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Abstract: Nowadays, many maritime structures require precise dynamic positioning (DP) of the
constructive elements that compose them. In addition, the use of preconstructed elements that
are later moved to the final location has become widespread. These operations have not been
automated with the risks involved in carrying out the complex operations required. To minimize
these operational risks and to perform a correct DP of floating structures, a new approach based on
the L1 adaptive control technique is proposed. As an example of application, a proposed L1 adaptive
controller was implemented in the dynamic positioning of a floating caisson. Several simulations
of the system with wave disturbances were carried out, and the results were compared with those
obtained by applying other classical and advanced control techniques, such as linear quadratic
Gaussian control (LQG) and model predictive control (MPC). It was concluded that the proposed L1
adaptive controller performs correct dynamic positioning and reduces the tension generated on the
lines concerning the other advanced control techniques with which it was compared. This reduction
in line tension leads to an important improvement due to the possibility of reducing the size of the
actuators or reducing their number, with the important economic and safety repercussions that these
actions entail.

Keywords: dynamic positioning; L1-adaptive; marine structure

MSC: 93C40

1. Introduction

Over the last few decades, new construction techniques have been used to build
marine structures, such as docks, harbors, or offshore structures. One of the most prominent
techniques is that in which the structure or part of the structure is fabricated in a place
other than the final location and then moved to the place where it is finally sunk [1].

To carry out the displacements and subsequent sinking of the structures properly, it is
necessary to have adequate knowledge of their dynamic behavior. There are several studies
on the dynamics of floating structures, which are affected by disturbances in the marine
environment, among which it is worth mentioning [2]. In addition, it should be noted that,
in most cases, the error range in the dynamic positioning of floating structures is small,
as described in [3]. Several control techniques can be applied to the dynamic positioning
of marine structures. Firstly, there are classical control methods such as proportional,
integral, and derivative (PID) control [4,5]. This type of control is currently considered the
base point from which other techniques and systems have been developed that, in most
conditions, are more complex but usually provide better results. An advanced control
technique is linear quadratic control (LQR). In the linear quadratic control technique, a cost
function is minimized to obtain the control signals and minimize the positioning error [6-9].
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Another technique that is used in many different areas with excellent results is the model-
based predictive control (MPC) technique, in which contributions from the system model
and future predictions of the system are used to determine the most appropriate control
signals [10,11] that are noteworthy. Adaptive control techniques have been used in some
fields of technology in combination with neural networks, such as the online feedforward
neural network controller [12], and those that combine adaptive control with classical
PID control, such as the adaptive PID controller [13]. It is also necessary to highlight the
contributions related to the control of floating structures and ships that apply backstepping
control techniques [14], fuzzy control [15,16], or adaptive control [17]. Also particularly
noteworthy is the L1 adaptive technique, which decouples the adaptive loop from the
control loop. It has been used in various fields of high complexity, such as nuclear power
plant control [18], although no application to the marine structures area has occurred
so far. This controller is notable for compensating system disturbances at high speed,
which is highly desirable. Another fundamental issue in control systems is the filtering of
disturbances, which in marine environments correspond mainly to the effects of waves.
The Kalman filtering technique should be highlighted due to the excellent results that can
be obtained when applied to the filtering in linear systems [19-22]. An extension of the
Kalman filter that can be applied to non-linear systems is the unscented Kalman filter.
Finally, it is necessary to highlight two significant contributions in the field of floating
caissons, namely, applying classical control techniques [23] and an unscented Kalman filter
(UKF) [24], in which a linear quadratic controller and Kalman filter (KF) are applied. It
should be noted that the controller proposed in this document differs significantly from
that of paper [23]. The control techniques are different, and different filtering techniques
are used.

For all the reasons mentioned above, the application of an L1 adaptive controller
is proposed in this paper. The application of L1 adaptive control techniques to marine
structures is novel. The proposed control system, which can be seen in Figure 1, is composed
of a combination of adaptive control and a linear quadratic Gaussian control, which is
composed of a linear quadratic control and a Kalman filter. Subsequently, the results
obtained with the proposed controller will be compared with those obtained by other
techniques: classical control, optimal control, and predictive control. The proposed L1
adaptive controller performs correct dynamic positioning and reduces the tension generated
on the lines concerning the other advanced control techniques with which it is compared.
This reduction in line tension leads to an important improvement due to the possibility of
reducing the size of the actuators or reducing their number, with the important economic
and safety repercussions that these actions entail.
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Figure 1. System with L1 adaptive controller for dynamic positioning of caissons and Kalman filter.
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This paper is organized as follows. Section 2 discusses the dynamic model of the
caisson and the Kalman filter. Sections 3 and 4 develop the L1 adaptive controller and
present the simulation results, respectively. The conclusions are drawn in Section 5.

2. Mathematical Representation of the Marine Structure

In the present paper, it is considered that the marine structure published in [23] is the
object of study.

The dynamic model of the caisson, the object of study of this paper, is represented by
the following equation [25]:

(M—i—Aoo)z"c+/K(t—r)x(r)dT+CzC(t) = F(t) 1)

where z:(t) = [x,,2,¢,0, 9] are the position and the Euler angles of the caisson, M is
the mass of the caisson, A is the added mass at infinite frequency, K is the function of
delay and fluid memory effects, C is the hydrostatic restoration coefficient, and F!(t) =
[X,Y,Z,K, M, N] are the external forces and moments, which can include the actuators
and the waves. The caisson’s coordinate system is located in the center of gravity, and is
considered inertial.

Due to the dynamics of this type of structure, which are of large dimensions, and
the procedures that are currently used, the speeds at which these structures move are
low. The following linear approximation of the cited structure is used in this work due to
the low-speed operational conditions of this kind of structure [24]. As a result, the linear
approximation used accurately represents the real dynamics of the system.

Xp(t) = Apxp(t) + Brur(t) )
Yi(t) = Crxp () + Drup(t) ®)
1 0 0 0 0 O
01 0 0 0O
00 0 0 0 O
AL=10 00 0 0 0 )
00 0 0 0O
0O 0 0 0 0 1
by 0 0
0 by O
0 0 0
0 0 0
0 0 bes
CrL = Isxe (6)
Dr = 06x3 )

The terms in the above are as follows:

e A; is the state matrix.

o xp(t) = [xr,yrL,zL,¢1,01, 91" is the state vector. The coefficients of this vector corre-
spond with the position and the Euler angles vector of the linearized model.

* By is the input matrix.

e ur(t) = [Xy, Yy, Ni]T is the input vector. The coefficients of this vector correspond
with the forces in x7, y; and the moment in ;.
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¢ (p is the output matrix.

o yr(t) = [xr,yr, 2L, ¢, 0L, ¢1]" is the output vector.
e D is the feedforward matrix.

* Iy is the identity matrix.

®  0Ogx3 is the zeros matrix.

Kalman Filter

A Kalman filter was implemented to filter the effects of disturbances, especially first-
order waves. As a result, there were no adverse effects on the control system. The state
vector was augmented to include the first-order waves so that the filter could estimate and
filter them.

As indicated in [22], first-order wave effects are small zero-mean fluctuations that
have to be filtered by the implemented Kalman filter for the system to work properly. The
second-order wave effects are the so-called drift effects.

The following mathematical expressions were used to model first-order wave effects:

—2Awy 0 0 —wi 0 0 2Awo0o
0 —2Awy 0 0 -wi O 2Awyo
| O 0 2wy O 0 —wh 2wy
0 1 0 0 0 0 0
0 0 1 0 0 0 0
_|Identityzy3
ylt) = | 1O ) ©

where A is the damping, the gain Ky, is Ky, = 2Awgo, ¢ is the wave intensity, wy is the
wave dominant frequency, w is the Gaussian white noise, the state vector is x;,(f) =
[Xw, Y, Zws Pw, Ow, )T, and the input vector is uy (t) = [wy, wy, wy,0,0, 0]T.

The second-order wave effects are represented by [22,26]:

Xw(t) = Wx (10)
Yo (t) = wy (11)
Nw(t) = WN (12)

where wy, wy, and wy are white noise vectors.
The model with augmented states corresponds to

$7(8) = Aanf(£) + Banttan(t) + w(t) (13)
]/f(t) = Canxf(t) —I—Z)(t) (14)
with
xf (t) - [XL, YL, ZL, ¢Lr 9L/ IPL/ Xw,Yw, Zw, Puw, Gw/ lpw] T (15)
yr(t) = [xpyp 9] " (16)

() = {Z;Eiﬂ 17)

_ | AL Osxe
Aan(t) N {06><6 Aw (18)
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where u,,(t) represents the inputs of the caisson, uy(t) is the wave input vector, y¢(t)
is the KF output vector, v(f) is the noise caused by the sensors (this effect is modeled
with Gaussian white noise), Ay and By, are the state space matrices of the waves, A is the
damping, the gain Ky, is Ky, = 2Aw0, ¢ is the wave intensity, wy is the wave dominant
frequency, and w(t) is the process noise (also modeled with Gaussian white noise).

The algorithm used in the implementation of a KF, as indicated in [20-22], can be seen
in Figure 2.

The matrices
design

QW) R 2A0)

U

Initial
conditions

P(O) = E[(/10) — 3(0)0) — 57000 | = Py

v

The Kalman profit matrix
propagations

K = P(HT(HOR (D

P is the solution of the Riccati

v

Propagation of the estimated state

A = A (DA + Ban (Dt (1) + K(Oly5) — HOIAO]

Figure 2. Algorithm used in the implementation of a KE.
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The Kalman filter has two tuning matrices, Q and R, i.e., the covariance of the states
and the covariance of the noise, respectively. These matrices must be properly tuned for
the correct operation of the filter and the system control. See details on the tuning [20-22].

* R =diagonal(oy,0y,0z,0p,09,0p).
° Q = diagonﬂl(Qx, Qy/ QZ/ ler QG/ Qlli)

where 0y, 0y, 07, 0p, 0y, and oy, are the coefficients of the tuning matrix R, and Qx, Qy, Qz,
Qp, Qo, and Qy are the coefficients of the tuning matrix Q.

3. L1 Adaptive Control

The application and implementation of an L1 adaptive control has been proposed.
For this purpose, the adaptive control approach described in [27,28] was employed, in
combination with a linear quadratic Gaussian (LQG) controller. It was implemented
following the structure described in [18], which utilizes this system for the control of a
nuclear power plant.

With this combination of control systems, the control loop is decoupled from the
adaptation loop. This decoupling has extraordinarily positive effects on control, resulting
in increased robustness by quickly rejecting and compensating for disturbances and de-
viations without losing effectiveness. Starting from the linear approximations of Model
Equations (2) and (3), the corresponding terms for disturbances were added to the mathe-
matical representation:

X1 (t) = Apxp(t) + Br[F:(t) + Fu(t)] +w(t) (23)
yr(t) = Crxp(t) + Dp[Fe(t) + Fu(t)] (24)
ye(t) = yoL(t) + yw(t) +o(t) (25)

where v(t) represents sensor noise, w(t) is the discrepancy between the actual dynamics
of the system and the mathematical representation applied to model it, F,(t) denotes
disturbances related to second-order wave effects, and y; () represents the output of the
model with the corresponding disturbances.

Fo(t) = upgr(t) + ua(t) (26)

where 1R (t) represents the nominal control signals and u,(t) represents the adaptive
control. State Equation (3) can be expressed as follows:

X1 (t) = Amxp(t) + Bum[woua(t) + oq(t)] (27)

where A, = AL — By, K{Q r is the closed-loop system matrix, KR is the control feedback
gain, B,, = By is the input matrix, oy (t) represents the disturbance, and wy is the input
gain matrix of the system, which indicates the cross-coupling between different inputs.

100
wo) =10 1 0 (28)
001

The control consists of two different parts. Firstly, the control corresponds to the
linear quadratic Gaussian controller, and secondly, the control corresponds to the adaptive
control. The control scheme can be observed in Figure 1. Furthermore, the adaptive control
adapts the control based on the projections of disturbances, which in turn were calculated
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using the prediction of future states of the caisson. The prediction block (adaptive control
predictor) in Figure 1 performs the prediction of states:

Jéa(t) = Am(t)fa(t) + Bm(t) (WOua(t) + 6—1(‘%)) (29)

where %,(t) is the estimated state vector of the adaptation part, 7,(t) is the output vector,
By, = B is the input matrix, &1 (t) is the estimated disturbance, and wy is the input gain
matrix of the system, which indicates the cross-coupling between different inputs. Once the
states are estimated, subtraction is performed with filtered states, resulting in the prediction
error, denoted as X.

% = 2a(t) — 27(1) (30)

The projection of disturbances is performed according to [18,28,29] as follows:

01(t) = YProj(61(t), — (%" (£) PuB)") (31)

The projection operator Proj in the previous equation is defined as follows [30]:

Yp, si fo(6) <0 )
. / | fp(0) 20y V <
Proje ) = gy, vy, o :;”Eeiiyvi’;y’;s (32)
PETNVETTV Iy e S Er =28 E by

where V f, represents the gradient of the convex function f,. This is defined as

(g9 +1)0T6 — 02,

(33)
EGQ%MX

fp(60) =
where 0,4y is the norm limit and ¢y is the tolerance in the projection, and Pm is the solution
of the algebraic Lyapunov equation. Finally, Y is the adaptation gain in Equation (3). As
soon as the disturbances have been estimated, a preliminary step is taken to calculate the
intermediate variable 7(s):

A

(s) = woua(s) + 71(s) (34)

where 71(s) = 61(s).
Therefore, the adaptive control law has the following structure:

uq(s) = —KaD(s)(71(s) — Refypp) (35)
where

Reffrp = Ref x Kg (36)

Kg corresponds to the value of the feedforward filter (feedforward pre-filter) in the scheme
shown in Figure 1. The feedforward filter is established so that the total system has the
appropriate conditions for its control with the decoupling of the signals.

Kg = —(CA,'Bm)~! (37)
K, is one of the tuning variables, along with D(s), which was chosen as an integrator.

4. Simulation Results

The simulations carried out in this section were performed to verify the behavior of the
implemented L1 adaptive controller in the dynamic positioning system shown in Figure 1.
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All simulations are related to the caisson. They were conducted in the Matlab-Simulink
environment with a time step of 0.1 s. In the simulation, the reference vector was set to
Ref(t)=[5 m, 4 m, 0.175 rad]”. The Kalman filter matrices were adjusted using
e Q= diag([0.001,1,0.001,1,0.001,1,10'2,1,10'2,1,10'%,10'?])
e R=diag([1073,1073,1073,1073,1073,1073])
The LOR tuning matrices are adjusted as follows:
*  Qror=[6x10',0,0,0,0,0;0,4 x 10%0,0,0,0;0,0,3 x 10'1,0,0,0;0,0,0,4 x 10%,0,0;
0,0,0,0,4 x 10'%,0;0,0,0,0,0,4 x 10%]]
* Rpgr = [12x10%0,0;0,12 x 10,0;0,0,8 x 10°].]
The tuning parameters of the L1 adaptive controller, K,, Y, and ¢, are presented below

in Table 1. The values of the control parameters and the Kalman filter were selected
empirically.

Table 1. Tuning parameters of the L1 adaptive control.

Ka Y £ D(s)
[0,4786,0,3786,0,1] [10,15,12] [0,30,30,3] [s71,571,571]

The wave parameters for all simulations are ¢ = 0.125, wy = 1.2, and A = 0.1,
corresponding to an Hs; = 1m wave height. Please refer to Figures 3 and 4 for visualization.

The control system includes the L1 adaptive controller, composed of the LQG action
combined with the adaptive control, which is able to compensate for the effects of second-
order waves. Moreover, it performs the dynamic positioning properly, as can be seen in
Figures 5-8; the system presents a negligible steady-state error and remains stable during the
whole simulation time. These results confirm the correct operation of the proposed controller.

In addition, the implemented Kalman filter effectively filters out first-order wave
effects, and the adaptive controller predictions and projections provide accurate estimates
of these effects.

The control system generates control signals without large oscillations, as seen in
Figure 9. In addition, these control signals have low values with respect to the maximum
values that [—10,10] can take. Finally, it should be noted that there are no oscillations or
large changes in the tension of the lines, as shown in Figures 10 and 11, which ensures that
the system operates under safe conditions that will contribute to extend the lifetime of the
actuators and improve the overall safety of the system.
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Comparative Analysis of Controller Performance

The validity of the proposed controller has been previously exposed, and it was
possible to see that it was able to position the structure as desired and that the control
signals were acceptable. However, this is not enough to determine its advantages and
disadvantages over other control methods and to establish its preferred application. As a
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result, a comparison of the results of the system with different controllers was carried out.
The applied controllers are as follows:

*  Double loop with a first-order filter (DLFPO). In this controller, two control loops are
implemented: in the first one, an integral action is set to compensate for the effects of
second-order waves, in the second loop, a feedforward network is implemented. For
wave filtering, a first-order filter is implemented. For more information see [24].

¢ Double loop with linear quadratic Gaussian (DLLQG). Two control loops are estab-
lished: in the first one, a proportional and integral action is implemented, and in the
second loop, there is a LQG controller. A Kalman filter is used for filtering. For more
information, see [24].

¢ GSMPC. In this controller, a double loop is implemented with an integral term in the
first loop and an MPC controller that switches depending on the draught. A Kalman
filter is implemented for wave filtering.

¢ L1 adaptive controller, i.e., the proposed controller in this paper. For more information,
see Section 3.

For the comparative study, the systems were each simulated under the same environ-
mental conditions. In this way, the perturbations corresponding to the waves were applied
in the same conditions to all the systems with different controllers. These waves are Hs = 1
m and the wave parameters for all the simulations are ¢ = 0.125, wy = 1.2 and A = 0.1.
Similarly, for all simulations, the reference vector was set to Ref(t) = [5m, 4 m, 0.175 rad]”.

In order to determine which of these controllers generates a better global behavior of
the system, and to observe the improvements between the implemented controllers, certain
parameters were taken into account that are considered of vital importance. These are the
following:

¢  Maximum control signal value, F..

*  Minimum control signal value, F..

¢  Mean error in the last 20 measured values.
e L2 norm of the input, “L,NI”.

The maximum and minimum values of the control signal F. = [X, Y, N¢| are impor-
tant indicators as they determine the actuator forces or tensions in the system. Another
important indicator is the average error over the last 20 values to establish the steady-state
error in the positioning of the structure. It should be noted that the final values of posi-
tioning and control signals are not enough to determine the strengths or weaknesses of a
control system. Other relevant factors include the form and variation in the control signals
throughout the course of the process. It is noteworthy that the changes in the signals are
smooth and do not have extreme values.

To evaluate the smoothness of the control signals, the L2 norm of the input (“L,NI”)
was used, as conducted in [18]. This norm is expressed by the following equation:

(38)

All the values of the parameters established for the comparison should be as small
as possible. That is, the lower these values are, the better the overall performance of the
implemented controller. If we compare the responses of the different controllers in the
minimum and maximum control signal with the parameters indicated corresponding to
the output variable x, output y, and output psi, as shown in Tables 2—4, the following can
be observed:

¢  In the DLFPO controller, the minimum and maximum control signals are completely
saturated in terms of the maximum and minimum values they can take. It is not
acceptable, even if the caisson is properly positioned.
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¢ For the DLLQG controller, the maximum and minimum values of the control signal
are low, which will generate lower tensions than in the previous case.

e  For the GSMPC controller, the maximum and minimum values of the control signal
are considerably lower than those corresponding to the DLFPO controller. However,
when compared to the DLLQG values, the minimum value is slightly lower but the
maximum value is threefold greater than that of the DLLQG.

¢  Finally, the maximum value of the control signals of the L1 adaptive controller is the
lowest of all the controllers, resulting in a significant improvement with respect to the
first DLFPO controller and a considerable reduction with respect to both the DLLQG
and GSMPC controllers. As for the minimum value of the control signal, it is very
close to the value of the GSMPC, which is the lowest of all.

Table 2. Comparison of results between controllers in x.

Minimum Control Signal Maximum Control Signal
DLEPO [-10,10] —10 10
DLLQG —1.2586 1.0421
GSMPC —0.9785 3.5327
L1 adaptive —1.0604 0.5673

Table 3. Comparison of results between controllers in y.

Minimum Control Signal Maximum Control Signal
DLFPO [—10, 10] —-10 10
DLLQG —1.0939 1.0524
GSMPC —1.2348 3.3109
L1 adaptive —0.2714 1.4020

Table 4. Comparison of results between controllers in .

Minimum Control Signal Maximum Control Signal
DLFPO [-10, 10] —-10 10
DLLQG —0.1404 0.1099
GSMPC —0.1429 0.6367
L1 adaptive —0.1087 0.0730

Then, a comparison was made between the results of the different controllers to deter-
mine whether there was a steady-state error and whether the control performed smoothly.
For this purpose, the mean value of the last 20 positioning error data and the value of Ly NI
defined in the Equation (38) were compared. The results are presented in Tables 5-7. It
can be seen that the only deviation that was significant is the one corresponding to the
DLFPO controller in the y position, which deviated, on average, by about 2 cm. The rest of
the position errors in the x position, y position, and ¢ position were negligible, so it can be
considered that there was no steady-state error.

Furthermore, concerning the L, NI parameter indicating the control smoothness, the
value corresponding to the DLFPO controller stands out logically as being significantly
higher than the others. After this, the following controller with lower values is the GSMPC.
Finally, it should be noted that both the DLLQG controller and the L1 adaptive con-
troller have low values for L, NI, which indicates that the changes in the control signals
were smooth.
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Table 5. Comparative results among controllers in x.
LoNI Mean of Last 20 Error Values
DLFPO 550.6858 —0.0711
DLLQG 604.7243 —0.0052
GSMPC 389.6516 0.0012
L1 adaptive 603.5513 6.9649 x 104
Table 6. Comparative results among controllers in y.
LyNI Mean of Last 20 Error Values
DLFPO 1.9105 x 103 0.0243
DLLQG 548.6874 2.2444 x 1074
GSMPC 494.8805 —0.0060
L1 adaptive 541.9731 0.0015
Table 7. Comparative results among controllers in .
LoNI Mean of Last 20 Error Values
DLFPO 1.5528 x 103 —2.0273 x 1074
DLLQG 98.3379 -1.0193 x 10~*
GSMPC 97.5285 —0.0014
L1 adaptive 95.9799 3.6386 x 107°

The L1 adaptive controller and the DLLQG controller correctly positioned the caisson.
There were no steady-state errors or process oscillations that could be considered significant.
The maximum and minimum values of the control signals are low and the control is smooth,
according to the results for L, NI. For all the abovementioned, it was determined that there
was a significant improvement with this controller when compared to the results provided
by the rest of the controllers. To complete this investigation, a Monte Carlo study of
200 realizations was carried out for the dynamic position of the drawer in the x = 0 and
y = 0 positions of the DLLQG, L1 adaptive, and DLFPO controllers. The response of
the DLFPO controller, which can be observed in Figure 12, exhibited a large dispersion
compared to the response of the DLLQG controller in Figure 13 and that of the L1 adaptive
controller in Figure 14. Finally, it was observed how the responses of the DLLQG and
adaptive L1 controllers were precise and accurate. Higher precision and accuracy was
observed in the L1 adaptive controller, as the points are more concentrated and nearer to
the target.
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Figure 12. System with DLFPO controller. Monte Carlo study of 200 realizations.
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Figure 14. System with L1 adaptive controller. Monte Carlo study of 200 realizations.

5. Conclusions

In this paper, the application of the L1 adaptive control technique for the dynamic po-
sitioning of marine structures was proposed. Several simulations of the proposed controller
and other controllers, including LQG and MPC, were carried out. The application of the
proposed controller shows that it is able to correctly position the caisson, compensating for
the second-order effects of the waves and performing correct filtering of the disturbances
corresponding to the first-order wave effects. The control signals do not present oscillations
or saturations, which inherently results in an increase in the strength of the system as far as
the safety of the operations is concerned. Monte Carlo studies were carried out to evaluate
the precision and accuracy of the application of the different control techniques. It can be
concluded that the proposed controller results in higher precision and accuracy than the
other controllers. A fundamental consideration in the control systems is the magnitude
and oscillations in the control signals that directly result in actuator tensions. The control
signals were compared by employing statistical parameters and characteristic parameters.
The L1 adaptive controller generates, in global terms, control signals of lower absolute
value than the other controllers. This is a significant contribution concerning other con-
trollers, since lower control signals will generate lower tensions in the lines. As a result, the
equipment and actuators involved in the operations could be downsized. Another effect
of the decrease in line tensions is the increase in the life of the equipment involved in the
operations, as they have to work in less demanding conditions. It can be concluded that the
application of the proposed L1 adaptive controller is a significant advancement in this area.
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The following abbreviations are used in this manuscript:

DP Dynamic positioning

KF Kalman filter

LQG Linear quadratic Gaussian control
LOR  Linear quadratic regulator

MPC  Model predictive control

UKF  Unscented Kalman filter
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