asymptotic properties of the proposed estimator

enables to consider different scenarios:

i) N1 →∞ and N2 fixed.

ii) N1 fixed and N2 →∞.

iii) N1 →∞ and N2 →∞.

In order to establish the asymptotic properties of D̂m(x;H), the following assumptions about

the data generating process defined in (2.7), moments, and densities are necessary.

Assumption A1 Xijt is independent across the subscripts i and j for each fixed t, and strictly

stationary over t for each fixed i and j.

Assumption A2 For κ = |t − s|, where κ ∈ {1, . . . , (T − 1)}, the random errors εijt are inde-

pendent across i and j and satisfy E(εijt|Xij1, Xij(1+κ)) = 0 and E(ε2ijt|Xij1 = x1, Xij(1+κ)) =

x2) = σ2(x1, x2) ∈ (0,∞), where σ2(·) is continuous at (x1, x2) ∈ int(χ).

Assumption A3 The density of Xijt satisfies 0 < fXijt(·) < ∞ and is twice continuously dif-

ferentiable in all its arguments with bounded second-order derivatives at any point of its support.

For t < s, the joint density of distinct elements of (Xijt, Xijs) is bounded and continuously dif-

ferentiable in all its arguments, at any point of its support.

Assumption A4 The map m(·) : χ→ IR is Borel measurable and twice continuously differenti-

able at x in the interior of χ with bounded derivatives.

Assumption A5 K(u) =
∏d
`=1 k(u`) is a product kernel, and the univariate kernel function

k(·) is compactly supported and bounded such that
∫
k(u)du = 1,

∫
uu>k(u)du = µ2(K)Id, and∫

k2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0 are scalars and Id is a d× d identity matrix.

All odd-order moments of k vanish, that is,
∫
uι11 , . . . , u

ιd
d k(u)du = 0, for all non-negative integers

ι1, . . . , ιd such that their sum is odd.

Assumption A6 The bandwidth matrix H is symmetric and positive definite, where each element

of H tends to zero and IN |H| → ∞, as IN →∞, where |H| ≡ h1 · · ·hd.

Assumption A7 There exists some δ > 0 such that E[|εij1|(2+δ)|Xij1 = x1, Xij(1+κ) = x2] and

E[|εij(1+κ)|(2+δ)|Xij1 = x1, Xij(1+κ) = x2] are continuous at (x1, x2) ∈ int(χ), for κ = |t − s|,
where κ ∈ {1, . . . , (T − 1)}.
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Assumptions A1 and A2 are rather standard in panel data analysis. Dependence between the

subscripts i and j could be considered, but that is not a usual problem in the vast majority of the

empirical studies conducted on multidimensional setting so we leave that case for future research.

Assumptions A3 and A4 are basically smoothness and boundedness conditions on the density

function and moment functionals. Assumptions A5 and A6 are standard in the nonparametric

literature for the kernel function and bandwidth. For the sake of simplicity, a second-order kernel

is used so the number of continuous regressions should be less than four (e.g., Cai and Masry

(2000) or Qian and Wang (2012)). If d ≥ 4, we have to use higher order kernels or resort to semi-

parametric methods to avoid the well-known “curse of dimensionality”. Therefore, we are able to

incorporate some prior information coming from economic theory or past theory in the parametric

part of the model and, at the same time, we keep maintaining the flexibility in the specification of

the model in the nonparametric part. Further, it follows from Assumption A5 that
∫
uakb(u)du <

∞ for a = 2, 4 and b = 1, 2 in the univariate case. Assumption A6 allows for T either fixed or

going to infinity. Thus, in order to establish the asymptotic normality of this estimator when T

is fixed, Assumption A7 is necessary to check the Lyapounov condition. Nevertheless, when T is

large, the mathematical derivation is more complicated and some additional (stronger) conditions

such as the following are needed.

Assumption B1 The bandwidth matrix H is symmetric and positive definite, where each element

of H tends to zero and INT |H| → ∞, as IN →∞ and T →∞, where |H| = h1 · · ·hd.

Assumption B2 For each fixed i and j, (Xijt, εijt) is a strictly stationary α-mixing process with

the mixing coefficient satisfying the condition α(κ̃) = O(κ̃−τ ), where τ = (2 + δ)(1 + δ)/δ and

κ̃ = |κ′ − κ|, for κ ∈ {1, . . . , (T − 1)} and κ < κ′.

Assumption B3 INT (τ−1)/τ |H|(2+δ)/(1+δ) →∞ as IN →∞ and T →∞.

We do not need to impose an explicit condition on the limit relation between IN and T , as

is standard in the large panel data literature (e.g., Hahn and Newey (2004) and Lee and Phillips

(2015)). In particular, in Assumption B1 we can allow for T to be quite small relative to IN ,

so the large T condition that we use here is much weaker than in the standard large panel data

regression literature. Further, conditions B2 and B3 are similar to those established for nonlinear

time series models. In particular, many stationary time series or Markov chains fulfilling certain

(mild) conditions are α-mixing with exponentially decaying coefficients. Then, Assumption B2

contains the α-mixing condition for weakly dependent stochastic processes (see Cai (2003), Cai

and Li (2008) and/or Carrasco and Chen (2002) for a deeper discussion).

Before stating our theorems, we introduce the following notation:
∫
uu>uu>k(u)du =

µ4(K)Id, µ
2
2(K) = (µ2(K))2,

∫
uu>k2(u)du = R2(K)Id, and ν̃v(K) = R2(K)Rd−1(K)/µ2d2 (K).

The conditional variance of εijt satisfies V ar(ε2ij1|Xij1 = x,Xij(1+κ) = x) = σ2(x, x) and the
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conditional covariance is E(εij1εij(1+κ)|Xij1 = x,Xij(1+κ) = x) = σ1,(1+κ)(x, x). In addition,

$4(x,H) =

∫
u1u

>
1 H

1/2Hm(x)H1/2u1u
>
1 K(u1)du1,

$2(x,H) =

∫
u1u

>
(1+κ)H

1/2Hm(x)H1/2u(1+κ)u
>
1 K(u1)K(u(1+κ))du1du(1+κ)

are d× d positive definite and finite matrices, for κ ∈ {1, . . . , (T − 1)}.
Finally, let X = (X111, . . . , XN1N2T ) be the observed covariates sample. Under these assumpti-

ons, the following results regarding the conditional Mean Squared Error (MSE) and the asymptotic

distribution of the nonparametric pairwise least-squares estimator, D̂m(x,H), are obtained. For

κ = |t − s|, we let Hm(·) be the Hessian matrix of m(·) and Dfκ(·) be the gradient vector of

fXij1,Xij(1+κ)(·, ·).

Theorem 1

(i) Under Assumptions A1-A6, as IN tends to infinity, for fixed T ,

MSE[D̂m(x;H)|X] ∼

(
1

2µd2(K)
∑T−1
κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)

)2

ϕ1(x, h)ϕ1(x, h)>

+
dν̃v(K)

∑T−1
κ=1

(
1− κ

T

)
[σ2(x, x)− σ1,(1+κ)(x, x)]fXij1,Xij(1+κ)(x, x)

INT |H|
(∑T−1

κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)

)2 H−1,

where ϕ1(x,H) =
∑T−1

κ=1

(
1− κ

T

)
[$4(x;H)−$2(x;H)]Dfκ(x).

(ii) Under Assumptions A1-A5 and B1-B2, as IN tends to infinity and T →∞,

MSE[D̂m(x;H)|X] ∼

(
1

2µd2(K)
∑T−1

κ=1 fXij1,Xij(1+κ)(x, x)

)2

ϕ2(x,H)ϕ2(x,H)>

+
dν̃v(K)

∑T−1
κ=1 [σ2(x, x)− σ1,(1+κ)(x, x)]fXij1,Xij(1+κ)(x, x)

INT |H|
∑T−1

κ=1 fXij1,Xij(1+κ)(x, x)
H−1,

where ϕ2(x,H) =
∑T−1

κ=1 [$4(x;H)−$2(x;H)]Dfκ(x).

Theorem 2 Under Assumptions A1-A7. If
√
IN |H|H3/2 = O(1), then as IN tends to infinity,

for fixed T ,√
IN |H|H1/2

(
D̂m(x;H)−Dm(x)−B(1)(x;H)

)
d−−−→ N (0, V (1)(x)),
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where,

B(1)(x;H) =
1

2µd2(K)

T−1∑
κ=1

(
1− κ

T

)
[$4(x;H)−$2(x;H)]Dfκ(x)

(
T−1∑
κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)

)−1
,

V (1)(x) =
ν̃v(K)

T

T−1∑
κ=1

(
1− κ

T

)
[σ2(x, x)− σ1,(1+κ)(x, x)]fXij1,Xij(1+κ)(x, x)

×

(
T−1∑
κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)

)−2
Id.

Theorem 3 Under Assumptions A1-A5, and B1-B3. If
√
IN |H|H3/2 = O(1), then as IN tends

to infinity and T →∞,√
IN |H|H1/2

(
D̂m(x;H)−Dm(x)−B(2)(x;H)

)
d−−−→ N (0, V (2)(x)),

where,

B(2)(x;H) =
1

µd2(K)

T−1∑
κ=1

[$4(x;H)−$2(x;H)]Dfκ(x)

(
T−1∑
κ=1

fXij1,Xij(1+κ)(x, x)

)−1
,

V (2)(x) = ν̃v(K)
T−1∑
κ=1

[σ2(x, x)− σ1,(1+κ)(x, x)]fXij1,Xij(1+κ)(x, x)

(
T−1∑
κ=1

fXij1,Xij(1+κ)(x, x)

)−2
Id.

The results of Theorems 1-3 are rather standard. In particular, it is shown that, conditionally

on the sample, D̂m(x;H) is a consistent estimator of Dm(x) and the bias term is of the standard

order of magnitude for this type of problems. Meanwhile, the variance will be penalized when

both H is large and data are sparse in the neighborhood of x. Our pairwise estimator nearly

achieves the optimal rate (i.e.,
√
IN |H|H) of convergence for this type of problem in a single step.

2.4 Estimating the unknown function

Although the focus of this paper is on the estimation of marginal effects (i.e., Dm(·)), we could

be also interested in the estimation of m(·). However, in this context of fixed effects, this is

not an easy task. Our pairwise transformation deletes the unobserved heterogeneity at the cost

of eliminating m(x) from the regression model. In a two-dimensional setting, Lee et al. (2019)

and Qian and Wang (2012) propose to use additional normalization assumptions and marginal

integration techniques, respectively.

Here we extend the marginal integration technique developed in Qian and Wang (2012) to the

multidimensional setting. Using the pairwise transformation in (2.7) to remove the unobserved

individual heterogeneities, i.e., µi and γj , we have

Yijt − Yijs = m(Xijt)−m(Xijs) + λt − λs + εijt − εijs, i = 1, . . . , N1, j = 1, . . . , N2, t = 1, . . . , t, t < s,
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and taking differences across i to eliminate both λt and λs,

Ÿijts = g(Xijt, Xijs, Xi(j−1)t, Xi(j−1)s) + ε̈ijt, i = 1, . . . , N1, j = 1, . . . , N2, t = 1, . . . , t, t < s, (2.11)

where Ÿijts = Yijt − Yijs − Yi(j−1)t + Yi(j−1)s, and ε̈ijts = εijt − εijs − εi(j−1)t + εi(j−1)s. We then

define g(·) : IR4d → IRd as an additive function that satisfies

g(u, v1, v2, v3) = m(u)−m(v1)−m(v2) +m(v3), u, v1, v2, v3 ∈ IRd.

Following Qian and Wang (2012), we propose to estimate g(u, v1, v2, v3) using multivariate

kernel smoothing methods, say Nadaraya-Watson (see Nadaraya (1964) or Watson (1964)) or local

linear (see Fan and Gijbels (1995b) or Ruppert and Wand (1994), among others). In particular,

the local linear estimator of g(u, v1, v2, v3) solves the following criterion function for θ0,
[10]

min
θ0,θ1,θ2,θ3,θ4

N1∑
i=1

N2∑
j=1

T−1∑
t=1

T∑
s=1+t

[Ÿijts − θ0 − θ>1 (Xijt − u)− θ>2 (Xijs − v1)− θ>3 (Xi(j−1)t − v2)− θ>4 (Xi(j−1)s − v3)]2

×KH0(Xijt − u)KH0(Xijs − v1)KH0(Xi(j−1)t − v2)KH0(Xi(j−1)s − v3), (2.12)

where KH0(u) = |H0|−1/2K(H
−1/2
0 u) and H0 is a d × d bandwidth matrix whose elements may

be different from those in H.

Let Ÿ = [Ÿijts] be a column vector, Γ = [1, (Xijt−u)>, (Xijs−v1)>, (Xi(j−1)t−v2)>, (Xi(j−1)s−
v3)
>] be a (1+4d)-column matrix, and let W0 = diag{KH0(Xijt−u)KH0(Xijs−v1)KH0(Xi(j−1)t−

v2)KH0(Xi(j−1)s − v3)}. Assuming that Γ>W0Γ is invertible, the solution to the minimization

problem (2.12) for θ̂0 (hence ĝ(u, v1, v2, v3)) is

ĝ(u, v1, v2, v3;H0) = θ̂0 = e>1 (Γ>W0Γ)−1Γ>W0Ÿ , (2.13)

where e1 is a (1 + 4d)-dimensional vector whose first element is 1 and the rest are zeros. Then,

we proceed to estimate m(·) by marginally integrating ĝ(u, v1, v2, v3),

m̂(u;H0) =

∫
X
ĝ(u, v1, v2, v3;H0)q(v1)q(v2)q(v3)dv1dv2dv3, (2.14)

where q(v) is a pre-determined positive weighting function.

To develop the asymptotic theory, we assume the following:

Assumption C1 q(·) are defined on the compact support X ∈ IRd, twice continuously differenti-

able, and
∫
X m(u)q(u)du = 0.

[10]Note that in the above minimization problem, we only use non-overlapped cross-sections of j. More precisely,
we use only the differencing between j and j−1, but we do not include the difference between other distinct pairs of
j1 and j2, where |j1−j2| > 1. Therefore, we have dropped more than half of the sample related with the individuals
j, so an efficiency effect over the resulting estimator is expected. If we included all possible differences, the resulting
samples are no longer independent in cross-sections and it would be necessary to resort to U-statistics techniques
in order to obtain the main asymptotic properties of the local linear estimator. Therefore, if the estimation of the
level function were the primary objective of the paper, the U-statistics solution would be recommended.
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Assumption C2 For each i and j, all joint densities of Xijt are bounded from above and from

zero and are continuously differentiable.

Assumption C3 H
1/2
0 = H̃

1/2
0 (N1N

∗
2 )−1/(4+d), where H̃

1/2
0 is a diagonal matrix with positive

constant on the diagonal and N∗2 = N2 if N2 is even, else N∗2 = (N2 − 1)/2.

Note that Assumption C1 contains some normalization conditions that enables us to identify

q(·). If the integral of q(·) is not equal to one, then the unknown function m(·) may be identified up

to a multiplicative constant. Note that if we do not impose
∫
m(u)q(u)du = 0, then m(·) may be

identified up to an additive constant. Further, conditions C2-C3 are fairly standard assumptions

in the marginal integration literature.

Let f4(u, v1, v2, v3) denote the joint density of (Xij1, Xij1+κ, Xi(j−1)1, Xi(j−1)(1+κ)), for κ ∈
{1, . . . , (T − 1)}, and v∗ = v1 + v2− v3. The following theorem collects the asymptotic properties

results of the estimator m̂(u) defined in (2.14).

Theorem 4 Let u be an interior point of supp(f) and let Assumptions A1-A5, A7, and C1-C3

hold. Given a fixed T and as N1 →∞ and/or N∗2 →∞, we have√
N∗1N

∗
2 |H0|1/2 (m̂(u;H0)−m(u)−B(u,H0))

d−−−→ N (0, V (u)),

where

B(u,H0) =
1

2
µd2(K)

[
tr{H0Hm(u)} −

∫
X
tr{H0H(v∗)}q(v∗)dv∗

]
+ op(tr{H0}),

V (u) =
Rd(K)

T

T−1∑
κ=1

(
1− κ

T

)
[σ2(x, x)− σ1,(1+κ)(x, x)]

∫
X

f4(u, v1, v2, v3)q2(v1)q2(v2)q2(v3)(∑T−1
κ=1

(
1− κ

T

)
f4(u, v1, v2, v3)

)2 dv1dv2dv3
 .

The proof of this theorem is a straightforward extension of the proof for Theorems 2 − 3 in

Qian and Wang (2012) and hence omitted. Further, the above results could be extended to the

particular case in which both IN and T are large, but that is beyond the scope of this paper as

we are primarily concerned with the gradient and not the level function.

Finally, it is well-known that we may implement the marginal integration in (2.14) by numerical

integration methods such as Simpson’s or Trapezoidal rules. However, using these methods with

multidimensional data can be computational cumbersome since O(N1N2) operations would be

required in order to estimate each point in the dimension of interest. Alternatively, similar to

Qian and Wang (2012), we propose to use the sample version of (2.14) of the form

m̂s(u;H0) =
2

N1N∗2T
2(T − 1)

N1∑
i=1

N∗2∑
j=1

T∑
t′=1

T−1∑
t=1

T∑
s=t+1

ĝ(u,Xijt′ , Xi(j−1)t, Xi(j−1)s;H0). (2.15)

Note this estimator behaves asymptotically the same as in (2.14) when g(·) is the density of

Xijt (e.g., see Qian and Wang (2012) for a deeper explanation in a two-dimensional panel data

setting).
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3 Bandwidth selection

The bandwidth term plays a crucial role in estimation of the gradient function. Choosing a large

bandwidth reduces the variance of the nonparametric estimates, but at the cost of enlarging

its bias. In order to solve this trade-off, a large literature has focused on the development of

appropriate bandwidth selection techniques for the conditional mean (see Fan and Gijbels (1995a)

or Müller et al. (1987), among others). Unfortunately, these types of techniques are scarce when

our interest is the gradient function in a panel data framework.

In this section, we propose a data-driven bandwidth technique based on the gradient of an

unknown regression function in a panel data context. For the sake of simplicity, we assume

σ1,(1+κ)(x, x) = 0. In particular, we want to choose H = diag(h1, . . . , hd) optimally in the sense

that they minimize the estimation of mean squared error for the first order derivative functions of

m(x).[11] Let D̂m(x;H) be the pairwise estimator of Dm(x) = ∂m(x)/∂x> obtained in (2.10), we

would like to choose H minimizing the following sample analog of the estimation of mean squared

error:

CV (H) =
1

N1N2

(
T

2

)−1 N1∑
i=1

N2∑
j=1

T−1∑
t=1

T∑
s=t+1

[
D̂m(Xijts;H)−Dm(Xijts)

]2
M(Xijts), (3.1)

where M(·) is a weight function with bounded support that trims out data near the boundary of

the support of x.

However, this objective function is infeasible given the oracle function, Dm(xijts), is unknown.

To overcome this, authors typically employ the well-known solution proposed in Fan and Gijbels

(1995a). However, this procedure may lead to poor bandwidth selection given that pilot smoothing

parameters are required.

In order to avoid this drawback, we propose to choose a bandwidth parameter that is asymptot-

ically equivalent to choosing a bandwidth that minimizes the objective function in (3.1). Specific-

ally, following the proposal in Henderson et al. (2015), we construct a feasible objective function

by replacing the oracle function by a consistent estimator from the set of local-polynomial estim-

ators. We choose the local-cubic (LC) estimator, given that its bias is of sufficiently smaller-order

relative to the local-linear estimator. Instead of considering the whole vector of the derivative

function, Dm(x), we consider each partial derivative separately, Dm`(x) = ∂m(x1, . . . , xd)/∂x` for

` = 1, . . . , d. Without loss of generality we will focus on the case of ` = 1.

The feasible objective function we propose to minimize is

CV (H) =
1

IN

(
T

2

)−1 N1∑
i=1

N2∑
j=1

T−1∑
t=1

T∑
s=t+1

[
D̂m1(Xijts;H)− D̂m1,LC(Xijts;H)

]2
M(Xijts), (3.2)

where D̂m1,LC(Xijts;H) is the corresponding pairwise local-cubic estimator for Dm1(x) =

∂m(x1, . . . , xd)/∂x1.

[11]In practice, authors use a diagonal bandwidth matrix.
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In order to show the asymptotic equivalence between the local-cubic and the local-linear

estimator, we assume the following:

Assumption D1 The map m(·) is four times continuously differentiable at x in the interior of

X with bounded derivatives.

Denote Bias0(·) and V ar0(·) as the leading bias and variance terms of the corresponding

estimator. Using Assumption D1 and following a similar procedure as in Theorem 1, as IN →∞
and T →∞, the conditional leading bias of these two estimators are

Bias0(D̂m1
(x,H)) =

[
(µ4(K)− µ2(K))

2µ2(K)
∑T−1
κ=1 fXij1,Xij(1+κ)(x, x)

m′′1(x)

T−1∑
κ=1

f ′Xij1,Xij(1+κ)(x, x) +
µ4(K)

6µ2(K)
m′′′1 (x)

]
h21

+
µ2(K)

2
∑T−1
κ=1 fXij1,Xij(1+κ)(x, x)

d∑
` 6=1

T−1∑
κ=1

[
µ4(K)m′′′` (x)− µ2

2(K)m′′′` (x)
]
Df (x)h2`

+ µ2(K)

d∑
` 6=1

T−1∑
κ=1

fX`,ij1,X`,ij(1+κ)(x, x)

fX1,ij1,X1,ij(1+κ)
(x, x)

m′′′` (x)h2` ,

Bias0(D̂m1,LC(x,H)) = Op(‖H‖2),

where ‖H‖ =
∑d

`=1 h
2
` and we denote m′`(x) = ∂m(x)/∂x`, m

′′
1(x) = ∂2m(x)/∂x21, m

′′
` (x) =

∂2m(x)/∂xtx`, m
′′′
1 (x) = ∂3m(x)/∂x31, and m′′′` (x) = ∂3m(x)/∂xt∂xt′∂x`.

The conditional leading variances are

V ar0(D̂m(x,H)) =
σ2(x, x)Rd−12 (K)R(K)

INTh41h
2
2 · · ·h2dµd2(K)

(∑
κ

fXij1,Xij(1+κ)(x, x)

)−1
(1 + op(1)),

V ar0(D̂m,LC(x,H)) =
Rd−1(K)σ2(x, x)%1
INTh41h

2
2 · · ·h2d%22

H−1

(∑
κ

fXij1,Xij(1+κ)(x, x)

)−1
(1 + op(1)),

respectively, where %1 = µ2d6 (K)R2(K) + µ2d4 (K)R6(K) − 2µd6(K)µd4(K)R4(K), and %2 =

µd2(K)µd6(K)− µ2d4 (K).

By the same reasoning as in Hall et al. (2007) and Racine and Li (2004), the leading term of

CV (H) in (3.1) is given by

CV 0
1 (H) =

∫ {[
Bias0(D̂m1(x,H))

]2
+ V ar0

(
D̂m(x,H)

)}
f(x)M(x)dx

=

∫
[B(x)]2f(x)M(x)dx+

V1(K)Rd−1(K)

INTh41h
2
2 · · ·h2d

∫
V(x)f(x)M(x)dx, (3.3)

where V1(K) = R2(K)/µ2d2 (K) and V(x) = σ2(x, x)/
∑

κ fXij1,Xij(1+κ)(x, x). Similarly, the leading

15



term of CV1(H) in (3.2) is

CV 0
1,LC(H) =

∫ {[
Bias0(D̂m1(x,H))−Bias0(D̂m1,LC(x,H))

]2
+ V ar0

(
D̂m1(x,H)− D̂m1,LC(x,H)

)}
× f(x)M(x)dx

=

∫
[B(x)]2f(x)M(x)dx+

V1,3(K)Rd−1(K)

INTh41h
2
2 · · ·h2d

∫
V(x)f(x)M(x)dx, (3.4)

where

V1,3(K) =
R2(K)

µ2d2 (K)
+
%1
%22
− 2(R2(K)µd6(K)−R4(K)µd4(K))

µd2(K)%2
.

We have shown that the bias of D̂1,LC(x,H) is asymptotically negligible and the only element

of the local-cubic estimator which appears in the asymptotic expansion of the objective function

is the variance of the difference between these two estimators. Furthermore, in the limit, the

variance of this difference behaves (up to a constant depending on the kernel) the same as if we

had the oracle gradient. Therefore, bandwidths selected replacing the oracle gradient with the

local-cubic estimator are asymptotically equivalent to those selected with the unknown oracle

gradient (see Henderson et al. (2015) for a deeper discussion in the cross-sectional setting).

Only for expositional simplicity, lets assume that the bandwidths are equal across d and let

h0,opt and h0,cubic denote the values of h that minimize (3.3) and (3.4), respectively. In this special

case, we have that

h0,opt =

(
V1(K)Rd−1(K)

∫
V(x)f(x)M(x)dx∫

[B(x)]2f(x)M(x)dx

)1/8

INT−1/8,

h0,cubic =

(
V1,3(K)Rd−1(K)

∫
V(x)f(x)M(x)dx∫

[B(x)]2f(x)M(x)dx

)1/8

INT−1/8.

Therefore, h0,cubic = (V1,3(K))/V1(K))1/(T+6)h0,opt. Let h̃cubic denote the value of h that

minimizes (3.2), h̃ is corrected by the following expression

ĥcubic = (V1(K)/V1,3(K))1/(T+6)h̃cubic.

Finally, under some regularity conditions similar to those in Hall et al. (2007), it is relatively

straightforward to show that

ĥcubic/h0,opt
p−−→ 1.

In the case of an Epanechnikov kernel function, it is relatively easy show that V1/V1,3 =

660/9065. Note that these bandwidths have been chosen when T is large and d = 1 (single

dimension X). However, it is relatively easy to extend our results for T fixed and d > 1, but we
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omit these results for sake of brevity.

4 Lower-dimensional and interactive fixed effects models

As we have argued, the proposed estimators are very general and can handle essentially any

dimension panel. These are outlined for the parametric case by Balazsi et al. (2015) and we

list several cases here for completeness. These include the commonly used one-way and two-way

models

Yit = m (Xit) + µi + εit,

Yit = m (Xit) + µi + λt + εit,

where, for t < s, the corresponding pairwise transformations are

Ỹits = Yit − Yis,

Ỹits = Yit − Yis − Y t + Y s,

where the regressors (X) and errors (ε) are transformed similarly.

The two cases above are obvious, so it is probably more practical to consider fixed effects which

are unique to (i, j), (i, t) and/or (j, t) as these are popular in empirical research. In particular, the

corresponding nonparametric expression of the multidimensional panel data models (2.2)-(2.6) are

the following

Yijt = m (Xijt) + µij + εijt,

Yijt = m (Xijt) + µij + λt + εijt,

Yijt = m (Xijt) + γjt + εijt,

Yijt = m (Xijt) + µij + γjt + εijt,

Yijt = m (Xijt) + µij + γjt + λit + εijt,

where, for t < s, i < k, and j < l, the corresponding pairwise transformations are

Ỹijts = Yijt − Yijs,

Ỹijts = Yijt − Yijs − Y t + Y s,

Ỹijts = Yijt − Ykjt,

Ỹijts = Yijt − Ykjt − Y ij + Y kj ,

Ỹijts = Yijt − Y jt − Y it + Y t − Yijs + Y js + Y is − Y s,

where the regressors (X) and errors (ε) are transformed similarly. Once we have obtained the

transformed variables X̃ijt and Ỹijt, we can similarly apply the estimation procedure developed
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in Subsection 2.3. Further, it is relatively straightforward to extend these to higher-dimensional

panels.[12] We leave these extensions to given applications of our estimators.[13]

5 Finite sample properties

In order to assess the finite-sample performance of the pairwise estimator presented in Section

2 and the GBCV bandwidth selection procedure proposed in Section 3, several simulations will

be performed. To cover commonly used situations, we focus on the following two scenarios: (a)

two-dimensional (two-way) fixed effects panel data models and (b) three-dimensional (three-way)

fixed effects panel data models.

5.1 Two-dimensional model

We begin by considering the following data generating process (DGP)

Yit = m(Xit) + µi + λt + εit, i = 1, . . . , N, t = 1, . . . , T (5.1)

where Xit is a random variable generated such that Xit = 0.5Xi(t−1)+ξit and ξit is an i.i.d. random

variable normally distributed with zero mean and variance 1. We generate µi = ϑi + c0Xi and

λt = ϑt + c0Xt, where ϑi and ϑt are U [−1, 1] random variables, c0 = 0.5 controls the magnitude

of the fixed effects, Xi = T−1
∑T

t=1Xit and Xt = N−1
∑N

i=1Xit.

The error term εit is generated as N(0, 1) and two functional forms for m(·) are considered:

DGP1 m1(Xit) = (1/3)X3
it,

DGP2 m2(Xit) = 1.5X2
it/(1 +X2

it).

We use 1000 replications, the number of time periods T is either 3, 5, or 10, and the number of

cross-sections N is either 100 or 300. Given Assumption A5 (bounded support kernel), we use

Epanechnikov kernel functions.[14]

We consider both fixed bandwidths and the GBCV bandwidth selection mechanism for the

pairwise estimator proposed in Section 2. Further, we use the Average Mean Squared Error

(AMSE) as a measure of the performance of our estimator that is computed as

AMSE(D̂m(x;h)) =
1

NT

N∑
i=1

T∑
t=1

(D̂m(x;h)−Dm(x;h))2.

[12]For the four dimensional panel we proposed before, the transformation would be Ỹijls = Yijlt−Yijls−Y t +Y s,
for t < s, where Y t and Y s are the corresponding cross-sectional means.
[13]A potentially interesting extension would be to consider factor models. However, this is beyond the scope of

this paper.
[14]The use of bounded kernel functions was purely for convenience in the asymptotic development. It is worth

noting that we also ran each of the simulations with Gaussian kernels and our estimators performed well. In fact,
we found non-trivial improvements as compared to Lee et al. (2019). When using an Epanechnikov kernel function,
the performance of the two estimators were nearly indistinguishable. This bodes well for the pairwise estimator as
it is obtained under less restrictive assumptions. These results are available upon request.
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Figures 1-2 depict boxplots of the 1000 AMSE values of the pairwise gradient estimators for

m1(·) and m2(·), respectively. In addition, for the sake of comparison, our Supplementary Material

contains the estimated bias, standard deviation (Std), and square root (RAMSE) of the AMSE of

the pairwise estimator and other nonparametric estimators proposed in the literature to estimate

the gradient functions.

Figures 1 and 2 illustrate the consistency of our pairwise estimator for the gradient of the

unknown function as all AMSE values converge toward zero as the sample size increases. In ad-

dition, the proposed GBCV bandwidth selection mechanism performs well. The resulting AMSE

is considerably smaller as the time dimension increases.

Figure 1: Boxplots of the 1000 AMSE values for the gradient estimators of m1(·) for both fixed
and GBCV selected bandwidths in two-dimensional panel data models.

Further, when we assess the finite sample performance of our proposed GBCV bandwidth

selection procedure the true unknown gradient is known, so a comparison to the oracle setting is

feasible. Our performance criterion is the average squared error (ASE),

ASE(β̂LL,A) =
1

NT

N∑
i=1

T∑
t=1

(
D̂m,LL(Xit;h)−Dm,A(Xit)

)2
,

where D̂m,LL(·) is the local-linear pairwise estimator of Dm(·) = ∂m(·)/∂z and Dm,A(·) is one of

the estimators from: (i) the local-quadratic estimator, (ii) the local-cubic estimator, and (iii) the

true gradient function. Tables 1-2 present percentiles of the estimated ASE for the bandwidths

selected by GBCV using local-quadratic, local-cubic, and the infeasible estimator over the 1000

simulations for DGP1 and DGP2, respectively.

The median ASEs in Tables 1-2 provide insight into the general behavior of the proposed

bandwidth selection mechanism while the extreme deciles provide insight into the tail performance
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Figure 2: Boxplots of the 1000 AMSE values for the gradient estimators of m2(·) for both fixed
and GBCV selected bandwidths in two-dimensional panel data models.

Table 1: ASE for DGP1 for GBCV selected bandwidths over 1000 simulations.

N Consistent estimator T=3 T=5 T=10

100 Local-quadratic [0.192,0.975,3.523] [0.090,0.495,1.531] [0.032,0.183,0.727]
Local-cubic [0.036,0.212,0.959] [0.012,0.096,0.362] [0.006,0.042,0.172]
Infeasible true Dm(·) [0.011,0.046,0.196] [0.008,0.028,0.097] [0.007,0.014,0.053]

200 Local-quadratic [0.076,0.370,1.175] [0.033,0.165,0.547] [0.012,0.085,0.253]
Local-cubic [0.010,0.076,0.280] [0.006,0.032,0.012] [0.003,0.016,0.048]
Infeasible true Dm(·) [0.006,0.017,0.061] [0.006,0.012,0.037] [0.006,0.009,0.021]

Note: Numbers in brackets are the 10th, 50th, and 90th percentiles of ASE across 1000 simulations, respectively.

Table 2: ASE for DGP2 for GBCV selected bandwidths over 1000 simulations.

N Consistent estimator T=3 T=5 T=10

100 Local-quadratic [0.178,1.065,3.423] [0.114,0.506,1.601] [0.036,0.219,0.716]
Local-cubic [0.039,0.253,0.923] [0.017,0.132,0.461] [0.008,0.063,0.264]
Infeasible true Dm(·) [0.026,0.081,0.244] [0.029,0.058,0.131] [0.029,0.048,0.085]

200 Local-quadratic [0.082,0.396,1.332] [0.044,0.205,0.603] [0.033,0.114,0.349]
Local-cubic [0.017,0.101,0.360] [0.011,0.066,0.214] [0.008,0.054,0.144]
Infeasible true Dm(·) [0.027,0.052,0.099] [0.029,0.047,0.073] [0.031,0.041,0.056]

Note: Numbers in brackets are the 10th, 50th, and 90th percentiles of ASE across 1000 simulations, respectively.
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of a given method across the simulations. The tables show that (at the median) the GBCV local-

cubic estimator dominates the local-quadratic for all sample sizes and both DGPs and is very

close (in terms of performance) to using the true gradients. Further, the gains from using local-

cubic increase as the sample size increases. Here we argue that the local-cubic version of the

GBCV delivers bandwidths which behave as though one deployed the infeasible, known gradient

of the unknown conditional mean. In other words, our simulations results confirm the theoretical

conclusions of Section 3.

5.2 Three-dimensional model

For the three-dimensional setting, i = 1, . . . , N1, j = 1, . . . , N2, and t = 1, . . . , T , we consider the

following DGPs

Yijt = m(X1ijt) + µi + γj + λt + εijt, (5.2)

Yijt = m(X1ijt, X2ijt) + µi + γj + λt + εijt, (5.3)

where X1ijt and X2ijt are random variables generated such that X1ijt = 0.5X1ij(t−1) + ξ1ijt and

X2ijt = 0.5ξ2ijt + 0.5ξ3ijt, where ξ1ijt, ξ2ijt, and ξ3ijt denote i.i.d. random variables normally

distributed with zero mean and variance 1. Several functional forms for m(·) are considered:

DGP3 m1(X1ijt) = (1/3)X3
1ijt,

DGP4 m2(X1ijt) = 1.5X2
1ijt/(1 +X2

1ijt),

DGP5 m1(X1ijt, X2ijt) = (1/3)(X1ijt +X2ijt)
3,

DGP6 m2(X1ijt, X2ijt) = 1.5(X1it +X2ijt)
2/
[
1 + (X1ijt +X2ijt)

2
]
,

where DGP3 and DGP4 are univariate problems whereas DGP5 and DGP6 are multivariate.

We generate µi = ϑi + c0X1i, γj = ϑj + xX1, and λt = ϑt + c0X1t, where ϑi, ϑj , and ϑt are

U [−1, 1], c0 = 0.5 controls the magnitude of the fixed effects, whereas X1i = (N2T )−1
∑

jtX1ijt,

X1t = (N1N2)
−1∑

ij X1it, and X1j = (N1T )−1
∑

itX1ijt. The number of cross-sections (IN =

N1N2) are varied from (N1, N2) = (15, 10) to (N1, N2) = (25, 20), the number of time periods T

is either 3, 5 or 10. We repeat each experiement 1000 times. We again use Epanechnikov kernel

functions and consider both fixed and GBCV bandwidths and AMSE is used as a performance

measure of the pairwise estimator that is computed as

AMSE(D̂m(x;h)) =
1

N1N2T

N1∑
i=1

N2∑
j=1

T∑
t=1

(
D̂m(x;h)−Dm(x;h)

)2
.

Figures 3 and 4 give the results for the univariate cases (d = 1). The consistency of the

pairwise estimator for each bandwidth is corroborated. Again, as expected from our theoretical

findings, the AMSEs collapse to zero as the sample size increases in all the cases considered.
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Figures 5 and 6 collect the results for the multivariate DGP (5.3). As expected, the curse of

dimensionality is evident although the estimator still performs well in this setting. In summary,

the results here along with the theoretical results suggest that the pairwise estimator performs

well in practice.

Figure 3: Boxplots of the 1000 AMSE values for the gradient estimators of m1(·) for both fixed
and GBCV selected bandwidths in univariate three-dimensional panel data models.

Figure 4: Boxplots of the 1000 AMSE values for the gradient estimators of m2(·) for both fixed
and GBCV selected bandwidths in univariate three-dimensional panel data models.

Finally, in order to assess the finite sample performance of the proposed bandwidth selection

mechanism in the multidimensional setting, we consider DGP3 and DGP4. Again, our perform-
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Figure 5: Boxplots of the 1000 AMSE values for the gradient estimators of m1(·) for both fixed
and GBCV selected bandwidths in multivariate three-dimensional panel data models.

Note: The boxplots at the top depict the results for the gradient estimator of m1(·) with respect to X1 (i.e.

Dm1(·)), whereas the boxplots for the gradient estimator of m1(·) with respect to X2 (i.e. Dm2(·)) are collected at

the bottom.
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Figure 6: Boxplots of the 1000 AMSE values for the gradient estimators of m2(·) for both fixed
and GBCV selected bandwidths in multivariate three-dimensional panel data models.

Note: The boxplots at the top depict the results for the gradient estimator of m1(·) with respect to X1 (i.e.

Dm1(·)), whereas the boxplots for the gradient estimator of m1(·) with respect to X2 (i.e. Dm2(·)) are collected at

the bottom.
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ance criterion is ASE:

ASE(D̂mLL,A) =
1

N1N2T

N1∑
i=1

N2∑
j=1

T∑
t=1

(
D̂m,LL(Xijt;h)−Dm,A(Xijt)

)2
and the resulting percentiles of estimated ASE are collected in Tables 3 and 4.

Table 3: ASE for DGP3 for GBCV selected bandwidths over 1000 simulations.

N Consistent estimator T=3 T=5 T=10

100 Local-quadratic [0.109,0.650,2.079] [0.114,0.506,1.601] [0.027,0.130,0.444]
Local-cubic [0.020,0.135,0.506] [0.017,0.132,0.461] [0.005,0.032,0.103]
Infeasible true Dm(·) [0.008,0.030,0.121] [0.029,0.058,0.131] [0.006,0.011,0.030]

200 Local-quadratic [0.075,0.340,1.135] [0.044,0.205,0.603] [0.016,0.086,0.232]
Local-cubic [0.011,0.079,0.281] [0.011,0.066,0.214] [0.003,0.015,0.072]
Infeasible true Dm(·) [0.007,0.018,0.070] [0.029,0.048,0.073] [0.006,0.010,0.027]

Note: Numbers in brackets are the 10th, 50th, and 90th percentiles of ASE across 1000 simulations, respectively.

Table 4: ASE for DGP4 for GBCV selected bandwidths over 1000 simulations.

N Consistent estimator T=3 T=5 T=10

100 Local-quadratic [0.154,0.695,2.233] [0.096,0.369,1.085] [0.045,0.195,0.575]
Local-cubic [0.022,0.150,0.599] [0.015,0.106,0.396] [0.007,0.066,0.236]
Infeasible true Dm(·) [0.026,0.067,0.152] [0.026,0.052,0.102] [0.029,0.046,0.069]

200 Local-quadratic [0.091,0.389,1.216] [0.048,0.209,0.626] [0.023,0.108,0.360]
Local-cubic [0.013,0.102,0.398] [0.009,0.069,0.248] [0.009,0.043,0.142]
Infeasible true Dm(·) [0.029,0.052,0.104] [0.029,0.045,0.070] [0.031,0.042,0.059]

Note: Numbers in brackets are the 10th, 50th, and 90th percentiles of ASE across 1000 simulations, respectively.

We find similar conclusions in Tables 3 and 4 as we do in Tables 1 and 2. We conclude that

the proposed GBCV bandwidth selection mechanism performs well in finite samples.

6 Application: The price of rental housing and housing vouchers

Beginning with the Housing Act of 1937, the U.S. federal government has operated a large num-

ber of programs with the intent to improve the housing of low-income households. While there

have been many variants of these programs, they generally fall into three different categories:

(1) government ownership and operation of newly built low-income housing, (2) government con-

tracts with private parties to build (or improve existing) and operate low-income housing and (3)

subsidies to eligible households for private market housing. The first two are supply side pro-

grams and the latter is a demand side program. There has been a substantial increase in demand
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side programs as of late as it has been argued that demand side programs are generally more

cost effective and do not result in the same concentrations of poverty as traditional supply based

programs.

All programs have costs. While the substantial price tag (around $40 billion yearly in means-

tested housing programs and another $6 billion in tax credits to low-income households) is under-

stood, one potential negative consequence is that these subsidies on the demand side may lead to

an increase in the price of rental housing for households that do not receive the subsidy. The lite-

rature to this point is unclear on this particular issue (Olsen (2003)). For example, Susin (2002)

found (for the period 1974-1993) that increased housing vouchers (subsidies) increased the price

of rental housing for households who did not receive vouchers, whereas a large social experiment

in the 1970’s found no statistically significant effect. While these studies are useful, they each

suffer from potential endogeneity and hence their results may be suspect.

Eriksen and Ross (2015) use a panel dataset to estimate the effect of a large, arguably exo-

genous, increase in the number of housing vouchers (between 2000-2002) in order to identify the

effect of increasing the supply of housing vouchers on short-term rents. In their full-sample, they

find an elasticity which is close to zero (both nominally and statistically). When splitting the

sample at arbitrary values of a relevant variable (ratio of the rent of a rental unit in the base year

to the US Department of Housing and Urban Development fair market rent for that metropolitan

statistical area in the same year), they find statistically significant negative effects for those units

which were initially 80% below the 1997 ratio and statistically significant positive elasticities for

those units which were between 80% and 120% of that ratio.

Our goal here is to take the data from Eriksen and Ross (2015) to determine if a more flexible

approach can yield additional insight into the heterogeneous effects of housing vouchers on rents.

Here we hope to avoid splitting the sample arbitrarily by adopting a semiparametric approach

whereby we can obtain an elasticity for each unit in each time period.[15] Given the number of

attributes of each rental unit (i.e., number of regressors), we extend our econometric methodology

to the case of a partially linear model. Specifically, we will model housing vouchers nonparamet-

rically, but will allow the remaining attributes to enter linearly. This extension addresses the

curse of dimensionality problem.

Using a balanced sample of housing units, we find both negative and positive elasticities

of housing rents with respect to housing vouchers. While we find some evidence of positive and

significant elasticities and while those positive and significant elasticities are primarily in the range

suggested by Eriksen and Ross (2015), the majority of the evidence suggests primarily negative

elasticities throughout the sample. For the positive elasticities, our point estimates suggest that

most of the positive elasticities reside in the Western United States and for housing units that are

more supply inelastic.

The remainder of this section is as follows: Section 6.1 develops the partially linear version of

[15]Eriksen and Ross (2015) attempt to further model heterogeneity by interacting the log of vouchers with a
fifth-order polynomial of the log of the supply elasticity.
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our estimator for the case of a single nonparametric regressor and three-dimensional fixed effects.

Section 6.2 discusses the data from Eriksen and Ross (2015), and Section 6.3 presents both the

parametric and semiparametric results.

6.1 Partially linear model

Given the number of regressors, it seems prudent to try to reduce the dimension of our non-

parametric problem. Here we consider the extension of our model to one that is partially linear.

We considered the partially linear approach of Robinson (1988), but elected to adopt the profile

least-squares approach designed for partially linear varying coefficient models in Fan and Huang

(2005). Note that estimation via the partially linear approach of Robinson (1988) produced similar

results. Here we will model rents on vouchers nonparametrically, but will allow the relationship

between rents and the remaining regressors to be linear.

Our extension of Equation (2.7) to the partially linear case is given as

Yijt = m (Xijt) + Z>ijtβ + µi + γj + λt + εijt, (6.1)

where i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, and t = 1, 2, . . . , T . In our setting, Xijt is scalar (d = 1)

and will be the log of housing vouchers and Zijt is a vector of q = 7 different attributes of the

rental property. Our interest will lie in the gradient of m (·), i.e., Dm (·), and the finite parameter

vector β. As before, we allow µi, γj , and/or λt to be correlated with Xijt, but also allow them to

be correlated with Zijt. This requires us to transform Yijt with respect to the cross-sectional and

time dimensions.

Similar to Equation (2.8), we define, the pairwise transformed regression model as

Ỹijts = m̃(Xijts) + Z̃>ijtsβ + ε̃ijts, i = 1, . . . , N1, j = 1, . . . , N2, t = 1, . . . , T, t < s, (6.2)

where Ỹijts = (Yijt − Y t)− (Yijs − Y s). Z̃ijts and ε̃ijts are defined similarly, whereas

m̃(Xijts) = m(Xijt)−m(Xijs)−
1

N1N2

∑
ij

[m(Xijt)−m(Xijs)].

Noting that Xijt is scalar in our application, so we can estimate the gradient function, Dm(·),
using the following locally weighted linear regression

N1∑
i=1

N2∑
j=1

T−1∑
t=1

T∑
s=t+1

[(
Ỹijts − Z̃>ijtsβ

)
− X̃ijtsDm (x)

]2
Kh (Xijt − x)Kh (Xijs − x) , (6.3)

where the kernel functions, Kh (·) are as we defined before except that we use the notation h

instead of H because in the application, H is a scalar bandwidth term.

Taking the first-order condition of (6.3) with respect to the gradient function Dm (x), for a
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given β, leads to the infeasible estimator

D̃m(x;h) =

∑N1
i=1

∑N2
j=1

∑T−1
t=1

∑T
s=t+1Kh (Xijt − x)Kh (Xijs − x) X̃ijts(Ỹijts − Z̃>ijtsβ)∑N1

i=1

∑N2
j=1

∑T−1
t=1

∑T
s=t+1Kh (Xijt − x)Kh (Xijs − x) X̃2

ijts

. (6.4)

In order to overcome this situation and obtain a consistent estimate of the gradient of our

unknown function, we follow Fan and Huang (2005). We first derive a closed form solution for

the estimator of β and then plug that consistent estimate into (6.4). It is perhaps easier to derive

the result in matrix notation and so we rewrite (6.2) as

Ỹ − Z̃β = M̃ + ε̃.

We define NTP = N1N2T (T − 1)/2. Then, M̃ =
[
m̃(X1121), . . . , m̃(XN1N2T (T−1))

]>
,

Ỹ = (Ỹ1121, . . . , ỸN1N2T (T−1))
>, and ε̃ = (ε̃1121, . . . , ε̃N1N2T (T−1))

> are NTP × 1 vectors, and

Z̃ = (Z̃1121, . . . , Z̃N1N2T (T−1))
> is a NTP × q dimensional matrix.

In this framework, the solution to the problem (6.3) in matrix form is given by

D̃m(x;h) = (X̃>WxX̃)−1X̃>Wx(Ỹ − Z̃β),

where X̃ = (X̃1121, . . . , X̃N1N2T (T−1)) is a NTp×1 vector and Wx is a NTP ×NTP block diagonal

matrix such as

Wx = diag
{
Kh(X112 − x)Kh(X111 − x), . . . ,Kh(XN1N2T − x)Kh(XN1N2(T−1) − x)

}
.

Approximating the elements of M̃ through a Taylor expansion and following similar steps as

in Fan and Huang (2005), the estimator of M̃ is obtained as

̂̃
M = S(Ỹ − Z̃>β),

where S = (S>1121, . . . , S
>
N1N2T (T−1))

> is a NTP ×NTP smoothing matrix whose ijt-th element is

Sijts = X̃ijts(X̃
>WxijtsX̃)−1X̃>Wxijts .

Using this result, it is relatively straightforward to obtain the estimator of the finite dimen-

sional parameter as

β̂ =
[
Z̃> (INTP − S)> (INTP − S) Z̃

]−1
Z̃> (INTP − S)> (INTP − S) Ỹ , (6.5)

where INTP is an identity matrix of dimension NTP . With this estimate of β in hand, we obtain
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the feasible estimator of the gradient function as

D̂m(x;h) =

∑
ijtsKh (Xijt − x)Kh (Xijs − x) X̃ijts(Ỹijts − Z̃>ijtsβ̂)∑

ijtsKh (Xijt − x)Kh (Xijs − x) X̃2
ijts

. (6.6)

Note that in practice we must fix the value of x in order to obtain the pairwise estimators of

β̃ and/or β̂. In both cases, we choose the median value from the data vector, but note that the

choice of this value did not significantly impact the estimated value of β when we restricted our

choices to be within the interquartile range of the data.

Following a similar proof scheme as in Fan and Huang (2005) and Cai et al. (2019), it is

relatively straightforward to show that β̂ is a consistent estimator of β. Therefore, the asymptotic

properties obtained in Section 2.3 are valid for D̂m(x;h) in a partially linear framework.

6.2 Data

The data come directly from Eriksen and Ross (2015) and we will only discuss them briefly. Their

primary source is the public-use version of the American Housing Survey (AHS). The U.S. Census

Bureau conducts the AHS survey every two years with the goal of being nationally representative

of all housing units in the U.S. Their original unbalanced sample for the years 1997, 1999, 2001 and

2003 includes 8, 388 rental housing units in 135 Metropolitan Statistical Areas (MSAs). Excluding

rental units which were publicly-owned or rent restricted resulted in 24, 721 unit-year observations.

We took the 2, 713 rental units which were observed in each of the four time periods as our sample

to avoid issues relating to attrition. This resulted in 10, 852 unit-year observations.

The descriptive statistics for both samples can be found in Table 5. The first value is the

sample mean of the reported variable and the value below it is the sample standard deviation of

that variable. The first variable listed is our dependent variable, the log of the reported Rent and

utility cost, which is $1,013 per month in the full sample and $988 per month in the balanced

sample. The log of V ouchers is our main regressor of interest and is defined as the estimated

number of vouchers at the metropolitan level. Eriksen and Ross (2015) argue and provide evidence

that the large increase in the number of vouchers between 2000 and 2002 was unrelated to past

changes in rents and deem that this variable is likely exogenous. The log of per capita Income,

the log of Population and log rental V acancy rates all come from the U.S. Census. The binary

variables, Rodents, Washer, Cracks and Sewage are used to control for the presence of rodents,

whether there was a washer or dryer, large cracks in the walls and if the sewage system had broken

down in the previous year. Each set of regressions will also include unit, MSA and year fixed

effects.[16]

[16]It is arguable that the MSA fixed effect is redundant given that rental units do not change MSAs over time. We
also attempted to model a two-way fixed effects specification and found that the results are qualitatively similar.
These are available upon request.
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Table 5: Descriptive statistics for the full and balanced samples: Sample means for each variable
(the first five are measured in logs) with the sample standard deviation underneath

Full Sample Balanced Sample

Rent 6.5568 5.5608
0.5011 0.4845

V ouchers 9.0374 9.1516
1.3970 1.3367

Income 10.5686 10.566
0.1632 0.1690

Population 14.6675 14.5973
1.0466 1.0212

V acancy 2.0268 2.0064
0.3690 0.3659

Rodents 0.1360 0.1413
0.3428 0.3483

Washer 0.3864 0.3681
0.4869 0.4823

Cracks 0.0778 0.0771
0.2678 0.2668

Sewage 0.0198 0.0185
0.1392 0.1348

N1 8,388 2,713
N2 135 135
T 4 4
Obs 24,721 10,852
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6.3 Results

Here we present the results from our application. We first look at the parameter estimates from a

pairwise parametric procedure (fully linear model) and then move to the analogous semiparametric

results. Given that our semiparametric approach treats V ouchers nonparametrically, it allows us

to look at the distribution of the estimated elasticities of housing rents with respect to housing

vouchers.

We note here that we were able to successfully replicate the results of Eriksen and Ross (2015)

using both their Stata code as well as with our own code in R.

6.3.1 Parametric

The first column of numbers in Table 6 reports the parameter estimates from the pairwise para-

metric estimator for the balanced sample (analogous to Table 4 in Eriksen and Ross (2015)). The

number below each parameter estimate is its corresponding standard error. It is important to

first point out that while a majority of the point estimates from the full sample are similar to

that of the balanced sample, there are some changes. The coefficient on the significant variables

Income and Population are about 25% larger and 40% smaller in magnitude than in the balanced

sample, respectively. Of the remaining variables, Washer is significant, while V acancy, Rodents,

Cracks and Sewage are insignificant in each case.

6.3.2 Semiparametric

We begin our discussion of the semiparametric results by looking at the bandwidths calculated

via the estimation method discussed in Section 3. The cross-validated bandwidth for the pairwise

estimator is 0.3887. Note that this result is far below a few standard deviations (see Hall et al.

(2007)) of the log of vouchers (1.3367) and hence we believe that substantial nonlinearities exists

in the relationship between Rent and V ouchers.

The parameter estimates (and corresponding standard errors) for the finite dimensional para-

meter vector β for the semiparametric estimator is given in the second column in Table 6. The

parameter estimates for the semiparametric pairwise estimators are very close to their parametric

counterparts. The most notable differences between the coefficient estimates are the coefficients

on Population which are more than twice the size of their parametric counterparts.

Given that we treat V ouchers nonparametrically, it is not included in the finite dimensional

parameter vector. We get unique elasticities for each rental unit in each year. Instead of giving

an average or median estimate for each estimator, we plot the estimated gradient versus the log

of vouchers over a grid of points in panels (a) and (b) of Figure 7 along with 95% pointwise

confidence bounds obtained via the bootstrap procedure outlined in Härdle et al. (2004, p. 119).

The bootstrap confidence bounds show portions which are both positive and negative and

cases of significance and insignificance of each. This may explain why the (global) parametric

(mean) estimates are close to zero. The semiparametric estimates show significant nonlinearities
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Table 6: Parameter estimates (with standard errors listed beneath) from both the parametric and
semiparametric procedures: V ouchers is treated nonparametrically in the semiparametric case
and is not included in the finite dimensional parameter vector

Parametric Semiparametric
V ouchers 0.0091

0.0159
Income 1.0682 1.1306

0.1087 0.1077
Population 0.2245 0.5158

0.0956 0.0630
V acancy -0.0093 -0.0105

0.0131 0.0131
Rodents 0.0146 0.0159

0.0078 0.0078
Washer 0.0341 0.0337

0.0095 0.0095
Cracks -0.0006 0.0002

0.0091 0.0092
Sewage 0.0072 0.0089

0.0172 0.0172
Unit fixed effects Yes Yes
MSA fixed effects Yes Yes
Year fixed effects Yes Yes
N1 2,713 2,713
N2 135 135
T 4 4
Obs 10,852 10,852

32



(a) Pairwise gradient vs. log vouchers (b) Pairwise gradient vs. fair market ratio

Figure 7: Gradient estimate with respect to the log of vouchers versus either the log of vouchers or
fair market ratio. In the right panel the scatter plot is given as well as a separate nonparametric
regression fit to the see the relationship between the two variables. All plots include 95% pointwise
confidence intervals.

present in the relationship. That being said, there is no clear picture of what is driving these

results.

Given this puzzle in panel (a), we can further analyze the results by exploiting clues in Eriksen

and Ross (2015). In their Table 5, they arbitrarily split the sample into different groups: rents

less than 80% of the ratio of the 1997 rent divided by the US Department of Housing and Urban

Development fair market rent before the voucher expansion and those between 80 and 120 percent.

The semiparametric results generate unique elasticities for each rental unit in each time period and

so we can simply look at the relationship between each elasticity and the ratio in question. Panel

(d) of Figure 7 does just that. In each panel, we present a scatterplot of the two values (estimated

elasticities of housing vouchers and the fair market rent ratio), along with a nonparametric fit

(and relevant 95% pointwise confidence bounds). While we see positive elasticities in the range

Eriksen and Ross (2015) allude to, the vast majority of the elasticities are negative. In fact, the

nonparametric regression and confidence bounds are substantially below zero.

To study these differences further, we looked more closely at observations with positive elast-

icities and those with negative elasticities. We found the main differences between these groups

to be with respect to region. Therefore, in Figure 8, we plotted the analogous scatter plots and

nonparametric regression fits for each region: Midwest, North, South and West. The Midwest and

North appear to have many elasticities both above and below zero while the South is primarily

below zero and the West has a large portion above zero. In fact, the West is the only region

whereby the nonparametric fits have portions which are significantly above zero.

Larger western cities tend to have the ocean, lots of local restrictions, and mountains. Southern

cities are generally flat and seemingly can grow forever. This begs the question of whether or not
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this result is at least partially driven by vacancy rates as areas that are more supply inelastic

(supply constrained) cannot build as quickly and easily when demand increases. Therefore, in

Figure 9, we give plots analogous to those in Figure 8, but for low and high vacancy rates as well

as for supply inelastic and supply elastic areas.[17] The results for both low vacancy and supply

inelastic areas are quite similar. We see a majority of positive elasticies and substantial portions

greater than zero. In fact, for low vacancy, the entire curve is above zero. This is stronger than

the result shown in Eriksen and Ross (2015). For high vacancy and supply elastic markets, there

are some observations both above and below zero, but the nonparametric fits tend to be below

zero for all fair market ratios.

Overall, we showed that while many of the results from the parametric model held true, the

heterogeneity of the elasticities was masked by assuming a single coefficient on housing vouchers.

We found a large percentage of negative coefficients whereas the parametric model was unable to

find this result without splitting the sample arbitrarily. We were able to find evidence that positive

elasticities were more concentrated in the West where supply elasticities were more inelastic.

Future research should look into what attributes are related to the sign of these elasticities as well

as potential heterogeneity in other attributes.

7 Conclusion

In this paper, we developed a nonparametric gradient estimator for multi-dimensional panel data

models. This estimator can handle fixed effects of essentially any dimension as well as interactive

effects. We developed the asymptotic results for our estimators and showed the finite sample

properties via simulation. We further suggest a cross-validation method for data driven bandwidth

selection. Finally, we extended our model to the partially linear setting and included an empirical

application that related U.S. rental prices to housing vouchers and showed that negative elasticities

tended to be in areas which were more supply elastic whereas the positive elasticities tended to

be in areas which were more supply inelastic.

We believe these general results can be applied to many economic problems, and believe that in

a given application, the estimator can easily be modified to handle the unobserved heterogeneity

present in the model.
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(a) Midwest (b) North

(c) South (d) West

Figure 8: Pairwise gradient versus the ratio of the rent of a rental unit in the base year to
the US Department of Housing and Urban Development fair market rent (fair market ratio) for
different regions (Midwest, North, South and West). Each panel includes a scatter plot as well as
a separate nonparametric regression fit to the see the relationship between the two variables. All
plots include 95% pointwise confidence intervals.
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(a) Low vacancy (b) High vacancy

(c) Supply inelastic (d) Supply elastic

Figure 9: Pairwise gradient versus the ratio of the rent of a rental unit in the base year to the
US Department of Housing and Urban Development fair market rent (fair market ratio) for low
vacancy rates, high vacancy rates, supply inelastic and supply elastic regions (note that supply
elasticities are only available for populations in excess of 500,000 - 93 of the 135 MSA areas).
Each panel includes a scatter plot as well as a separate nonparametric regression fit to the see
the relationship between the two variables. All plots include 95% pointwise confidence intervals.
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Appendix

Before proceeding to the asymptotic analysis of the proposed estimator, we first establish the

definition of a strongly mixing sequence. Let {ϑt} be a strictly stationary process and F tt′ denote

the sigma algebra generated by (ϑt′ , . . . , ϑt) for t′ ≤ t. A process {ϑt} is said to be strongly mixing

or α-mixing if

α(τ) = sup
t′∈N
{|P (A

⋂
B)− P (A)P (B)| : A ∈ F t′−∞, B ∈ F∞t′+τ} → 0

as τ →∞.

Proof of Theorem 1: In order to show the conditional MSE of our nonparametric estimator,

some notation is needed. Dm(x) is the first-order derivative d-dimensional vector of m(·) such

that Dm(x) = vec(∂m(x)/∂x>), Hm(x) is the d × d Hessian matrix of m(·), i.e., Hm(x) =

∂m(x)/∂x∂x>, and n ≡ N1N2T . Further, we denote

$4(x,H) =

∫
u1u

>
1 H

1/2Hm(x)H1/2u1u
>
1 K(u1)du1,

$2(x,H) =

∫
u1u

>
(1+κ)H

1/2Hm(x)H1/2u1(1+κ)u
>
1 K(u1)K(u1+κ))du1du(1+κ)

as d× d positive and finite matrices.

Let X = (X111, . . . , XN1N2T ) be the observed covariates sample. The conditional MSE of

D̂m(x;H) is of the form

MSE[D̂m(x;H)|X] = tr(V ar[D̂m(x;H)|X]) +Bias[D̂m(x;H)|X]>Bias[D̂m(x;H)|X], (7.1)

where

Bias[D̂m(x;H)|X] = E[D̂m(x;H)|X]−Dm(x)

V ar[D̂m(x;H)|X] = E
[
(D̂m(x;H)− E[D̂m(x;H)|X])(D̂m(x;H)− E[D̂m(x;H)|X])>|X

]
.

For the sake of simplicity, let us denote

Kijt = K
(
H−1/2(Xijt − x)

)
and Kijs = K

(
H−1/2(Xijs − x)

)
.

By Assumption A2, the conditional expectation of (2.10) is

E[H1/2D̂m(x;H)|X] =

 1

N1N2|H|
∑
ijts

KijtKijsX̃h,ijtsX̃
>
h,ijts

−1 1

N1N2|H|
∑
ijts

KijtKijsX̃
>
h,ijtsm̃(Xijts), (7.2)
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where X̃h,ijts = H−1/2X̃ijts and

m̃(Xijts) = m(Xijt)−m(Xijs)−
1

N1N2

∑
ij

[m(Xijt)−m(Xijs)] .

Approximating m̃(Xijts) using the multivariate Taylor’s theorem and rearranging terms,

m̃(Xijts) ' X̃>h,ijtsH1/2Dm(x) +
1

2
Q̃ijts(x) + R̃ijts(x), (7.3)

where

Q̃ijts(x) = (Xijt − x)>Hm(x)(Xijt − x)− (Xijs − x)>Hm(x)(Xijs − x)

− 1

IN

∑
ij

[
(Xijt − x)>Hm(x)(Xijt − x)− (Xijs − x)>Hm(x)(Xijs − x)

]
,

R̃ijts(x) = (Xijt − x)>Rm(Xijt;x)(Xijt − x)− (Xijs − x)>Rm(Xijs;x)(Xijs − x)

− 1

IN

∑
ij

[
(Xijt − x)>Rm(Xijt;x)(Xijt − x)− (Xijs − x)>Rm(Xijs;x)(Xijs − x)

]
,

where IN = N1N2.

Also, Rm(Xijt;x) is a residual term such as

Rm(Xijt;x) =

∫ 1

0

[
∂2m

∂x∂x>
(x+ ϕ(Xijt − x))− ∂2m(x)

∂x∂x>

]
(1− ϕ)dϕ (7.4)

and ϕ is a weight function. A similar definition is given for Rm(Xijs;x).

Replacing (7.3) in (7.2), we obtain

H1/2E[D̂m(x;H)|X]−H1/2Dm(x) = Ψ−1n Bn + Ψ−1n Rn, (7.5)

and using the expressions (2.10) and (7.2),

H1/2D̂m(x;H)−H1/2E[D̂m(x;H)|X] = Ψ−1n Un, (7.6)
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where

Ψn =

(
T

2

)−1 1

IN |H|
∑
ijts

X̃h,ijtsX̃
>
h,ijtsKijtKijs,

Bn =

(
T

2

)−1 1

2IN |H|
∑
ijts

X̃h,ijtsQ̃ijts(x)KijtKijs,

Rn =

(
T

2

)−1 1

IN |H|
∑
ijts

X̃h,ijtsR̃ijts(x)KijtKijs,

Un =

(
T

2

)−1 1

IN |H|
∑
ijts

X̃h,ijtsε̃ijtsKijtKijs.

In order to prove the results of this theorem, the following Lemmas are necessary which will

be proved below.

Lemma 1 Under Assumptions A1-A6,

(i) Ψn =
4µd2(K)
(T−1)

∑T−1
κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)Id(1 + op(1)),

(ii) Bn = 2
(T−1)

∑T−1
κ=1

(
1− κ

T

)
[$4(x,H)−$2(x,H)]H1/2Dfκ(x) + op(H

3/2),

(iii) Rn = op(H
3/2).

Lemma 2

(i) Under Assumptions A1-A6, as IN →∞ and fixed T ,

INT (T − 1)|H|V ar(Un)

p−−−→ 16Rd2(K)Rd(K)

T−1∑
κ=1

(
1− κ

T

)
(σ2(x, x)− σ1,(1+κ)(x, x))fXij1,Xij(1+κ)(x, x)Id.

(ii) Under Assumptions A1-A5 and B1-B2, as IN →∞ and T →∞,

INT (T − 1)2|H|V ar(Un)

p−−−→ 16Rd2(K)Rd(K)

T−1∑
κ=1

(σ2(x, x)− σ1,(1+κ)(x, x))fXij1,Xij(1+κ)(x, x)Id.

Proof of Lemma 1: In order to prove the assertion (i), X̃ijts can be rewritten as

X̃ijts = (Xijt −Xijs) − IN−1
∑
ij

(Xijt −Xijs). Under Assumption A1, as IN tends to infinity,
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plim 1
IN

∑
ij

(Xijt −Xijs) = 0. Using this result and Assumption A1, we get

E(Ψn) =
4

T (T − 1)|H|
∑
ts

E[H−1/2(Xijt −Xijs)(Xijt −Xijs)
>H−1/2KijtKijs] + op(1)

=
4

T (T − 1)|H|
∑
κ

(T − κ)E[H−1/2(Xij1 − x)(Xij1 − x)>H−1/2Kij1Kij(1+κ)]

− 4

T (T − 1)|H|
∑
κ

(T − κ)E[H−1/2(Xij1 − x)(Xij(1+κ) − x)>H−1/2Kij1Kij(1+κ)] + op(1)

=
4

T (T − 1)

∑
κ

(T − κ)

∫
u1u
>
1 f(Xij1 = x+H1/2u1, Xij(1+κ) = x+H1/2u(1+κ))K(u1)K(u1)du1du(1+κ)

− 4

T (T − 1)

∑
κ

(T − κ)

∫
u1u
>
κ f(Xij1 = x+H1/2u1, Xij(1+κ) = x+H1/2u(1+κ))K(u1)K(u(1+κ))du1du(1+κ)

+ op(1)

=
4µd2(K)

(T − 1)

T−1∑
κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)Id + op(1), (7.7)

for κ = |t− s|, where κ ∈ {1, . . . , (T − 1)}.
To conclude the proof of Lemma 1(i), it is necessary to turn to a law of large numbers. Then,

V ar(Ψn)→ 0 must be proved, as IN →∞ with fixed T . With this aim, we have

V ar(Ψn)

=
1

INT 2|H|2
∑
κ

(T − κ)V ar
(
H−1/2X̃ij1(1+κ)X̃

>
ij1(1+κ)H

−1/2Kij1Kij(1+κ)

)
+

1

INT 2|H|2
∑
κ

∑
κ<κ′

Cov
(
H−1/2X̃ij1(1+κ)X̃

>
ij1(1+κ)H

−1/2Kij1Kij(1+κ), H
−1/2X̃ij1(1+κ′)X̃

>
ij(1+κ′)H

−1/2Kij1Kij(1+κ′)

)
,

where, under Assumption A4, it is straightforward to show

1

INT 2|H|2
∑
κ

(T − κ)V ar
(
H−1/2X̃ij1(1+κ)X̃

>
ij1(1+κ)H

−1/2Kij1Kij(1+κ)

)
≤ C

IN |H|
+ op

(
1

IN |H|

)
,

and

1

INT 2|H|2
∑
κ

∑
κ<κ′

Cov
(
H−1/2X̃ij1(1+κ)X̃

>
ij1(1+κ)H

−1/2Kij1Kij(1+κ), H
−1/2X̃ij1(1+κ′)X̃

>
ij1(1+κ′)H

−1/2Kij1Kij(1+κ′)

)
≤ C′

IN |H| + op

(
1

IN |H|

)
.

Therefore, as IN |H| → ∞ with fixed T , it is shown that this variance term tends to zero, so

Lemma 1(i) holds.

Focusing now on the behaviour of Bn, under Assumption A1 and the law of large numbers,
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Bn is asymptotically equal to

E(Bn) =
2

T (T − 1)|H|
∑
κ

(T − κ)E[H−1/2(Xij1 − x)(Xij1 − x)>Hm(x)(Xij1 − x)Kij1Kij(1+κ)]

− 2

2T (T − 1)|H|
∑
κ

(T − κ)E[H−1/2(Xij1 − x)(Xij(1+κ) − x)>Hm(x)(Xij(1+κ) − x)Kij1Kij(1+κ)]

+ op(1)

=
2

T (T − 1)

T−1∑
κ=1

(T − κ)$4(x,H)H1/2Dfκ(x)− 2

T (T − 1)

T−1∑
κ=1

(T − κ)$2(x,H)H1/2Dfκ(x)

+ op(H
3/2). (7.8)

Using similar arguments as above, it can be shown that any component of the variance of Bn

converges to zero as H → 0 and IN |H| → ∞.

Finally, in order to show that the nonparametric estimator of the gradient vector D̂m(x;H)

is asymptotically unbiased, it is necessary to show that

Rn = op(H
3/2) (7.9)

as IN tends to infinity with fixed T . To this end, under Assumption A1 and using the law of large

numbers,

E(Rn) =
2

T (T − 1)|H|
∑
κ=1

(T − κ)E
[
H−1/2(Xij1 − x)(Xij1 − x)>Rm(Xij1;x)(Xij1 − x)Kij1Kij(1+κ)

]
− 2

T (T − 1)|H|
∑
κ

(T − κ)E
[
H−1/2(Xij1 − x)(Xij(1+κ) − x)>Rm(Xij(1+κ);x)

× (Xij(1+κ) − x)Kij1Kij(1+κ)

]
+ op(1).

Summing and subtracting the following expression

2

T (T − 1)|H|
∑
κ

(T − κ)H−1/2(Xij1 − x)(Xij(1+κ) − x)>Rm(Xij1;x)(Xij(1+κ) − x)Kij1Kij(1+κ)

and, after rearranging terms, Rn can be split up into the following terms

E(Rn) = E(II1(x)) + E(II2(x)) + op(1),
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where

E(II1(x)) =
2

T (T − 1)|H|
∑
κ

(T − κ)E[H−1/2(Xij1 − x)(Xij1 − x)>Rm(Xij1;x)(Xij1 − x)Kij1Kij(1+κ)]

− 2

T (T − 1)|H|
∑
κ

(T − κ)E[H−1/2(Xij1 − x)(Xij(1+κ) − x)>Rm(Xij1;x)(Xij(1+κ) − x)Kij1Kij(1+κ)],

E(II2(x)) =
2

T (T − 1)|H|
∑
κ

(T − κ))E[H−1/2(Xij1 − x)(Xij(1+κ) − x)>
(
Rm(Xij1;x)−Rm(Xij(1+κ);x)

)
× (Xij(1+κ) − x)Kij1Kij(1+κ)].

Analyzing E(II1(x)) and E(II2(x)) separately, we follow a similar procedure as above. Under

Assumption A3,

E(II1(x)) =
2

T (T − 1)

∑
κ

(T − κ)

∫
u1u
>
1 H

1/2Rm(x+H1/2u1;x)H1/2u1u
>
1 H

1/2Dfκ(x)K(u1)K(u(1+κ))du1du(1+κ)

− 2

T (T − 1)

∑
κ

(T − κ)

∫
u1u
>
(1+κ)H

1/2Rm(x+H1/2u1;x)H1/2u(1+κ)u
>
1 H

1/2Dfκ(x)K(u1)

× K(u(1+κ))du1du(1+κ).

By definition (7.4) and Assumption A4,

Rm(x+H1/2u1;x) ≤
∫ 1

0
ζ(ϕ‖H1/2u1‖)(1− ϕ)dϕ,

where ζ(·) is the modulus of continuity of ∂2m(x)/∂x∂x>. Hence, assuming that ζ(ϕ‖H1/2u1‖)→
0 as IN →∞,

E|II1(x)| ≤ C1

T (T − 1)

∑
κ

|T − κ|
∫ ∫ 1

0
|u1u>1 H1/2||ζ(ϕ‖H1/2u1‖)||H1/2u1u

>
1 H

1/2|Dfκ(x)|K(u1)|

× |K(u(1+κ))||1− ϕ|dϕdu1du(1+κ)

+
C2

T (T − 1)

∑
κ

|T − κ|
∫ ∫ 1

0
|u1u>(1+κ)H

1/2||ζ(ϕ‖H1/2u1‖)||H1/2u(1+κ)u
>
1 H

1/2|Dfκ(x)

× |K(u1)||K(u(1+κ))||1− ϕ|dϕdu1du(1+κ)

and E(II1(x)) = op(H
3/2) follows by dominated convergence. Similarly,

E|II2(x)| ≤ C3

T (T − 1)

∑
κ

|T − κ|
∫ ∫ 1

0
|u1u>(1+κ)H

1/2||ζ(ϕ(H1/2u1))− ζ(ϕ(H1/2u(1+κ)))|

× |H1/2u(1+κ)u
>
1 H

1/2|Dfκ(x)|K(u1)||K(u(1+κ))|dϕdu1du(1+κ).

Proceeding as before, by dominated convergence, E(II2(x)) = op(H
3/2) and expression (7.11)

holds.
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Using the results of Lemma 1 in (7.5), by the Slutsky theorem and after rearranging terms,

the conditional bias of D̂m(x;H) when T is fixed is

E[D̂m(x;H)|X]−Dm(x) =
1

2µd2(K)
∑T−1
κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)

T−1∑
κ=1

(
1− κ

T

)
[$4(x,H)−$2(x,H)]Dfκ(x)

+ op(H) + op

(
1√
IN |H|

)
. (7.10)

Similarly, when T →∞, we obtain

E[D̂m(x;H)|X]−Dm(x) =
1

2µd2(K)
∑T−1

κ=1 fXij1,Xij(1+κ)(x, x)

T−1∑
κ=1

[$4(x,H)−$2(x,H)]Dfκ(x)

+ op(H) + op

(
1√
IN |H|

)
. (7.11)

Proof of Lemma 2: Proceeding as in (7.7), under Assumptions A1-A2, it can be written

IN(T − 1)2|H|V ar(Un)

=
4

T 2|H|

T−1∑
κ=1

(T − κ)V ar(H−1/2Xij1(1+κ)εij1(1+κ)Kij1Kij(1+κ))

+
4

T 2|H|

T−1∑
κ=1

T−1∑
κ′ 6=κ

(T − κ)(T − κ′)E[H−1/2Xij1(1+κ)X
>
ij1(1+κ′)H

−1/2εij1(1+κ)εij1(1+κ′)K
2
ij1Kij(1+κ)Kij(1+κ′)]

+op(1)

= II3(x) + II4(x) + op(1), (7.12)

where Xij1(1+κ) = Xij1 − Xij(1+κ) and Xij1(1+κ′) = Xij1 − Xij(1+κ′). Similar definition are

considered for εij1(1+κ) and εij1(1+κ′).

Analyzing each of these terms separately and under strict stationarity, by the law of iterated
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expectations,

II3(x) =
4

T 2|H|
∑
κ

(T − κ)E[E(ε̃2ij1(1+κ)|Xij1, Xij(1+κ))H
−1/2(Xij1 − x)(Xij1 − x)>H−1/2K2

ij1K
2
ij(1+κ)]

− 4

T 2|H|
∑
κ

(T − κ)E[E(ε̃2ij1(1+κ)|Xij1, Xij(1+κ))H
−1/2(Xij1 − x)(Xij(1+κ) − x)>H−1/2K2

ij1K
2
ij(1+κ)]

=
8

T 2

∑
κ

(T − κ){σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)

∫
u1u
>
1 K

2(u1)K2(u(1+κ))du1du(1+κ)

+
8

T 2

∑
κ

(T − κ){σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)

∫
u(1+κ)u

>
(1+κ)K

2(u1)K2(u(1+κ))du1du(1+κ)

+ op(1)

=
16Rd2(K)Rd(K)

T 2

∑
κ

(T − κ){σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)Id(1 + op(1)), (7.13)

where

σ2(x, x) = E(ε2ij1|Xij1 = x,Xij(1+κ) = x) and σ1,(1+κ)(x, x) = E(εij1εij(1+κ)|Xij1 = x,Xij(1+κ) = x).

Considering now the behavior of II4(x), we analyze two different cases: (i) T fixed and (ii)

T →∞.

Case (i): For any t ≥ 1, by Assumptions A1-A2 and the law of iterated expectations,

II4(x) =
4

T 2|H|
∑
κ

∑
κ<κ′

(T − κ)(T − κ′)E[E(εij1(1+κ)εij1(1+κ′)|Xij1, Xij(1+κ), Xij(1+κ′))H
−1/2(Xij −Xij(1+κ))

× (Xij1 −Xij(1+κ′))
>H−1/2K2

ij1Kij(1+κ)Kij(1+κ′)]

=
4Rd2(K)|H|1/2

T 2

∑
κ

∑
κ<κ′

(T − κ)(T − κ′)σ(x, x, x)fXij1,Xij(1+κ),Xij(1+κ′)(x, x, x)Id + op(|H|1/2), (7.14)

where σ(x, x, x) = E(εij1(1+κ)εij1(1+κ′)|Xij1 = x,Xij(1+κ) = x,Xij(1+κ′) = x).

Replacing (7.13)-(7.14) in (7.12) and after rearranging terms,

V ar(Un) =
16Rd2(K)Rd(K)

INT (T − 1)2|H|

T−1∑
κ=1

(
1− κ

T

)
{σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)Id

× (1 + op(1)). (7.15)

Case (ii): Following a similar proof scheme as in Cai and Li (2008), we split II4(x) into two

terms obtaining

II4(x) =
1

T 2|H|

aT∑
κ=1

aT∑
κ<κ′

(T − κ)(T − κ′)E[H−1/2Xij1(1+κ)X
>
ij1(1+κ′)H

−1/2εij1(1+κ)εij1(1+κ′)K
2
ij1Kij(1+κ)Kij(1+κ′)]

+
1

T 2|H|

T−1∑
κ>aT

T−1∑
κ<κ′

(T − κ)(T − κ′)E[H−1/2Xij1(1+κ)X
>
ij1(1+κ′)H

−1/2εij1(1+κ)εij1(1+κ′)K
2
ij1Kij(1+κ)Kij(1+κ′)]

= II
(1)
4 (x) + II

(2)
4 (x), (7.16)
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where aT is a sequence of positive integers such that aTh
d → 0. First, we plan to show that

II
(1)
4 (x)→ 0. Using the results in (7.14) it is straightforward to show

|II(1)4 (x)| ≤ 1

T 2|H|

aT∑
κ=1

aT∑
κ<κ′

(T − κ)(T − κ′)
∣∣∣E[εij1(1+κ)εij1(1+κ′)H

−1/2Xij1(1+κ)X
>
ij1(1+κ′)H

−1/2K2
ij1Kij(1+κ)Kij(2+κ′)]

∣∣∣
≤ C|H|1/2

T 2

aT∑
κ=1

aT∑
κ′ 6=κ

(T − κ)(T − κ′) ≤ CaT |H|1/2 = op(1), (7.17)

given that∣∣∣|H|−1E[εij1(1+κ)εij1(1+κ′)H
−1/2Xij1(1+κ)X

>
ij1(1+κ′)H

−1/2K2
ij1Kij(1+κ)Kij(2+κ′)]

∣∣∣ = Op(|H|1/2).

Focusing now on the behavior of the leading term of I
(2)
4 (x) and using the Davydov’s inequality,

for κ̃ = κ′ − κ, when κ′ 6= κ,∣∣(|H|2H)−1Cov[Xij1(1+κ)εij1(1+κ)Kij1Kij(1+κ), Xij1(1+κ′)εij1(1+κ′)Kij1Kij(1+κ′)]
∣∣

≤ [α(κ̃)]δ/(2+δ)‖(|H|H1/2)−1Xij1(1+κ)εij1(1+κ)Kij1Kij(1+κ)‖(2+δ)
×‖(|H|H1/2)−1Xij1(1+κ)εij1(1+κ1)Kij1Kij(1+κ1)‖(2+δ), (7.18)

Conditioning on (Xij1, Xij(1+κ)), using Assumption A2 and the cT inequality,

E|(|H|H1/2)−1εij1(1+κ)Xij1(1+κ)Kij1Kij(1+κ)|(2+δ)

≤ CE|(|H|H1/2)−1εij1Xij1(1+κ)Kij1Kij(1+κ)|(2+δ) + CE|(|H|H1/2)−1εij(1+κ)Xij1(1+κ)Kij1Kij(1+κ)|(2+δ).

Analyzing each term separately and using the law of iterated expectations,

E|(|H|H1/2)−1εij1Xij(1+κ)Kij1Kij(1+κ)|(2+δ)

≤ |H|−(1+δ)E(|εij1|(2+δ)|Xij1 = x,Xij(1+κ) = x)fXij1,Xij(1+κ)(x, x)

∫
{|u1|(2+δ) + |u(1+κ)|(2+δ)}

×K(2+δ)(u1)K
(2+δ)(u(1+κ))du1du(1+κ)

≤ C|H|−(1+δ) = Op(|H|−(1+δ)).

Similarly, we see that E|(|H|H1/2)−1εij(1+κ)Xij1(1+κ)Kij1Kij(1+κ)|(2+δ) = Op(|H|−(1+δ)). Us-

ing these results in (7.18), we can write∣∣(|H|2H)−1Cov[Xij1(1+κ)εij1(1+κ)Kij1Kij(1+κ), Xij1(1+κ′)εij1(1+κ′)Kij1Kij(1+κ′)]
∣∣

≤ C[α(κ̃)]δ/(2+δ)|H|−2(1+δ)/(2+δ) = Op

(
α(κ̃)δ/(2+δ)|H|−2(1+δ)/(2+δ)

)
.

Therefore, by Assumption B2 and choosing aT such that |H|1/2a2T = Op(1), so that the
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requirement aT |H|1/2 → 0 holds, the (`, `′)th element of II
(2)
4 (x) becomes

|II(2)4(`,`′)(x)| ≤ C|H|−δ/(2+δ)
∑
κ>aT

∑
κ<κ′

[α(κ̃)]δ/(2+δ) = Op(|H|−δ/(2+δ)a−δT )→ 0. (7.19)

Using (7.17) and (7.19) it is shown that II4(x)→ 0 as T →∞, so Lemma 2(ii) is proved.

Considering now the conditional covariance matrix in (7.1), we use the results in Lemmas 1

and 2. Then, by the Slutsky theorem, as IN →∞, for fixed T ,

V ar[D̂m(x;H)|X] = H−1
Rd2(K)Rd(K)

∑T−1
κ

(
1− κ

T

)
{σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)

INT |H|µ2d2 (K)
(∑T−1

κ=1

(
1− κ

T

)
fXij1,Xij(1+κ)(x, x)

)2
× (1 + op(1)). (7.20)

Similarly, as IN →∞ and T →∞, the conditional covariance matrix of the pairwise least-squares

nonparametric estimator is of the form

V ar[D̂m(x;H)|X] = H−1
Rd2(K)Rd(K)

∑T−1
κ {σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)

INT |H|µ2d
2 (K)

(∑T−1
κ=1 fXij1,Xij(1+κ)(x, x)

)2 (1 + op(1)).

Finally, replacing (7.10)-(7.11) and (7.20)-(7.21) in (7.1), the proof of this theorem is done.

Proof of Theorem 2. With the aim of obtaining the asymptotic distribution of the non-

parametric estimator for Dm(x), the Lyapunov condition has to be checked. For any unit vector

ıd ∈ IRd, we define φ∗ij =
(
T
2

)−1∑T−1
t=1

∑T
s=1+t φijts, where φijts = |H|−1/2ı>d Xh,ijtsεijtsKijtKijts.

As T is fixed, by Assumption A1 we get that φ∗ij are independent random variables. Then, by the

law of iterated expectations, the expression to analyze is

√
IN |H|H3ı>d Un =

1√
IN

N1∑
i=1

N2∑
j=1

φ∗ij + op(
√
IN |H|H3). (7.21)

Under Assumptions A1-A2, it is easy to show that E(φ∗ij) = 0, whereas the variance term is

equal to

V ar(φ∗ij) =

(
T

2

)−2 T−1∑
κ

(T − κ)V ar(φij1(1+κ)) +

(
T

2

)−2 T−2∑
κ

T−1∑
κ<κ′

(T − κ)(T − κ′)Cov(φij1(1+κ), φij1(1+κ′))

=
16dRd2(K)Rd(K)

T 2(T − 1)2

T−1∑
κ=1

(T − κ){σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)(1 + op(1)), (7.22)
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given that, previously it was shown,

V ar(φijts) =
16dRd2(K)Rd(K)

T 2(T − 1)2

T−1∑
κ=1

(T − κ){σ2(x, x)− σ1,(1+κ)(x, x)}fXij1,Xij(1+κ)(x, x)

× (1 + op(1)),

Cov(φij1(1+κ), φij1(1+κ′)) =
4dRd2(K)|H|1/2

T 2(T − 1)2

∑
κ

∑
κ<κ

(T − κ)(T − κ′)σ(x, x, x)fXij1,Xij(1+κ),Xij(1+κ′)(x, x, x)

+ op(|H|1/2).

By Minkowski’s inequality and Assumption A7, using a similar procedure as in (7.19), it can

be shown E|φ∗ij |(2+δ) ≤ C|H|−δ/2, for some δ > 0. Then, by Assumption A6, it is proved that

1

(IN)(2+δ)

N1∑
i=1

N2∑
j=1

E|φ∗ij |(2+δ) ≤ C(IN |H|)−δ/2 → 0, (7.23)

so the Lyapounov’s condition holds and the proof of the theorem is closed.

Proof of Theorem 3. As T →∞, φijts is a stationary α-mixing process. In this framework,

the common approach to prove asymptotic normality is to employ Doob’s small-block and large-

block technique. See Ibragimmov and Linnik (1971), Cai and Li (2008), or Cai et al. (2015) among

others, for further details. For the sake of comparison, we follow a similar notation as in Cai and

Li (2008). We partition the time observations {1, . . . , T} into (2qT + 1) subsets with large block

of size rT and small block of size sT < T , with rT + sT < T . Set qT = bT/(rT + sT )c, where bxc
denotes the integer part of x, the expression to analyze is

√
INT |H|H3/2(T − 1)ı>d Un =

2√
INT

 N1∑
i=1

N2∑
j=1

qT−1∑
r=0

ηijr +

N1∑
i=1

N2∑
j=1

qT−1∑
r=0

ξijr +

N1∑
i=1

N2∑
j=1

ζijqT


≡ 1√

INT
(Qn,1 +Qn,2 +Qn,3) , (7.24)

where

ηijr =

r(rT+sT )+rT∑
t=l(rT+sT )+1

φijt, ξijr =

(r+1)(rT+sT )∑
r(rT+sT )+rT+1

φijt, and ζijr =

T∑
qT (rT+sT )+1

φijt.

In order to prove the asymptotic normality of
√
INT |H|T/2ı>d Un, we follow a similar proof

scheme as in Cai and Li (2008). Choosing rT = bT 1/τc and sT = bT 1/(τ+1)c, where τ = (2 +

47



δ)(1 + δ)/δ. By Assumption B3, it can be shown

sT
rT

=
bT 1/(τ+1)c
bT 1/τc

→ 0,
rT
sT

=
1

T
bT 1/τc → 0, and qTα(sT ) ≤ CT−1/(τ+1)τ → 0.

(7.25)

Using the results of Lemma 2 and (7.25), it is straightforward to show

n−1E[Qn,2]
2 p−→ 0 and n−1E[Qn,3]

2 p−→ 0 (7.26)

which imply that the sums over small and residuals blocks, Qn,2/
√
n and Qn,3/

√
n, are asymp-

totically negligible in probability.

In order to show that ηi1j1r in Qn,1/
√
n is asymptotically independent, we resort to Lemma

1.1 in Volkonskii and Rozanov (1995) obtaining∣∣∣∣∣E
[
exp

(
(ijt

qT−1∑
r=0

ηi1j1r

)
−Π

q−1
r=0E [exp (ijtηi1j1r)]

]∣∣∣∣∣ ≤ 16qTα(sT ), (7.27)

which goes to zero as T →∞ using the conditions in (7.25). Therefore, standard Lindeberg-Feller

conditions for the asymptotic normality of the independent setup of Qn,1/
√
n have to be checked.

In particular, by our stationary condition, Lemma 2, and (7.25), it is straightforward to show

1

n

N1∑
i=1

N2∑
j=1

qT−1∑
r=0

E(η2ijr) =
qT rT
T

1

rT
V ar

(
rT∑
t=1

φijt

)
→ V (2)(x). (7.28)

Further, using Theorem 4.1 in Shao and Yu (1996) and Assumption B3,

E
[
η2ij1I{|ηij1| ≥ εV (2)(x)

√
IN}

]
≤ C(IN)−δ/2r

1+δ/2
T ‖φij1‖2+δ2+2δ.

Following a similar proof scheme as in (7.23), it is easy to show E(|φij1|(2+2δ)) ≤ Ch−Tdδ.

This latter result together with (7.28) implies

E[η2ij1I{|ηij1| ≥ εV (2)(x)
√
INT}] ≤ C

(
INT (τ+1)/τ |H|T (2+δ)/2(1+δ)

)−δ/2
and by definition of rT ,

1

n

N1∑
i=1

N2∑
j=1

qT−1∑
r=0

E[η2ij1I{|ηij1| ≥ εV (2)(x)
√
n}]

= Op

(
(INT (τ−1)/τ |HT (2+δ)/2(1+δ)|)−δ/2

)
(7.29)

Finally, from the proof of Theorem 18.4.1 in Ibragimmov and Linnik (1971), we get that

a combination of (7.27)-(7.29) implies that Qn,1/
√
INT → N(0, V (2)(x)). Therefore, using this
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result together with (7.26), the asymptotic normality of
√
INT |H|T/2ı>d Un is proved by applying

the Slutsky’s theorem.
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