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Abstract

In the last decade, several NoSQL systems have emerged as a response to the scalability problems manifested by classical relational
databases when used in Big Data contexts. These NoSQL systems appeared first as physical-level solutions, initially lacking any
design methodologies. After this initial batch of systems, several design methodologies for NoSQL have been recently created.
Nevertheless, most of these methodologies target just one NoSQL paradigm. In addition, as each methodology uses a different con-
ceptual modeling approach, NoSQL database designers would need to remake conceptual models as they switch from one NoSQL
paradigm to another. Moreover, most of these design processes provide just a set of design heuristics and guidelines that database
designers need to apply manually, which can be a time-consuming and error-prone process. To overcome these limitations, this ar-
ticle presents Mortadelo, a model-driven NoSQL database design process where, from a high-level conceptual model, independent
of any specific NoSQL paradigm, an implementation for a concrete NoSQL database system can be automatically generated. More-
over, this database generation process can be customized, so that some design trade-offs can be managed differently according to
each context needs. We evaluated Mortadelo’s capabilities by generating database implementations for several typical NoSQL case
studies. In these cases, Mortadelo was able to generate implementations for the Cassandra and MongoDB NoSQL systems from
the same conceptual data model. These implementations were similar to the ones generated by design methodologies specifically
developed for a single paradigm. Therefore, design quality is not sacrificed by our approach in favor of generality.
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1. Introduction

Nowadays, several kinds of software systems have pushed re-
lational databases to their limits. Examples of these new kinds
of applications are internet-scale applications, such as Twitter
or Amazon; Internet of Things (IoT) applications, such as Smart
Cities [1, 2]; Industry 4.0 systems [3, 4]; or Big Data sys-
tems [5, 6]. All these systems need to manage large volumes
of data that are often distributed in several servers and assure
low response times and high availability in the contexts of a
high number concurrent requests. In these scenarios, relational
databases have manifested different scalability problems [7].

In response to these limitations, a new generation of database
management systems, denoted as NoSQL systems [8], started
to offer some alternatives. Each one of these alternatives
was designed for a specific purpose and following a differ-
ent approach. So, NoSQL is not just a single alternative to
relational databases, but a global term that comprises differ-
ent database strategies, including, among others, document-
oriented databases [9, 10], key-value stores [11, 12] or column
family stores [13, 14]. Despite their differences, most NoSQL
database systems rely on two common features: (1) they make
use of data denormalisation to improve response times [15],
and (2) they sacrifice some ACID (Atomicity, Consistency, Iso-
lation, and Durability) properties [16, 7] to increase scalability,
while providing other less restrictive properties but also useful

in a best-effort approach, such as eventual consistency [17].
These NoSQL technologies emerged first at the implementa-

tion level and, consequently, they initially lacked well-defined
design processes. Database design methodologies for relational
databases [18], which are usually based on conceptual mod-
elling notations such as ER (Entity-Relationship) [19] or UML
(Unified Modeling Language) [20], revealed soon to be not
enough for designing NoSQL databases. To take advantage
of the benefits provided by data nesting and denormalisation,
database designers need to take into account not only which
data will be stored in the database, but also how these data will
be accessed [21, 22]. In NoSQL systems, working with the
same set of data, but with different data access patterns, might
lead to different database implementations. This is due to the
fact that, in many NoSQL systems, design decisions are driven
by how data will be accessed. Traditional database design ap-
proaches do not provide an adequate support for these issues,
mainly because they were created to satisfy other goals, e.g.,
the commented ACID properties [16].

To address this gap, several design methodologies for
NoSQL systems have been created in the last years [23, 21,
24, 22]. Nevertheless, these approaches still present some limi-
tations, which can be summarized as follows:

1. Each one of these approaches focuses on a concrete
NoSQL paradigm, providing its own conceptual modelling
languages and notations. This implies that the same con-
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ceptual data model cannot be used to describe the same
database in different NoSQL paradigms.

2. Most approaches describe how to design a NoSQL
database by means of guidelines or heuristics that must
be interpreted and applied manually by database design-
ers. This can be an error-prone and time-consuming pro-
cess. Just two approaches [21, 24] address design process
automation and provide the basis for building CASE tools.

3. Those approaches that tackle automation often use the
same strategy to transform the patterns they found at the
conceptual level into constructs of the target database.
Therefore, they neglect the existence of alternative strate-
gies that might be more adequate in certain contexts,
or when targeting different NoSQL paradigms, e.g.,
document-based or column family stores.

To overcome these limitations, we present Mortadelo, a
model-driven development process for NoSQL database de-
sign. This process builds on previous work and goes one step
further by being able to automatically generate implementa-
tions for different NoSQL paradigms from the same conceptual
model. The generation process is achieved by means of model
transformation and code generation techniques. Currently, we
have created and implemented model transformation rules for
supporting the generation of column family stores and docu-
ment databases, but the framework could be extended to sup-
port other paradigms, such as key-value stores.

To evaluate the expressiveness and effectiveness of our ap-
proach, we used Mortadelo to model different case studies used
as test-beds in the NoSQL literature. We compared the gener-
ated NoSQL databases with the databases obtained with state-
of-the-art NoSQL design methodologies. The results of this
evaluation process showed that, using Mortadelo, the same con-
ceptual model can be transformed into either a column fam-
ily database, implemented in Cassandra [25]; or a document
database, expressed in MongoDB [9]. Moreover, the obtained
databases were pretty similar to those generated by design
methodologies devised specifically for one NoSQL paradigm.
In some cases, our approach performed even better, and, in one
case, our designs might not be as good as the ones generated by
other approaches. Moreover, our approach offers several trans-
formation alternatives, so the same conceptual model might be
handled differently depending on each concrete context. This
feature is scarcely supported by NoSQL design methodologies.

The remaining of this article is structured as follows. Sec-
tion 2 presents the running example used throughout the pa-
per, and introduces to the used NoSQL technologies. Next, in
Section 3, related works are discussed. In Section 4, we detail
the different phases of the transformation process followed by
Mortadelo to generate NoSQL databases. Section 5 includes
the evaluation of Mortadelo. Lastly, we expose our conclusions
and future work in Section 6.

2. Background

To make this article self-contained, this section provides
some background of the used technologies, i.e., column family

and document data stores. Before describing these technolo-
gies, we introduce the running example that we used to illus-
trate the different concepts that appear in this work.

2.1. Running Example

We used as running example throughout this paper a database
that represents an e-commerce platform. This database resem-
bles the structure that can be found in existing online stores,
such as Amazon.

Figure 1 shows a conceptual data model, in UML notation,
for the e-commerce platform. As it can be seen, this platform
manages Products and Clients as main entities. Products can
belong to different Categories, and they can be supplied by
different Providers. Clients make purchases of these products.
Each Purchase has an associated shipping Address and, option-
ally, a Bill. Clients can request several products inside the same
purchase. Each request is represented by a different Purchase-
Line, that specifies how many items of a purchased product
were acquired in that purchase.

The e-commerce application that clients use to make their
purchases employs data from the conceptual model of Figure 1.
These data are retrieved according to the following patterns:

Q1 Get all data of a Product, given a productId.

Q2 Get all data of a Product, including its Categories, given
the product’s name.

Q3 Get name and price of a set of Products from a Category,
given the name of this category, and ordered by price.

Q4 Get the Purchases of a Client happening in the last three
months of a given year, including the purchased Products
and the postal code of the shipping Address.

Q5 Get the Purchases performed in a given year, including
Billing data.

Q6 Get the Purchases performed in a given year, including
their postal code.

Q7 Get the Purchases of a given Client in a concrete month of
a year, including Product data.

In terms of adding data to the system (e.g. writing opera-
tions), it must be pointed out that new clients and products are
scarcely added to the system when compared to other database
operations such as reads; whereas new purchases are much
more frequently added.

2.2. Column Family Stores

Column family stores, also known as extensible record
stores [26], aim to improve scalability and read performance by
promoting denormalization and the distribution of data in differ-
ent physical locations or nodes. The main idea behind column
family stores is that each query can be resolved by retrieving a
well-located bundle of data, without having to perform complex
operations to combine data spread in several of these nodes.
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Client

clientId : String
name : String
nationality : String

Provider

providerId : String
name : String
 
 
 

Address

street : String
postalCode : String
city : String
country : String

Category

categoryId : String
name : String
description : String

Product

productId : String
name : String
description : String
price : double

Purchase

purchaseId : String
year : int
month : int
day : int
totalAmount : double

PurchaseLine

quantity : int
unitPrice : int
 
  

Bill

billId : String
billDate : Date
billingData : int

[1..*] providers

[0..*] categories

[0..*] purchases

[1..1] shipAddress [1..*] lines [1..1] product

[0..1] bill

Figure 1: Conceptual data model of the e-commerce platform.

This kind of store organize data in tables, where each row
contains a set of column names and values. Each row is identi-
fied by a primary key, which can be composed of one or more
columns.

In column family stores, primary keys are selected not only
to provide row uniqueness, but also to assure that some sets of
rows are stored in the same physical node, so that these rows
can be easily retrieved together when needed. For this purpose,
column family stores like Cassandra [25] and ScyllaDB [27] of-
ten divide the primary key into two different subsets: the parti-
tion key and the clustering key. The partition key is the subset of
the primary key used to distribute rows across physical nodes,
ensuring that all rows with the same partition key are stored in
the same node. The clustering key is used to sort rows, so that
ranges of these rows can be easily retrieved. This sorting hap-
pens at partition-key level, this is, elements that share the same
partition key value are sorted according to their clustering key.
Clustering keys are optional, so there might be tables that do
not define it.

Figure 2 illustrates a table for retrieving purchases made be-
tween two dates that exploits the benefits of these elements. In
this case, the columns year, month and purchaseId are cho-
sen as a primary key. The purchaseId column by itself en-
sures row uniqueness, and the other two columns are included
in the primary key to improve performance. The year column
is selected as partition key, ensuring that all purchases made
in the same year are hosted in the same node. The month and
purchaseId columns would be used as clustering key, so rows
would be sorted first by month and then by purchaseId. This
makes easier, for instance, to retrieve all purchases correspond-
ing to the second semester of the last year.

For performance reasons, some column stores, such as Cas-
sandra, limit query access to the set of rows associated to a
single partition key, not being able to retrieve data from several
partitions in a single query. For instance, for the column family
of Figure 2, we could not retrieve purchases made in the last
three years using a single query; we would need three queries
instead. To ensure this constraint is satisfied, column family
stores check that each query includes in the conditional clause
a comparison by equality for all the columns that are part of the
partition key. Other kind of comparisons, such as greater than
operators, are not allowed for partition key columns. This con-

year month purchaseId amount clientId ...

2018
January 291376 30.44$ 437120 ...

376291 27.00$ 418320 ...

February 137629 10.44$ 418320 ...

376291 17.00$ 371204 ...

2019 January 291376 72.00$ 120437 ...

913762 57.46$ 371204 ...

Figure 2: Column family that stores purchases information by year and month.
Double lines separate partitions (i.e. changes in year), and single lines indicate
a change in the clustering key (month and purchaseId).

clientId year purchaseId amount ...

120437 2019 291376 72.00$ ...

371204 2018 376291 17.00$ ...

2019 913762 54.46$ ...

418320 2018 376291 27.00$ ...

137629 10.44$ ...

437120 2018 291376 30.44$ ...

Figure 3: Table for storing purchases information by client and year. Double
lines separate partitions (i.e. changes in clientId), and single lines indicate a
change in the clustering key (year and purchaseId).

straint does not extend to clustering key columns, where these
operators can be used, and are often used indeed. Moreover,
for performance reasons, columns not included in the partition
or clustering keys cannot be used for comparisons in the condi-
tional clause of a query.

In our case, these constraints imply that all queries against
the column family of Figure 2 must have a condition clause like
where year = x, being x the value of a particular year. Queries
retrieving purchases before or after a year would not be per-
mitted, but queries retrieving purchases before or after a month
inside a specific year are supported. For instance, we can com-
pose and execute a query with a clause like where year = 2018
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db.createCollection("Products", {
  validator: { $jsonSchema: {
    bsonType: "object",
    required: ["productId", "name",
               "price", "categories"],
    properties: {
      productId: {bsonType: "int"},
      name: {bsonType: "string"},
      price: {bsonType: "decimal"},
      categories: {bsonType: "array"
        items: {bsonType: "int"}}}
  }}})

db.createCollection("Categories", {
  validator: { $jsonSchema: {
    bsonType: "object",
    required: ["categoryId", "name",
               "description"],
    properties: {
      categoryId: {bsonType: "int"},
      name: {bsonType: "string"},
      description: {bsonType: "string"}}
  }}})

Figure 4: MongoDB normalized example: products point to their categories.

and month ≥ July, which will recover all purchases in the sec-
ond semester of 2018.

Column family stores do not provide support for performing
joins between tables, i.e., it is not possible to specify a query
that gathers data from two or more tables at the same time.
Therefore, if two queries share the same subset of data, and
we want each one of these queries to be performed in a single
operation to the database, this shared subset of data must be
replicated in the tables that provide support for these queries.
For instance, if purchases need to be recovered sometimes by
year and month and in other occasions by client and year, we
might need to replicate data about these purchases across two
column families: the one already commented in Figure 2, and
the one depicted in Figure 3, where clientId is the partition key,
and the clustering key is formed by year and purchaseId. This
data replication introduces denormalization [15] in the structure
of the column families.

Nevertheless, this denormalization has a side effect: it makes
insertion of new data, or updates of existing ones, more expen-
sive. In the previous example, each time a purchase is incor-
porated into the database, it would need to be inserted in the
two column families supporting the purchases by year and by
client queries. In these cases, it might be better to maintain pur-
chases in a single table, making insertions and updates faster,
and resolving the by year and by client queries by launching
several queries to different tables and then joining the results at
the application level.

Finally, it might be worth to point out that the concept of
column family might differ between specific NoSQL technolo-
gies. So, in systems like Cassandra and ScyllaDB, a column
family is defined as a table with a partition key, a clustering
key and a set of columns for each row. Nevertheless, for sys-
tems such as HBase [28] or BigTable [29], a column family

db.createCollection("Products", {
    validator: { $jsonSchema: {
    bsonType: "object",
    required: ["productId", "name",
               "price", "categories"],
    properties: {
      productId: {bsonType: "int"},
      name: {bsonType: "string"},
      price: {bsonType: "decimal"},
      categories: {
        bsonType: "array"
        items: {
          bsonType: "object",
          required: ["name", "description"],
          properties: {
            name: {bsonType: "string"},
            description: {bsonType: "string"}
}}}}}}})

Figure 5: MongoDB de-normalized: categories are nested in the products.

is a mechanism to group columns of a table into disjoint sets
that are never retrieved together. Let us suppose that, for each
purchase, we store data about the purchased product, the pay-
ment method and the delivery address. In addition, these data
blocks are never retrieved together. In this case, we can group
the columns related to these data blocks in column families.
The main advantage of this column grouping mechanism is that
these data blocks, since they are never retrieved together, can
be stored in different physical locations, which might help in-
crease performance. In the context of this work, we will use the
term column family in the Cassandra sense, this is, a column
family is a table with a partition key, a clustering key and a set
of columns, which might vary in number and size.

2.3. Document Stores

Document-oriented databases [26] aim to improve perfor-
mance by storing as single pieces of data hierarchies of objects
that are most likely to be retrieved together. These object hi-
erarchies are known as documents. Documents are grouped in
collections, whose relational counterpart might be tables. A
collection stores documents of the same entity, such as Prod-
ucts or Clients. A document is typically composed of key-value
pairs, and it can contain other embedded documents.

For example, in MongoDB [9], which is probably the most
popular document-oriented database, documents are stored us-
ing a JSON-like structure, known as BSON1. MongoDB allows
specifying the structure of a collection by means of a JSON
Schema2, which is registered in a validator that controls the in-
sertion of data in a collection.

Figure 4 shows the specification in MongoDB of two col-
lections from our running example. In this case, Products and
Categories entities have their own collections, so they are stored
as separate documents. As it can be observed, among different
objects, a product stores an array of references to the categories

1See BSON specification in http://bsonspec.org/
2https://json-schema.org/
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it belongs to. So, if we wanted to retrieve a product along with
data of its categories, we would need to perform a join oper-
ation between the two collections. However, these operations
are expensive, and therefore they are often not recommended.

To avoid requiring a join operation, and since it is expected
that a product does not belong to a high number of categories,
and categories do not have any relationship with other entities,
we might opt for embedding categories data in the products col-
lection. If we do so, each time a product is retrieved, data about
its categories are also returned, which avoids having to perform
joins with information contained in another collection. A col-
lection specification where categories are nested inside the data
of a product is shown in Figure 5.

Finally, it is worth to mention that document-oriented
databases, such as MongoDB, do not impose any constraint on
which elements of a document can be included in a query, un-
like it happens in column family stores. Therefore, any query
can have equality and inequality conditions over any field of the
collections of a document database.

3. Related Work

As NoSQL systems emerged, different approaches address-
ing the design problems of these systems were created. These
approaches are summarized in Table 1. We briefly describe
each one of these approaches.

Li [23] presented one of the very first works on NoSQL
database design. They proposed a set of high-level heuristics
for refactoring relational databases into HBase ones. To pro-
duce a NoSQL database using this work, we would need to cre-
ate a relational database first, and then to transform it to HBase,
which could be a tedious process as compared to generating a
database directly from a conceptual data model.

de Lima and dos Santos Mello [30] describe a design
methodology for transforming an ER (Entity Relationship)
model [19] into a document-oriented logical model, and then
to MongoDB code. Authors highlight the importance of know-
ing how data will be accessed for designing a NoSQL database
because, depending on this, some mapping strategies might be
more suitable than others. For this reason, authors complement
ER models with information about the expected application
workload, which is specified using a technique from the XML
community [31].

Chebotko et al. [21] present a similar work, but focusing on
Cassandra. These authors also rely on ER models, which are
transformed into a logical model, called Chebotko diagrams,
specifically designed by the authors themselves for represent-
ing column stores. To specify data access patterns, ER models
are enriched with ERQL (Entity-Relationship Query Language)
queries [34]. Authors provide a set of rules for transforming
each application query into a column family. Based on these
rules, authors developed a CASE tool to automate the design
process for Cassandra databases.

In Chebotko et al. [21], query patterns are always mapped
following the same strategy. Nevertheless, as pointed out by
Mior et al. [22], several alternative strategies might exist. For

instance, if we create a column family per query, data can get
highly replicated, which increases read performance. On the
other hand, updates, insertions and deletions become more ex-
pensive. Therefore, if these operations are frequent, data repli-
cation might not pay off. To deal with these issues, Mior et al.
[22] present NoSE (NoSQL Schema Evaluator), a tool that ac-
cepts as input an ER conceptual model, a set of data access pat-
terns, some statistical information about query frequency and
expected volume of data. With these inputs, NoSE calculates
all candidate implementations for each query and builds a Bi-
nary Integer Programming (BIP) optimization problem. After
solving it, an optimal NoSQL plan for implementing a column
family database is obtained. NoSE does not generate database
code, although this step would be trivial.

Atzeni et al. [35] proposed a uniform API, independent of
any NoSQL paradigm, for accessing to NoSQL stores. In this
API, pieces of data are identified by paths expressions such as
/users/78913131/birth-date, which would request the birth date
of the user with the identifier 78913131. Using this API, ap-
plications can be developed independently of the target NoSQL
system being used. Therefore, this system might be changed
without having to update the application code. Based on this
work, Atzeni et al. [32] developed a design methodology that
provides a set of heuristics for transforming object-oriented
models into NoAM models and then into code. NoAM (NoSQL
Abstract Model) is a platform-independent logical model for
NoSQL databases developed by the authors themselves.

The mapping strategy is based in the concept of aggregate,
instead of being query-driven as in previous work. Aggregates
are coherent units of behavior and data, which have identical
life cycles and are often accessed and modified together. In
our running example, Purchase, PurchaseLine, Address and
Bill might constitute an aggregate. Aggregates are transformed
into NoAM blocks, which aim to be an abstraction of NoSQL
constructs, such as column families or documents. Then, these
blocks are transformed into constructs of a concrete technology.
Since NoSQL databases are very heterogeneous, in order to be
abstract, NoAM lacks important features of certain paradigms,
such as the clustering key of column stores. So, when mapping
a NoAM block to a column family, we might have problems for
identifying the partition and clustering keys, because, among
other issues, we do not know which fields would be used to
retrieve the data.

Herrero et al. [33] focus on deciding whether certain pieces
of data should be stored in NoSQL databases in the specific
context of BigData applications with a high-variability in data.
To make this decision, a conceptual data model, augmented
with information of entities evolution likelihood, is firstly con-
structed. Entities are then classified by the database designer as
nested, heterogeneous or homogeneous. Based on this informa-
tion, a set of guidelines are provided to decide whether an entity
should be stored in a NoSQL store. Authors also provide a set
of generic, technology-independent heuristics that might help
database designers when mapping entities to NoSQL stores.
These heuristics are driven by the probability that two pieces
of data are accessed together, which is specified by means of
an Affinity Matrix. As in the case of NoAM, these heuristics
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Work Paradigm Technology Conceptual Queries Logical Automated

Li [23] Column Family HBase — — Relational No
DeLima & Santos [30] Document MongoDB EER XML based-[31] In-house notation No
Chebotko et al. [21] Column Family Cassandra ER ERQL Chebotko Yes
Mior et al. [22] Column Family Cassandra ER Entity Graph — Yes
Daniel et al. [24] Graph-based Neo4J UML Gremlin GrapdDB Yes
Atzeni et al. [32] Any Any OO — NoAM No
Herrero et al. [33] Any Any OO Affinity Matrix — No

Table 1: NoSQL database design methodologies.

are too general and need to be complemented with technology-
specific decisions. Besides, its objective is to improve evolution
by mixing relational and NoSQL technologies, but not to gen-
erate optimized databases. Consequently, generated databases
might not be optimal from the point of view of performance, al-
though the performance penalty might be affordable when evo-
lution is a key requirement.

Daniel et al. [24] introduce a model-driven process for trans-
forming UML conceptual data models, including several con-
straints expressed in OCL (Object Constraint Language) [36],
into a logical model for graph-based NoSQL databases, and
then to code. In addition to database code, some extra code for
checking integrity of OCL constraints is also generated. The
transformation is driven by the conceptual model structure, and
queries are not taken into account.

In summary, as it can be observed in Table 1, most de-
sign processes are specific for a particular NoSQL technol-
ogy [23, 30, 21, 24, 22]. Therefore, NoSQL database de-
signers need to change between methodologies when working
with different NoSQL paradigms, which implies an extra ef-
fort. For instance, when designing hybrid NoSQL stores, which
use several NoSQL paradigms at the same time, we might
need to specify the same conceptual model and the same set
of queries in different notations. Regarding approaches that
aim to be generic [32, 33], both of them provide just high-
level heuristics and do not tackle design process automation.
These heuristics do not consider platform-specific particulari-
ties and, consequently, they might lead to inadequate database
designs. For instance, column stores often create a column fam-
ily per application query, whereas document databases try to
use a document for answering several queries at the same time.
As a consequence, for the same conceptual model and set of
queries, the number of column families in a column store is
often greater than the number of document in their document-
oriented counterpart. However, generic approaches, such as
provided by Atzeni et al. [37], might create databases with ex-
actly the same number of column families as documents.

To overcome these limitations, we have developed Mor-
tadelo, a model-driven process for NoSQL database design that,
starting from a technology-agnostic conceptual data model, al-
lows for the automatic generation of database implementations
for several NoSQL technologies. Moreover, the transformation
process can be easily customized by database designers, in or-
der to use those strategies that best fit with each context needs.

4. Solution Description

We start by describing the general components of the trans-
formation process defined by Mortadelo. Then, successive sec-
tions describe these components with more detail.

4.1. General Overview
Figure 6 shows the database design process that is followed

when using Mortadelo. As introduced before, Mortadelo fol-
lows a model-driven approach. This means that Mortadelo
needs to operate with well-defined models that conform to a
metamodel. Mortadelo starts with the creation of a conceptual
data model, which is used as input of a chain of model transfor-
mations that generates a database implementation for a selected
NoSQL technology.

To design a NoSQL database, as previously commented and
pointed out by other authors [21, 30, 22], a conceptual data
model that specifies just which entities comprise the system
and how they relate is not enough. In NoSQL systems, know-
ing how these entities will be retrieved and updated at run-
time is key. Therefore, traditional data modeling languages,
such as UML or ER, have been complemented by other au-
thors with languages for specifying data access patterns, such as
ERQL [34]. This implies handling two separate but interrelated
models, where each model conforms to a different metamodel.

From a technical point of view, processing two separate but
interrelated metamodels adds some accidental complexity that
could be easily avoided if both metamodels were integrated in
just one. Therefore, to get rid of this extra accidental complex-
ity, we created the Generic Data Metamodel (GDM), a meta-
model for NoSQL database modeling where the structural and
data access patterns views are integrated into the same meta-
model. The GDM is intentionally platform-independent, so it
can be used seamlessly as input for different NoSQL paradigms.

Thus, Mortadelo starts with the definition of a GDM model
(Figure 6, left). We give more details about the GDM com-
ponents in Section 4.2. Then, the transformation process re-
ceives as input a GDM model that has been verified to as-
sess that it contains no mistakes. In step 1, a model-to-model
(M2M) transformation translates this GDM model into a logi-
cal NoSQL specification by the application of a set of transfor-
mation rules. Due to the heterogeneity of NoSQL, Mortadelo
defines a logical metamodel and an associated M2M transfor-
mation for each NoSQL paradigm. In the figure, two logical
metamodels are shown: a column family data model, and a
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Figure 6: Transformation process of Mortadelo.

document data model. These metamodels are intermediate rep-
resentations that contain information specific to the paradigm
they represent. For instance, the column family data model al-
lows defining the column families that should be instantiated in
the final database. However, these specifications are still ab-
stracted from any implementation details, which means that the
logical model of a paradigm can be employed to represent tech-
nologies that belong to the same paradigm, e.g., Cassandra and
ScyllaDB as column family-based technologies.

Lastly, the third step of the transformation process consists
in a model-to-text (M2T) transformation. The obtained logical
model from the M2M transformation of step 2 is used to au-
tomatically generate an implementation script for the targeted
technology. Continuing with the previous example, a M2T gen-
eration from a column family data model could be performed
to obtain a physical implementation for Cassandra, a database
from this paradigm. An analogous example could be made for
a document data model and a MongoDB implementation.

Next sections detail the GDM metamodel, and describe con-
crete examples of the transformation process for column family
and document-based stores.

4.2. Generic Data Metamodel (GDM)

As mentioned in the previous section, we use instances of the
Generic Data Metamodel (GDM) as input for Mortadelo. Fig-
ure 7 depicts this metamodel. This metamodel contains both
the Structure Model and the Access Queries elements. Addi-
tionally, extra elements are included to allow annotating some
elements of the GDM.

The Structure Model (Figure 7, left) is defined in a UML-
like fashion. This is a well-known notation both in the mod-
eling and database research areas, which presents adequate for
the specification of the structure of domain data. Moreover, it
is independent of any database technology, which is one of the
requirements of the presented process. The data structure is
defined by the specification of entities. These entities contain
features of two kinds: (i) primitive attributes, which store val-
ues of a certain type; and (ii) references to other related entities.
The references of an entity can have variable cardinality, e.g.,
1, 2, 4 or unlimited.

The Access Queries (Figure 7, right) represent the requests
that are going to be performed over the database. These queries
are defined in the GDM over entities from the structure model.
Queries are defined using a syntax structure inspired in SQL.
However, oppositely to SQL, queries in our languages are spec-
ified against the entities of the GDM structural elements, and
we can navigate through these entities by traversing their refer-
ences.

A Query is executed over a main entity, captured by a From
element. Any reference from that entity can be included in the
query through an Inclusion element. Inclusions work in the
same way as a conventional join of a relational SQL query. In
addition, entities referenced by those that have been included
previously can also be incorporated, i.e., inclusions can be re-
cursively added as long as there are references available. The
set of projection attributes that are retrieved by the query is
specified as a list of AttributeSelection elements. This list can
contain attributes coming from the From or the Inclusion enti-
ties. The condition of a query is captured with a BooleanEx-
pression, which allows to declare any desired restrictions. The
notation for boolean expressions is not shown in this article for
the sake of simplicity and brevity, as this syntax is probably
known by the reader. Finally, ordering can be specified through
a set of AttributeSelections, again coming from the entities se-
lected by the From and Inclusion elements.

Some elements from the GDM metamodel inherit from the
AnnotatableElement class, which means that these elements
can be annotated. Annotations are text indications that can be
used to provide extra information to Mortadelo that may be use-
ful when performing the transformation of a GDM instance into
a NoSQL logical data model. For instance, Entities of the GDM
can include the @highlyUpdated annotation. This annotation
tells Mortadelo that the annotated entity receives a lot of trans-
actional operations, e.g., inserts or updates. This detail might
be of importance for some of the NoSQL paradigms, so it can
be taken into account by the transformation rules when generat-
ing a NoSQL design. Apart from entities, Queries and Features
can also be annotated.

As it can be seen, GDM specifications do not contain NoSQL
details, which allows employing them as input for any transfor-
mation to a concrete technology.
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Figure 7: Main components of the Generic Data Metamodel (GDM): Structure Model and Access Queries.

// Entities
entity Product {
  id productId
  text name
  text description
  number price
  ref Category[*]
        categories
  ref Provider[1]
        provider
}

entity Category {
  id categoryId
  text name
  text description
}

entity Provider {
  id providerId
  text name
}

// Queries
query Q1_productsById:
  select prod.productId,
         prod.name, prod.price,
         prod.description
  from Product as prod
  where prod.productId = "?"

query Q2_productsAndCategoryByName:
  select prod.name, prod.price,
         prod.description,
         cat.name
  from Product as prod
  including prod.categories as cat
  where prod.name = "?"

query Q3_productsByCategory:
  select prod.name, prod.price,
         prod.description,
         cat.name
  from Product as prod
  including prod.categories as cat
  where cat.name = "?"
  order by prod.price

Figure 8: GDM textual notation that defines the Purchase and Category entities
and the queries Q1-Q3 of the running example of Section 2.1.

4.3. Running Example in the GDM
We now show how the running example presented in Sec-

tion 2.1 can be expressed in the GDM language. We created
a textual syntax to instantiate models conforming to the GDM.
Figure 8 shows how the Product, Category and Provider enti-
ties and queries Q1, Q2 and Q3 can be represented using this
syntax. A complete specification showing how the rest of the
entities and queries are defined can be consulted in an exter-
nal repository3. The entities represented in this textual syntax

3https://github.com/alfonsodelavega/mortadelo/blob/

master/es.unican.istr.mortadelo.gdm.examples/eCommerce.gdm

follow the same structure as the one shown in the conceptual
model of Figure 1.

In the example, entities are specified through the entity key-
word, and their attributes and references are expressed between
braces. For instance, the Product entity defines productId,
name, description and price as attributes. Reference specifi-
cations start with the ref keyword, followed by an entity type,
a cardinality, and a reference name. As an example, the state-
ment ref Category[*] categories in the Product entity defines
a reference called categories, with type Category, and with an
unbounded (*) cardinality, i.e., a product can have an unlimited
number of categories.

Queries in the GDM textual notation start by the query key-
word followed by a name and an SQL-like syntax that specifies
the objective of the query. The selected projection attributes ap-
pear after a select keyword. Then, the main entity is specified
following the from keyword, and any extra referenced entities
are indicated with an including clause. For all three depicted
queries, the main entity is Product, and in Q2 and Q3 the Cat-
egories entity is included. The where clause gathers the condi-
tions of the projection attributes of the query. Q1 and Q2 have
an equality condition with the productId and name of a Prod-
uct, respectively, while Q3 uses the name of a Category. Lastly,
an optional order by clause captures a sorting criteria for the
results of the query, such as order by prod.price in Q3.

In this section, we have seen an example of how input
databases can be textually specified by the instantiation of the
structure data model and the access queries of the Generic Data
Metamodel. Next sections show the logical models for column
family and document-oriented data stores, and how Mortadelo
can be used to generate a physical implementation of a Cassan-
dra or MongoDB database from a GDM instance.
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4.4. Column Family Stores Metamodel

Figure 9 shows the logical metamodel we have created for
representing column family databases. This metamodel is in-
spired by the work of Chebotko et al. [21], who proposed a no-
tation for column family stores known as Chebotko diagrams.
As it can be seen, the DataModel metaclass is the entry point to
this metamodel. A DataModel can be considered as a database
schema that contains several Table specifications.

Each table contains a set of columns. Each column can have
an associated Type, which can be a SimpleType, i.e., a built-in
primitive type, such as a Integer; a Tuple of values; a Collec-
tion of values; or a UserDefinedType. Tuples are made up of
elements of different types, whereas Collections store zero or
more elements of the same type. User-defined types (UDTs)
are a mechanism to give names to tuples and their fields, mak-
ing easier the management of these tuples. For example, to
represent the remaining time to complete a task, we might use a
tuple (int, int, int), which represents the remaining hours, min-
utes and seconds respectively. On the other hand, we might
create a UDT, called TimeDuration = (hours : int, minutes :
int, seconds : int). The second option might be preferable when
these durations are used in several places, or when we want to
clarify the meaning of each tuple field. UDTs can also be com-
posed, this is, we can use UDT types inside the fields of another
UDT.

Columns can also belong to a column family, in the BigTable
sense, and a table might contain several column families. In the
case of Cassandra, each table contains just a column family, so
the terms column family and table will be used indistinctly in
the rest of this paper.

In addition to its columns, each table must define a primary
key, which is an ordered group of columns. As commented in
Section 2.2, the primary key can be decomposed into two sepa-
rated subsets: the partition key, which is used to divide rows of
a column family in different subsets or partitions, and the clus-
tering key, which is used to sort column family partitions so
that some ranges of rows inside a partition can be more easily
retrieved. So, each column in a primary key would be either a
PartitionKey or a ClusteringKey. As stated in Section 2.2, a ta-
ble requires at least one partition key column, while clustering
keys are not mandatory.

4.5. Document Databases Metamodel

Figure 10 shows the logical metamodel for document
databases. As introduced in Section 2.3, a document data model
is composed of Collections, which have a name that identifies
them. Each collection is used to store documents that, in most
cases, share the same structure. This structure is captured in
a DocumentType element. A DocumentType defines this struc-
ture through a set of Fields, which can be Primitive elements,
Arrays of elements, or even nested DocumentTypes embedded
inside the main one. All collections have a main Document-
Type, which in the metamodel (and in the rest of this paper) is
denoted as root.

Document stores allow the creation of heterogeneous collec-
tions, i.e., collections where their documents conform to very

different schemata. However, for most situations, the recom-
mended practice is to split any heterogeneous collection into
several homogeneous ones, where each collection conforms to
a single schema. So, as collections of heterogeneous documents
are actually helpful in very rare cases, and to avoid the extra
complexity they add, we decided to limit collections to a single
document type.

4.6. Transformations for Column Family Stores

This section describes a set of rules, inspired by the work
of Chebotko et al. [21] and Mior et al. [22], for transform-
ing a GDM model into a column family model by means of
model-to-model transformations. These rules are driven by a
main strategy: creating a column family to support each ap-
plication query. This strategy is aligned with the guidelines and
best practices provided by column family vendors, such as Cas-
sandra, and they are also the base idea on which the transfor-
mations specified by Chebotko et al. [21] and Mior et al. [22]
are grounded. Next subsection describes this strategy.

4.6.1. Query to Column Family Transformation
This main strategy is precisely defined in Algorithm 1 of Ap-

pendixA, and it works as follows: Given an access query aq,
we create a new column family cf , with the same name as aq,
for supporting such a query. The column family cf initially
has as many columns as aq has projection attributes. For in-
stance, let us suppose we want to transform the query Q4 of our
running example, depicted in Figure 11. This query retrieves
clients’ purchases happening in the last months of a given year,
so we refer to this query as clientPurchasesNearChristmas in
the remaining of the article. In this case, a new column fam-
ily with the same name would be created. This column family
would have 11 columns, one per each projection attribute, from
client.clientId to address.postalCode. Each newly created col-
umn would have the same type as its projection attribute in the
structural model. For example, the client.name column would
have the same type as the name attribute of the Client class.

Once the base structure for the column family is calculated,
we need to establish a partition key and, if required, a clustering
key. For this purpose, we first extract all attributes that are in-
volved in the query condition. Then, we process each attribute
attr included in this set of attributes. If there is an attribute attr
included in a comparison by equality, its associated column is
added to the partition key. If attr is present in a comparison
by inequality (e.g. greater or less than operation), its column
is added to the clustering key. For example, in the case of
query clientPurchasesNearChristmas, client.clientId and pur-
chases.year would be included in the partition key, whereas
purchases.month would be part of the clustering key. Attributes
involved in inequalities are added to the clustering key in the
same order they appear in the query.

Finally, the query sorting criteria is processed to take advan-
tage of the clustering key as a sorting structure. To do this,
we check first that the ordering clause can be computed by the
target database engine. To be supported, the ordering criteria
must be compatible with the ordering imposed by the elements
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Figure 9: Metamodel for the logical modeling of column family databases.
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Figure 10: Metamodel for the logical modeling of document-based stores.

already included in the clustering key, i.e., those resulting from
processing the inequalities. For instance, in the case of query
clientPurchasesNearChristmas, if the sorting criteria were just
product.price, it would be incompatible with the clustering key,
since the clustering key is already sorting by month. In this
case, attributes in the sorting criteria are ignored by the trans-
formation process, and this sorting should be performed at the
application level.

For a sorting criteria to be compatible with an existing clus-
tering key, the columns of the clustering key must appear as the
first elements of the ordering criteria, and in the same order as
in the clustering key. If that is the case, those extra attributes
of the sorting criteria that are not present in the clustering key
are included, in the same order as they appear in the ordering
clause. In the query clientPurchasesNearChristmas, its sort-
ing attributes (purchases.month and product.price) are compat-
ible with the clustering key generated by the conditions, so we
would add price to the end of the clustering key.

Finally, we must ensure uniqueness of each column family
row, which might not be a trivial process. When a query in-
volves a single entity from the GDM, row uniqueness is ensured
if the entity contains a unique attribute and this attribute is part

query Q4_clientPurchasesNearChristmas:
  select client.clientId, client.name,
         client.nationality,
         purchases.purchaseId, purchases.year, 
         purchases.month, purchases.day,
         lines.quantity, lines.unitPrice,
         product.name, address.postalCode
  from Client as client
  including client.purchases as purchases,
            client.purchases.lines as lines,
            client.purchases.lines.product as product,
            client.purchases.shipAddress as address
  where client.clientId = "?1" and purchases.year = "?2"
    and purchases.month >= 10
  order by purchases.month, product.price

Figure 11: Access query retrieving purchases of a client before Christmas.

of the primary key, which is usually the case (e.g. Purchases
have a purchaseId). In a query involving several entities, one
entity plays the role of main entity and the other entities are
secondary ones. The main entity is the one specified in the
from clause, while the secondary entities are provided in the
including section. Row uniqueness can then be determined by
the upper bounds of the references’ cardinalities between the
main entity and the secondary entities. If this upper bound is
1, this means that the secondary entity can be also identified by
the identifier of the main entity. For instance, this happens be-
tween Purchase and the shipAddress for that purchase, as this
particular address can be identified by the purchaseId. There-
fore, a column family containing just data from Purchase and
Address would have row uniqueness ensured just by including
purchaseId as primary key.

On the other hand, when the upper bound of a relationship is
greater than one, the identifier of the main entity is not enough
to provide row uniqueness. This would be the case of a query
with Client as main entity, and involving Purchase as a sec-
ondary entity. In this case, client.id would not be unique for
each combination of client and purchase instances. This prob-
lem can be solved adding purchase.purchaseId to the primary
key of the column family involving Client and Purchase.

With these premises in mind, we devised an algorithm for en-
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suring row uniqueness (See Algorithm 2 of AppendixA). This
algorithm works as follows: first of all, all paths from a main
entity to its secondary entities are calculated. Then, we remove
those paths that are a subpath of another one. Next, if we can
ensure uniqueness at the end of each path, the problem would
be solved. Therefore, if we can calculate an identifier for each
entity at the end of each path, the problem would be solved. We
would only need to check whether this identifier is already con-
tained in the primary key, and if it is not, we would add it at the
end of the clustering key.

To calculate such an identifier, there are two cases. The first
and most direct one is when the entity itself has an attribute
marked as isUnique. We would simply select that attribute as
identifier. This might be the case of Purchase as secondary
entity of Client. The second case happens when the entity has
no attribute marked as isUnique. In this case, we might borrow
one from another entity. To find an entity from which we can
borrow an identifier for a path end, we search for a preceding
entity in that path that fulfills the following two conditions: (1)
it has an attribute attr marked as isUnique; and, (2) just one
instance of this entity can be related to the path end. If an entity
like this is found, we use its attribute attr as identifier for the
path end. Otherwise, uniqueness would be ensured by using an
artificial identifier, i.e., a dummy column that is unique for each
row of the column family.

In the case of query clientPurchasesNearChristmas, two
paths are identified: (1) client.purchases.shipAddress, and, (2)
client.purchases.lines.product. In the first path, the ending en-
tity is Address, and it does not have any attribute marked as
isUnique. However, it can take purchaseId from Purchase. The
attribute purchaseId was not included in the primary key of the
column family being generated, so it is added at the end of the
clustering key. For the second path, the entity at the end is Prod-
uct. This entity has the productId attribute marked as isUnique.
This attribute is also not included in the primary key of the gen-
erated column family and, consequently, it is added at the end
of the clustering key. In the case of these attributes to ensure
uniqueness, the order in which they are added to the clustering
key is not relevant, since they are used neither for retrieving
ranges of values nor for sorting purposes; they are just included
to ensure uniqueness. So, it does not matter which path end is
processed first.

The application of this query-to-column-family transforma-
tion rule is enough to generate a set of column families that sup-
port a set of queries. Nevertheless, applying just this rule might
lead to non-optimized designs because of redundant queries, or
to an excessive degree of denormalization. Next subsections
describe two optimizations that help alleviate this problem.

4.6.2. Query Merging
Let us suppose we have two queries with the same equality

conditions in the where clause, no inequalities, no sorting crite-
ria, but with different projection attributes. Using just the basic
transformation rule described in the previous section, two indi-
vidual column families would be generated for this case. Nev-
ertheless, since the resulting column families share the same
partition key, have no clustering key, and they differ just in the

number of columns, they might be merged into a single col-
umn family, with the same partition key and the combination
of columns from their projections. For this merging to be pos-
sible, the set of columns from the primary key that grant row
uniqueness, according to the method described in the previous
section, must also be the same for both individual column fam-
ilies. If this condition also holds, queries are compatible and
can be merged, avoiding unnecessary data duplication of those
columns that are repeated in both query projections, and thus
reducing database size and slightly improving insertions, dele-
tions and updates.

Therefore, when two queries satisfying these conditions are
found in the set of access queries, both queries are merged to
create a single query that synthesizes both and that, once pro-
cessed, generates a single column family. To merge two queries
q1 and q2, we create a new compacted query q′ that has, as pro-
jection attributes the union of the attributes of q1 and q2; as
inclusions, the union of the inclusions of q1 and q2; and, as
where clause, the where of either q1 or q2, as both clauses must
be equal.

Moreover, this can be generalized to also cover the following
additional situations:

1. Both queries have identical equality conditions, inequality
conditions, and there is no sorting criteria in both queries.
In this case, the merging process works as previously de-
scribed.

2. Conditions of case 1 holds and, in addition, only one query
has a sorting criteria. In this case, the merging process
works as previously described, and the only existing sort-
ing criteria is added to the merged query.

3. Conditions of case 1 holds and, in addition, the sorting
criteria of one query is a subset of the sorting criteria of
the other query. In this case, the merging process works
as previously described, and the largest sorting criteria is
added to the merged query.

Figure 12 shows an example of the application of the Query
Merging process. As can be observed, queries Q5 and Q6 show
purchases information in a year along with billing or postal
code information, respectively. These queries share the same
equality condition (i.e. comparison by year), and the sorting
criteria of Q5 is a subset of the one of Q6: {pur.month}, and
{pur.month,addr.postalCode}. Therefore, they can be merged
in a single query named Q5 and Q6, which retrieves purchases
with billing and address data in a year, ordered by the largest
sorting criteria, i.e., the one of the merged Q6. The query merg-
ing process described in this section is detailed in Algorithm 3
of AppendixA.

4.6.3. Partition Key Softening
We introduced an annotation over entities (see Section 4.2),

labeled as @highlyUpdated (HU), to specify that one entity of
the GDM will receive a high number of insertions and updates
as compared to their reads. The rationale behind this annotation
is to warn that denormalization or duplication of these entities
should be controlled whenever possible, since replicating their
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query Q6_purchasesWithPostalCodeByYear:
  select pur.purchaseId, pur.year, pur.month,
         pur.totalAmount, addr.postalCode
  from Purchase as pur
  including pur.shipAddress as addr
  where pur.year = "?"
  order by pur.month, addr.postalCode

query Q5_and_Q6:
  select pur.purchaseId, pur.year, pur.month,
         pur.totalAmount, bill.billId,
         bill.billingData, addr.postalCode
  from Purchase as pur
  including pur.bill as bill,
            pur.shipAddress as addr
  where pur.year = "?"
  order by pur.month, addr.postalCode

query Q5_purchasesWithBillsByYear:
  select pur.purchaseId, pur.year,
         pur.month, pur.totalAmount,
         bill.billId, bill.billingData
  from Purchase as pur
  including pur.bill as bill
  where pur.year = "?"
  order by pur.month

merged into

Figure 12: Query Merging example.

data might have a non-negligible impact on insertions and up-
dates. In Section 2.1, we mentioned that Purchases is an entity
that is expected to receive a high number of writing operations,
so it makes sense to annotate this entity as HU.

Now, let us suppose we want to perform the query of Fig-
ure 13, Q7, where information about the purchases of a client
in a concrete month are retrieved. This query has three equali-
ties: client.clientId, purchases.year and purchases.month. The
query clientPurchasesNearChristmas, which we presented in
Section 4.6.1, contains the projection attributes that are gath-
ered in Q7, and almost the same operations in the condition
clause: the first two equalities are the same (clientId and year),
but the purchases.month participates in an inequality instead of
an equality, to obtain the purchases of the months before Christ-
mas.

These queries would not be merged using the algorithm
previously described, as their where clause conditions do not
match. However, if we created a column family having as par-
tition key the client.clientId and purchases.year attributes, and
purchases.month as clustering key, this column family would
support both clientPurchasesNearChristmas and Q7 queries.
From the read operations’ perspective, using just one column
family would be slightly worse, as Q7 would include an equal-
ity comparison against a clustering key column, which is slower
than comparing with a partition key one. However, from a in-
sert, update and delete perspective, having one column family
is better, since these operations would be performed against one
column family instead of two.

query Q7_clientPurchasesInAMonth:
  select client.clientId, client.name,
         purchases.purchaseId,
         purchases.year, product.name,
         lines.quantity, lines.unitPrice
  from Client as client
  including client.purchases as purchases,
            purchases.lines as lines,
            lines.product as product
  where client.clientId = "?1"
    and purchases.year = "?2"
    and purchases.month = "?3"

Figure 13: Partition key softening example. If the marked purchases.month =

?3 equality is changed with an inequality (e.g. ≥ or <), then this query and the
one of Figure 11 could be answered with the same column family.

Therefore, in our transformation process, we look for all
query pairs (q1 and q2) where the previous condition holds, i.e.,
queries are compatible, and softening some equalities in q1 al-
lows answering both with the same column family. In these
cases, if both queries involve an entity annotated as Highly Up-
dated (HU), the queries are merged as explained in the previ-
ous subsection, replacing the equality condition of q1 with an
inequality. Thus, we ensure that only one column family would
be generated, avoiding data duplication of the entity with a high
numbers of insertions, updates or deletions.

4.6.4. General Transformation Algorithm
Using these three rules, the process for transforming a GDM

into a logical column store model is as follows:

1. Queries are merged, producing a more compact set of
queries that is free of redundant ones.

2. Partition key constraints are softened, to merge queries in
the presence of highly updated entities.

3. A column family per query is generated. This query-
to-column-family transformation process calculates parti-
tion keys, clusterings keys, tries to perform sorting at the
database level and ensures row uniqueness.

As an example of the generated column families, Figure 14,
top shows the column family that would be generated to allow
the clientPurchasesNearChristmas query.

4.6.5. Logical model to physical model transformation
Once the logical data model for column family databases

has been generated, it can be transformed into a concrete
database implementation by means of a model-to-text transfor-
mation. Cassandra offers an SQL-like language for database
management, called Cassandra Query Language (CQL). So,
this model-to-text transformation must convert a logical model
into CQL code, which is pretty straightforward: each column
family definition is transformed into its corresponding CQL
counterpart. Figure 14, bottom shows the CQL counterpart that
would generate the column family depicted in Figure 14, top.
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CREATE TABLE PurchasesNearChristmas(
  clientId text, clientName text,
  purchaseId text, purchaseYear int,
  purchaseMonth int, purchaseDay int,
  lineQuantity int, lineUnitPrice decimal,
  productId text, productName text,
  addressPostalCode text,
  PRIMARY KEY((clientId, purchaseYear),
              purchaseMonth, purchaseId,
              productId));

Model-to-Text Transformation

<ColumnFamily>
PurchasesNearChristmas

clientId : TEXT
clientName : TEXT
clientNationality : TEXT
purchaseId : TEXT
purchaseYear : NUMBER
purchaseMonth : NUMBER
purchaseDay : NUMBER
lineQuantity : NUMBER
lineUnitPrice : DECIMAL
productId : TEXT
productName : TEXT
addressPostalCode : STRING

partitionKeys : [clientId, purchaseYear]
clusteringKeys : [purchaseMonth,
                           purchaseId,
                           productId]

Figure 14: Top: column family generated to answer the clientPurchases-
NearChristmas query of Figure 11. Bottom: resulting CQL code to instantiate
the column family in a Cassandra Database.

4.7. Transformations for Document Databases

This section describes the process for automatically trans-
forming a GDM conceptual data model into a document
database. This transformation process is described in detail by
Algorithms 4 and 5 of AppendixA, which are inspired by the
work of de Lima and dos Santos Mello [30]. Nevertheless, un-
like [30], we allow denormalizations when generating a docu-
ment database.

4.7.1. GDM to Document Logical Metamodel
As it was mentioned in Section 2.3, document databases aim

to improve performance by applying data nesting. When a
query requests a hierarchy of nested objects, this hierarchy can
be returned accessing to a single well-defined location. This
way, having to retrieve information from different places of the
database and having to combine this collected information to
produce the hierarchy of objects is avoided. Therefore, when
designing a document-oriented database, we need to make two
main decisions: (1) identify the number of hierarchies we need
to store in the database; and, (2) determine how many nested
elements each hierarchy should contain.

In our case, to calculate how many hierarchies would be
stored in the generated database, we identify what are the entry
points to the structural model of a GDM instance. These entry

Client

Address

Purchase

PurchaseLine

Product

purchases

shipAddress lines

product

Figure 15: Client access tree calculated using only the query of Figure 11.

points are determined by the from clauses of the GDM access
queries, i.e., the main entities. So, the first step of our transfor-
mation process is to select all entities that appear at least once
in these from clauses. Then, for each collected entity, we cre-
ate a Collection in the document logical model (see Figure 10).
Each one of these collections has a root document type to host
its corresponding main entity.

Secondly, we generate the contents of the root documents for
each collection. For that purpose, we need to know which infor-
mation from other entities might be accessed from each main
entity. To find this information, we process all queries where
each main entity appears in the from clause. For these queries,
we collect all references that appear in their including clauses.
With these references, we build an access tree. An access tree
specifies which entities are accessed from a certain entity and
through which references are accessed. For example, Figure 15
shows an access tree for the inclusions of query clientPurchas-
esNearChristmas, which was illustrated in Figure 11. For ex-
ample, this access tree specifies, among other details, that the
PurchaseLine entity is accessed from Client through the pur-
chases.lines reference.

Using the main entity’s access tree, we generate the contents
of its associated root document type as follows. First of all, we
add all attributes of the root entity to the document, indepen-
dently of whether these attributes are used by any query or not.
Adding simple attributes to a document does not increase doc-
ument size noticeably, and this addition might make database
evolution easier, as they can be used to support new queries
or modifications of the existing ones. As an example, for the
Client entity, we would add to the root document schema fields
for the clientId, name and nationality attributes.

As a second step, we process the references of the root entity.
For each reference, a new field is created in the document whose
contents are being generated. To determine the type for that
new field, there are two issues that need to be considered sep-
arately: (1) the reference’s cardinality; and (2) the reference’s
target entity. If the target entity is contained inside the access
tree, the data of that entity might be required when processing a
query over the root document. Therefore, the data of the target
entity must be included in the document being generated as a
sub-document. This means that the new field will be a docu-
ment, or a collection of documents, depending on the reference
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cardinality.
On the other hand, if the target entity is not included in the

access tree, we might even discard this reference. Nevertheless,
as before, we include it to make evolution easier. This reference
would contain the identifier value of the referenced entity, when
the cardinality of this reference is one, and an array of identifier
values when this cardinality is greater than one.

When a reference is transformed as a subdocument, we ex-
ecute the content generation process recursively to generate its
contents. In the recursive call, the subdocument to be populated
is used as root document, and for the access tree we use the sub-
tree with root in the entity accessed through the reference.

In our previous example, the reference purchases of the
Client entity is in the access tree, so it is nested inside the
root document of the Client collection. Since this reference
is unbounded, purchases is transformed as an array of subdoc-
uments. To generate this subdocument, the content generation
process is invoked again, using the subdocument for the Pur-
chase as main document, and the subtree with root in the Pur-
chase node as access tree. For this subdocument, the attributes
purchaseId, month and year would be added as primitive fields.
Then, the bill, shipAddress, and lines would be processed. The
bill reference is not included in the access tree, so we generate
a primitive field with id as type to hold a bill identifier value4.
The shipAddress and lines references are in the access tree, so
a subdocument and an array of subdocuments would be created
for them, respectively. This subdocuments would be populated
using the same process, until reaching the access tree leaves.

The described strategy embeds everything that is required in
order to improve query performance. Nevertheless, this strategy
might lead to a high level of denormalizations, which might
not be adequate in some cases. For instance, since Purchase
is a root entity, its data would be replicated in the Purchase
collection and in the Client collection.

If we wanted to reduce the degree of denormalization, we
might execute the previous transformation process with two ex-
tra optimizations. The first optimization aims to decrease de-
normalization in general. To do it, once the access trees are
computed, we remove from these trees all nodes that corre-
sponds to entities that are roots of other access trees. So, when
these trees are generated, these root entities will not be em-
bedded, and identifier values will be used for establishing the
references instead.

The second optimization aims to reduce denormalization for
those entities where data replication is discouraged. These en-
tities should be annotated as Highly Updated (HU). If this op-
timization is active, the transformation process checks whether
an HU entity appears in more than one access tree. If so, it
means their data would be duplicated. To avoid it, it should
only appear in one access tree. If there is a tree in which the
Highly Updated entity acts as root, then this entity would re-
main in that tree, and it is removed from all other trees. If there

4Bill is not included in the access tree because we computed it for just one
query (see Figure 11), as we did not want to overwhelm the reader with a large
and complex access tree. Nevertheless, if all queries were considered, this en-
tity would end inside the access tree, and thus also in the resulting collection.

is not such a tree, it is computed in which tree the Highly Up-
dated is accessed more frequently. The entity will remain in
such a tree and it will be removed from all other trees.

4.7.2. Document Logical Metamodel to MongoDB
As in the column family stores case, once the logical model

for a document database has been obtained, it can be trans-
formed into code for generating a concrete implementation in a
specific document store technology. This process, as before, is
performed by means of model-to-text transformations that ba-
sically map the concepts of the logical metamodel to constructs
of the language of the target document database. Currently, we
have implemented this code generation process for MongoDB,
and new document stores will be targeted in the future.

4.8. Implementation

We have implemented a prototype of Mortadelo to assess the
transformation process presented in the previous section. This
implementation is available under a free licence in an external
repository5. Next paragraphs summarize the main components
of this repository.

The metamodels presented in Section 4 can be found in the
corresponding projects of the repository in Ecore [38] format.
Precisely, the GDM, column family, and document metamod-
els are included. In addition, the projects also contain the
model-to-model and model-to-text specifications that conform
the transformation process. Conventionally, M2M transforma-
tions are specified through model-to-model languages such as
ETL or ATL. These languages are useful when each input ele-
ment of a certain type is transformed into one or more output
elements. However, as we have seen in the transformation sec-
tions, data structure and access queries have to be treated all
at once when generating column family or document logical
models, instead of in a one-by-one basis. For this reason, we
decided to employ an imperative language for the M2M trans-
formation process. We selected Xtend6, which is a Java-based
language that offers advanced model manipulation capabilities.
In the case of M2T transformations, they are specified in EGL
(Epsilon Generation Language) [39].

For the GDM metamodel, a textual Domain-Specific Lan-
guage (DSL) [40] for the manipulation of GDM instances
is also provided. This DSL has been implemented with
Xtext [41], which provides a full-featured and easily config-
urable editor. Figure 16 shows a screenshot, where the online
shop case study is manipulated through the DSL editor. The left
window shows the syntax of the DSL, which allows to define
and validate entities and queries over these entities. On the top
right window, the corresponding GDM instance model of the
processed GDM file is shown. This instance would be the input
of Mortadelo’s transformation process. Below, in the Properties
view, individual details of concrete elements from the model
can be consulted, such as the AttributeSelection object selected
in the figure.

5https://github.com/alfonsodelavega/mortadelo
6https://www.eclipse.org/xtend/
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Figure 16: Editor of the provided GDM textual DSL.

Finally, an examples project is included, which contains
GDM specifications and resulting NoSQL schemas, e.g., for
the running example of this paper.

5. Evaluation and Discussion

As it was stated in the introduction, the main goal of Mor-
tadelo was to automatically generate databases for different
NoSQL paradigms from the same high-level data model. The
previous section has shown how this goal is satisfied for the
running example. This section analyzes how Mortadelo works
in other case studies, providing evidences about its applica-
bility. To evaluate whether our work can be used in different
settings, we analyzed it from the following four perspectives:
(EI-1) expressiveness of the GDM metamodel; (EI-2) perfor-
mance of the generated databases; (EI-3) required computa-
tional resources for executing the model transformations; and
(EI-4) adaptability of our approach to changes in the NoSQL
paradigms. Moreover, for each one of these items, comparisons
with related work will be provided as required.

5.1. EI-1: GDM expressiveness

The very first issue we analyzed to assess general applicabil-
ity of our approach was GDM expressivity. This is, we studied
whether the conceptual modeling language we created is ex-
pressive enough to model any database. Since GDM mimics
the Entity-Relationship notation, GDM’s expressiveness should
be as good as ER’s. ER has been widely used for decades with-
out big issues, so GDM should have a good expressiveness. To
verify this hypothesis, we modeled a set of external case studies
in GDM. These case studies were extracted from the NoSQL
literature, and are often used as testbeds in NoSQL research.
More specifically, we used four case studies: (1) a hotel man-
agement system, extracted from Carpenter and Hewitt [25]; (2)

Case Study Hotel EAC Store Venues Windows

#Classes 9 4 11 4 8
#Relations 9 3 8 6 9
#Att/Class 3.2 3.7 2.1 5.25 4.75
#Queries 9 5 6 9 7

Table 2: NoSQL case studies statistics.

the EasyAntiCheat (EAC) system7, used as case study by Mior
et al. [22]; (3) a store database, taken from de Lima and dos
Santos Mello [30]; and (4) a digital venues example, used by
Chebotko et al. [21]. Additionally, we included a fifth case
study from a cooperation with a local software company. This
case study involves industrial data related to a cutting machine
for bars that were used in window manufacturing.

Table 2 shows some basic statistics about these case stud-
ies to provide a general overview of their size and structure.
These case studies might seem small, but this is a typical case
in NoSQL systems, where we want to store thousands of in-
stances of just a few entities, and then perform a set of well-
defined queries while maintaining a good performance.

Just a minor issue was detected when modeling these case
studies in GDM. GMD does not directly support inheritance
between entities, but the Store case study uses inheritance to
model the relationships between some entities. We opted for
not including inheritance in GDM initially for the following
reasons. First of all, inheritance added a lot of picky details that
made the description of the transformation rules far more com-
plex. Secondly, some authors consider inheritance as a harmful
mechanism and they recommend the use of other alternatives,
such as composition [42]. Thirdly, inheritance can be repre-
sented by means of other mechanisms, such as, for instance,
the single-table pattern [43], among others. Therefore, to keep
this work affordable, we opted for skipping inheritance initially,
and representing it by means of other mechanisms. As part of
our future work, we will explore how to deal with inheritance
in NoSQL systems.

In addition, the experienced reader might reasonably argue
that the@highlyUpdated annotation is not sufficient and that, to
specify workloads more precisely, we should quantify the rate
of reads and updates over each entity. This way, considering
the cost of each operation, our model transformations should
be able to find the solution that provides a better performance
for that specific workload, such as Mior et al. [22] do. There is
a rationale behind not doing it, as we explain in the following.

The measurement and characterization of these workloads in
real settings might get really complex. Modern applications
have several cache levels, which make the cost of read opera-
tions variable. Therefore, something more complex than a sin-
gle value may be required to represent operation cost. More-
over, operation rates might not be fixed, as they could vary de-
pending on each scenario. For example, applications that sell
tickets for sport events might have a peak of updates over a

7https://www.easyanticheat.net/
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purchase entity just after starting the sales period for very de-
manded events, like the Super Bowl final, but more stable up-
date operations during the rest of the year. Also, applications
with variable operations rates might be interested in optimizing
a few frequent scenarios. For instance, the Super Bowl final
ticket selling event might be considered a critical scenario, and
so the application should offer a very good performance, despite
happening only once a year. Finding effective mechanisms to
specify all these issues appropriately is a big challenge that can
hardly be addressed in the context of a single work. Conse-
quently, approaches that aim to find optimal solutions, like the
one of Mior et al. [22], must make some assumptions to sim-
plify things and make the problem affordable. For instance,
Mior et al. [22] neglect the effect of caches, and only work with
applications whose operation rate is fixed.

Therefore, any solution we had used to quantify workloads
would have been unsatisfactory in real settings. Thus, since the
focus of our work was not how to specify workloads precisely,
we opted for using a simple solution that: (1) it did not obscure
the focus of our work, which was the generation of databases
for heterogeneous NoSQL paradigms, and (2) it was also sat-
isfactory in a wide range of situations. In our case, it is the
database designer who must decide, after analyzing different
design drivers, whether issues such as denormalization might
be problematic. If it is considered so, she should act accord-
ingly, e.g., using the @highlyUpdated annotation.

Finally, some readers might miss some information about
database replication and sharding in these database designs.
This information, although key in NoSQL, is often considered
orthogonal to the database schema design, and therefore, spec-
ified separately. For instance, Kolovos et al. [44] use different
DSLs to specify schema design and deployment issues. There-
fore, as part of out future work, we plan to study how to comple-
ment Mortadelo with additional languages that cover sharding
and replication.

5.2. EI-2: Quality of the Generated Databases

This section evaluates whether the performance of the
databases generated by Mortadelo is good enough to use them
in real settings. To fulfill this task, we carried out two differ-
ent actions: (1) we compared performance of the databases
generated by Mortadelo and with databases generated using
other state-of-the art approaches; and (2) we checked with in-
dustrial practitioners whether the databases generated by Mor-
tadelo have enough quality to be deployed in real settings. Both
actions are described in the following. But before doing it, it
is worth to remember that improving performance of state-of-
the-art approaches was not our main goal. The main contribu-
tion of Mortadelo is to generate databases for different NoSQL
paradigms from the same high-level data model. Therefore, we
are mainly interested in checking that performance has not been
sacrificed to provide heterogeneity.

5.2.1. Performance Comparison
To analyse performance of databases generated by Mortadelo

with state-of-the-art approaches, we gathered all approaches

that were able to generate databases for column-family stores
or document stores. We exclude from this selection those that
do not provide automation [20, 35, 32, 33] or that target NoSQL
paradigms currently not addressed by Mortadelo [24]. Thus,
the selected approaches were Chebotko et al. [21], Mior et al.
[22] and de Lima and dos Santos Mello [30]. Then, for each
gathered approach, we tried to generate the target databases for
the case studies we have modelled in previous section (see Ta-
ble 2). However, this task was not feasible because some of
these state-of-the-art approaches could not be easily replicated.
For instance, de Lima and dos Santos Mello [30] do not provide
a precise specification of their transformation rules, as they are
just informally described. Therefore, we were not able to un-
ambiguously interpret them.

To solve this issue, we used for the comparison the same case
study appearing in the paper that describes each approach. For
instance, Chebotko et al. [21] use a case study about venues to
illustrate how their approach works. For this case study, they
provide an ER model as well as the Cassandra implementa-
tion generated by their approach. So, we used these artifacts
to perform the comparisons against Mortadelo. This way, it
was ensured that the generated databases were correct, and we
have not misinterpreted anything during the database genera-
tion process. The same strategy was applied to the other se-
lected approaches.

As commented in Sections 4.6 and 4.7, our transformation
rules are heavily grounded in those available in the litera-
ture [21, 30, 22]. Consequently, databases generated by Mor-
tadelo and by the selected state-of-the-art approaches have a
very similar structure, being even completely identical in some
cases. The differences, when found, are due to some optimiza-
tions we added to the transformation rules, such as the query
merging mechanism (see Section 4.6.2). When these differ-
ences appear, they affect to a small number of target elements.

Therefore, as most parts of the database designs of Mortadelo
and the state-of-the-art approaches are identical, both databases
are expected to have a similar performance. Some queries are
solved using the same database structures, so they will have
identical response times. Therefore, we have left these queries
with identical design responses out from this analysis, and we
have focused on those queries whose targeted design elements
differ between Mortadelo and the other approaches. We present
and discuss the results of this comparison in the following.8

Mortadelo and Chebotko et al. [21]. To compare Mortadelo
with Chebotko’s solution, we used the venues case study, which
contains 9 queries. We modeled that case study in GDM to
automatically generate a Cassandra implementation using Mor-
tadelo. 7 out of the 9 queries were answered using exactly the
same tables in both solutions. Only two queries, identified as
Q5 and Q9, were answered using different structures.

In this case, the differences are due to the query merging
mechanism of Mortadelo. In Chebotko et al. [21], for each

8A detailed description of the case studies, the artifacts associated to each
one of them and of how response times have been measured can be consulted
in the supplementary material that accompanies this paper.
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Figure 17: Average response times of Mortadelo vs. Chebotko et al. (left), De Lima and Mello (middle), and Mior et al.’s NoSE (right).

query, a table is always generated to support it. Therefore, Q5
and Q9 lead to the generation of two different tables. On the
other hand, Mortadelo is able to detect that these queries are
compatible, by means of checking elements such as query con-
ditions and sorting criteria (see Section 4.6.2 for details). So,
these queries could be merged into a single one, generating just
one table, instead of two.

To asses the effect of the query merging mechanism, we mea-
sured the response times of these queries. Moreover, it should
be taken into account that the query merging mechanism was
not only designed to improve read performance, but also to re-
duce redundancy, which should help to improve insert perfor-
mance and to reduce database size. Therefore, we also mea-
sured the cost of adding a new row of data in both cases and
the effect of this merging on the database size. Figure 17, left,
shows the response times of Q5 and Q9 as well as the cost in
inserting new data in the generated table.

As it can be seen, concerning the read operations, Q5 and
Q9 are slightly faster in Chebotko’s design. This is because
row size of Chebotko’s solution is smaller than Mortadelo’s, as
the Mortadelo table is fragmented in two pieces in Chebotko.
Therefore, Cassandra needs to process less data in Chebotko,
which improves performance by 23.5% on average. On the
other hand, write operations need to access just one table in
Mortadelo, whereas two tables are required in Chebotko, which
makes Mortadelo 19% faster.

Regarding database size, a noticeable reduction is not finally
achieved for this concrete case study. The tables associated to
Q5 and Q9 in Chebotko share the same key, but the rest of table
columns are disjoint. Therefore, we are only avoiding redun-
dancies in the table key. The impact of this redundancy in the
database size is negligible.

Mortadelo and de Lima and dos Santos Mello [30]. To com-
pare with de Lima’s method, we generated a MongoDB
database using Mortadelo for the Store case study, which is the
same case study that authors of [30] use to illustrate their ap-
proach. In this case, the differences between Mortadelo and de
Lima are due to the denormalization introduced by Mortadelo.
As it was commented in Section 4.7, while de Lima’s solution
avoids denormalization, Mortadelo nests some data into differ-
ent collections to improve those operations that need to access
several domain entities.

The effect of this denormalization on database performance
is illustrated in Figure 17, middle. Queries Q1, Q2, Q4, and Q5
are read operations that only involve a single collection in both
cases, whereas Q3 and Q6 accesses several collections.

In the single collection case, as it can be seen, Mortadelo
performs pratically equal than de Lima for Q4, and Q5, and it is
a 2.7% and 3.6% slower for Q1 and Q2. In these latter cases, the
documents retrieved by Mortadelo have a bigger size, due to the
denormalization, which have a negative impact in performance
because MongoDB needs to process more data.

Nevertheless, when accessing multiple collections, Mor-
tadelo offers better performance than de Lima. Responses times
can be considered equal for Q6, but in the case of Q3, Mor-
tadelo is a 26% faster. This is because to compute Q3, a single
collection is accessed in Mortadelo, whereas that two collec-
tions must be joined in the De Lima’s solution.

Summarising, Mortadelo might perform better than de Lima
and dos Santos Mello [30] depending on the characteristics of
each case study. In any case, the degree of denormalization in
Mortadelo can be controlled by using the HighlyUpdated anno-
tation. Therefore, Mortadelo can generate the databases with-
out denormalization when required.

Mortadelo and NoSE [22]. As commented in Section 3,
NoSE [22] firstly generates the database designs that might im-
plement the conceptual data model provided as input. Then,
NoSE formulates and solves a binary integer problem to find,
among all these candidate designs, the one offering the best
performance. The database design generated by Mortadelo is
always included in this set of candidate designs. So, if Mor-
tadelo’s design is not selected, it is because NoSE has found an
alternative design with a better performance. This means that
we can never improve NoSE performance, just equal it.

Nevertheless, we run some rough experiments to asses how
performance might degrade in our approach as compared to
NoSE. For these experiments, we used one of the case studies
that Mior et al. employed to evaluate their approach, which was
the Easy Anti Cheat case study. We compared the Cassandra
design provided in [22] with the one generated by Mortadelo.
In the case of NoSE, the database was generated assuming a
workload with 80% of writings and 20% of reads.

For 3 out of the 5 queries for the case study, the target struc-
tures of the databases generated by Mortadelo and NoSE are
identical, differing only for the two remaining ones, identified
as Q1 and Q2. For these queries, Mortadelo creates two differ-
ent tables, whereas NoSE avoids to denormalize data, creating
just a single table. To do it, in this case, NoSE moves part of the
logic to compute the query to the application level. This way,
read performance decreases, but writing performance improves,
as to add new data we have to access just one table, whereas in
Mortadelo it would be two. Considering it was specified that
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there are more insertions than reads, global performance is im-
proved in NoSE. Moreover, database size of the structures as-
sociated to these queries is around twice in Mortadelo.

To quantify how much better NoSE performs, we have mea-
sured the effect of this denormalization. Figure 17 (right) shows
the results. As expected, query performance is better in Mor-
tadelo, particularly in Q1. On the other hand, for insertions,
NoSE is faster than Mortadelo. Since most of the operations
are insertions, NoSE would be faster than Mortadelo by ∼30%
in general terms. The obtained performance loss shows that al-
lowing a database designer to move part of the logic of certain
operations to the application level, just as NoSE does, could be
a good inclusion to Mortadelo’s features. This addition could
be performed by defining new annotations. It should also be
highlighted than this performance penalty limits to Q1 and Q2.
For the other queries, there is no performance penalty.

It might be argued that Mortadelo is more efficient than
NoSE for reads, whereas that NoSe performs better for inser-
tions. So, it might be thought that, in general, Mortadelo should
be used for read-intensive applications and NoSE for write-
intensive applications. Nevertheless, it should be noticed that
this database design was generated by NoSE assuming an 80%
of insertions. If this rate decreased, the generated database de-
sign would be closer to Mortadelo’s, putting more attention to
read operations performance.

5.2.2. Expert Evaluation
To complement these academic experiments, we tried to

check with industrial practitioners whether the databases gen-
erated by Mortadelo have an acceptable quality to be deployed
in real settings. For this purpose, we contacted a local com-
pany that develops software applications for Industry 4.0 and
whose engineers had been using MongoDB and Cassandra in
production during several years. They provided us a case study
related to a cutting machine for bars that were used in window
manufacturing. Using Mortadelo, we modeled this case study,
and we generated database implementations for Cassandra and
MongoDB. All these artifacts where reviewed for a senior engi-
neer of this company, who only suggested changing the name of
some attributes, confirming the generated designs have quality
enough to be deployed in production.

5.3. EI-3: Computational Resources

This section analyses the computational complexity of our
transformation process to verify if it can be executed with a
reasonable amount of computational resources.

The transformation process for column stores starts by com-
paring pairs of queries in order to compact them. So, the com-
plexity of this step would beO(n2), where n is the number of ac-
cess queries in the GDM model. After that, a column family is
generated for each query throughout a set of basic calculations,
except for the row uniqueness algorithm. This algorithm builds
a kind of access tree and processes its branches. The algorithm
iterates over the tree branches, and for each branch, over their
nodes, in order to determine whether a branch is identified. This
process is repeated each time a new branch is identified, so the

complexity, in the worst case, would be O(p2q), where p is the
number of tree branches and q is the maximum path length. In
normal scenarios, these numbers are expected to be low, since
queries traversing more than 10 entities, i.e., q = 10, and fol-
lowing more than 5 different paths, i.e., p = 5 are very extreme
cases. In any case, the complexity of this transformation pro-
cess would be polynomial.

In the case of document databases, we iterate over the num-
ber of queries to detect the main entities, and to build the access
trees of each one of these entities. The complexity of this pro-
cess is O(n), where n is the number of queries. Then, each ac-
cess tree is traversed to generate document types. This process
would be O(mr), where m is the number of main entities, and
r the maximum number of nodes in an access tree. As before,
both values are expected to be low. So, the complexity of this
transformation process is also polynomial.

To complement and quantify the computational complexity
analysis described above, me measured database generation
times of the different case studies for the rules for column fam-
ily and document databases. All generations took only a few
seconds to complete, also including any IO operations for man-
aging script files and models. These times are similar to the
ones obtained by other rule-based generation approaches, such
as Chebotko et al. [21] and de Lima and dos Santos Mello [30].

5.4. EI-4: Extension Capabilities of Mortadelo

The structure of our framework facilitates its extensibility.
In the following subsections we discuss the required steps to
extend the support of Mortadelo for new NoSQL features, tech-
nologies and paradigms.

5.4.1. EI-4.1: Incorporation of New NoSQL Features to the
Transformation Process

NoSQL technologies are still novel, which makes frequent
the apparition of new features in their database management
systems. If we wanted to take advantage of these new features,
we would need to extend or modify one or more elements of
our transformation process. We analyze how our platform deals
with these changes by extending our column families approach
to support a Cassandra feature that was not used in the original
transformation process: user-defined types (UDTs).

As explained in Section 4.4, UDTs allow defining structures
composed of several fields of different type. In Cassandra,
UDTs can be helpful to reduce the number of rows that must
be stored in a column family. We illustrate this by using the
example of Figure 18. The query Q2 productsByName of our
running example (see Section 2.1), includes the categories data
of the products. As each product might have several categories,
the column family generated for this query would have a row
per combination of a product and each one of its categories,
as shown in Figure 18, left. This is, if a product belongs to
three categories, the corresponding column family would store
three rows, and data of this product would be replicated in these
rows. This can be avoided by creating a user-defined type for
categories, named categoryUDT, as show in Figure 18, right.
Now, categories can be stored in a single column as a list of
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with UDT

<ColumnFamily>
ProductByName

productId : ID
name : TEXT
description : TEXT
price : DECIMAL
categories : List<categoryUDT>

partitionKeys : [name]
clusteringKeys : [productId]

<UserDefinedType>
categoryUDT

categoryId : ID
name : TEXT
description : TEXT

<ColumnFamily>
ProductByName

productId : ID
name : TEXT
description : TEXT
price : DECIMAL
catId : ID
catName : TEXT
catDescription : TEXT

partitionKeys : [name]
clusteringKeys : [productId,
                           catId]

Figure 18: Left: column family where product data has to be replicated for each
category; right: the use of a category user-defined type avoids this replication.

this new type. This way, we do not need to replicate products
by each category, which reduces the size of the column family.

To incorporate this new feature into Mortadelo, we would
need to update the column family logical model. This change
was already incorporated to Figure 9, which includes UDTs as
one of the possible types of a column. Apart from changes in
this metamodel, an update of the code generators that transform
elements to and from this metamodel is also required. After
that, we would need to devise a rule for deciding when to use
a user-defined type, program and incorporate it to our model
transformation process. A possible new rule could be as fol-
lows: to use a UDT for an entity inside a column family, none
of the fields of that entity can belong to the primary key of such
a column family. Moreover, to make the process of creating
a user-defined type affordable, the entity must be easily serial-
izable. So, we consider the creation of UDTs only for those
entities that have no further relationships with other entities in-
side a query. When these conditions are met, a new UDT is
created. Once designed, this new rule could be incorporated to
the transformation process described in Section 4.6.

5.4.2. EI-4.2: Incorporation of new NoSQL Technologies
New NoSQL systems belonging to any of the supported

NoSQL paradigms can be incorporated into Mortadelo by im-
plementing a new code generator. This code generator would
transform logical models of the corresponding paradigm into
code for the new NoSQL technology. For instance, if we
wanted to support the column-family store ScyllaDB [27] as a
target platform for Mortadelo, we would need to create a model-
to-text transformation, or code generator, from the column fam-
ily metamodel of Figure 9 into code to define a database ac-
cording to the ScyllaDB characteristics. Moreover, if the newly
incorporated NoSQL system had a set of specific features, we
might have to modify Mortadelo to support them, as we did for
user-defined types.

5.4.3. EI-4.3: Incorporation of New NoSQL Paradigms
Currently, Mortadelo supports two NoSQL paradigms: col-

umn family and document-based stores. Nevertheless, there
are other paradigms that could also benefit from having a de-
sign generation process. For instance, key-value stores are very

popular and extended database systems where data bundles are
managed through some sort of identifier or key. So, the data
structure of this kind of systems could be understood as a hash
table. Redis [45] and Dynamo [46] are some well-known ex-
amples of key-value stores.

If we wanted to include support for a new NoSQL paradigm,
e.g., the mentioned key-value stores, into Mortadelo, we would
need to: (1) provide a logical metamodel for that new paradigm;
(2) define and implement the model transformations for con-
verting GDM conceptual models into logical models for the
new paradigm; and (3) create a code generator for a target tech-
nology of this new paradigm.

As NoSQL paradigms are very heterogeneous, including a
new one that differs a lot from the ones already supported might
require taking into account certain aspects that did not manifest
for the previous paradigms during the design generation pro-
cess. For instance, most key-value stores do not impose any
schema restrictions on the stored data: values could be stored
as plain text without schema, XML or JSON documents, or
concrete data structures supported by the technologies, such
as lists, sets or maps. This schema freedom was not present
in column families or document stores, where data is stored in
tabular or document-based formats, respectively. As a result,
some extra relevant aspects might be required for the purposes
of guiding the transformation from the GDM to the new logical
model, which might be captured in new GDM annotations.

6. Summary and Future Work

This work has presented Mortadelo, a model-driven design
process for the generation of NoSQL databases. The main con-
tribution of Mortadelo, when compared with other state-of-the-
art approaches, is that, from the same conceptual data model,
Mortadelo is able to generate implementations for different
NoSQL technologies, such as column family or document-
based ones. To the best of our knowledge, this is the first
NoSQL database design methodology with these characteris-
tics. To generate these NoSQL databases, Mortadelo first ap-
plies a set of predefined rules to transform an instance of a
conceptual model into a logical model of a concrete NoSQL
paradigm, e.g., column family stores. Then, code generation
templates are used to obtain the implementation of a concrete
NoSQL technology, such as Cassandra. Some aspects of this
transformation process can be customized by providing extra
information in the conceptual model through annotations. For
instance, we can specify that an entity has a high updates ratio,
and the transformation process would treat it accordingly.

In general, Mortadelo improves state of the art when com-
pared to Li [23], de Lima and dos Santos Mello [30], Chebotko
et al. [21] and Mior et al. [22] by targeting more than one
NoSQL paradigm; and when compared to Herrero et al. [33]
and Atzeni et al. [32] by automating the database design pro-
cess. Moreover, oppositely to Chebotko et al. [21] and de Lima
and dos Santos Mello [30], the database generation rules can be
modified by means of high-level annotations, which allow han-
dling the same transformation scenario differently depending
on the particularities of each case study.
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To develop Mortadelo, the following elements were created:

• A metamodel, called Generic Data Metamodel (GDM),
for the technology-agnostic modeling of NoSQL
databases. GDM, to the best of our knowledge, is the
first metamodel that integrates the two views that are
required for NoSQL database modeling: (i) a view with
the specification of entities with their attributes and
relationships; and (ii) a view specifying the data access
patterns that would be used to retrieve and update data.

• Annotations for the GDM metamodel that can be used to
provide hints to the model transformation process about
how some entities should be handled.

• Metamodels for supporting logical models of two different
NoSQL paradigms: column family stores and document
databases.

• A set of rules and algorithms were implemented to per-
form an automatic Model-to-Model transformation of the
database modeled by the user with the GDM to the logical
models of both supported NoSQL paradigms.

• Another set of rules to generate concrete code implemen-
tations for Cassandra (column family store) and MongoDB
(document database) from the logical models, following a
Model-to-Text transformation process.

We evaluated Mortadelo’s capabilities by using several
database case studies from the NoSQL literature. As a result
of this evaluation, we concluded that (i) the GDM is expressive
enough to model different kind of databases; (ii) databases gen-
erated for Cassandra and MongoDB are valid and usable; (iii)
the process has a low computational cost; and (iv) Mortadelo
can be extended in order to incorporate new NoSQL features
to the transformation process. We also described how our pro-
posal can be expanded to support other NoSQL paradigms and
technologies.

As future work, we plan to extend Mortadelo to offer a more
fine-grained control of the transformation process, so that dif-
ferent implementations of the same database can be created
and compared. For example, users can choose to generate
a more normalized or denormalized implementation in docu-
ment databases, or to indicate some performance improving
parameters such as how to partition the data in systems where
this partitioning is optional, like MongoDB. Moreover, we will
study how sharding and replication issues might be orthogo-
nally specified to schema designs, and whether we might be
able of automatically deploying completely configured NoSQL
systems in, for instance, a cloud platform. Finally, an inter-
esting future research line is, obviously, the extension of Mor-
tadelo to support other NoSQL paradigms, such as key-value
stores.
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AppendixA. GDM to Logical Model Transformations

Here we show, in pseudo-code format, the algorithms that
transform a GDM instance into another instance conforming
to one of the logical models described throughout the article,
namely, column family or document-based logical models.

Input: An access query aq
Output: A column family c f
c f ← newColumnFamily();
c f .name← aq.name;
foreach attr ∈ aq.pro jections do

newColumn← new Column();
newColumn.name← attr.name;
newColumn.type← attr.type;
c f .add(newColumn);

end
/* extractAttributes : get the attributes from

the where clause in appearing order */

foreach attr ∈ extractAttributes(aq.condition) do
if isInEquality(attr, aq.condition) then

pk ← new PartitionKey();
pk.column = c f .columns. f ind(c | c.name =

at.name);
c f .partitionKey.add(pk);

end
if isInInequality(attr, aq.condition) then

ck ← new ClusteringKey();
ck.column = c f .columns. f ind(c|c.name =

at.name);
c f .clusteringKey.add(ck);

end
end
/* sorting criteria is only included if

compatible with current clustering key */

if compatibleOrdering(cf.clusteringKey,
aq.orderingAttributes) then

foreach attr ∈ aq.orderingAttributes do
if attr < c f .clusteringKey then

ck ← new ClusteringKey();
ck.column = c f .columns. f ind(c|c.name =

attr.name);
c f .clusteringKey.add(attr);

end
end

end
c f ← ensureUniqueness(c f , aq);

Algorithm 1: Query to Column Family Transformation Rule.
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Algorithm 1 shows how to generate an appropriate column
family to answer a given access query. This generated column
family would be included in the final design suggested by Mor-
tadelo. As this algorithm does not ensure row uniqueness by it-
self, we can apply Algorithm 2 using as input the generated col-
umn family and the original access query to add the necessary
modifications to obtain this uniqueness. A complete description
of how these algorithms work can be found in Section 4.6.1.

Input: A column family c f
Input: An access query aq
Output: A column family c f ′

c f ′ ← c f ;
paths← computeAllPathsFromRoot(aq);
paths← removeIdenti f iedPaths(paths);
while paths , ∅ do

p← paths.getOne();
// search an id in the path entities

id ← f indIndenti f ier(p);
if exists(id) then

// Column creation from id attr omitted

if column(id) < c f ′.columns then
c f ′.columns.add(column(id));

end
c f ′.clusteringKey.add(column(id));
/* This addition might identify more

than one path */

paths← removeIdenti f iedPaths(paths);
else

/* An artificial id is required to

identify this path. This id makes

the row (and all paths) unique */

dummyId ← createDummyIdColumn();
c f ′.columns.add(dummyId);
c f ′.clusteringKey.add(dummyId);
paths← ∅ ; // end of the process

end
end

Algorithm 2: Ensure uniqueness of column family rows.

During this work, we have also described some optimizations
that can be applied to reduce the number of column families
that are generated when proposing a new design. Algorithm 3
defines a method that reduces the number of queries to process
by Algorithms 1 and 2, based on the possibility to use the same
column family to answer several access queries. Therefore, the
application of this method can contribute to avoid unnecessary
data redundancy. See Section 4.6.2 for more details.

Lastly, Algorithms 4 and 5 are used to transform a GDM in-
stance into a document data model. First, Algorithm 4 is used to
obtain the different collections that will be present in the output
data model. During this obtention, the root document type of
each collection is populated through Algorithm 5. This process
is defined in Section 4.7.

Input: A set of queries Qs
Output: A set of compacted queries CQs
CQs← Qs;
foreach qi ∈ Qs do

if qi < CQs then
// Query previously compacted

continue;
end
foreach q j ∈ CQs − {qi} do

if ¬compatibleUniqueness(qi, q j) then
// Different uniqueness sets

continue;
end
if equalities(qi) = equalities(q j)
∧ inequalities(qi) = inequalities(q j) then

if (qi.orderingAttrs = q j.orderingAttrs)
∨ (hasOrdering(qi) ∧ ¬hasOrdering(q j))
∨ (q j.orderingAttrs ⊂ qi.orderingAttrs) then

qi.pro jections←
qi.pro jections ∪ q j.pro jections;

CQs← CQs − {q j};
else if (¬hasOrdering(qi) ∧ hasOrdering(q j))
∨ (qi.orderingAttrs ⊂ q j.orderingAttrs) then

q j.pro jections←
q j.pro jections ∪ qi.pro jections;

CQs← CQs − {qi};
end

end
end

Algorithm 3: Query merging optimization.

Input: A GDM instance model gdm
Output: A document data model ddm
mainEntities← gdm.queries.collect((q) | q. f rom);
foreach me ∈ mainEntities do

col← new Collection();
col.name← me.name;
accessTree← allQueryPaths(me, gdm.queries);
col← populateDocumentType(col.root, accessTree);
ddm.collections.add(col);

end

Algorithm 4: GDM to document data model transformation.
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Input: A document type dt
Input: A node of an access tree
Output: A constructed document type dt
nodeAttributes←

node.entity. f eatures.select( f | f .isTypeO f (Attribute));
nodeRe f erences←

node.entity. f eatures.select( f | f .isTypeO f (Re f erence));
foreach attr ∈ nodeAttributes do

p f ← new PrimitiveField();
p f .name← attr.name;
p f .type← attr.type;
dt. f ields.add(p f );

end
foreach re f ∈ Re f erences do

targetNode← node.arcs. f ind(a|a.name =

re f .name).target;
if exists(targetNode) then

baseType← new DocumentType();
populateDocumentType(baseType, targetNode);

else
baseType← new PrimitiveField();
baseType.type← f indIdType(re f .entity);

end
baseType.name← re f .name;
if ref.cardinality = 1 then

dt. f ields.add(baseType);
else

arrayField ← new ArrayField();
arrayField.type← baseType;
dt. f ields.add(arrayField);

end
end

Algorithm 5: Populate a DocumentType given an access tree.
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