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Abstract The output of an association rule miner is often huge in practice. This is
why several concise lossless representations have been proposed, such as the “es-
sential” or “representative” rules. We revisit the algorithm given by Kryszkiewicz
(Int. Symp. Intelligent Data Analysis 2001, Springer-Verlag LNCS 2189, 350–359)
for mining representative rules. We show that its output is sometimes incomplete,
due to an oversight in its mathematical validation. We propose alternative complete
generators and we extend the approach to an existing closure-aware basis similar to,
and often smaller than, the representative rules, namely the basisB∗

τ,γ .

1 Introduction

Association rule mining is among the most popular conceptual tools in the field
of Data Mining. We are interested in the process of discovering and representing
regularities between sets of items in large scale transactional data. Syntactically, the
association rule representation has the form of an implication,X → Y; however,
whereas in Logic such an expression is true if and only ifY holds wheneverX does,
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an association rule is a partial implication, in the sense that it is enough ifY holds
most of the times Xdoes.

To endow association rules with a definite semantics, we needto make precise
how this intuition of “most of the times” is formalized. There are many proposals
for this formalization. One of the frequently used measuresof intensity of this kind
of partial implication is itsconfidence: the ratio between the number of transactions
in which X andY are seen together and the number of transactions that contain X.
In most application cases, the search space is additionallyrestricted to association
rules that meet a minimalsupportcriterion, thus avoiding the generation of rules
from items that appear very seldom together in the dataset (formal definitions of
support and confidence are given in Section 2.1).

Many association rule miners exists, Apriori (see [Agrawalet al., 1996]) being
one of the most widely discussed and used. The major problem shared by all mining
algorithms is that, in practice, even for reasonable support and confidence thresh-
olds, the output is often huge. Therefore, several concise lossless representations
of the whole set of association rules have been proposed. These representations are
based on different notions of “redundancy”. In one of these,a rule is redundant if it is
possible to compute exactly its confidence and support from other information such
as the confidences and supports of otherinformativerules (see [Kryszkiewicz, 2002,
Luxenburger, 1991, Hamrouni et al., 2008, Pasquier et al., 2005]); this is a quite de-
manding property. We settle for a weaker version proposed inseveral works; infor-
mally, in that version, a rule isredundantwith respect to another one if its confidence
and support are always greater, inanydataset. To avoid this redundancy, exactly one
notion has been identified in several sources, namely therepresentative rules; and
a closure-aware variant both of the redundancy notion and ofthe redundancy-free
basis is given in [Balcázar, 2010a] (precise definitions and references are given be-
low).

We focus in this paper on the main results of [Kryszkiewicz, 2001], where a pur-
portedly faster algorithm to construct representative rules is given, and show by an
example that that algorithm is not guaranteed to always output all representative
rules, because it is based on a property that does not hold in general; namely, the
characterization of the frequent closed sets that admit a decomposition into repre-
sentative rules misses some such sets. We propose an alternative, complete char-
acterization, leading us to the proposal of a first alternative algorithm that is guar-
anteed to output all the representative rules: we pre-compute, for each closed set,
some parameters that depend on the confidence and support thresholds, and then
use the above mentioned new characterization to generate all representative rules.
Compared to the potentially incomplete algorithm in [Kryszkiewicz, 2001], this al-
gorithm, guaranteed to be complete, has a main drawback: in [Kryszkiewicz, 2001],
the internal local parameters only depend on the support threshold, but in our al-
gorithm these parameters depend also on confidence. Therefore, each time a new
confidence threshold is introduced by the user, the algorithm has to redo all com-
putations. Thus, we provide a second algorithm, composed oftwo parts: the first
one is a pre-processing phase, dependent only on support, inwhich a subdivision
of the interval(0,1] is associated to each closed itemset, and the second part uses
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this partition to determine, for a given value of the confidence threshold, which are
those sets that can generate representative rules.

Then, we extend the process to a similar basis which profits from the more pow-
erful redundancy notions available for full-confidence implications to often obtain
smaller bases in many applications.

There are a couple of subtle differences between one of the usual definitions of
association rule (the one we employ) and the one in [Kryszkiewicz, 2001]. First,
we do allow having rules with empty antecedent (clearly, allof them have confi-
dence equal to the normalized support of the consequent). Moreover, we do not
require the inequalities to be strict when imposing a given support and confidence
threshold. This is just a small detail that comes handy when the user is interested
in obtaining the set of all representative rules of confidence 1. However, we have
carefully tuned all our argumentations in such a way that these differences are not
relevant; for instance, we have chosen a counterexample that invalidates Property 9
of [Kryszkiewicz, 2001] independently of which of the two definitions is used.

The article is structured as follows. In Section 2 we introduce the basic no-
tions and notations that will be used throughout the paper and part of the con-
tents of [Kryszkiewicz, 2001]; and we show that the algorithm provided there is
not guaranteed to always provide the whole set of representative rules. In Section 3
we define new parameters and discuss their usefulness in generating the set of all
representative rules, providing also efficient algorithmsfor this task. We describe
in Section 4 a parallel development for an alternative basis, often smaller than the
representative rules. Section 5 contains a comparison of our approach with the one
in [Kryszkiewicz, 2001] on some datasets. Concluding remarks and further research
topics are presented in Section 6.

2 Preliminaries

A given set of available itemsU is assumed; subsets of it are called itemsets. We
will denote itemsets by capital letters from the end of the alphabet, and use juxta-
position to denote union, as inXY. The inclusion sign as inX ⊂ Y denotes proper
subset, whereas improper inclusion is denotedX ⊆Y. For a given datasetD , consist-
ing of n transactions, each of which is an itemset labeled with a unique transaction
identifier, we define thesupport sup(X) of an itemsetX as the ratio between the
cardinality of the set of transactions that containX and the total number of transac-
tionsn. An itemsetX is calledfrequentif its support is greater than or equal to some
user-defined thresholdτ ∈ (0,1]. We denote byFτ = {X ⊆U

∣

∣ sup(X)≥ τ} the set
of all frequent itemsets.

Given a setX ⊆ U , theclosureX of X is the maximal set (with respect to the set
inclusion)Y ⊆ U such thatX ⊆Y andsup(X) = sup(Y). It is easy to see thatX is
uniquely defined. We say that a setX ⊆ U is closedif X = X.

Closure operators are characterized by the three properties of extensivity:X ⊆X;
idempotencyX = X; and monotonicity:X ⊆Y if X ⊆Y. Moreover, intersections of



4 Balcázar et al

closed sets are closed. The empty set is closed if and only if no item appears in each
and every transaction.

A minimal generatoris a setX for which all proper subsets have closures dif-
ferent from the closure ofX (equivalently,X is a minimal generator if and only if
sup(Y)> sup(X) for all Y ⊂ X).

Also, FCτ = {X ∈ Fτ
∣

∣ X = X} represents the set of all frequent closed sets,
andFGτ = {X ∈ Fτ

∣

∣ ∀Y ⊂ X,sup(Y) > sup(X)} is the set of all frequent minimal
generators. Note thatFCτ constitutes a concise lossless representation of frequent
itemsets, since knowing the support of all sets inFCτ is enough to retrieve the
support of all sets inFτ .

Example 1.Let D be the dataset represented in Table 1 where the universeU of
attributes is{a,b,c,d,e, f}, and consider the thresholdτ = 0.15. Clearly, all sub-
sets ofU are frequent,FCτ = { /0,a,b,c,ab,ac,ad,bc,abcde,abcde f} andFGτ =
{ /0,a,b,c,d,e, f ,ab,ac,bc,bd,cd,abc} (we abuse the notation and denote sets by
the juxtaposition of their constituent elements).

Table 1 DatasetD
a b c d e f
1 1 1 1 1 1
1 1 1 1 1 0
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
1 0 0 1 0 0

2.1 Association Rules and Representative Rules

GivenX in Fτ , the following two notions were introduced in [Kryszkiewicz, 2001]
(with longer names):

mxsτ(X) = max({sup(Z) | Z ∈ FCτ ,Z ⊃ X}∪{0}),

mnsτ(X) = min({sup(Y) |Y ∈ FGτ ,Y ⊂ X}∪{∞}).

That is,mxsτ (X) represents the maximum support of all proper frequent closed
supersets ofX, andmnsτ(X) is the minimum support of minimal generators that are
proper subsets ofX. The extra 0 and∞ are added in order to make sure thatmxsτ(X)
andmnsτ(X) are defined even for the cases in whichX has no proper supersets that
are frequent and closed, or when it does not have proper subsets that are minimal
generators. It is easy to check thatmxsτ(X) ≤ sup(X) ≤ mnsτ (X). Moreover, in
[Kryszkiewicz, 2001] it is shown that:
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Proposition 1. Givenτ ∈ (0,1] and an itemset X∈ Fτ , X is closed if and only if
sup(X)> mxsτ(X) and X is a minimal generator if and only if sup(X)< mnsτ(X).

The association rules considered in this work are implications of the formX →
Y, whereX,Y ⊆ U , Y 6= /0 andX ∩Y = /0. In [Kryszkiewicz, 2001], rules with
X = /0 are disallowed, but we do permit them as in practice such rules often play
a useful role related to coverings, described below. Theconfidenceof X → Y is
conf(X →Y) = sup(XY)/sup(X), and itssupportis sup(X →Y) = sup(XY). The
problem of mining association rules consists in generatingall rules that meet the
minimum support and confidence threshold criteria, i. e. enumerate the following
set:ARτ,γ = {X →Y

∣

∣ sup(X →Y)≥ τ,conf(X →Y)≥ γ}.
Since the whole set of association rules is quite big in real-world applica-

tions, a number of formalizations of the notion ofredundancyamong associ-
ation rules have been introduced (see [Aggarwal and Yu, 2001, Balcázar, 2010a,
Kryszkiewicz, 1998b, Pasquier et al., 2005, Phan-Luong, 2001, Luxenburger, 1991,
Zaki, 2004, Cristofor and Simovici, 2002], the survey [Kryszkiewicz, 2002], and
Section 6 of [Ceglar and Roddick, 2006]). In one common approach, thecover
set C(X → Y) of a rule X → Y is defined byC(X → Y) = {X′ → Y′

∣

∣ X ⊆
X′ andX′Y′ ⊆ XY}. Such rulesX′ → Y′ are redundant with respect toX → Y in
the following sense (see [Aggarwal and Yu, 2001, Kryszkiewicz, 1998b] and also
[Kryszkiewicz, 1998a, Balcázar, 2010a, Phan-Luong, 2001]):

Proposition 2. Let r, r ′ be association rules. Then r′ ∈C(r) implies sup(r ′)≥ sup(r)
and conf(r ′)≥ conf(r).

In fact, this implication is a full characterization, that is, if r ′ has always at least
the same confidence and at least the same support asr then it must belong to the
cover set. Avoiding such redundancies leads to the setRRτ,γ of representative asso-
ciation rules. A rule r in ARτ,γ is said to berepresentative, or essential, if it is not
contained in the cover set of any other rule inARτ,γ , i. e.

RRτ,γ = {r ∈ ARτ,γ
∣

∣ ∀r ′ ∈ ARτ,γ (r ∈C(r ′)⇒ r = r ′)}.

Proposition 3. The following properties hold:

• RRτ,γ = {X → Y ∈ ARτ,γ
∣

∣ ¬∃X′ → Y′ ∈ ARτ,γ , (X = X′,XY ⊂ X′Y′) or (X′ ⊂
X,XY= X′Y′)}

• if X → Z\X with X⊂ Z is in RRτ,γ then Z∈ FCτ and X∈ FGτ .

Therefore, any algorithm that aims at the discovery of all representative rules
should consider only rules of the formX → Z\X with X ⊂ Z, Z∈ FCτ andX ∈ FGτ .
Clearly, not all sets inFCτ can be decomposed in such a way, and one should look
only into those that do.

Example 2.Consider the dataset in Example 1. The setad is both frequent and
closed, but none of the rulesa→ d, d → a or /0→ ad are representative given the
thresholdsτ = 0.15 andγ = 0.33: a→ d is in the cover set ofa→ bd, d → a is in
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the cover set ofd → aband /0→ ad is in the cover set of /0→ abd. Also, it is easy to
check that, atτ = 0.15 andγ = 0.4, one can obtain representative rules exactly out
of the following closed sets:ab, ac, ad, bc, abcde, andabcde f.

So, if we denote byRIτ,γ the set of all frequent closed itemsets from which at
least one representative rule can be generated, one possible approach to represen-
tative rule mining is to synthesize first the setRIτ,γ , and then, for each elementZ
in RIτ,γ , to find non-empty subsetsX such thatX → Z\X is representative. This is
precisely the idea behind AlgorithmGenRRin [Kryszkiewicz, 2001]. The problem
there is that the characterization of the setRIτ,γ given by Property 9 of the same
paper (on page 355) is incorrect, possibly leaving out some of the sets that can
lead to representative rules. Namely, it is stated thatRIτ,γ = {X ∈ FCτ

∣

∣ sup(X) ≥
γ ∗mnsτ (X)> mxsτ(X)}; right-to-left inclusion indeed holds, but equality does not
hold in general, as one can see from the following counterexample.

Example 3.Consider the itemsetX = abcdein Example 1, and assumeτ = 0.15
andγ = 0.4. Let us verify thatabcde∈ RIτ,γ\{X ∈ FCτ

∣

∣ sup(X) > γ ∗mnsτ(X)≥
mxsτ(X)}. Clearly, the ruleb→ acdeis in ARτ,γ , having support 2/6 and confidence
0.5. Moreover, by extending the right-hand side or moving the itemb to the right-
hand side we get only the rulesb→ acde f, /0→ abcdeand /0→ abcde fof confi-
dence 1/4, 2/6 and 1/6, respectively. Hence, we can concludethatb→ acde∈RRτ,γ .
On the other hand,mxsτ(X) = 1/6 andmnsτ(X) = 2/6, soγ ∗mnsτ (X) = 0.8/6 is
strictly smaller thanmxsτ(X). In this case, AlgorithmGenRRdoes not work cor-
rectly since it does not list the ruleb→ acdeas being representative.

An alternative counterexample is given in the proof of Lemma1 below.

3 Characterizing Representative Rules

The goal of pruning off sets that do not give representative rules, by keeping only
RIτ,γ , cannot be reached using the bounds given, as we have seen that this set com-
prises allX in FCτ with sup(X)≥ γ ∗mnsτ(X)>mxsτ(X) but may also include other
frequent closed setsX that do not satisfy the conditionγ ∗mnsτ(X)> mxsτ (X). We
consider two alternatives.

3.1 Closed Sets Instead of Minimal Generators

For closedX, mnsτ(X) is almost the same thing as the minimal support among all
proper subsets ofX, or again among all proper closed subsets ofX; all these notions
coincide whenX is its own minimal generator, otherwise they only differ dueto the
minimal generators ofX. Therefore it makes sense to try and exclude the minimal
generators ofX from consideration. This way, we get another parameter,
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bmnsτ(X) = min({sup(Y) |Y ∈ FCτ ,Y ⊂ X}∪{∞}).

The value ofbmnsτ is never smaller thanmnsτ as we shall shortly see. Thus,
there will be more sets that meet the conditionγ ∗bmnsτ (X)> mxsτ(X).

Proposition 4. The following properties hold.

• bmnsτ(X) = min({sup(Y) |Y ∈ FGτ ,Y ⊂ X}∪{∞}),
• mnsτ (X)≤ bmnsτ(X),
• if X ∈ FCτ ∩FGτ then mnsτ(X) = bmnsτ(X),

Proof.We omit the proof of the first two claims because they are straightforward.
So, let X be a frequent closed set that is also a minimal generator. IfX = /0,
then mnsτ(X) = bmnsτ(X) = ∞. Otherwise, letY ∈ FGτ be such thatY ⊂ X
and mnsτ(X) = sup(Y). Clearly,Y ∈ FCτ andY ⊆ X = X. SinceX ∈ FGτ and
Y ⊂ X, sup(Y) > sup(X) and hencesup(Y) > sup(X), and thereforeY ⊂ X. We
getsup(Y) ≥ bmnsτ(X) andmnsτ(X) ≥ bmnsτ(X). Combining it with the fact that
mnsτ(X)≤ bmnsτ(X) always holds, we conclude thatmnsτ(X) = bmnsτ(X). ⊓⊔

Unfortunately, the new parameter can still leave out some sets inRIτ,γ .

Lemma 1. RIτ,γ 6⊆ {X ∈ FCτ
∣

∣ sup(X)> γ ∗bmnsτ(X)≥ mxsτ(X)}.

Proof.Let U = {a,b,c} andD be the dataset containing the following 13 trans-
actions:t1 = · · · = t8 = abc, t9 = ab, t10 = t11 = t12 = a, t13 = b; assumeτ = 0.07
andγ = 0.7. One can check that, althoughab∈ RIτ,γ (sincea→ b ∈ RRτ,γ ), both
bmnsτ (ab) = 10/13 andmnsτ (ab) = 10/13; butγ ∗mnsτ(ab) = γ ∗ bmnsτ(ab) =
7/13< 8/13= mxsτ(ab). ⊓⊔

The next construction shows that by usingbmnsτ instead ofmnsτ we can even
leave out some sets inRIτ,γ that would not have been left out otherwise.

Lemma 2. RIτ,γ ∩ {X ∈ FCτ
∣

∣ sup(X) > γ ∗mnsτ(X) ≥ mxsτ(X)} 6⊆ {X ∈ FCτ
∣

∣

sup(X)> γ ∗bmnsτ(X)≥ mxsτ(X)}.

Proof.Let U = {a,b,c,d,e} andD be a dataset containing 35 transactions:t1 =
t2 = abcde, t3 = t4 = t5 = abcd, t6 · · · = t20 = a andt21 = · · · t35 = b. Pick τ = 0.05
and γ = 0.75. Note thatab → cd ∈ RRτ,γ , and thereforeabcd∈ RIτ,γ . Now,
mnsτ(abcd) = 5/35,bmnsτ(abcd) = 20/35,sup(abcd) = 5/35 andmxsτ(abcd) =
2/35. Althoughγ ∗mnsτ(abcd) = 3.5/35= 0.1 belongs to the interval[2/35,5/35),
γ ∗bmnsτ(abcd) = 15/35 does not. ⊓⊔

3.2 Minimal Generators of Bounded Support

In order to give a complete characterization for the setRIτ,γ , let us first introduce the
following notation: for a setX in FCτ , mxgsτ,γ (X) is the maximal support of those
minimal generators that are included inX and are not more frequent thansup(X)/γ:

mxgsτ,γ(X) = max({sup(Y)
∣

∣Y ∈ FGτ ,Y ⊂ X,γ ∗ sup(Y)≤ sup(X)}∪{0}).
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Note thatmxgsτ,γ (X) is either 0, or it is greater than or equal tosup(X). We prove
two propositions that explain how we can use this value in order to compute the set
RIτ,γ and how to find, givenX ∈RIτ,γ , a subsetX0 ⊂X such thatX0→X\X0∈RRτ,γ .

Proposition 5. The following equality holds.

RIτ,γ = {X ∈ FCτ
∣

∣ γ ∗mxgsτ,γ (X)> mxsτ(X)}.

Proof.Let X be an arbitrary set inRIτ,γ , and takeX0 in FGτ such thatX0 ⊂ X and
X0 → X\X0 ∈ RRτ,γ .

We have, on one hand,conf(X0 → X\X0) ≥ γ, and on the other hand, the rule
should not be in the cover set of any other rule with confidencegreater thanγ, i. e.
conf(X0 → Z\X0)< γ for all Z ∈ FCτ with Z ⊃ X.

That is,sup(X) ≥ γ ∗ sup(X0) > sup(Z) for all Z ∈ FCτ with Z ⊃ X. From the
first inequality, we deduce thatX0 meets all the conditions in order to be considered
for the computation ofmxgsτ,γ (X), and therefore,mxgsτ,γ (X)≥ sup(X0). From the
second, we getγ ∗sup(X0)>mxsτ (X). We conclude thatγ ∗mxgsτ,γ(X)> mxsτ(X).

Conversely, letX ∈ FCτ be such thatγ ∗mxgsτ,γ (X) > mxsτ(X). It is clear that
mxgsτ,γ(X) cannot be 0 (sincemxsτ(X)≥ 0), so

{Y ∈ FGτ
∣

∣Y ⊂ X,γ ∗ sup(Y)≤ sup(X)} 6= /0.

TakeX0 ∈ FGτ to be a set of maximal support that belongs to that set. There-
fore, we havemxgsτ,γ (X) = sup(X0). Sincesup(X0 → X\X0) = sup(X) ≥ τ and

conf(X0 → X\X0) =
sup(X)
sup(X0)

≥ γ we deduce thatX0 → X\X0 ∈ ARτ,γ . Note that for

any Z ⊃ X, conf(X0 → Z\X0) =
sup(Z)
sup(X0)

≤ mxsτ (X)
sup(X0)

= mxsτ (X)
mxgsτ,γ (X)

< γ. Moreover, for

anyX′
0 ⊂ X0, sup(X′

0)> sup(X0) (sinceX0 ∈ FGτ ) andγ ∗sup(X′
0)> sup(X) (due to

the choice we have made forX0). This is whyconf(X′
0 → X\X′

0) =
sup(X)
sup(X′

0)
< γ. We

conclude thatX0 → X\X0 ∈ RRτ,γ andX ∈ RIτ,γ . ⊓⊔
The previous proposition characterizes unequivocallyRIτ,γ . Simple arithmetic

suffices to check that Proposition 5 identifies exactly the closed sets from which
representative rules follow as per Example 2. However, we also need a practical
method for identifying the set of representative rules. To this end, we give necessary
and sufficient conditions for a subset of an itemset inRIτ,γ to be the left-hand side
of a representative rule (see Proposition 6).

Proposition 6. Let X ∈ RIτ,γ , c1 = mxsτ(X)/γ, c2 = sup(X)/γ and X0 ⊂ X. Then
X0 → X\X0 ∈ RRτ,γ if and only if c1 < sup(X0)≤ c2 < mnsτ(X0).

Proof.ConsiderX ∈ RIτ,γ andX0 ⊂ X. Clearly,X0 → X\X0 ∈ RRτ,γ if and only if
the ruleX0 → X\X0 is in ARτ,γ and does not belong to the cover set of any other rule

in ARτ,γ . That is equivalent to:sup(X) ≥ τ, sup(X)
sup(X0)

≥ γ, sup(X)
sup(X′

0)
< γ for all X′

0 ⊂ X

and sup(Z)
sup(X0)

< γ for all Z ⊃ X that satisfysup(Z)≥ τ.
Now, it is easy to see that:
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• sup(X)≥ τ always holds becauseX ∈ FCτ ,

•
sup(X)
sup(X0)

≥ γ ⇔ sup(X0)≤ c2,

• ∀X′
0 ⊂ X0 : sup(X)

sup(X′
0)
< γ ⇔ sup(X)

mnsτ (X0)
< γ ⇔ c2 < mnsτ(X0),

• ∀Z ⊃ X :
(

Z ∈ Fτ ⇒
sup(Z)
sup(X0)

< γ
)

⇔ mxsτ (X)
sup(X0)

< γ ⇔ c1 < sup(X0),

which concludes the proof.⊓⊔
The correctness of Algorithm 1 trivially follows from Propositions 5 and 6.

Algorithm 1 RR Generator
1: Input: support thresholdτ , confidence thresholdγ
2: Fτ = {X ⊆ U

∣

∣ sup(X) ≥ τ}
3: FCτ = {X ∈ Fτ

∣

∣ X = X}
4: FGτ = {X ∈ Fτ

∣

∣ ∀Y ⊂ X,sup(Y)> sup(X)}
5: for all X ∈ FGτ do
6: mnsτ(X) = min({sup(Y)

∣

∣Y ∈ FGτ ,Y ⊂ X}∪{∞})
7: end for
8: RIτ,γ = /0
9: for all X ∈ FCτ\{ /0} do

10: mxsτ (X) = max({sup(Z)
∣

∣ Z ∈ FCτ ,Z ⊃ X}∪{0})
11: mxgsτ,γ(X) = max({sup(Y)

∣

∣Y ∈ FGτ ,Y ⊂ X,γ ∗sup(Y)≤ sup(X)}∪{0})
12: if γ ∗mxgsτ,γ (X) > mxsτ (X) then
13: addX to RIτ,γ
14: end if
15: end for
16: for all X ∈ RIτ,γ do
17: c1 = mxsτ(X)/γ
18: c2 = sup(X)/γ
19: Ant ={X0 ∈ FGτ

∣

∣ X0 ⊂ X,c1 < sup(X0)≤ c2 < mnsτ(X0)}
20: for all X0 ∈ Ant do
21: outputX0 → X\X0
22: end for
23: end for

3.3 An Algorithm for Different Confidence Thresholds

The disadvantage of Algorithm 1, compared to the one in [Kryszkiewicz, 2001], is
that, for a givenX in FCτ , mxgsτ,γ (X) depends on the confidence threshold, and
hence it cannot be reused onceγ has changed, whereas bothmxsτ(X) andmnsτ(X)
can be computed only once for a given value ofτ and then used for different confi-
dence values. On the other hand, Algorithm 1 is guaranteed not to lose representative
rules, whereas the one in [Kryszkiewicz, 2001] risks givingincomplete output, as in
our counterexamples above.



10 Balcázar et al

Instead of computingmxgsτ,γ (X) for each and everyγ, one can find the individual
points of the interval(0,1] wheremxgsτ,γ (X) changes its value. Indeed, givenX in
FCτ\{ /0}, let {Y1, . . . ,Yn[X]} be the set{Y ∈ FGτ

∣

∣ Y ⊂ X} in descending order of
support. It is easy to see that

mxgsτ,γ(X) =











sup(Y1), if γ ≤ sup(X)
sup(Y1)

,

sup(Yi+1), if γ ∈
(

sup(X)
sup(Yi)

, sup(X)
sup(Yi+1)

]

, i ∈ {1, . . . ,n[X]−1},

0, otherwise.

Let us introduce the following notation: fori ∈ {1, . . . ,n[X]}, yi [X] = sup(Yi) and
pi [X] = sup(X)/sup(Yi). Moreover,p0[X] = 0. Now, each time a new value of the
confidence thresholdγ is given, one can decide whether a frequent closed setX is
in RIτ,γ by simply retrieving the interval(pi [X], pi+1[X]] with i ∈ {0, . . . ,n[X]−1}
to whichγ belongs (recall that in this casemxgsτ,γ (X) = yi+1[X]) and then checking
whether the inequalityγ ∗ yi+1[X] > mxsτ(X) holds. Note that if no suchi exists
(that is, wheneverγ has a value strictly greater thanpn[X][X]), mxgsτ,γ (X) takes the
value 0, which makesγ ∗mxgsτ,γ (X) smaller than or equal tomxsτ(X).

These ideas are implemented in Algorithms 2 and 3.

Algorithm 2 RR Generator - preprocessing phase
1: Input: support thresholdτ
2: Fτ = {X ⊆ U

∣

∣ sup(X) ≥ τ}
3: FCτ = {X ∈ Fτ

∣

∣ X = X}
4: FGτ = {X ∈ Fτ

∣

∣ ∀Y ⊂ X,sup(Y)> sup(X)}
5: for all X ∈ FGτ do
6: mnsτ(X) = min({sup(Y)

∣

∣Y ∈ FGτ ,Y ⊂ X}∪{∞})
7: end for
8: for all X ∈ FCτ\{ /0} do
9: mxsτ(X) = max({sup(Z)

∣

∣ Z ∈ FCτ ,Z ⊃ X}∪{0})
10: n[X] = |{Y ∈ FGτ

∣

∣Y ⊂ X}|
11: let{Y1, . . . ,Yn[X]} be the set{Y ∈ FGτ

∣

∣Y ⊂ X} in descending order of support
12: for all i ∈ {1, . . . ,n[X]} do
13: yi [X] = sup(Yi )
14: pi [X] = sup(X)/yi [X]
15: end for
16: p0[X] = 0
17: end for

4 Characterizing the Basis for Closure-Based Redundancy

The results of the previous sections can be extended to find a list of rules such that
any other rule inARτ,γ is redundant with respect to one rule in our list and the set
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Algorithm 3 RR Generator - second phase
1: Input: support thresholdτ , confidence thresholdγ
2: RIτ,γ = /0
3: for all X ∈ FCτ\{ /0} do
4: if ∃i ∈ {0, . . . ,n[X]−1} such thatγ ∈ (pi [X], pi+1[X]] then
5: if γ ∗yi+1[X] > mxsτ(X) then
6: addX to RIτ,γ
7: end if
8: end if
9: end for

10: for all X ∈ RIτ,γ do
11: c1 = mxsτ(X)/γ
12: c2 = sup(X)/γ
13: Ant ={X0 ∈ FGτ

∣

∣ X0 ⊂ X,c1 < sup(X0)≤ c2 < mnsτ(X0)}
14: for all X0 ∈ Ant do
15: outputX0 → X\X0
16: end for
17: end for

of full-confidence implications. This is exactly the idea behind a basis for closure-
based redundancy [Balcázar, 2010a].

Let B be a set of implications, i. e. rules that hold with confidence1. Partial
rule X′ →Y′ is closure-based redundant relative toB with respect toX →Y if any
datasetD in which all the rules inB hold with confidence 1 givesconf(X′ →Y′)≥
conf(X →Y).

Closure-based redundancy and standard redundancy coincide when the set of
implicationsB is empty. Knowing the setB is equivalent to knowing how the
closure operator works on each set. If the set of implications is empty, then any
subset is closed and all the closure-related argumentations trivialize; in particular,
in this case the set of representative rules forms a minimum-size basis.

In any case, we have the following characterization for closure-based redun-
dancy:

Theorem 1 ([Balćazar, 2010a]).LetB be a set of exact rules, with associated clo-
sure operator mapping each itemset Z to its closureZ. Let X′ → Y′ be a rule not
implied byB, that is, Y′ 6⊂ X′, then the following are equivalent:

1. X⊆ X′ and X′Y′ ⊆ XY,
2. The rule X′ →Y′ is closure-based redundant relative toB with respect to X→Y.

Note thatY′ 6⊂ X′ is equivalent to saying thatX′ →Y′ is not a full implication.
One can then analogously define the closure-based cover set of a rule X → Y by
C(X →Y) = {X′ →Y′

∣

∣ X ⊆ X′ andX′Y′ ⊆ XY}. Accordingly, we must refine the
notion of “different” rule since only the closures are relevant: A ruleX′ → Y′ is
closure-equivalent (again relative toB) to X →Y whenX′ = X andX′Y′ = XY.

The minimum-size basisB∗
τ,γ for closure-based redundancy contains all rules

in ARτ,γ of confidence strictly smaller than 1 that are not closure-based redun-
dant with respect to any rule inARτ,γ , unless they are closure-equivalent (see



12 Balcázar et al

[Balcázar, 2010a] for details). Again the main property ofthis basis is that every
rule inARτ,γ is closure-based redundant with a rule in the basis.

Proposition 7. If a rule is not in the basis, then it is closure-based redundant with
respect to a rule in the basis that is not closure-equivalentto it.

Proof.Indeed, ifX →Y\X is not in the basis, some ruleX′ →Y′\X′ exists above the
confidence and support thresholds for whichX′ ⊆X andY⊆Y′, and eitherX′ 6=X or
Y′ 6=Y; in turn, this rule is closure-based redundant with a rule inthe basis, possibly

itself, sayX′′ →Y′′\X′′, so thatX′′ ⊆ X′ ⊆ X = X andY ⊆ Y′ ⊆ Y′′ = Y′′; further,
then,X′′ = X impliesX′ = X, andY′′ =Y impliesY′ 6= Y. Therefore, ifX →Y\X
is not in the basis, then it is closure-based redundant withX′′ →Y′′\X′′, which is in
the basis and is not closure-equivalent to it.⊓⊔

It is easy to check that, in all rules in this basis, the left-hand sides are also closed
sets. We are interested in computing this basis fast. To do that, letRIτ,γ be the set
of all frequent closed itemsets from which at least one rule for this basis can be
obtained.

Proposition 8. The following equality holds.

RIτ,γ = {X ∈ FCτ | γ ∗mxgsτ,γ(X)> mxsτ,γ(X) and mxgsτ,γ (X)> sup(X)}.

Proof.Let X be an arbitrary set inRIτ,γ : there is a basis ruleX0 → X\X0 for these
confidence and support thresholds, whereX0 is a proper closed subsetX0 ⊂ X. Pick
a minimal generatorX1 of X0; as X0 is closed,sup(X1) = sup(X0) > sup(X); as
conf(X0 → X\X0)≥ γ, γ ∗sup(X1) = γ ∗sup(X0)≤ sup(X), henceX1 participates in
the computation ofmxgsτ,γ(X), so thatmxgsτ,γ (X)≥ sup(X1)> sup(X).

Besides, if there was a proper closed supersetZ of X such thatsup(Z) ≥ τ
andc(X0 → Z\X0) ≥ γ, then the ruleX0 → X\X0 would not be in the basis due
to redundancy withX0 → Z\X0. Therefore, the support of any frequent itemset
Z with X ⊂ Z is less thanγ ∗ sup(X0). That is,mxsτ,γ (X) < γ ∗ sup(X0). Hence,
γ ∗mxgsτ,γ (X)≥ γ ∗ sup(X1) = γ ∗ sup(X0)> mxsτ,γ(X).

Conversely, assume that

γ ∗mxgsτ,γ (X)> mxsτ,γ (X) andmxgsτ,γ(X)> sup(X)

holds for X ∈ FCτ . Indeed,sup(X) < mxgsτ,γ (X) implies that this last value is
not zero, and that there is at least one itemsetX1 ∈ FGτ such thatX1 ⊂ X and
γ ∗ sup(X1) ≤ sup(X). Among theseX1, we pick one with maximum support:
mxgsτ,γ(X) = sup(X1). Let X0 = X1, sosup(X0) = sup(X1) > sup(X) andX0 ⊂ X.
Thenconf(X0 → X\X0) = sup(X)/sup(X0) ≥ γ ∗ sup(X1)/sup(X0) = γ, which im-
pliesX0 → X\X0 ∈ ARτ,γ .

Suppose, for a contradiction, thatX0→X\X0 is not in the basis. By Proposition 7,
it must be closure-based redundant with respect to a ruleY → Z\Y that is in the
basis and is not closure-equivalent to it. Being in the basisimplies thatY, Z ∈ FCτ
(and keep in mind that bothX0 andX are closed as well). By Theorem 1, we have
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thatY ⊆ X0 andX ⊆ Z, where one of the two inclusions must be proper to ensure
closure-inequivalence. IfX ⊂ Z, we have that

conf(Y → Z\Y) =
sup(Z)
sup(Y)

≤
sup(Z)
sup(X0)

≤
mxsτ(X)

mxgsτ,γ (X)
< γ,

which is a contradiction withconf(Y → Z\Y)≥ γ asY → Z\Y ∈B∗
τ,γ ⊆ ARτ,γ . The

other possibility is thatZ = X andY ⊂ X0, butsup(Y)> sup(X0), becauseY ∈ FCτ ,
contradicting the maximality ofsup(X0). This finishes the proof.⊓⊔

Proposition 9. Let X ∈ RIτ,γ , c1 = mxsτ(X)/γ, and c2 = sup(X)/γ. Consider a
proper closed subset X0 ⊂ X. Then X0 → X\X0 ∈ B∗

γ if and only if c1 < sup(X0)≤
c2 < mnsτ(X0).

Proof.ConsiderX ∈RIτ,γ and a proper closed subsetX0 ⊂X. The ruleX0 →X\X0 is
in B∗

γ if and only if it meets the support and confidence threshold requirements with
respect toτ andγ, it is not a full implication, and is not closure-based redundant
with respect to another ruleY → Z\Y.

First of all sup(X)≥ τ, becauseX ∈ RIτ,γ so it remains to see that:

1. conf(X0 → X\X0)≥ γ,
2. conf(Y → Z\Y)< γ for anyY,Z∈ FCτ such thatY ⊆ X0 andX ⊆ Z, with at least

one of the two inclusions proper.

The first item is equivalent tosup(X0) ≤ c2; for the second item we will divide the
proof in two different steps: first, we are going to consider the case whereY ⊂ X0

andX ⊆ Z.

∀Y ⊂ X0, conf(Y → Z\Y)< γ ⇐⇒
sup(X)

sup(Y)
< γ ⇐⇒ c2 < mnsτ(X0).

In a similar way, we obtain that for allZ such thatX ⊂ Z andY = X0, conf(Y →
Z\Y)< γ is equivalent toc1 < sup(X0). This finishes the proof.⊓⊔

All the three algorithms defined so far can be modified to output the setB∗
τ,γ

of closure-based irredundant partial rules. These modifications are easy from the
results we have proven in this Section, so they are omitted.

5 Empirical Comparison

We have seen that one can find toy examples of datasets in whichthe output of the
algorithm in [Kryszkiewicz, 2001] is incomplete.

We have tested our algorithms on two real-world datasets: the training set part of
the UCI Adult US census dataset (see [Asuncion and Newman, 2007]) and a Retail
dataset (see [Brijs et al., 1999]).

We have implemented three different algorithms: one for theincomplete heuristic
given in [Kryszkiewicz, 2001], one that generates the complete set of representative
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rules as described by Algorithm 1, and the last algorithm outputs a complete basis
under the notion of closure-based redundancy. In order to get comparable results,
all algorithms allow rules with empty antecedent and use thesame definition of fre-
quent sets and association rules as given in our preliminaries. We emphasize that, in
general, the incomplete heuristic fails to produce a complete basis of representative
rules. The code is available at [Balcázar, 2010b].

The first dataset under study, which we refer by the name of Retail, is a market
basket data which consists of 88163 transactions over 16470attributes. In order to
preserve the anonymity of the clients, the data has been processed so that each item
is represented by a number and each line break separates different customers. For
the interested reader, the paper [Brijs et al., 1999] contains more information about
this dataset.

Table 2 shows the number of representative rules obtained for different support
and confidence thresholds (the seventh column), the cardinality of the output set
whenmnsτ is used (the fifth column) and the time elapsed in order to obtain them
(the sixth and forth columns, respectively). We can see thatalthough for higher sup-
port thresholds the output of the algorithms is, most of the times, identical (recall
that the output of the algorithm in [Kryszkiewicz, 2001] is always a subset of the
whole set of representative rules), lowering both thresholds shows bigger differ-
ences.

Table 2 Comparison betweenGenRRand Algorithm 1 on the Retail dataset

Data GenRR Algorithm 1
|FCτ | SupportConfidenceTime Rules Time Rules

0.9 0.015 248 0.013 248
7573 0.1% 0.8 0.013 643 0.013 652

0.7 0.028 1978 0.026 1990
0.9 0.036 670 0.022 670

19115 0.05% 0.8 0.073 2228 0.041 2229
0.7 0.123 6029 0.083 6039

Dataset Adult is a transactional version of the training setpart of the UCI census
dataset Adult US (see [Asuncion and Newman, 2007]); it consists of 32561 trans-
actions over 269 items. On the Adult dataset, we see the same trend in the behavior
of both algorithms. Note that in this case there are significant differences between
the output of the algorithm in [Kryszkiewicz, 2001] and the set of all representative
rules (Table 3). For example, for support and confidence thresholds of 0.05 and 0.7,
respectively, more than half of the rules are lost.

As an example, in the case the thresholds for support and confidence are 1% and
0.70, respectively, there are a total of 6867 representative rules, among which 3408
are lost when usingmnsor bmns(four of them listed in bold, the rest of the rules
are given as an example):
[c:0.75, s:1.03] Private White age: 41⇒ Male,
[c:0.82, s:2.21] Never-married Unmarried⇒ <=50K USA,
[c:0.70, s:1.47]<=50K Assoc-acdm White⇒ Private,
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Table 3 Comparison betweenGenRRand Algorithm 1 on the Adult dataset

Data GenRR Algorithm 1
|FCτ | SupportConfidenceTime Rules Time Rules

0.9 0.147 6578 0.176 7436
11920 1% 0.8 0.130 4827 0.148 7379

0.7 0.096 3459 0.141 6867
0.9 0.391152080.38017573

27444 0.5% 0.8 0.298115160.41718190
0.7 0.263 8241 0.38216779

[c:0.75, s:3.74] Own-child Private hours-per-week: 40⇒ <=50K Never-married USA,
[c:0.75, s:3.74] Never-married Own-child USA hours-per-week: 40⇒ <=50K Private,
[c:0.87, s:1.03 ] Male Private age: 41⇒ White
[c:0.75, s:1.03 ] Private White age: 41⇒ Male
[c:0.86, s:7.07 ] Exec-managerial Private⇒ USA White
[c:0.73, s:1.04 ] Craft-repair Divorced⇒ Male USA White
[c:0.75, s:1.68] Not-in-family hours-per-week: 50⇒ <=50K

As mentioned in the beginning of this section, we have run experiments in order
to see the performance of our algorithm that finds a basis under closed-based redun-
dancy conditions. The results are in Tables 4 and 5. Notice that in this case the times
are significantly lower.

Table 4 Algorithm for BasisB∗
τ,γ (Retail dataset)

SupportConfidenceTime Rules
0.9 0.006 233

0.1% 0.8 0.007 643
0.7 0.013 1984
0.9 0.029 549

0.05% 0.8 0.024 2139
0.7 0.044 6039

Table 5 Algorithm for BasisB∗
τ,γ (Adult dataset)

SupportConfidenceTime Rules
0.9 0.093 7103

1% 0.8 0.086 7205
0.7 0.082 6662
0.9 0.24316457

0.5% 0.8 0.25017531
0.7 0.23316085

We have run the experiments on an Intel Core i3-330M @ 2,13GHzmachine
with 4 GB of RAM running under Microsoft Windows 7 Professional (64 bits). The
running time of all algorithms were between 6 and 123 milliseconds in the case
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of the Retail dataset and between 82 and 417 milliseconds forthe Adult dataset.
Algorithm 1 correctly outputs all representative rules at the cost of being sometimes
slower than the possibly incomplete algorithm of Kryszkiewicz but, in our tests, the
difference was rather irrelevant since the time needed to print the results on screen
(a device slower than the CPU) still dominates the process.

It must be noted that the quantity of representative rules may decrease at lower
confidence or support thresholds. This phenomenon has been observed and ex-
plained before (see [Balcázar, 2010a]) and is caused by powerful rules of a given
confidence, say 0.8, that are filtered out at higher thresholds, leaving therefore many
other rules as representative, but that force all of these out of the representative rules
set as they become redundant when the confidence threshold gets below 0.8 and lets
the powerful rule in.

6 Conclusions

We have proposed an alternative (complete) solution for thegeneration of the set
of all representative rules defined in [Kryszkiewicz, 1998b] (see Algorithm 1); we
have also shown that the original algorithm was incomplete.Our approach, which
seems to requiere more operations than the one in [Kryszkiewicz, 2001], has the
advantage of being guaranteed to output the whole set of representative rules.

On the other hand, one of its main drawbacks is that we cannot reuse the pre-
computed values of the parameters once the user changes the confidence threshold.
Our proposal for fixing this problem involves dividing the process into two phases
(see Algorithm 2 and Algorithm 3). As a conclusion, depending on whether one is
interested in getting complete results or getting them faster, it is more convenient to
use Algorithm 1 or the algorithm in [Kryszkiewicz, 2001].

We have also extended our approach to the similar but different basis correspond-
ing to closure-based redundancy. Tests were performed in other to confirm that the
algorithm is significantly faster than the previous two.
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Balcázar, 2010a. Balcázar, J. L. (2010a). Redundancy, deduction schemes, and minimum-size
bases for association rules.Logical Methods in Computer Science, 6(2:3):1–33.
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