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Abstract

Relativistic four-tensor equation dJ*” = M*"”dt is developed to analyse linear
translation with rotation processes. The postulated cause-effect four-tensor equation,
a relativistic generalisation for classical angular-impulse—angular-momentum variation
equation dJ = Md¢, includes the Poinsot-Euler rotation (angular-impulse—angular-
momentum variation) equation, Newton’s second law (linear-impulse-linear-momentum
variation equation), and thermodynamics first law (work—energy equation). This four-
tensor formalism is applied to describe three linear translation with rotation processes:
a ring rolling on the floor by a horizontal force linear impulse and torque, fulfilling
the rolling condition (mechanical energy conservation), a spinning ring placed on the
ground until achieved the rolling condition (mechanical energy dissipation by friction),
and a fireworks wheel ascending an incline (mechanical energy production by decreasing
a thermodynamic potential).

1 Introduction

Scientific theories, e.g., Newton’s second law, are always subject to revision. They are useful
in guiding scientific research until an experiment proves them wrong and new knowledge
is gained. Although provisional and premature when first proposed, scientific theories are
necessary and must be stated at some point. The scientific approach benefits from the results
obtained through these theories [1], and equations developed by earlier physicists should be
updated as new knowledge is acquired [2]. In this sense, and according to J A Wheeler, the
ultimate goal of physicists would be to express the laws of physics in the language of space
and time [3].

In this work, we apply the advances of Einstein’s special theory of relativity [4] compared
to classical physics to develop a four-tensor momenta equation to analyze rolling — linear
translation with rotation (T&R) — processes [5]. With this four-tensor momenta equation
formalism we will discuss rolling processes in mechanical energy conservation, mechanical
energy dissipation by friction and mechanical energy production by a chemical reaction [6].

Linear translation. Four-vector fundamental equation. A relativistic description
of a linear translation process for a rigid enough body, e.g., a block descending an incline,
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can be carried out by four-vector fundamental equation [7]
dE" = §W* + 5Q* (1)

a relativistic generalisation of classical first law of thermodynamics dU = 0W + 6Q [8,
pp. lfour-5] (U for internal energy, W = —PdV for work, being work done on the system
when dV < 0, and @ for heat). Matrix Eq. (1) includes relativistic Newton’s second law
and energy equations [9], generalising classical Newton second law (vectors are noted in
bold) dp = Fdt — and then its complementary dynamical relationship dK.;, = F - dxen (cm
stands for centre-of-mass) [10] — and the energy equation, i.e., generalising thermodynamics
first law equation dE = 6W + 6Q, with total energy E differential dE = dK¢y, + dU [11];
K. refers to the centre of mass kinetic energy defined as K., = %M vZ, and dU refers
to thermal internal energy variation, usually dU = McydT with ¢y the specific heat at
constan volume and 7T absolute temperature.

Rotation. Poinsot-Euler rotation equation. A pure planar rotation process — i.e.,
no cm linear translation — relativistic description for a system with axial symmetry, e.g., a
ring with moment of inertia I, can be carried out by using a relativistic angular-impulse—
angular-momentum variation equation [vectors noted with Greek letters, (angle) 6, (angular
velocity) w, (torque) T, for example, shall not be written in bold|

Id[x(w)w] = Tdt, (2)
with relativistic rotational kinetic energy variation equation [12]
MdA[¢(w)e?] =Td6,

being x(w) — moment of inertia — and {(w) — inertia — rotating body characteristic functions
(see below). Equation (2) generalises the classical angular-impulse-angular-momentum vari-
ation equation, Poinsot-Euler rotation equation Idw = I'dt — and then its complementary
dynamical relationship dK,y = I'df, where K,y is classical rotational kinetic energy [13] —.

Rolling processes. Processes of interest and with no straightforward description [14]
are those in translation with rotation (T&R in what follows), i.e., rolling processes [15] —
(Fig. 1). When a T&R process evolves by mechanical energy dissipation, e.g., by friction or
with mechanical energy production, e.g., by a chemical reaction, decreasing its Gibbs free
enthalpy function, these thermal effects require the laws of thermodynamics to be involved
in their complete description.

For such a rolling process, relativistic requirements demand a covariant description in
terms of a four-tensor equation [16],

dJm = Mt

simultaneously incorporating Newton’s second law for linear translation, the Poinsot-Euler’s
rotation equation and the first law of thermodynamics. Einstein’s inertia of energy principle
[9], will be the foundations for achieving such a four-tensor equation together with the two
four-vector cross-product generalisation as a four-tensor [12].

A rolling ring process is sketched in Fig. 1. In this paper, we will use rings (2D) as rolling
bodies; the underlying physics is essentially the same as for a disk, cylinder or sphere; the
ring characteristic functions (see below) are mathematically simpler than those for disks,
cylinders or spheres [17].



Figure 1: Frame S (z,y, z,t) (at rest relative to the ground). The ring consists of n, elements
(small solid disks). Force F' is applied to the end of a rope unwinding from a radius r circle.
Force Fp, exerted by the ground on the ring edge, is required by the rolling condition

v = Rw. Point O is located at ring’s centre. Point O is located at ring-ground contact
point. The trajectory of a point located at ring’s edge is a cycloid.

For mathematical simplicity, in this work only processes in planar rotation will be con-
sidered.

Planar rotation. Reference frame (frame in what follows) axes are right-hand oriented,
with versors satisfying i x j = k (Fig. 1). The forces are applied in the (xy) plane, the ring
elements rolling with linear velocities in plane (xy); ring angular momentum and angular
velocity point to z axis; angular momentum z axis direction does not vary during a process.

The ring, composed by solid elements (small disks) joined by elastic springs (see below),
rolls due to application of force F = (F,0,0) to the end of a rope previously wrapped around
a radius r circumference, centred around the axis perpendicular to the ring passing through
point O. Force Fp = (—Fp,0,0), exerted by the ground on ring edge, is required to fulfil
the rolling condition.

In classical physics, three basic equations are used to solve a T&R exercise: Newton’s
second law (NSL), the Poinsot-Euler rotation (PER) equation and the first law of thermody-
namics (FLT). In general, for a given process, these equations are not mutually independent.
Thus, when point O, about which momenta are usually taken, is changed to point O (see
Fig. 1), the PER equation for point O (I = Ir + M R? parallel-axis theorem), given by:

Igdw = F(r + R)dt,

is linear combination of NSL and the PER equations for point O, i.e.,

(In + MR*)dw = F(r+ R)dt — (3)
Igdw = (F’I“ + FDR)dt + (4)
R[Mdve, = (F— Fp)dt], (5)

[where — means that Eq. (3) is sum (+), i.e., linear combination of Eqgs. (4) and (5), and
square brackets in Eq. (5) means that R affects the whole equation, i.e., it multiplies both
sides of the equation; this criteria for rightarrow (—), plus sign (4) and angular brackets
([) will be used in what follows], with wR = v¢p, where vey, is ring centre-of-mass linear
speed. Also, when frame S, with the ground at rest, is changed by frame S, in the standard
configuration with velocity V = (V,0,0) to S, the FLT equation in frame S, given by

1 1 1
5Mag - 5MV2 + §1ng = F(Zo +rbo) + FpVto,



(this is a mechanical energy conservation equation due thermal effects absence, for con-
stant F' and Fp forces) —with conveyor belt effect work term Wp = FpVig [18]- is linear
combination of NSL and the FLT equations in frame S [9], i.e.,

1 1 1
5M(v0 —V)? - 5MV2 +5 rwg = F[(xo— Vitg) +rb] + FpVity —
—V[M’U() = (F — FD)ﬁo] +
1 1
§MU§ + §Ing = F(xo+7b),

with woR = vp, by using Galilean transformations for space (Zg) and speed (7).

But solving problems in physics is not just a matter of applying formulas. Generally, it
is necessary to ensure the problem is well-posed beforehand. Because nature applies forces
locally on each body component element, the macroscopic description of a process carried
out by an extended, composite body can only be solved when the problem is well posed,
i.e., when the many-body problem is reduced to a one-body problem [19].

In addition, the use of a covariant formalism when writing equations is unavoidable for
any process, ensuring the equivalence in any inertial frame, regardless of how the process is
described. Equivalent here means that every equation in frame S is a linear combination of
equations in frame S and vice-versa [20, p. 1], and that these transformations are carried
out directly (i.e., by a mathematical algorithm, not by hand). In classical physics, equations
are not guaranteed to be covariant, i.e., there is no direct procedure for transforming the
equations describing a process from inertial frame S to frame S (such transformations must be
done by hand). The four-vector fundamental equation (1) contains NSL and FLT equations
and transforms from frame to frame by the Lorentz transformation (see below).

Physics equations relativistic requirements. Classical physics assumes the exis-
tence of non-deformable, rigid bodies, with compressibility coefficient kg = 0. The rigid-
body concept is helpful in theoretical physics: the body does not deform, there are no
internal energy variations, and forces exerted on it are distributed among every body ele-
ment in such a way they all acquire the same linear speed v = vey (and dvey ), coincident
with body centre-of-mass speed, and the same angular velocity w (and dw).

In contrast with these classical assumptions, some of then usually not explicit, the rel-
ativistic solution for T&R exercises — i.e., rolling process relativistic description — for an
extended, composite body, a ring in our case, requires some essential issues to consider.

(i) No rigid-body assumption. There is no rigid-body [21]. In a solid with near-zero
compressibility coefficient kg ~ 0, sound speed vs could be larger than light speed ¢, vy > ¢
[22]. Then, in relativity, the ring is described as a chain of solid elements, in our case, disks
(2D), joined by elastic, able to deform, massless springs [23]. With the ring in its minimum
elastic potential energy configuration, a spring (which can be a quantum oscillator in its
fundamental state) does not change its elastic energy during a rigid rolling process (see
below).

(ii) Inertia of energy principle. Every kind of internal energy contributes to ring internal
energy Ey, and to its inertia, given by M = ¢~2Ej [9], a quantity that will be involved in both
ring linear and angular momenta. This postulate, necessary to build coherent relativistic
theories, constitutes the relativistic bridge between classical mechanics and thermodynamics.
For a rolling ring, rotational kinetic energy K,; is internal energy and angular velocity
variation dw will contribute to its linear momentum variation dp. This circumstance must
be considered when obtaining a rolling ring linear-momentum—energy four-vector E*(v,w),
with linear speed v while spinning with angular speed w. This crossover effect between



translation and rotation is a non classical physics effect, i. e., characteristic of relativity (see
below).

(iii) Locality. Relativity is a local theory: a force cannot be described as performing
mechanical effects on elements other than those to which it is applied; a force must be located
on the particular element where equations want to be obtained in which that force comes
into play. When this description is not available — e.g., a half-filled glycerine cylindrical body
can roll down an incline [19] or a satellite, subjected to intense tidal forces, orbiting a planet
[24, pp. 121-7]-, the problem is ill-posed, and functional equations cannot be obtained.

(iv) Rigid rolling. For a process to be considered well-posed, it must be admitted that
external, classically identified forces (i.e., macroscopic forces) must be distributed among
the ring elements so that their relative distances are not modified, preventing elastic energy
from being stored into ring springs; i.e., the ring moves as a whole in rigid translation [25]
and rotates around its centre in rigid rotation [12]. This behaviour will be achieved, without
considering completely stiff springs, when identical equations can be written for each ring
element, all of them varying its linear and angular velocities (dv and dw) by the same
amount. Any process with this behaviour is well-posed.

(v) Functional equations. A fundamental difficulty in this relativistic context is reducing
a many-body problem to a one-body problem. Thus, it must be possible to obtain a func-
tional equation — whose predictions can be tested in an experiment (real or simulated [26])
—, with a single linear translation speed v and a single angular speed w, as the sum over ring
elements equations. Therefore, for well-posed processes, ring elements (and springs) must
be identical.

Finally, to comply with the relativistic requirements mentioned above and to preserve
the relations between the NSL, PER and FLT equations, it seems necessary to formulate a
single equation, which should be formulated in terms of four-tensor momenta, simultaneously
incorporating these three equations.

This article is organised as follows. In Sec. 2 the linear-momentum—energy four-vector
for a rolling ring is obtained by addition of linear-momentum-energy four-vectors associated
to all component elements of the ring. In Sec. 3 relativistic locality is implemented for
the classically identified forces distributed on ring elements, obtaining linear-impulse—work
four-vectors associated to forces. In Sec. 4 the four-tensor momenta is defined for two
four-vectors, and angular-impulse and torque four-tensors are obtained for a ring element
and for the whole ring. In Sec. 5 the four-tensor momenta equation for T&R processes
with mechanical energy conservation is presented. In Sec. 6 the formalism is applied to a
process evolving with mechanical energy conservation. In Sec. 7, the four-tensor momenta for
thermal photons is obtained. In Sec. 8, a general four-tensor momenta equation, including
thermal effects, is presented. In Sec. 9, a process with mechanical energy dissipation by
friction is analysed. In Sec. 10 a process with mechanical energy production by chemical
reactions is discussed. In Sec. 11 some conclusions on the theoretical and practical interest
of this four-tensor formalism are presented.

2 Rolling ring linear-momentum—energy four-vector

The inertia of energy principle, with ring rotational kinetic energy contributing to its inertia,
mixes linear translation and rotation descriptions. Therefore, several steps must be taken
to obtain linear-momentum—energy four-vector E*(v,w) for a rolling ring as the sum over



element (c) linear-momentum-energy four-vectors E¥(v,w).

Non-rotating ring internal energy and inertia. The ring is considered to consist
of n; solid elements joined by elastic (rigid enough) springs. For ring element (s), chemical
composition £ (e.g., n moles of solid Fe), its rest energy Ep|s and inertia M are [27]:

Egs(&) = Symyc® — |Us(é)| + neeT =~ Symie® — |Us(€)]
Mg = C_2E0\sa

with m; the mass of the component elementary particles (protons, neutrons, electrons);
binding energy Uy(¢) = Un + Ua 4+ Uyt < 0, which includes nuclear (N), atomic (A) and
molecular (M) binding energies [28], with temperature T' ~ 0 K. A ring element (c) does not
vary its temperature for the processes to be considered. Ring elements have the same Mj
inertia — homogeneous ring — Plain inertia M is defined as M = 221" My = n, M [29].

Element and ring. Linear momentum and energy. When ring element (c¢) moves,
in a frame S, for example, with linear velocity v, its linear momentum is p. = 7y, MsVve,
where v, = (1 — v?/c?)~1/2 (Lorentz factor), and its (total) energy is E. = 7, Mc?, with
kinetic energy given by K. = E. — Ec(§) = (v, — 1) M2

Ring centre frame S. Let frame S move instantaneously with ring centre [Fig. 2(a)].
All distances between elements remain unchanged. Springs do not store elastic energy.
At instant to every element rotates with angular velocity w(¢g) and linear speed v = wR.
Rotating element (c) inertia is then M.(w) = y(wR) M, with y(wR) = [1 — (wR)?/c?]~1/2
(Lorentz factor) [to avoid confusion with ~,].

Figure 2: Ring centre (instantaneous) frame S(:%, 9, 2,1). (a) Each element of the ring spins
with angular speed w around its centre. The linear velocity of element (c) is V. = fc X w.

Ny

Ring net linear momentum is p = Xo_*pc = 0. (b) Distribution of velocities and forces.

An observer (a set of devices located at the nodes of the three-dimensional lattice forming
the frame, each located by its coordinates, and equipped, in particular, with synchronised
clocks) in S describes a rotating ring with angular speed w = w(ty). In S, ring element (c),
vector-localised . = (R cos 0., Rsin 0., 0), has linear velocity v, = (wRsinf., —wR cos 6, 0),
and angular momentum J. = M(TexVe) = —’y(wR)MSRQwﬁ. By adding over all elements,
ring angular momentum is J = $.J. = —y(wR)MR2wk.



_ Due to relativistic locality requirement, observer S admits that the same force modulus
f=1f], eg, f = (fsinb.,—fcosb.,0) for element (c), is applied on each ring element to
justify the measured angular acceleration [Fig. 2(b)].

Ring linear-momentum—energy four-vector in frame S. In frame S, element (c),

located by space-time four-vector [for typographical reasons, a contra-variant four-vector
can be written as a row four-vector, keeping a Greek letter as index] ## = (., ct), with

df = —wdt, the velocity four-vector 9# is given by:
Rcos 6, Y(wR)wR sin 6,
o= Rsin 6. oM = drg _ —y(wR)wR cos b,
¢ 0 v e dr 0 )
ct Y(WwR)c

with element (c) proper time d7 = 4~ (wR)dt. For symmetry, and to simplify calculations, it
is assumed that there is another element (¢), opposite to (¢) by ring centre (Fig. 2), localised
by vector tz = (—Rcosf.,—Rsinf,0), with linear velocity vz = (—wRsinf.,wR cos b, 0).
In frame S, the linear-momentum-energy four-vectors for elements (c¢) are given by:

Y (wR)MswR sin 0, —cy(wR)MgwRsin 0,
Frut —cy(wR)MgwR cos b, o cY(wR)MgwR cos 6,
c — 0 ’ E& = 0 . (6)
Y(wR)Msc? Y(wR)Msc?

For element (c), localised by . = (Rcosf., Rsinf,,0),
= (y(wR)Mssin 6. Rw, —y(wR) M; cos 6. Rw, 0) ,

= F¢ X Pe = —y(WR)MR*wk.
e = Y(WR)M.

> ey T
)

(e}

For element (), localised by fz = —f,
p: = (—y(wR)Mgsinb.Rw,vy(wR)M;cosf.Rw,0),
Jo = fexpe=Je

B = Y(WwR)Myc? = E..

Rotating ring characteristics functions. The inertia M(w) and moment of inertia
I(w) of rotating bodies are greater than those of non-rotating bodies (inertia of energy
principle).

A body at rest as a whole (zero linear and angular velocity) has inertia M = ¢=2E(0),
where E(0) is its internal energy. Inertia M(w) and moment of inertia Ip(w) functions
for axial symmetry bodies composed by n, elements, rotating with angular velocity w, are
respectively given by [30]:

Mw) = EZT Mgy, = MB(w) = 0_2E(w), (7)
IB(W) = EzjersTg%c = IBXB(w)7 (8>

with rest moment of inertia Ig, and plain inertia M = n, My, being yg(w) and (g(w) body
characteristic functions [17].



For a ring, with non-rotating moment of inertia Ir = MR?, its characteristic functions
are

Xe(w) =7 (wR), (r(w) = v(wR).
Ring linear-momentum-energy four-vector E* in frame $ is obtained as a sum over
element pairs (c¢):

EMw) = See( B + EY) = (0,0,0,y(wR)Mc?) . (9)

Four-vector E’“(w) describes a homogeneous ring, its centre at rest, p = 0, with internal
energy I} = M(w)c?, with M(w) = M(gr(w): rotational kinetic energy contributes to ring
internal energy and inertia. For the ring in S [31] :

P = Ye(Pe+pPz)=0,
J = 2e(c+Js) = —v(wR)MR2wk.
Bw) = ~(wRM,
Ky = [y(wR)—1Mc2.

Rotational kinetic energy K, is ring internal energy. By the inertia of energy principle,
this energy contributes to its inertia. Therefore, for a rolling ring, K,y contributes to its
linear momentum.

The Lorentz transformation. The four-tensor £#(V') for the Lorentz transformation
between frames in the standard configuration with velocity V = (V,0,0) is:

0% 0 0 —fBvyw
0 1 0 0
0 0 1 0

—Bvyv 0 0 YW

LE(V) =

being By = V/e, yv = [1 - 53] 772,
The transformation of a four-vector A* from frame S to frame S — floor at rest —, moving
with velocity V = (—v, 0, 0) relative to S, is given by [32]: A* = L¥(—v)AH.

Ring linear-momentum-—energy four-vector in frame S. In frame S, rest floor
frame, moving with (instantaneous) velocity V = (—wv,0, 0) relative to S (Fig. 3), the linear-
momentum-energy four-vectors E¥ and EY for elements (c¢) are given by:

Yoy (WR)Ms[v + wRsin 0|

BYw,0) = Ch(-v)By e | TVCRMRResA] (1)

Yoy (WR) Mgc?

oY (WR)Ms(v — wRsin6,)

BP(w,v) = E,’f(—v)Eé’ ~ cv(wR)MB[chos 0] . (12)

Yoy (WR) Mqc?

Order ¢=2 terms (cross relativistic translation-rotation effect by the inertia of inertia princi-
ple) have been neglected in Eqs. (11)-(12) (i.e., by assuming (1—v2/c¢?)71[1—(wR)?/c?] 7! ~
11— (v+wR)?/c]™Y).
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Figure 3: (a) Rolling ring in frame S(z, y, z,t) with floor at rest. (b) Velocity distribution on
elements by velocities composition. The contact ring-floor contact point O has zero speed.
At time ¢ = 0 origin of frames S and S are coincident.

For element (c), with r, = .,

pc = (Y(WwWR)M;s(v+sinb.Rw), —y(wR)M; cos . Rw,0),
Jo = rex Pc
Fe(w,v) = yy(WwR)M.

For element (€), with rz = —rg,
p: = (y(wR)M;lv —sinf.Rw], y(wR)Mjcosf.Rw,0),
Je = rsxpe,
Er(w,v) = 7y (wR)Mc?.

The ring linear-momentum—energy four-vector E* in frame S, in which the ring is in
T&R, is obtained by adding over pairs (cc):

ey Y(WR) Mo
Efw,v) = Se(Eb+ EY) = X ,
Yoy (WR)Mc?
Ef(w,v) = Li(—0)E"(w), (13)

or by apply on Ev (w) the Lorentz transformation: the formalism has coherence in the rigid
rolling (T&R) consideration. By the inertia of energy principle, there are translation-rotation
cross-effects that do not appear in classical physics.

Four-vector E*(w,v) describes [33]:
(i) a rotating ring with inertia (in rotation) M(w) = v(wR)M moving its centre with
linear velocity v = (v, 0, 0), linear momentum p, total energy F, and kinetic energy K, given



P = X&(Pe+pz) = (Vy(WR)Mu,0,0),

E = yyWwRME =y Mw)c?,
M,w) = Yy (WwRM,

K = [ny(@wR) - 1M,

(ii) or a moving ring with inertia M(v) = ~, M spinning with angular velocity w around
its centre, with angular momentum J :

J = Yie(Je+32) = —vy(wWR)MR?wk. (14)

Low speed limit. In the low-speed limit v/¢ — 0, or wR/c — 0

li =1, 1 -1 = = 1
i e =1, Lim (v = 1e 3V (15)
1
li R)=1, I R) —1]¢* = Z=R%W?, 16
oL V@R =1, lim | [ (wR) — e pftw (16)

one has [M(w) = M(v) ~ M|, Ir = MR?,

lim (7, — YM(w)e? + [y(wR) — 1]JM(v)c? = %MUQ + 1IRwQ,

v—0,w—0 2

for a rolling ring total kinetic energy.
Ring centre-of-inertia velocity. For a homogeneous ring with n, elements (c), with
linear velocity v, its centre-of-inertia velocity v.; is defined as [34]:

E(éjfr Yve Msvc _ p
S Yo M c2F

Vei (17)
Then, v. = v¢i + re X w, and with v, & v,_,7(wR), ring linear momentum and energy are
given by [35]:

p = ’Y’UCiM(w)’UCi bl
E = y Mw).

Then, M?(w)c* = E%2 — 2(p - p) [36].

Speed v entering into the ring-as-a-whole linear translation equations (see below) is the
ring centre-of-inertia speed, v = w¢;; then dz; = wveidt. In operational equations, system
centre-of-inertia x; is its geometric centre.

3 Force distribution on ring elements

Each force must be identified as being applied on a ring element due to relativistic locality
requirement; i.e., any force must be located on the ring element on which it is applied,
avoiding instantaneous action at distance descriptions; the effects — on linear momentum,
angular momentum, and energy variations — of any force applied at a given point, are not
allowed to be noticed, or exerted, at different points [37].
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For force fyjc = (falkic, fylises 0), applied on element (c), the following elements must be
determined:

(i) time interval [to,to + dt], during which the force is applied,

(ii) element (c) on which the force is exerted, located by vector r. = (z¢,yc,0), and
four-vector r#,

(iii) force application point velocity Uyje = (Uz|i;c, Uy|k;e, 0) (this velocity may be different
from that of the element onto which it is applied).

Then, the following quantities can be determined:

(i) Linear impulse, 0y, = fi|.dt — every force exerts linear impulse (time always runs)

(ii) Angular impulse, dMy. = (r¢ x fic)dt — some forces do not exert angular impulse-.

(lll) Work perforrned, 6Wk\c = (fk|c . uk|C)dt, 6Wk\c = fk\c . dX|Ck, with ka|C = uk‘cdt -
some forces do not perform work—.

The macroscopic forces that can be identified as being applied on the ring (e.g., classically,
e.g., F and Fp in Fig. 1), must be distributed among the homogeneous ring elements (Fig. 4),
and must have the following characteristics: (i) on each element, the same set of distributed
forces must be applied, (ii) the resultant of the distributed forces must be the resultant of
macroscopic forces; every force exerts linear impulse; (iii) the resultant of the distributed
torques must be the resultant torque of macroscopic forces; some forces do not exert torque;
(iv) the resultant work performed by distributed forces must be the work performed by the
classical macroscopic forces; some forces do not perform work. Forces are simultaneously
applied in frame S during time interval [to, o + dt].

Force linear-impulse-work four-vector. For force fic = (fzi;c, fykie, 0), whose ap-
plication point displaces with velocity uy. = (ka|c,uyk\c,0), one has, respectively, the
Minkowski’s force-power and linear-impulse—work four-vectors:

’vax|k;c Cfx|k;cdt
vJylk;c _ CJ, .Cdt
flilic = ,y f(‘)j‘k’ s 6W15|C = Cflilichk‘C = f‘/‘s’ R
6_17v(fk|c : uk\c) (fk\c : uk\c)dt

with force application point differential proper time, d7. = %jkllcdt, being dt the time
interval measured by the ensemble of clocks synchronized in frame S.

Forces distribution on ring elements. It must be possible to hypothesise how
(classical, macroscopic) forces are distributed and exerted on the ring elements to achieve
rigid rolling conditions and to pose equations for each ring element. This demand means one
must propose a model about forces applied to each element according to previous require-
ments. In addition to physical intuition, the observed distribution of velocities by elements
should greatly help in this matter.

We are going to use forces F = (F,0,0) and Fp = (—Fp,0,0) in Fig. 1 to explain in
detail how the distribution of forces by elements is carried out. Forces G+ N = 0 will not be
considered. Macroscopic and distributed forces are given in Fig. 4(a) and (b) respectively.

1. Force F is assumed exerts linear impulse 01 = Fdt, produces angular impulse 6M =
(r x F)dt, with lever arm r = (r,0,0), and performs work §Wg = (F - up)d¢, where up is
the force application point velocity, up = v +r X w, with v; the velocity of ring geometric
centre and w the angular velocity [38]. Force F will enter into Newton’s second law equation
for linear translation (v;), the Poinsot-Euler equation for rotation (w), and the first law of
thermodynamics equation.
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Figure 4: (a) Macroscopic forces. (b) Each force is distributed among ring elements so that
net resultant force, net torque and work, are identical to those corresponding to macroscopic
forces F and Fp. As G + N = 0, gravitational and normal forces are not considered.

Force F will give rise to two forces, f on translation, the same for any element, and f;.,
on rotation, different for different elements (c); force f, contributes to linear translation, and
force f,|c, contributes to rotation; both forces perform work, contributing to generic element
(c) total kinetic energy variation.

1A. Linear-impulse-work four-vector W/ for force f = (n;*F,0,0), modulus |f ’ =f=
nylF, is:

cf
cfdt : 0

Wl = < SW, > s OWE =Whdt = o |4t (18)
fo

with 6W} = Wt“ dt, since its application point moves with ring centre. Each ring element
has the same four-vector dW/".

1B. Forces f;c = (|f;|c|sin O, —|f;|c| cos Oc, 0) and £z = (—|f;c|sin b, [f;|c| cos Oc, 0), with
modulus |f,c] = fyc = n;'F(r/R), applied on elements (c) and (), have an associated
linear-impulse—work four-vectors §Wr’|‘c = (cfydt, 6W, ) and (SWr’l‘6 = (cfyedt, oW, e),

fr\c sin cht *fr\c sin GC
SWH — — fr|e cos O.dt W = Tt dt — Jr|c cos O gt
rfc 0 r|c r|e
fr|CRwdt fr|cRW

With force lever arm r. = (R cos 6., Rsinf,0) for element (c), one has:

¥-f = F,
Yo (re x fy0) = Frk.
Yo (fo+ frcRw)dt = F(v+rw)dt.

Net linear impulse, net angular impulse, and work performed by these distributed forces
are the same as those of the original force F, as demanded. By distributing the global,
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macroscopic forces among ring elements in this way allows to write equations for any element,
fulfilling relativistic locality.

2. Force Fp exerts linear impulse 6Ip = Fpdt, exerts angular impulse éMp = (Rp X
Fp)dt, with lever arm vector Rp = (—R,0,0) to point O, and does not perform work, i.e.,
Fp - vp = 0, since its application point is always instantly at rest; ring rim speed at point
O is vp = Vem — wR = 0. This force enters in NSL and PER equations, but not in the FLT
equation.

Force Fp, is distributed into two forces applied to each of ring elements (Fig. 4):

2A. Force fp|y = (—fpjt, 0,0), modulus |fp) | = fp = n; ! Fp, contributes to ring element
linear translation. This force does not perform work. Then, fp = (—n; 1 Fp,0,0), with

four-vector 6WE "

CfD de

SWE, = ( 0 ) ; OWh = W dt = dt, (19)

The same linear-impulse-work four-vector (WVS It is found for each ring element.
2B. Force fp|y;c = (fpsinf., —fp cosb,0), with modulus |fp..c| = fo = n-tFp, does
not perform work, contributing to the rotation of element (c) around ring centre:

fpsinf.dt — fpsin 6,
x| —focosf.dt - _ fp cos b,
W e = 0 s Whppedt = 0 dt.
0 0

For this distributed forces one has:

b = Fp,
Zgi?r(rchD\r;c) = FIpRk.

By the linear-impulse-work four-vectors for forces distributed by ring elements one ob-
tains ring elements (c) and (¢) linear-impulse-work four-vectors:

SWE = Wldt = (W{'+ W) +Wh, +Wh )dt =

rlc

C(f + fr\c sin 0 — fD + fD\r sin GC)
_c(fr\c COos ec + fD|r COS 9C)

= 0 dt, (20)

(f’U + fr\ch)

SWE = WAt = (W 4+ W

r|c

+ WSM + Wg|r;6)dt =

C(f - fr\c sin ec - fD - fD\r Sin@c)
_ c( frc cos bc 3— foprcosb.) Q. (1)

(fv + fr\ch)

Observing these relationships, by (§W£+§WE) it is easy to check which forces will contribute
to ring linear translation. Then, for the whole ring, its linear-impulse—work four-vector is

SWH = Sz (OWHF + W) = < %E];EB; ) dt.
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4 Two four-vectors four-tensor momenta definition

Four-tensor formulations have played an essential role in theoretical physics. Shortly after
Einstein published their papers on the special theory of relativity, Minkowski developed a
four-tensor formalism for electro-magnetism [39, Ch. 13]; Einstein developed the general
theory of relativity [40, Ch. 6] formalism in terms of four-tensors.

For linear translation processes, which in classical physics are described by a vector
equation (NSL) and a scalar equation — (FLT), including vectors through the scalar-product
work term—, a four-vector (rank 1 tensor) equation meets mathematical and physical (prin-
ciple of relativity) requirements previously stated. For T&R processes, to which an angular
momentum equation, including vectors cross—product term, (PER) is added, mathematical
and physical requirements imply the description of a rolling process in terms of a rank 2
tensor (a four-tensor in what follows)[41, pp. 133-134].

In classical physics, NSL and FLT are independent equations. In relativity, the four-
vector fundamental equation relates NSL and FLT for a process, such that, for example, the
NSL in a moving frame is linear combination of NSL and FLT in the proper frame through
the Lorentz transformation. Given such a relation between four-vectors, five equations are
obtained: NSL, NSL-CDR, FLT, the heat equation and the entropy variation equation. On
the one hand, NSL is “thermodynamized”, i.e., quantities with no associated linear momen-
tum in classical physics such as heat, in relativity, in a moving frame (S) have associated
linear momentum, which is incorporated into NSL in S. On the other hand, thermodynamics
is “mechanised” in relativity the same way as in classical physics.

In which follows, given two four-vectors cross-product, A* ® B", proper definition —
two four-vectors cross-product definition can be given by an anti-symmetric four-tensor —,
for a given process, a four-tensor momenta equation can be proposed based on its four-
vector fundamental equation, such that seven equations are obtained for the process: NSL,
NSL-CDR, PER, PER-CDR, FLT, heat and entropy variation equations.

Cross-product classical definition: a vector. Let two three-dimensional vectors
be a = (a1, a2,a3) and b = (b1, bs,b3). Cross-product a x b = ¢, with ¢ = (¢1,¢2,¢3), is
defined as:

i j k
axb= a; a2 az | = (agbg — bgag)i + (a3b1 — b3a1)j + (a1b2 — blag)k,
by by by

with
c1 = azbz — baasz, ca = azby — bzay, c3 = a1by — bias.

This definition for the cross-product (x) comes from the following: force and its dis-
placement scalar product (-), allows for the calculation of the portion of work done by the
force that is related to the variation in the kinetic energy of the body’s center of mass and
the change in direction of the system’s movement. Additionally, the cross-product between
torque and rotated angle can determine the work done by the force in a direction perpen-
dicular to the body’s displacement. If an object changes its velocity, it can do so by either
altering its modulus or direction. In the former case, the object will not rotate, while in the
latter, it will rotate. The cross-product is used to calculate changes in rotation.

Cross-product classical definition: (3x3) anti-symmetric tensor. The cross-
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product can be defined in terms of the following anti-symmetric matrix:

a; bl Cvl 1 012 C13
as ® b2 — 021 022 023 )
as b3 031 032 033

or 3x3 tensor momenta, with ® operator, with:

ce® = arbs - bras = _Csr’
cm o= 0.

The following terms are identified:

012 = a1b2—b1a2

= (3,
CY¥ = ajbs—bsas = —ca,
023 = a2b3 — b2a3 = (1.

Two four-vectors cross-product: (4x4) four-tensor momenta. The above def-
inition for the cross-product between vectors (®) can be generalised to four-vectors. A
contra-variant four-vector A*, noted by a Greek letter superscript, is formed combining a

vector a and a related scalar a;, in column matrix such as A" = (a, a;). Given four-vectors
A* and B,

ajq bl
wo— a o a2 bo— b _ b2
ee(2)-(E]me)-8) e
a4 b4

the anti-symmetric 4 x 4-tensor (four-tensor in which follows) C** is defined as:

Cl 1 012 013 014
021 022 023 024
031 032 033 C34 )
041 042 043 044

C"" = A @ B* = (23)

with components:

Cij = aibj — biaj ,Cij = 7Cji.

The operator (®) is the four-vector generalisation of the cross-product between vectors (x).

The components in the four-tensor momenta that correspond to those of the 3-tensor
momenta are easy to interpret (that is the reason it is done this way). The purely thermo-
dynamic components should be interpreted (see below): terms involving cty will be related
to NSL, satisfying the requirement that forces must be simultaneously applied , and terms
of work and energy will be related to FLT, fulfilling the locality requirement: force must be
applied on the element whose mechanical state it modify.

This definition will also apply to photons, such that thermal photons are emitted with
zero linear and angular momentum (Clausius requirement).
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Four-tensor components CY include three kinds of momentum: (i) cross-product a x b
components, (ii) vector-scalar product components, e.g., bsa, and (iii) product of a vector
component times a scalar, e. g., byay. The non-zero C** components are:

012 = a1b2 - bla2 = —021 s 013 = (11b3 — b1a3 = —031 , 014 = a1b4 — b1£L4 = —041 .
023 = a2b3 - b2a3 = —023, 024 = a2b4 — b2a4 = —042 .
034 = a3b4 - b3a4 = —043 .

The non-zero components of the 3 x 3 tensor momenta for the two vectors cross product
are:

012 = a1b2 - blag = Cyz, 013 = (11b3 - b1a3 = —Cy, 023 = a2b3 - b2a3 = Cg.

Given this definition of four-tensor momenta for four-vectors, the two vectors cross prod-
uct of the two vectors entering the four-vectors is recovered at the specified positions. The
components of C** with index 4 are relativistic components:

C*i4 C*j 4 C*'k = aby — a4b, (24)

not entering in classical physics. This components should be interpreted (see below).

A. Angular impulse four-tensor. When A" = r# is an space-time four-vector, and
B¥ = p* (or B* = E*) is a linear-momentum—energy four-vector, their cross-product (®)
will be a kind of angular-momentum four-tensor. Given a ring element (c) linear-momentum-—
energy four-vector E¥ in T&R, the corresponding angular momentum four-tensor J& can
be obtained. For instance, with element (c¢) four-vector E¥, given by Eq. (11), and provided
the space-time lever arm four-vector r# = (rc,ctp), the element (c¢) angular momentum
four-tensor J£¥ is given by:

Y — v o__
JC _TC®EC -

Rcos b, Yo Y(WR)Mg(v + wRsin 6,.) 0 Jge 0 Ny
_ Rsin 6, ® —cy(wR)Mg(wR cos6,) g — —Jze 0 0 Ny
0 0 e T 0 0 0 O
cto Yoy (WR) Mqc? —Ngje —Nyec 0 0
with four-tensor components J; |, N and N easily obtained:
Jge = (Rcosbe)[—cy(wR)Mg(wRcos )] — (Rsinb.)[cy,y(wR)Ms(v +wRsinb.)],
Ny = (Rcos ) [Yoy(WR) Mc?] — (cto)[cyoy(WR)Ms(v + wRsin6,)],
Nye = (Rsino)[y,v(wR)Myc®] — (cto)[—ey(wR)Ms(wR cos b.)] .

For element (¢), with EY given by Eq. (12), located by space-time four-vector rt' = (—r, cto),
one has

JYW=rt @ FEY =

—Rcos 6, ey yY(WR)Mg[v — wRsin 0] 0 Jge 0 Ny

_ —Rsin 6, ® cy(wR)Mg[wR cos 6] g = J.e 0 0 Nye
0 0 1 e 0 0 0 0
cto Yoy (WR) Mgc? ~Nge —Nye 0 0
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with the corresponding J, |z, Nz and Nyz. Observing these relationships, it is easy to check
by J.|c + J.z which four-tensor components will contribute to ring angular momentum.

Adding over pairs (c€), the angular-momentum four-tensor for the ring J** (v, w) is ob-
tained as:

0 J, 0 N,
) = Sa( + 2 = | T 00 |
N, -N, 0 0
with four-tensor J*¥(w,v) components:
J. = 7Y (WR)MR*w~ MRw,
Ny = Se(Reosbe)[yov(wR)Msc?] — (cto)[erny(wR)Mu]
N, = X (Rsin 0c) oy (WR) Myc?] — (cto)[0] -

N+ Ny = Sere[ry(WR)Msc?] — (cto)(eMv).

Angular momentum, linear momentum and energy. The following quantities can
be found inside ring angular momentum four-tensor J*¥(w, v):

(i) Angular momentum. The J* (w,v) C'2-component, J, ~ MR2w, corresponds (low
speed limit) to ring angular momentum.

(ii) Linear momentum. Linear momentum p = (pa, Py, 0) = Y(WR)M (Y4 Vz/ci, YoUylcis 0) ,
is involved in four-tensor components IV, N,, multiplied by temporal lever arm cty. For
process sketched in Fig. 1, one has p = Mv.

(iii) Energy. Element (c) energy E.(v,w) = v,7(wR)Msc?, is involved in four-tensor
components N, IV, and multiplied by vector r..

B. Torque four-tensor. Let A* =r* be a space-time four-vector, and B* = F* (or
B* = W”) be a linear-impulse-work four-vector. Their cross-product (®) will be a torque
four-tensor. Given the macroscopic forces distributed over ring elements, the associated
torque four-tensor can be obtained.

Torque four-tensor M*” exerted on a generic element (c) is obtained by adding over
torque four-tensors Ml’(‘lz for the (k) forces applied on it,
M = Ele‘(‘llc’ =rt® ZkWﬁ"C . (25)

With element (c) four-vector linear-impulse-work §W#, given by Eq. (20), and provided
the space-time lever arm four-vector r# = (r., cty), the element (c) torque four-tensor MH”

is given by:

WY — Vo
M =rl@W! =

Rcosf,. c(f + frjesinbe — fp + fpjesinfe) 0 M. 0 Gy
Rsin6, ® —c(frjc cos b + fp: cosOe) M —M). 0 0 Gy
0 0 P e 0 0 0 O
cto fo+ fr‘ch —Gm|c —Gy|c 0 0
with M#" components M|, Gy|c and Gy|c:
Mz\c = (R Cos 00)[_c(fr\c COs 90 + fD|r COS HC)] - (RSin 00)[C(f + fr|c sin 9.3 - fD =+ fD|r sin QC)] s
Gale = Zc(Rcosbe)[fv+ frcRw] — (cto)[c(f + frjesinbe — fo + forsinbe)],
Gye = Xc(Rsinbe)[fv+ fycRw] — (cto)[—c(fr|c cosbc + foprcosb)].
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For element (¢) with four-vector linear-impulse-work W/, given by Eq. (21), one has:

Mé‘”zr?@Wé’:

—Rcos b, c(f = frjesinbe — fo — fp)rsinb.) 0 M,z 0 Gue

—Rsiné. 2 c(fr)c cos b + fpr cosbe) M M. 0 0 Gy
0 0 $oTe 0 0 0 o0
cto fU + fr|CRw _Gz|6 _Gy|6 0 0

with M} components M. s, Gy and Gz Observing these relationships, it is easy to check
which forces will contribute to ring rotation.
For the whole ring, the angular impulse four-tensor M*” is obtained as:

—-M 0 0
77— _ nv nry z
M =Bc(MTH M) = | 7 g g o |
-G, -G, 0 0
with momenta four-tensor components:

M, = (Fr+FpR),

G, = Xc(Reost)[fv+ ficRw] — (cto)[c(F — Fp)],

Gy = Xc(Rsind.)[fv+ frcRw] — (cto)[0].

G i+ Gyj = Xere[fv+ ficRw] — (cto)[c(F —Fp).

Angular impulse, linear impulse and work. The following quantities can be found
inside ring torque four-tensor momenta:

(i) Angular impulse (torque). The four-tensor M* C1'2-component M, corresponds to
torque I' = (F'r + FpR) exerted on ring.

(ii) Linear impulse (resultant force). Forces F and Fp, linear impulse on ring is 61 =
— Ip,0, , Involved 1n components G, an , multiplied by temporal lever arm ctg.
F — Fp,0,0)dt, involved i G, and G, Itiplied b 11

(iii) Work (power). On element (c) located by vector r. power W, = fv + frjcRw is
performed.

5 Four-tensor momenta equation for rolling processes

For a well-posed process, a set of four-vector fundamental equations, one for each ring generic
element (c), on which (k) forces are exerted, are

dEY = §WI,

being W# = EkéWﬁt‘C. Forces are simultaneously applied during time interval [to, tg + d¢].

Similarly, a set of four-tensor momenta equations, one for each ring generic element (c), on
which (k) forces are exerted, are

dir* @ E*) = (rF @ WH)dt,

being dW# = Wé‘dt, where dt is common to ring elements. Torques are simultaneously
applied during time interval [tg, tg + d¢]. Summations reflect forces superposition principle:
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force effects — linear impulse, angular impulse, work — does not depend on another exerted
force.

One body functional equations. In order to obtain operational equations, the posed many-
body problem for ring elements must be reduced to a one-body problem (i.e., the ring). Thus,
equations for elements should be possible to be added, thus obtaining an equation for the
ring as a whole, depending on its centre of inertia and angular velocity.

Adding over ring elements,

A(SeJH) = (S MP)AE — dJ™ = MM dt (26)

and the four-tensor momenta equation [16] is then:

0O J. 0 N, 0 M. 0 G,
g, 0 onN, | | -m 0o o g,
a0 0o o0 o = o o o o |9
N, -N, 0 0 G, ~G, 0 0

The cause (torque, resultant force and power) acting during time interval [to, to +dt] (an-
gular momentum, linear momentum, work), has the effect of varying the system mechanical
state (combined angular momentum, linear momentum and energy).

For a given system and process, e.g., the process sketched in Fig. 1, the four-tensor
momenta equation dJ*” = M#"dt establishes a cause-effect relationship between the linear-
momentum—angular-momentum—energy four-tensor variation dJ** (effect) and the linear-
impulse-angular-impulse-work four-tensor M#*dt exerted during time interval [tg, to + dt],
where ¢ is frame (S) proper time, measured by its set of synchronised clocks.

5.1 Relationships from four-tensor momenta equation

The equality between four-tensors implies equality component by component or by a linear
combination of components.

Four-tensor equation, spatial components. From four-tensor spatial components,
the PER equation for the process, and then, its PER-CDR, are directly obtained.

PER. From four-tensor C'? spatial (angular) components one has:
d(zgilllr Jz\c) = (Zf;?fr Mz|c)dt ) (27)
dJ, = M,dt. (28)

Assuming 7, & 1 (rotation is decoupled from translation), the angular-impulse-angular-
momentum variation equation is obtained:

Ird[xr (w)w] ~ T=dt, (29)

with external torque: I'™** = ¥, (r) x Fy), where Fy is k-th external force and ry its lever

arm relative to ring centre O. Equation (29) is the Poinsot-Euler rotation equation for

the process. This equation, through the torques, considers the positions where macroscopic

forces are applied. The same force with another lever arm produces different angular impulse.
For a finite process, with constant torque applied during time interval [to, to + At],

Ir[xr(wr)ws] — Ir[xr (wi)wi] = T"AL, (30)
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with resultant external torque I'®** = 3, T'y: the same torque combination produces the
same angular momentum variation.

Equation (30) takes into account the fact that when the (k)-th constant force is applied
outside the centre-of-inertia displacement path, its application point has an additional dis-
placement dz, = rwdt relative (in addition) to the centre-of-inertia displacement da = vc;dt,
during time interval d¢; Therefore, an additional work is performed, provided by the external
agent that ensures a constant force applied (Fig. 5).

>

G’\
)

Figure 5: (a) Force F' acts along a line through the centre of the bar, during time interval
At, moving distance z.; and reaching speed v.;. (b) Force F' acts along a line at distance a
from the centre of the bar, during time interval At, moving distance £ = x¢; + af, with an
extra displacement & = afl. The bar rotates angle 6, reaching angular velocity w (and centre
speed v.;), with force application point speed u = ve; + aw.

PER-CDR. The PER-CDR equation relates rotational kinetic energy variation with
external torques pseudo-work dK,, = pWy4. From PER Eq. (29), by using relationship [43]:

Inewd[xa(w)e] = Md[Gr(w)e?], (31)

[relationship Eq. (31) cannot be used with Eq. (29) if v, # 1) its PER-CDR is obtained as:
MA[r(w)e?] = Toae, (32)

M{[r(wi)e’] = [r(w)e?]} = TAF, (33)

with d¢ = wdt. This PER-CDR Eq. (33), which is not directly obtained from the four-tensor
momenta equation, will assign kinetic energy to that additional work: the rotational kinetic
energy. Product pWW, = I'df will, in general, not be work but pseudo-work; e.g., a dissipative
force torque does not perform work (see below). Equation (32) is the pseudo-work equation
for ring rotation.

Four-tensor equation, mixed components. From relationship (proposed by the
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intuition provided by classical physics)
dN,i+dN,j = G,dti + G,dtj, (34)

several equations will be obtained, leading to NSL and to the FLT for the process.

NSL. Matching terms with common factor ¢ty and unit vector i or j in Eq. (34):

icto{ Md[v, 7 (WR)v,] = SiFyedt}, (35)
jeto{Md[v,y(wR)vy] = SiFy.dt}. (36)

By adding over forces exerted on element (c):
Md[yyy(wR)v] = B Fydt . (37)
By adding over ring element pairs (cc):
Md[yy(wR)v] = F&dt, (38)

being external resultant force Fe*t = XXk Fyc, and v = v the ring centre speed.
Relations (35)-(36) check whether forces are simultaneously applied during time interval
[to,to + dt]. Otherwise, this equation will detect the inconsistency. It is assumed that
forces can be added to obtain a resultant characterizing ring centre motion. Equation (38)
represents Newton’s second law for the process.
Assuming y(wR) = 1 (translation is decoupled from rotation), for a finite process, with
constant forces applied during time interval [to, to + At],

M(vorve) = M(yovi) = F*AL. (39)

Equation (39) gathers all forces applied on the ring, considering their resultant applied
on its centre during time interval [to,to + At], whether or not the force is conservative.

NSL-CDR. From NSL equation, by using relationship:
v d(%v) = d(7v02) ) (40)

[relationship Eq. (40) cannot be applied to Eq. (37) if v(wR) # 1] its NSL-CDR is obtained
as:

Md(y,c?) = F™.dx, (41)
M(’va_’)/m)c2 = FeXt'Axv (42)

where dx = vdt (dx¢ = vedt), with external resultant force F&' = ¥ XxFyjc. The NSL-
CDR equation Eq. (41), which is not directly obtained from the four-tensor equation, assigns
ring centre-of-inertia kinetic energy variation to force F®*' times ring centre-of-inertia dis-
placement (some forces displacement may not be ring centre displacement, e.g., force Fp);
force-displacement product pW = F**. Ax will not be, in general, performed work but in-
cludes pseudo-work terms. Equation (42) is, in general, the pseudo-work equation for body
linear translation.

FLT. Matching terms with common location vector r. in Eq. (34), one has the relation-
ship:
rC{MSd['yvv(wR)cz}} =r, [Ek(Fk‘c ~Vk|c)dt] , (43)
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one for system element. Each equation corresponds to a ring element and checks whether
the force acting on it is really localised on it. Specifically, any force must be exerted directly
on one element and any change in its energy must be due to work performed by distributed
forces applied on it. Assuming that force Fy is exerted on a point other than the ring
element, then r. # r, and Egs. (43) will detect the inconsistency.

Equation (43) is the FLT for ring element (¢). By adding over elements energy-work
equations, one gets

Md[yy(wR)?] = Wt (44)
M[va’Y(wfR) - ’Y'UIIY(WIR)]CQ = WeXt ) (45)

with Wt = %) (Fy - uy)At, for constant forces and almost constant velocities, u At =
Az + rA6.

These equations properly describe processes in rigid T&R (i.e., rigid rolling). If on the
contrary, this set of equations do not sufficiently describe the process, the process is ill-posed.

Four-tensor momenta Eq. (26) contains all the necessary information to fully solve the
type of processes posed, which evolve at the conservation of mechanical energy. On the one
hand, Eq. (26) does not consider thermal effects, a characteristic feature of dissipative forces.
When thermal effects occur during the process, the momentum four-tensor associated with
thermal photons exchanged with thermal surroundings must be included (see below). On
the other hand, Eq. (26) can incorporate thermodynamic forces F¢ coming from a chemical
reaction (see below).

5.2 Standard configuration observer

When studying a problem under the relativistic approach, only those formalisms explicitly
in agreement with the principle of relativity can be implemented. This demand translates
into the need to find an equation (ansatz) that automatically transforms between inertial
frames, S and S in the standard configuration with velocity V = (V,0,0), for example, by
simply applying an operator, ensuring that the equation remains with its functional form
unchanged. Assuming this operator is the Lorentz transformation given by Eq. (10), the
allowed equations must involve four-vectors or four-tensors [44].

Therefore, a four-vector, A*, transforms as A* = EZ(V)A”7 and a four-tensor, B*¥,
transforms as B = L§(V)B% LY%(—V). When dealing with four-vector equations, with
multiple elements involved, one has:

S LE(V)AEY = S LE(V)oWY

_ _ 46
ALH(V)AEY = LH(V)SWY — dEY = sW" . (46)

For a four-tensor-moment equation, dJ*” = M#¥dt ,where t is the proper time in frame S,
with the ground and thermal reservoir at rest, one has: [45, pp. 17-19]:

Ly (V)re @ LE(V)AES = S Ly(V)rg @ LE(V)OW,

A[LEV)I L~V = [CE VA7 LE ()]t — agw = apvae. )

The four-tensor momenta equation is covariant, expressed in relativistic space-time language

(as Wheeler demanded).
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6 Horizontal rolling ring

Figure 1 sketches, in frame S (x,y, z,t) where the ground is at rest and x-axis parallel to
the floor, a process for a ring rolling under the action of force F = (F,0,0) [46], exerted
on a string, previously wrapped around a circle of radius r, which unwinds like a spool.
Gravity G = (0,—Mg,0) and normal N = (0, N,0) forces are exerted on the ring, with
G + N = (0,0,0); so, they will not be considered. On the ring edge, at its contact point
with the floor, the force demanded by the rolling condition is Fp = (—Fp,0,0) and must
be obtained.

Four-vector fundamental equation and Poinsot-Euler rotation equation. This
exercise is solved first using the four-vector fundamental equation plus the Poinsot-Euler
rotation equation.

Constant forces are applied during time interval [tg,tg + ¢1]. Speeds vy, w1, ring (ci)
displacement z; and angle 6; must be obtained, by the rolling condition v; = Rw;, and
1 = R6;. The four-vector fundamental equation for this process is [25]: EF — EI' =
Wh + WE . In its matrix (1D) form:

Aoy (@i R)Mvy Y (0 \ _ [ «(F-Fp)t
Yo, V(w1 R)Mc? Mc? F(xy+1r61) )
Matching by components, NSL and FLT equations are given by:

’YUlel ~ (F — FD)tl s
Yo, Y1 R)ME — Mc? = F(zy+16;).

For the NSL-CDR equation one has:
(Yo, = YMc? = (F = Fp)1 (48)

with pseudo-work term pWp = Fpxy.

The relativistic Poinsot-Euler equation is assumed to be Ixd[y(wR)w] = I'**d¢. Then, for
constant torques applied during time interval [tg,to + 1], PER equation and its PER-CDR
equation become:

IR[*y(wlR)wl] ~ (F’I“—FFDR)tl,
[v(@iR) —1]Mc? = (Fr+ FpR)f; .

Four-tensor momenta equation. For ring elements (c¢) and (¢) one has four-tensor
momenta equations:

Rcos b, Yoy (WR)Ms[v + wRsin 0.] Rcos b, c(f + frjesinfe — fp + fp)rsinb.)
Rsin 0, —cy(wR)Mg[wR cos 6] Rsin . —¢(frjc cosbc + fpprcosOe)
® = ®
0 0 0 0
cto Yoy (WR) Myc? cto (fv + frjcRw)
—Rcos 6, Y Y(WR)Mglv — wRsin 0] —Rcos 6, c(f = frjesinbe — fo — fpjesinbe)
—Rsin6, cy(wR)M|wR cos 6] —Rsin6, c( frjc cos O + fpjr cosb.)
X = X
0 0 0 0
cto Yoy (WR)M;c? cto (fv =+ frjcRw)
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Analasing these relationships it is not difficult to verify which forces contribute to ring centre
linear translation (by W# + W) and which to ring rotation (by M/ + M!).

For this process, with angular momentum four-tensor J#” and torque four-tensor M+ =
M + MEY, the four-tensor momenta equation is:

dJw = (MR’ + ME)dt. (49)

From Eq. (49), the following equations are obtained:
PER. Angular-impulse-angular-momentum variation equation dJ, = M,dt (v, = 1):
MR2d[y(wR)w] ~ (Fr + FpR)dt. (50)

This equation, which was previously written as a hypothesis, is now obtained from the
four-tensor momenta equation formalism.

PER-CDR. From Eq. (50) by relationship Eq. (29) one obtains pseudo-work-rotational
kinetic energy variation equation:

Md[y(wR)c?] = (Fr + FpR)d#. (51)
By integration, with initial conditions w; = 0, §; = 0 (and in the low speed limit v/c — 0),
Igy(wiR)w; = (Fr+ FpR)t1 — Igwi = (Fr + FpR)t;.
[y(wiR) — 1M = (Fr+ FpR)6; — %IRw% = (Fr+ FpR)f; .

As it must be demanded, the classical equations for the process are obtained from relativistic
equations in the low speed limit wR/c — 0.

NSL. Matching components with common factor cty in Eq. (34), the linear-impulse—
linear-momentum variation equation for ring centre (centre-of-inertia) is [y(wR) = 1]:

cto{ Md(yv) ~ (F — Fp)dt}, (52)

which constitutes NSL for the process. This equation checks that forces involved in the
process are applied during time interval [tg, to + dt].
NSL-CDR. From Eq. (52) and by relationship Eq. (40) one obtains

Md(y,c?) = (F — Fp)dz . (53)

This pseudo-work ring (centre-of-inertia) kinetic energy variation is the NSL-CDR, equation
for the process. Integrating, with initial conditions vy = 0, 21 = 0 (and taking the limit
v/c — 0) one obtains:

")/UlMUl = (F—FD)tl — MUl = (F—FD)tl
1
(Yo, — WM = (F — Fp)r; — inf = (F — Fp)x .

The following condition is found for Fp, demanded by the rolling condition, with v,, =

Y(w1 R):
R—r

2R

Frh=F (54)
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When r = R, Fp = 0 and the rolling condition is satisfied just by force F: the ring spins as
a whole around point O.

FLT. In this process Eq. (34) there is an equation per element with common factor
r. = Rcosf.i+ Rsinf.j. Matching four-tensors components with r., one obtains:

re{Md[yy(wR)*} = r{[(fi - v) + (Fe - wR)]dt } .

This relationship checks that the locality principle is met in the process description. Then,
the energy equation for a ring generic element (c) can be expressed as:

Md[v,y(wR)?] = n Y [(F-v) + (rF/R)wR]dt,
and ring energy equation is obtained as:
MdA[y,y(wR)c?] = F(v + rw)dt. (55)

By integration from initial (v = 0,w; = 0), (z1 = 0,61 = 0), to final (to be determined)
states [v1 = v.i(t1), w1 = w(t1)], with 1 = 2¢(t1), 61 = 6(¢1), one obtains:

[, ¥(@iR) = Mc? = F(x1 +761) . (56)

In the low-speed limit v/c — 0),
1 1
(Yo, — DM + [y(wiR) — 1JM? =~ F(xy + rfy) — 5/\/[11% + iwaf = F(x1 +rby).

With z; = Rf;, FLT Eq. (57) is obtained as sum of NSL-CDR Eq. (54) and PER-CDR
Eq. (52); i.e., the process evolves with mechanical energy conservation.

When demanded force Fp is obtained to be greater than friction force Fr = uqN (max-
imum force ground exerts on the ring), i.e., with Fp > pugMg, the rolling condition cannot
be achieved, the ring slips, ground-ring force is Fy/,, = pqMg and thermal effects will be
observed (see below).

6.1 Parallel axis theorem

Whenever a valid point is chosen to take momenta, the centre of inertia, or a point instan-
taneously at rest, the four-tensor momenta equation formalism directly applies the parallel
axis theorem.

At instant ¢, the contact point between the ring edge and the incline, point O in Fig. 1,
is, by the rolling condition, instantaneously at rest in frame S [47]. Instead of choosing the
ring centre as origin of position vectors, 74 and r%’, it is possible to choose the instantaneous
axis of rotation, passing through point O, as origin for linear momentum and force lever
arms. From point O, the position four-vectors, 7# and 7%, for the pair (c¢) are:

Rcos 0, —Rcos .
_ Rsinf. + R T —Rsinf, + R
it = ' = ; (57)
Ct() Cto

From the four-tensor-moment fundamental equation, X (74 ® dE¥) = L (74 @ dWH), it is
obtained:

Poinsot-Euler’s law to point O [48]. For the process sketched in Fig. 1, the PER equation
to point O is:
d{ [voIr¥(WR) + e MR*y(wR)|w} = F(r + R)dt. (58)
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By integrating during time interval [to, o + t1],
Yoy(WR) Iow + Yy (WR)MR*lw} = F(r + R)t; . (59)

PER equation relative to O can be expressed as linear combination of NSL and PER relative
to O:
Y Y(WR)(I + MR*)w = F(r + R)t —
Yoy(wR)Iow = (Fr + RFp)t1]+ (60)
Rlvoy(wR)Mv} = (F — Fp)t; .

Four-tensor components with common factor cty involved in NSL are not affected by this
change.

Work—energy equation: Regarding components with common factor R, the work—energy
equation is obtained,

(re + R){Msd[%’y(wR)CQ] =(fv+ fr‘CRw)dt} ,

(61)
Md[y,y(wR)c?] = F(dz 4 rd6) .
Ring total kinetic energy K + Kot = Myyy(wR)c2 — Mc? = Kior, does not depend on the
point (provided it is a valid point) with respect to which momenta are taken (same result
as in classical physics).
From Fp given by Eq. (54), by using relationship

[y (wiR)ve, — 1]¢® = [y(w1R) — 1] + (y, — 1)¢?,

for the translational kinetic energy one has:
9 1
(Yo, — DM = F§(R +71)b1,

and 1
[v(w1R) — 1]/\/102 ~ Fi(R +7)01,

for the rotational kinetic energy. For point O, half of the work performed by F goes to
translational kinetic energy (ring centre) and half to rotational kinetic energy; for point O,
a body with moment of inertia I5 = 2M R? rotates around point O with angular velocity w.

Newton’s second law equation is not affected by this change of point about which to take
momenta.

7 Thermal photons four-tensor momenta

In relativity, energy exchanged as heat, e.g., in an isothermal process, is modeled by thermal
photons [9] (a descriptive advantage of quantum statistical mechanics over classical thermo-
dynamics, to be integrated using relativistic considerations [49]). Under the four-vector
fundamental equation formalism, thermal effects are considered through a heat four-vector
0Q"* = (0,0,0,Q) with zero linear momentum components and energy component given by
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0@ [37]. For a description using a four-tensor formalism, a four-tensor momenta must be as-
sociated to each photon involved in the process, and then, by applying statistical mechanics
considerations, the thermal photons four-tensor momenta will be obtained.

Four-tensor momenta for photon four-vector. When a body at rest, with temper-
ature T slightly above surroundings temperature Ty, radiates thermal photons, according
to Stefan-Boltzmann law, energy emission is not expected to be such that the body spon-
taneously translates or rotates: such behaviour, even satisfying thermodynamics first law,
would infringe its second law. Under the four-tensor formalism, each emitted photon must
be described to ensure that the ensemble of emitted photons has: (i) zero net linear momen-
tum and (ii) zero net angular momentum (maximum entropy principle); i.e., the emitted
energy as heat is a thermal photons ensemble. These restrictions regarding thermal photons
are equivalent to the implicit consideration of heat in classical physics: bulk energy with
zero linear and angular momentum. In contrast, a pencil of laser photons, with non-zero
net linear momentum, is regarded as energy exchanged by work (not heat) [50].

A correct heat description considers emitted photons on ring element (c), located by vec-
tor r¢, as a set of opposite pairs (s§). Linear-momentum—energy four-vectors for these pho-
tons, with frequency v (monochromatic approximation [51]), directions us = (cos 6s, sin 65, 0)
and uz = —ug, are given, respectively, by:

hv cos —hv cos b
hv sin 6 —hvsin 6
wo_ s wo_ s
Es|c - 0 ’ Eé\c - 0 ) (62)
hv hv
with zero net linear momentum. On ring element (&), with ¥, = —r., another pair (s§) is

emitted, with four-vectors Ef; and E{.. Photons emitted on ring element (c) comply: (i)
us + uz = 0, and (ii) rc x (us + us) = 0; the same applies for ring element (¢) emitted
photons. This microscopic description guarantees zero linear and angular momentum for
energy emitted by heat at any level (ring elements, ring as a whole, thermal surroundings
and universe).

Heat four-vector §@Q" is then obtained by adding over Ny, /2 opposite pairs of photons
(s8) emitted by ring elements,

1 .
oQ" = 2 phZcEss (el +ef) = (0,0,0, Npnhvdt) , (63)

where 6Q) = Nphhudt is the energy emitted by thermal photons during time interval [to, to +
dt]. Thermal photons rate emission is related to ring surface temperature T~ Ty (slightly
above room’s temperature) as Npp(T) o T3; with »(T) o< T (Wien law), power emitted is
Eun = Npwhv, with Npphy = 0 AT* (black body Stefan-Boltzmann law) [52].
Photons (s§) emitted by element (c) and leaving the system have, respectively, angular
impulse four-tensor:
Mﬂv _ 7’5 ® :lc _

s|c

Rcos 6, hv cos 6 0 Myphie 0 Gajphic

Rsin6, hv sin O — M, ohee 0 0 Gyphic

= 0 ® 0 Nonje s Myje = Olp ; 0 0 y\é) ;
cto hv —Gaphic  —Gyjphic 0 0
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MEY = 1t B, —
Rcos b, —hv cos 0 0 ~M,phie 0 Gaphic
B Rsin 0. —hv sin 6, B M) phse 0 Gyphic
= 0 @ 0 Nonje » Msje = 0 0 0 0
cto hv —Gapphie  —Gyjpnic 0 0

Thermal photons ensemble describes radiated electromagnetic energy with zero net linear
and angular momentum [53].

In frame S (thermal reservoir at rest), Mg{: four-tensor is obtained adding over Nppc/2
pairs of photons emitted by each element during time interval [to, to + dt],

0 0 0 Ggapn

v 1 , ) 0 0 0
My, 5 VonieBeBes (M + M) = 0 o o o | ©¥

_Gz\ph _Gy\ph 0 0

with Npp = Nph(T)dt, Nph = 1 Npp|e, and four-tensor components

Mz|ph = 0,
Gapn = XeRcosOc Ny, chv,
Gyph = YcRsinf.Nyychv,

with Gy pni + Gypnj = XcreNpnchv. Thermal photons do not contribute to the angular
momentum equation (PER) or the linear momentum equation (NSL). They only contribute
to the energy equation (FLT), locating the energy emitted as heat on each ring element.

8 Four-tensor momenta equation
The four-tensor momenta equation for a general T&R process is given by:

ASEZPr I = ST ME e + S0 My dt

which can be expressed as:
dJ" = (M™ + M{ffl’)dt. (65)

In case these summations cannot be performed, the process cannot be reduced to a
one-body process and the exercise is ill-posed. Eq. (65) in matrix form is as follows:

0 J. 0 N, 0 M, 0 Gu+ Gappn
~J. 0 0 N, |_ —M, 0 0 Gyt Cypn | g
0 0 0 0 0 0 0

-N, -N, 0 0 —Gy = Gapn —Gy = Gyipn 0 0

The ansatz given by Eq. (65) as a four-tensor momenta equation is a cause-effect rela-
tionship, enough to describe a well-posed rolling process. All the derived equations (NSL,
PER, FLT) do not need to be written by hand, appearing naturally by matching components
in the four-tensor momenta equation. In addition, Eq. (65) simultaneously relates:

(i) Linear impulse exerted on the system by external forces to linear momentum variation.
Every force exerts linear impulse although net linear momentum could be zero.
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(ii) Angular impulse (torque) exerted on the system by external forces to angular mo-
mentum variation. Some forces may not exert torque.

(iii) Work performed by external forces to system+surroundings energy variation. It is
worth noting that surroundings exchange energy by work and heat with the system and that
some forces may not perform work. In some (dissipative) processes, work performed is not
completely transformed into mechanical energy, being dissipated as heat (see below).

About mechanics-thermodynamics equations. Problem-solving in (fresh and sopho-
more) physics courses barely recognises that the linear momentum variation of a system
(NSL) determines its translational kinetic energy variation (by NSL-CDR) as a whole
(centre-of-mass translational kinetic energy) and its angular momentum variation (PER)
determines its rotational kinetic energy variation (by PER-CDR). Describing these mechan-
ical aspects involves considering each force exerted on the system (conservative, restriction
or dissipative forces). Thermal internal energy variation is not considered in these mechanics
equations.

The following situations may arise when comparing work W performed on the system
by conservative forces with mechanical kinetic energy variations (AK., and AK,):

(i) Work performed on the system equals its mechanical energy variation AK ., +AK4 =
W. Dissipative forces are absent and the process evolves with mechanical energy conser-
vation. Energy variation in mechanical potential E,, (work reservoir) — exerting forces and
supplying work as W = —AE,, -, equals, with opposite sign, system kinetic energies varia-
tions, with AKem + AK, + AE, = 0.

(ii) Work performed on the system is greater than system mechanical energy variation.
Dissipative forces are present. The work performed by the work reservoir (mechanical po-
tential) is dissipated by heat (or transformed into system internal thermal energy, varying
its temperature), with Q = pW.

(iii) Work performed on the system by an identifiable mechanical potential is less than
system mechanical energy variation. Additional work comes, in particular, from a thermo-
dynamic potential free energy, e.g., a decrease —AG in Gibbs free enthalpy function due
to the presence of chemical reactions, i.e., by a thermal engine, a thermodynamics work
reservoir, with W < —AG and AKy, + AKy < —AG (see below).

In this description, the pseudo-work concept (pW), in linear translation and rotation,
plays an essential role in the mechanical characterization of the process, and it should not
be confused with genuine work performed by a mechanical potential energy variation or by
a thermal engine.

Although tidy to apply (at least the first time), the four-tensor momenta equation artic-
ulates all these considerations; first working vertically, building one by one all four-vectors
intervening in the process, and the corresponding four-tensors in order to pose the four-
tensor momenta equation. Then, the characteristic equations (NSL, PER and FLT) will
naturally appear horizontally. This formalism provides the correct solutions for well-posed
problems with a systematic approach, avoiding an intuitive solving.

9 Rotating ring placed on floor

When the contact point between a rolling body and the floor has non-zero speed (relative
to the ground), a frictional force Fg, to be phenomenologically described, comes into play.
Force Fr opposes to body-ground contact point displacement. Part of body mechanical
energy is dissipated and thermal effects emerge. In our case, these effects will be considered
as energy emitted by heat, increasing the entropy of the universe.
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When the rolling condition is not fulfilled in a T&R process, thermal effects take place,
with mechanical energy dissipated as heat [54]. Fig. 6 shows a sketch of a process in which
a ring spinning with initial angular speed wi(tp), is placed on the floor, with zero linear
velocity vi(tg) = 0. The floor exerts force Fr = paN (Amontons-Coulomb), and time
interval [to, to + t*] elapses until the ring reaches the rolling condition: linear speed vy and
angular speed wy < wy with vg = Rwp. During time interval [to,to + ¢*], the ring centre
travels distance z*, with angular displacement 8* and an amount of mechanical energy Q*
is dissipated as heat.

Figure 6: A spinning ring with angular velocity wy is placed on the floor, with initial linear
velocity v; = 0. The dynamical friction coefficient (ring-floor) is uq. The ground exerts
frictional force Fr. At time t*, v(t*) = vg, w(t*) = wy, the ring reaches the rolling condition
vg = Rwg. During the process, mechanical energy is dissipated. At ¢ > t*, no horizontal
forces are exerted on the ring, with vy = Ruwy.

In this problem, there are seven unknown magnitudes (i.e., the answers provided by
nature to the posed problem): t*, wq, vg, 0%, z*, N, Fr, Q* (magnitudes with asterisk
are those increasing during transient); by the rolling condition vy = woR, six independent
equations are needed (NSL equation provides two independent equations, one for spatial
component, z and y; for y, N = Myg); the formalism must allow to obtain the remaining
five equations and unknown quantities.

During time interval [tg,tg 4 t*] there is relative displacement between ring edge-ground
contact point and a frictional forces appears. The frictional force is opposed to ring rotation
and favors ring linear translation; this force is considered to be an Amontons-Coulomb kind
frictional force Fr = (ugV,0,0) and increases ring centre linear speed, one case in which a
frictional force promotes the movement of a body as a whole. Frictional force is parallel to
ring centre motion direction, exerting linear and angular momentum, and not performing
work. Since G + N = 0, gravitational and normal forces are not directly considered.

Four-vector fundamental equation and Poinsot-Euler rotation equation. For
this process, the four-vector fundamental equation is: E}' — Ef' = W§ + Q*. In its matrix

form:
Yo Mvo 0 [ cpaMgt* 0
( YooV (Wo R)Mc? ) B ( My(wiR)c? ) = ( 0 ) + < Qo ) ' (66)

Until reaching the rolling condition, thermal effects (modeled as thermal photons) take
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place. From Eq. (66), NSL and FLT equations are obtained:

PY’U()MUO ~ ,UdMgt* b

Yoo Y(WoR)ME? — y(wiR)M? = QF.
For the NSL-CDR equation one has:
(Yoo = YM? = paMga™ . (67)

Finally, PER and its PER-CDR equations are:

Ir[Y(woR)wo — y(wiR)wi] ~ —paMgRt",
M[y(woR) — y(wiR)|* = —paMgRO*.

Then Q* = —paMg(RO* — z*).

Four-tensor momenta equation. Phenomenological friction force Fg is assumed to
be distributed among ring elements in terms of two forces:

(i) Force frjy = (fr)s,0,0), with frj = n; ' paMg, identical for each element, contribut-
ing to ring linear (centre) translation.

(ii) Force frjye = (—fRresinbe, fRjrc c0s0c,0), with frjye = frjs, which depends on
element (c), contributing to ring rotation.

The force-power four-vectors associated to friction force Fr distributed forces frj; and
fRr;c are respectively:

SWh, = Wh dt = (cfrp:,0,0,0) dt,

. . (68)
6WFl{\r;c = ngr;c = (—cfrjesinbe, cfrjcosb,0,0) .

These forces do not perform work.

Four-tensor momenta equation elements (c¢) and (¢). Considering how forces
have been distributed on ring elements, elements (¢) and (¢) four-tensor momenta equations
(forces G and N are not considered) are given by:

Rcos 6. Yoy (WR)Ms[v + wRsin 0] Rcos 6. c(—fr — fr)rsinbe)
Rsin 6, ® —cy(wR)Mg[wR cos 6. _ Rsin 0, ® cfryr cos B¢ it
0 0 0 ) 0
cto Yoy (WR) M;c? cto Nphjchv
—Rcosf. Yoy (WR)Ms[v — wRsin 0] —Rcos b, c(—fr + frjrsinbe)
—Rsiné, ® cy(wR)M|wR cos 6] _ —Rsin 6, ® —cfr|r cos b dat
0 0 0 ) 0
cto Yoy (WR) M,c? cto Nphjchv

Observing these relationships it is not difficult to verify which forces contribute to ring centre
linear translation (by W 4+ W!') and which to ring rotation (by M/ + ML").
Adding over pairs (c¢), the four-tensor momenta equation for the process described in
Fig. 6 is:
dJ" = (Mg" + M[})dt . (69)

From Eq. (69) the following equations are obtained:

PER. Angular-impulse-angular-momentum variation equation is:

MR?*d[y(wR)w] ~ —pgMgRdt . (70)
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The corresponding PER-CDR equation is given by:
MdA[y(wR)?] = —paMgRde . (71)
By integration of Egs. (70)-(71) (and in the low-speed limit):
Ig[y(woR)wy — y(wiR)wr)] = —paMgRt"™ — Ig(wo —wi) = —puaMgRt* (72)
My(woR) = v(wiR)]¢? = —paMgRO* — %IR(‘U% —wi) = —paMgRE*,  (73)

with wg < wr. Initial ring rotational kinetic energy is transformed into ring translational ki-
netic energy by the frictional force; during transient interval, mechanical energy is dissipated
as heat.

NSL. From Eq. (34), matching components with common factor ctg, the linear-impulse—
linear-momentum variation equation is as follows:

Md(y,v) ~ pgMgdt . (74)
Its NSL-CDR is given by:
Md(v,c?) = paMgda . (75)
Integrating (low speed limit):
Myovo = paMgtt — Muvg = paMgt* (76)
1
(o = OME® = paMga™ — S Muj = paMga”. (77)

From Egs. (72) and (76), by using the rolling condition vy = Rwy, the time lapse until
reaching the rolling condition and final linear vy and angular wg velocities are obtained.
From Egs. (73) and (77), the distance traveled by the ring centre and the angle rotated are
obtained.

With moment of inertia I = MR? and xo = Rfy, then wy ~ wr/2.

31 11
12 12

11

Krt(wl) - Krt(wo) = 49

Irw? , Ki(wo) = == Ijw?, K(vg) = = =Igw? . (78)
Final angular velocity wg does not depend on friction coefficient. Time lapse t*, distance

x* and angle 6* until reaching the rolling condition are given, respectively, by [55]:

*

_lwiR _1wfR* |, 3wiR

t* 2t = L=
2 pag 8 pag 8 pag

(79)

Time lapse [tg, o + t*] is inversely proportional to friction coefficient pg. It is worth men-
tioning that RO* > x*: initially the ring rotates with almost no translation (Fig. 6). For
t >ty + t*, the ring-floor contact force is zero: the ring-ground contact point speed is zero,
with vg —woR = 0: the ring rolls with constant linear and angular speeds (Galileo’s principle
of inertia or Newton’s first law).

FLT. From Eq. (34), matching components with common factor r., one has:
e [Msd(”yq,’Y(WR)CQ) = 5QC] . (80)
Adding over ring elements:

Y Md[v,y(WR)?] = Le6Qe (81)
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one obtains:

Mdlyr(wR)) = 6Q. (82)
By integration, with angular speed initial condition wr, the energy equation is:
YooV (WoR)M? — y(wiR)Me* = Q" . (83)
By approaching:
[(woR) = y(@WiR)Me® + (0, — M =~

1 1
§IR(W§ —wi) + 5/\/“)87

{oeY(woR) — 1] — [y(wiR) — 1]}Mc?

Q

Q

one has (in the low speed limit):
1 1
[(@0R) ~ A RIME + (10, ~ DM = Q° = M+ In(wf —w}) =@",  (84)

with Q* ~ —paMg(RO* — z*).
For mechanical energy dissipated as heat during transient interval [tg,tg + t*], one has
[56]

1 11
Q" = —paMg(RO* —z*) = —iMw%RQ = *55-71%%27 (85)

with RO* > z*. Therefore, for the entropy of the universe variation AS{; = —Q*/T > 0.
Half of the initial rotational kinetic energy is dissipated as heat; a quarter transforms into
translational kinetic energy and a quarter remains as rotational kinetic energy [54].

The process is irreversible: it is not allowed to completely transform all decreasing ro-
tational kinetic energy into ring centre-of-inertia translational kinetic energy: part of this
initial mechanical energy is dissipated as heat.

10 Fireworks ring ascending an incline

Dynamical and energetic aspects of rolling processes involving chemical reactions can be
described as mechanical energy production processes through variations of thermodynamic
potentials. In a chemical reaction taking place spontaneously — e.g., gunpowder consumption
into the cartridges attached to a fireworks wheel (see Fig. 7)—, the decrease of chemical
reaction Gibbs free enthalpy function could be fully used to obtain mechanical energy. The
second law of thermodynamics states the potentiality and limits for this transformation,
without disclosing how the actual thermodynamics potential decreasing-mechanical energy
conversion can be carried out (see below).

Figure 7 sketches a diagram of a process for a ring attached with two cartridges (in
opposite configuration) in which chemical reactions take place, the ring spinning and as-
cending the incline. The process takes place within pressure P atmosphere. Initial velocity
conditions are v; = 0 and wyr = 0. Chemical reaction could be: 2Hs + Oy — 2H50. Inside
cartridges, ng Hy moles and n¢/2 O moles are stored. Data for chemical reaction (molar
internal energy variation Aug, volume variation Avg, enthalpy variation Ahe = Aug +PAv;
and entropy variation Asg are available.

The incline-ring friction coefficient is pgq > %tga. The surface of the incline exerts force
Fp on the ring, fulfilling the rolling condition. If this force is greater than the gravitational
force component G, = Mgsin a, which will depend on the chemical origin forces F¢ exerted
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Figure 7: A ring ascending an angle « incline due to chemical origin forces Fy. When ng
moles of fuel have been consumed, ring centre speed is vy, with angular velocity wg = vo/R,
distance traveled zy and, ascending height hgy = x¢ sin a.

and, ultimately, on fuel consumption, and less than the maximum friction force component
R, = pgMg cos a, the ring will ascend the incline.

The ring mechanical state changes by varying its linear momentum — through the linear
impulse applied on it — its angular momentum — through the angular impulse exerted on it
— and its energy — through work performed on it —. The four-tensor momenta equation will
relate the cause and effect of this process.

The following considerations should be taken into account in the analysis of this process:

(i) Final linear-momentum-energy four vector Ef'(vg,wp) depends on speeds vy and wy.

(i) Initial linear-momentum—energy four vector Ef'(vr,wr) depends on speeds vy and wy.

(iii) Forces are simultaneously applied during time interval [to, to + t¢], until fuel exhaus-
tion.

(iv) Force G = (= Mg sin a, —Mg cos o, 0) exerts linear impulse, no angular impulse and
performs (negative) work. The linear-impulse-work four-vector associated to gravitational
force depends on distance z¢ traveled by ring centre, Wk (z¢).

(v) Normal force N = (0, N,0), with N = Mgcos« exerts linear impulse, no angular
impulse and performs no work.

Chemical forces. The closed end of a cartridge is hit by chemical reaction products
moving at high speed (see Fig. 8). Since the cartridge is attached to the ring, chemical
origin force F¢ in each cartridge exerts linear and angular impulse and performs work on
the ring. Given the cartridge’s opposite configuration, their net linear impulse is zero, with
no contribution to ring linear momentum variation. On the other hand, cartridges’ angular
impulse exerted and work performed on ring must be added.

From enthalpy variation AH¢ = ngAhg produced by chemical reactions — internal energy
variation AUg minus expansion work Wp = —PAV, against the atmosphere —, a minimum
amount of heat Q™" = n¢T'Ase must be transferred to the thermal reservoir surrounding ring
cartridges to ensure a non decreasing entropy of the universe variation during the process,
with neAse + |Q™"|/T = 0. For a process in which heat exchanged is @™", maximum
available work W = —n¢Afe is obtained, being Af: = Aue — T Ase molar Helmholtz free
energy function variation, and maximum mechanical energy production AEy,, = —ngAge is
achieved, being Age = Aue + PAve — TAse (i.e., Age = Afe + PAve) molar Gibbs free
enthalpy function (Age = Ah¢ —TAs¢) variation. The chemical force F¢ magnitude depends
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Figure 8: Two cartridges in which chemical reactions take place. (a) The reactants, stored
inside two containers, are injected into the combustion chamber. (b) The forces exerted by
chemical reaction products on the walls exert a torque, causing ring rotation.

on how chemical reactions are delivered inside cartridges. For example, two reservoirs,
with chemicals Hy and Os in stoichiometric proportions, are injected into the combustion
chamber. By sparks, chemical reactions are produced. It is possible to imagine a process
carried out with injection rates such that maximum work —neA fe = 2F™rebnx — PAvg is
performed, or maximum mechanical energy variation on the ring is obtained as [12]:

2F§mx7‘§9mx = —ngAgg 5 (86)

with d¢ = r¢fmx distance traveled by force F¢ application point, where We = 2F"d is
work performed by chemical forces.

(vi) Chemical force F™ exerts angular impulse, no linear impulse and performs work.
The linear-impulse-work four-vector associated to chemical force depends on force F¢, with
Wi = WE(FF).

(vii) The rolling condition demanded force F, exerts linear impulse, angular impulse and
does not perform work. The linear-impulse—work four-vector associated to demanded force
depends on force Fp, with WE“ = Wé‘(D)

Torque four-tensors. In this case, gravitational and normal forces do not cancel each
other out. Thus, their linear-impulse-work four-vectors must be obtained.

Gravitational+normal forces. Gravitational and normal forces only contribute to
ring centre linear translation. To simplify calculations, force F(qyn) is defined, figin) =
— Mg sin a, with linear-impulse—work four-vector:

flaenye = (=Mggsine,0,0),

wk dt = (—cMygsina,0,0, —Msgusina)dt.

SWic (G4+N)[c

(G+N)|c =

Chemical origin forces. ~ Chemical origin force F¢ contributes to ring rotation. They
are assumed to be distributed over ring elements such that fr = n; 1R‘l(Fgm"rg), with:

feo = (fesinb., —fe cosb.,0),

6W£“‘C = Wé‘lcdt (efesinb, —cfe cosb.,0, fe Rw)dt.

Demanded force. This force Fp, demanded by the rolling condition, is assumed to be
distributed over ring elements in terms of two forces:
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1. Force fp = (fp,0,0), with modulus fp = n;'Fp, identical for each element, con-
tributing to ring centre translation,

6W]§|t = Wg|tdt = (ch507070)dt~

2. Force fpr.c = (fpprsin b, — fpr cos b, 0), with modulus fp|, = n; ' Fp, depending on
element (c), contributing to ring rotation.

SWH EWS\pcdt = (cfppsinbe, —cfpjr cosb,0,0)dt.

D|r;c

Four-vector fundamental equation and Poinsot-Euler equation. The four-vector
fundamental equation for this process is: Ef' — Bf' = Wg + 2W{' + W], with

Yo MVmx B 0 N c¢(Fp — Mgsina)te
YoV (Wmx R) M2 M )T 2F™rebmx — Mgsinazg )’
where t¢ is fuel compsumption time interval [to, o + t¢].
Equations for NSL and FLT are:

YomeMUmx  ~  (Fp — Mgsina)te,
[’yvmx'y(wme) - 1]/\/(02 = 2FreOmy — Mgsin azmy ,
For the NSL-CDR equation one has:
(Yo, — DMc? =~ (Fp — Mgsin a)zmy , (87)
For this process PER equation and its PER-CDR equation are:
[R[fy(wme)wmx] =~ (2F§mXT’§ — FDR)tf,
Mh/(wme) - ”02 = (2F§mX’r§ - FDR)emx;
with 2F5mx7’£0mx = —nEAgg.

Four-tensor momenta equation. Considering the ring as the system, and considering
the chemical reaction taking place through F¢ forces, the angular momentum four-tensor for
the ring will be J*¥, as stated above.

For fireworks ring elements (c) and (c) one has

R cos . Yoy (WR)Ms[v + wR sin 0] Rcos . c(fp — Msgsina + fepsinfe — fpsinf.)
Rsin 0, —cy(wR)Mg[wR cos 0] Rsin 0, c(—fer cos Oc + fpr cosbe)
® = ®
0 0 0 0
cto Yoy (WR) Mqc? cto feRw — Mggusina
—Rcos, Yoy (WR)Ms[v — wR sin ] —Rcos 0, c(fp — Msgsina — fepsinfe + fpsinf.)
—Rsiné, cy(wR)M;wR cos 0] —Rsiné, c(fer cosOc — fpjr cos )
® = ®
0 0 0 0
cto Yoy (WR) Msc? cto feRw — Mggusina

Observing these relationships it is not difficult to verify which forces contribute to ring centre
linear translation (by W# 4+ W!') and which to ring rotation (by M/ + ML").
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For the process described in Fig. 7, considering the ring as the system (without the fuel),
and forces F¢ as external forces to the system, the four-tensor momenta equation is given
by:

dJ™ = (Mg ) + MEY + Mp")dt . (88)

Matching by components, the following equations are obtained.

PER. Angular-impulse—angular-momentum variation equation is:
MR?*d[y(wR)w] ~ (2Fre — FpR)dt . (89)
Its corresponding PER-CDR or pseudo-work rotational kinetic energy variation is:
Md[y(wR)c®] = (2F™re — FpR)d6. (90)
By integrating (and in the low-speed limit):
IRRY(WmxR)wmx = (2F™r¢ — FpR)te — Irwmx = (2Fg"™re — Fp R)te
My(wmxR) = 1) = (2Fr¢ — FpR)0mx — %Iwanx = (2Fr¢ — FpR) O -
From four-tensors components relationship d/V,i + dNV,j = G.dti + G,dtj one has:
NSL. Common factor ctg. Newton’s second law
Md(yv) = (Fp — Mgsina)dt. (91)
Its corresponding NSL-CDR or pseudo-work—translational kinetic energy equation is:
Md(y,c?) = (Fp — Mgsina)dz. (92)
By integrating (and in the low-speed limit):
MY Vmx = (Fp — Mgsina)te - Mup, = (Fp — Mgsina)te
Mo, — 1] = (Fp — Mgsina)z,, — %Mvix = (Fp — Mgsin @) Ty -
For demanding force Fp one obtains:

r

Fp = F{™

1
+ §Mgsinoz. (93)

If the ring is to go up the incline, then 2F™re /R > Mgsina. The required force Fp must
be less than the friction force Fr = pqaMg cosa (maximum force that the incline can exert
on the ring), i.e., Fp < Fr. Otherwise, the problem would not be well defined.

FLT. Matching terms with common factor r. for element (c):
rc{./\/lsd['yvv(wR)cz] = —Mgsinavdt + 2 fe Rwdt } .
Adding over ring elements, with vdt = dz, wdt = d6:
Md[y,y(wR)e?] = —Msgsinadr + 2f: RAt,
and ring energy equation is given by:

Md[y,7(wR)c?] = —Mgsin adz + 2F™redd .
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By using the following approximation:
d[yey(WR)c?] = y(wR)d(y, — 1)]¢® 4+ vpd[y(wR) — 1]¢?,
and by integration, one obtains for the ring energy equation:
MY — 1) + M[y(winxR) — 1]¢%) = —=Mgsin Qmy + 2F 7¢Oy -
In the low-speed limit:

M{[’Y(meR) - 1] + (’YUmX - 1)}62 + Mg sin Qlmx = 2Fgmxr,£9mx —
1

1
5/\/11;3;1,( + 51Rw3nx + Mghmx = 2F 7¢Oy .

with maximum height Ay = sin azyy.

Fuel consumption equation. To relate forces F¢ to fuel consumption n¢, data on the
use of the reagents would be needed, how they are injected, etc. Thermodynamics allows to
obtain the minimum fuel consumption to achieve a given force. In practice, more fuel will
be needed than the minimum to get the same performance.

Once the amount of fuel (e.g., n¢ moles) is known, the maximum speed vmx achieved
can be obtained, with wnuxR = vmy, and ascended height hp,x. For fuel consumption, the
following equation is obtained:

MV, — 1)c2 + M[y(wmxR) — 1]02 + Mghmx = —negAge —

1 1

§M’012nx + ilRw?nx + Mghmx = _angf .
1 1
EMUIQHX + 5 wanx + Mghmx + PneAve = —ngAfe.

Mechanical energy production (i.e., translational kinetic energy K., rotational kinetic en-
ergy K, and ring-Earth gravitational potential energy E, ~ Mghmx) during the process
comes from the decrease of chemical reaction Gibbs free enthalpy function.

As stated above, whether F; = F¢™, the process is reversible, with zero entropy of the
universe variation. The produced mechanical energy can be used to obtain electricity and
then hydrolysing ng; HoO moles to obtain ng Hy and ng/2 Og moles. For a real-life process,
Fe < F™. In general

My = D+ M[y(weR) = 1]¢® + Mghe < —nelge —
1 2 1 2
5/\/"05 + ilng + Mghg < —TL&Ag&,

with real-life values v < vy, we < wmx and he < by

11 Conclusions

The equations bequeathed to us by physics founding ancestors deserve to be updated, pre-
cisely with the knowledge they have contributed to the gain. Einstein’s special theory of
relativity helps present equations such as Newton’s second law, the Poinsot-Euler equation
for rotation and the first law of thermodynamics differently, integrating them into a single
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covariant four-tensor momenta equation. These equations comply with the postulates of
relativity.

In classical physics, the rigid body concept, with constant inertia and moment of inertia,
allows to obtain equations describing linear translation with rotation processes directly. In
relativity, on the one hand, the rigid-body hypothesis is not valid. A classical rigid-body
must be replaced by a set of solid elements connected by springs. The inertia of energy
principle implies a variation of the inertia and moment of inertia for a body throughout a
rolling process. On the other hand, being relativity a local theory, it requires an identification
of all forces applied to each element of the body, or in other words, all the elements on which
the forces are applied must be identified.

This paper has developed a relativistic formalism to provide a four-tensor momenta
equation to describe a rolling process. This formalism has been applied to three T&R
processes: 1) a ring moving horizontally by the action of a force exerting a torque, with
mechanical energy conservation, 2) a spinning ring placed on the floor and rolling until
the rolling condition is reached, a process evolving with mechanical energy dissipation as
heat, and 3) a process in which a fireworks ring ascends an incline, in a mechanical energy
production process from chemical reactions, with Gibbs free enthalpy function decreasing.

The four-tensor momenta equation formalism fulfills relativistic requirements: the con-
cept of rigid body, recurrent in classical physics, is not used and the principle of locality,
dealing with distributed forces on ring elements, is fulfilled.

Three equations are obtained:

1. The equation for vectors J and I', involving linear-momentum, through the cross-
product of position and linear-momentum vectors, i.e., J = r x p, and a force mo-
mentum (torque), via the cross-product of position and force vectors, i.e., ' =r x F.
Poinsot-Euler rotation law is obtained from this equation, relating the body’s angular-
momentum variation to external forces angular-impulse.

2. The equation for the ctg-momenta of both linear-momentum p and resultant force F,
in which the corresponding lever arm, required to obtain momenta, is not a vector but
a scalar, being its value cty. This equation provides Newton’s second law equation
for the linear-momentum variation due to resultant external force. This equation
checks whether the problem-solving approach considers that forces must be applied
simultaneously in the appropriate reference frame (for well-posed processes, a frame
must exist where this can be done).

3. The equation for energy E and work W momenta, both scalar, whose lever arm is
the element position vector. Once the fulfilment of the local character of relativity is
checked (work performed by external forces is used to vary the kinetic energy of the
element on which they are applied), the first law of thermodynamics (energy balance
equation) is obtained by adding over elements equations.

The four-tensor formalism allows to avoid posing cause-effect equations directly for a pro-
cess. Instead, linear-momentum-energy four-vectors and linear-impulse-work four-vectors
are obtained vertically, and mathematical operations are performed to obtain the corre-
sponding classical equations horizontally, by equaling four-tensors components.

Thus, when a problem is well posed and the process is developed in rigid rolling, it is pos-
sible to obtain a four-tensor momenta equation describing the process. The four-tensor mo-
menta equation contains all the information needed to describe a process. Directly, through
comparison between four-tensor components, (i) the angular-impulse—angular-momentum
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variation equation — the Poinsot-Euler rotation equation —, (ii) the linear-impulse-linear-
momentum variation equation — Newton’s second law equation —, and (iii) the energy equa-
tion — the first law of thermodynamics —, are obtained. From these, the Poinsot-Euler
rotation equation complementary dynamical relationship is also obtained — i.e., the pseudo-
work-rotational kinetic energy variation —, and Newton’s second law complementary dy-
namical relationship — i.e., the pseudo-work—translational kinetic energy variation — Heat
equation, and the entropy of the universe variation equation are obtained by comparing the
information provided by the previous two with the information provided by the first law of
thermodynamics.

The first time this formalism is applied, it will probably seem rather tedious. This
circumstance is due, on the one hand, to the relativistic demand of having to identify
each component constituting the system, from a proton in an atomic nucleus to the solid
elements composing the body, as well as all the forces applied to the elements composing
the body, and, where necessary, each emitted photon. On the other hand, the inertia of
energy principle introduces cross relations between magnitudes describing linear translation
and those representing rotation.

Symmetry and considerations from the statistical mechanics can reduce a many-body
problem to a one-body problem with just one linear and one angular velocity. In successive
applications of the formalism, obtaining the equations describing the process will be faster
and simpler.

In the low-speed limit, the classical equations for the processes are obtained, and linear
translation is decoupled from rotation.

Finally, the four-tensor momenta equation formalism allows the equations describing the
process to be easily obtained, (i) when the momenta origin point is changed, with direct
application of the parallel axes, or (ii) when the chosen reference frame is changed to another
frame moving in the standard configuration, by means of the Lorentz transformation.
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