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Abstract

The confinement properties of the diffusive running sandpile are character-
ized by tracking the motion of a population of marked grains of sand. It
is found that, as the relative strength of the avalanching to the diffusive
transport channel is varied, a point is reached at which the particle global
confinement time and the probability density functions of the jump-sizes
and waiting-times of the tracked grains experience a sudden change, thus
revealing a dynamical transition, that is consistent with previous studies
(Newman DE et al., Phys Rev Lett 2002;88(20):204304). Across this transi-
tion, the sandpile moves from a regime characterized by self-similarity and
memory, where avalanches of all possible sizes dominate transport across the
system, to another regime where transport is taken over by near system-size,
quasi-periodic avalanches. Values for the fractional transport exponents that
quantify effective transport across the sandpile prior to the transition are
also obtained.

Keywords: Diffusive Sandpile; tracer particles; Self-Organized Criticality;
fractional transport.

1. Introduction

Many studies have relied on the concept of self-organized criticality [1]
(SOC) as a possible explanation of the overall dynamics of a wide variety of
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physical and biological systems [2, 3, 4, 5, 6, 7, 8, 9]. All of them justify this
hypothesis by the presence of the basic ingredients of SOC. Namely, an open
driven system with a local instability threshold that drives local transport
only when overcome, and a large disparity between the temporal scales as-
sociated to the drive and the instability relaxation. It is not difficult to find
systems that fit into this type of description, at least approximately. The
transport processes in them, often dominated by avalanches, are intrinsically
bursty and exhibit a strong non-diffusive nature. In steady state, SOC sys-
tems exhibit properties such as spatial self-similarity, temporal persistence
(memory effects) and long-term correlations, all typical of critical points at
thermodynamical equilibrium. However, these properties appear here with-
out any need for fine-tuning. Thus, its name: self-organized criticality.

The running sandpile automaton [10, 11] embodies many of the features
often associated with SOC. It appeared simultaneously with the proposal
of self-organized criticality and provides a simple paradigm to illustrate its
dynamics. Many versions of the sandpile have appeared over the years, each
tailored to specific applications. Of particular interest to us is the so-called
diffusive running sandpile, first formulated in the context of magnetically con-
fined fusion plasmas [12] with the purpose of understanding the dynamics of
turbulent transport in situations where near-marginal turbulence coexisted
with other types of (diffusive) transport [13]. The transport characteristics
of the diffusive sandpile have been characterized in a number of ways over
the years [14, 15, 16]. Its most remarkable features are that: 1) SOC fea-
tures are maintained for finite, albeit small, strengths of the diffusive channel
relative to the avalanche channel and 2) that, at larger values of their rela-
tive strength, a sudden transition takes place in which transport is no longer
dominated by SOC-like avalanches, but by near-system wide global discharge
events. It has been shown that this dynamical transition can be character-
ized in terms of a parameter that essentially measures the average roughness
of the sandpile profile allowed by the transport taking place in the system
[14].

In this paper we probe the nature of transport in the diffusive running
sandpile by tracking the motion of a selected group of marked (or tracer)
grains of sand. The trajectories of these grains are used to calculate the
average particle confinement time, a well-known figure-of-merit for confine-
ment quality in magnetically confined plasmas, as well as their jump-size and
waiting-time probability density functions (pdfs). It will be shown that the
transport dynamics can be well captured by these diagnostics both prior and
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after the transition. Furthermore, the tracer data is also used to validate an
effective transport model based on fractional transport equations [17] for the
regime prior to the transition, that is the relevant one for confined plasmas,
as well as to estimate the optimal values of the transport exponents that
define this model.

The paper is thus organized as follows. First, the diffusive sandpile is
reviewed in Sec. 2 . Then, in Sec. 3, the rules that govern the motion of the
tracers are presented and discussed. These rules are somewhat subtle since
the diffusive channel does not distinguish individual grains. Next, the main
results of the paper regarding tracer motion will be shown and discussed
in Sec. 4. In 5, an effective transport model is validated and built for
the diffusive sandpile steady state prior to the transition. The resulting
transport equation contains fractional derivatives in space and time. The
corresponding fractional exponents are also quantified numerically. Finally,
some conclusions will be drawn in Sec. 6.

2. The diffusive sandpile model

The diffusive sandpile [12] is an extension of the standard one-dimensional
running sandpile, but contains an additional diffusive transport channel whose
intensity can be tuned relative to the avalanche-like one. The domain con-
sists of L cells or sites, numbered from x = 1 to x = L. The variable
h(x, i) represents the height of sand at cell x at iteration i of the cellular
automata. The evolution of the automata consists on randomly adding, at
the beginning of each iteration, a grain of sand to every cell with proba-
bility P0. Then, the avalanche dynamics are introduced by prescribing a
critical slope value, −Zc, Zc > 0. Whenever the absolute value of the slope
(|Z(x, i)| = |h(x+ 1, i)− h(x, i)|) exceeds this threshold (|Z(x, i)| > Zc), Nf

grains of sand are moved from the unstable cell to the next one. All sandpile
cells are checked for instability once per iteration.

Diffusive transport is introduced in the following way. A net diffusive flux
is calculated as Γd(x, i) = −D0 [Z(x− 1, i)− Z(x, i)] = Γ+

d (x, i)−Γ−d (x, i) at
each cell and iteration (see Fig. 1). This net flux is just the difference of the
amount of sand that diffuses out of the previous cell at x − 1 according to
Fick’s law, Γ+

d (x, i) = −D0Z(x − 1, i), and the amount of sand leaving the
current cell diffusively to the next cell at x + 1, Γ−d (x, i) = −D0Z(x, i). D0

is a diffusion coefficient that is prescribed at the beginning of the run.
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Figure 1: (a) Diagram explaining the one-dimensional diffusive sandpile automaton rules
(the corresponding cell is filled with diagonal lines). Unlike the classical (non-diffusive)
sandpile, a diffusive flux is incorporated to each cell now (see red and blue arrows). (b)
Sketch showing the active tracer regions of the two formulations discussed in text. Type
A tracers are confined in the top Nf positions in the cell. Type B tracers can be anywhere
in the cell. The dark grey regions represent the possible locations of tracked particles for
both cases.

Finally, the sandpile has a closed boundary at x = 1 (no particles enter
from the left), and an open boundary condition at x = L (particles reaching
that cell are removed). The condition Nf > P0L−D0Za has to be fulfilled in
order to avoid the sandpile become overdriven. Here, Za = Zc −Nf/2 is the
averaged absolute value of the slope at the bottom edge cell [16, 18], x = L.

Under a constant drive (throughout this paper, P0 ∈ [10−4 − 10−3] has
been used), the diffusive sandpile eventually reaches a steady state in which
the incoming sand will balance (on average) the edge outflux. The diffusive
sandpile domain is split into two regions connected at the intermediate cell
xt. The value of xt is estimated as the outermost position at which the
integrated source in the range [0, xt], i.e., P0xt, can still be entirely removed
by diffusion while keeping the gradient below the minimum value accessed
during avalanche activity in the SOC steady state [16], i.e., |Z(xt)| = Zc−Nf .
That is,

P0xt ' D0(Zc −Nf ) =⇒ xt '
D0(Zc −Nf )

P0

. (1)

Zc−Nf is used as the limiting value for the absolute value of the slope at xt
because it prevents any avalanche activity inwards: even if a toppling in the
adjacent (to the right) cell happens, avalanche transport will be truncated at
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xt since, in such a case, |Z(xt, i+ 1)| = |Z(xt, i)|+Nf = Zc−Nf +Nf = Zc,
which is just the limit to avoid avalanche propagation. In the region x < xt,
the absolute value of the slope is below Zc and transport is entirely carried
out through the diffusive channel. In the region x > xt, transport is carried
by both the diffusive and avalanche channels. The estimated values for Za
and xt agree well with simulations.

3. Advancing tracers in the diffusive sandpile

All marked sand grains are advanced simultaneously with the rest of sand
grains in the sandpile. They are however treated differently in the sense that
all tracers are transparent, not being accounted for when a cell is checked
for instability or when updating the local sandpile height. Since the sandpile
rules do not distinguish individual grains, the trajectory of a single tracer
particle can in principle be defined in various ways, with the only restriction
that they must be compatible with the sandpile governing rules. In this
work, we examine only those grains that are contained within an active layer
of depth Nf at the top of each cell, since we assume that those are the ones
that are moved to the next cell as a result of an avalanche or diffusion [see
dark grey regions in Fig. 1(b) for type A tracers].

If an avalanche happens and Nf grains must be moved to the next cell,
they will necessarily be the ones closer to the surface of the cell. This sit-
uation resembles what takes place in a real sandpile, where only the grains
closer to the surface are transported down the slope, whilst those more deeply
buried stay trapped for very long times. However, other rules might be more
appropriate for other systems. For instance, one could assume that any grain
at a particular cell could move to the next cell as a result of an avalanche
or of diffusive transport, independently of its relative depth within that cell
[see dark grey regions in Fig. 1(b) for type B tracers]. We will not examine
this case in this paper, though.

Trajectories for tracked grains

We proceed next to define exactly how tracers will be advanced. Each
marked grain, labeled by the superindex m, is positioned at some initial
time, tm0 , at a prescribed cell, xm0 . Within that cell, their depth from the
top is set to dm0 = uNf , where u is a random number uniformly distributed
in [0, 1]. As the sandpile evolves, the position, xm, and depth, dm of each
marked grain are updated once the drive phase has been completed and the
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stability for each cell checked. The specific rules used have been chosen to be
consistent with both the macroscopic avalanching or diffusive channels that
may transport them. They are as follows:

I) Avalanche transport [19, 18]:

(1) If the current cell is stable (|Z| < Zc) and no grains of sand have
been added during the driving phase, the tracer remains at the
same cell,
xm(k) = xm(k − 1),
and its depth remains unchanged,
dm(k) = dm(k − 1).

(2) If the current cell is stable but one grain of sand has been dropped
on it in the driving phase, the tracer remains in the same cell,
xm(k) = xm(k − 1),
and its depth is increased by one,
dm(k) = dm(k − 1) + 1.

(3) If the current cell is stable, but the previous one is unstable and
moves Nf grains over the current cell, the tracer remains in the
same cell,
xm(k) = xm(k − 1),
and its depth is increased by Nf ,
dm(k) = dm(k − 1) +Nf .

(4) If the current cell is stable, the previous one is unstable and, in the
driving phase, one grain has fallen on the current cell, the tracer
remains in the same cell,
xm(k) = xm(k − 1),
and its depth is increased by Nf + 1,
dm(k) = dm(k − 1) +Nf + 1.

(5) If the current cell is unstable (then Nf grains are moved to the fol-
lowing cell) and no grains have been dropped in the driving phase,
then,

i. if the depth of the tracer is less or equal than Nf , d
m(k− 1) ≤

Nf , the tracer moves to the following cell,
xm(k) = xm(k − 1) + 1,
and its depth is initialized with a random value uniformly dis-
tributed in [0, Nf ],
dm(k) = uNf .

6



ii. if the depth of the tracer is greater than Nf , d
m(k − 1) > Nf ,

the tracer remains in the same cell,
xm(k) = xm(k − 1),
and its depth is decreased by Nf ,
dm(k) = dm(k − 1)−Nf .

(6) If the current cell is unstable (then Nf grains are moved to the
following cell) and one grain has been dropped in the driving phase,
then,

i. if the depth of the tracer is less or equal thanNf−1, dm(k−1) ≤
Nf − 1, the tracer moves to the following cell,
xm(k) = xm(k − 1) + 1,
and its depth is initialized with a random value uniformly dis-
tributed in [0, Nf ],
dm(k) = uNf .

ii. if the depth of the tracer is greater than Nf − 1, dm(k − 1) >
Nf − 1, the tracer remains in the same cell,
xm(k) = xm(k − 1),
and its depth is decreased by Nf − 1,
dm(k) = dm(k − 1)− (Nf − 1).

II) Diffusive transport:

(1) If the net diffusive flux in the current cell is negative and larger, in
absolute value, than the tracer depth, D0d

2h/dx2 < −dm(k − 1) <
0, then the tracer moves to the following cell,
xm(k) = xm(k − 1) + 1,
and its depth is initialized with a random value uniformly dis-
tributed in the range [0,−D0d

2h/dx2],
dm(k) = −uD0d

2h/dx2.

(2) In any other case the tracer remains in the same cell,
xm(k) = xm(k − 1),
and its depth is updated just by adding the corresponding amount
of diffusive flux (which can be a positive or negative amount),
dm(k) = dm(k − 1) +D0d

2h/dx2.

The bottom line is that, only tracers that are at a depth smaller than
Nf from the surface will be moved to the next cell by a passing avalanche.
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The depth of the tracer at its new location will be randomly chosen in the
interval between zero and Nf . The same principle holds for the diffusive
contribution, but with the relevant depth being now −D0d

2h/dx2.

4. Characterization of tracer transport in the diffusive sandpile

In this section, we analyze the transport of these tracers as a function
of the strength of the diffusive channel relative to the avalanching one. It
is worth reminding here that the sandpile domain is naturally split into an
outer part where avalanche and diffusive transport coexist (x > xt), and an
inner part (x < xt) where only the diffusive channel is active. As mentioned
previously, xt ' D0(Zc −Nf )/P0.

4.1. Global confinement time

The sand confinement time is defined as the ratio of the total amount of
sand confined in the sandpile in a steady state to the total external power:

τ global =

∫ L
0
h(x)dx

P0L
, (2)

Physically, the global sand confinement time estimates the average time that
a grain of sand spends in the pile before exiting through its bottom edge.
This is a very important quantity in many applications. One such case are
magnetically confined plasmas, where the global energy confinement time
is the most important figure-of-merit to characterize the performance of a
confining device [15]. In fact, understanding how the energy confinement
time derives from the underlying transport dynamics has been one of the
most active areas of research in this field for decades. Naturally, the sand
confinement time is a function of the parameters that define the sandpile:
L,Zc, Nf , P0 and D0. It is straightforward to estimate it analytically [19, 15].
Indeed, the steady state profiles are, for xt ≤ L,

h(x) = −P0x
2

2D0

+ ZaL−
Z2
aD0

2P0

, 1 ≤ x ≤ xt < L,

h(x) = Za (L− x) , xt ≤ x ≤ L,

(3a)

(3b)

and for xt ≥ L,

h(x) = − P0

2D0

(
x2 − L2

)
, 1 ≤ x ≤ L. (4)
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Using Eq. (2) and assuming that L � 1, P0 � 1 and Nf � Za, one easily
finds,

τ globalI ≈ ZaL

2P0

− D2
0Z

3
a

6P 3
0L

, xt ≤ L,

τ globalII ≈ L2

3D0

, xt ≥ L.

(5a)

(5b)

These formulas agree very well with the numerical values obtained with the
diffusive sandpile (see Fig. 2).
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Figure 2: Tracer confinement times as a function of D0 for different sandpile lengths. Full
lines and filled circles show the analytic values and the numerical estimations for τglobal.
Vertical lines show the limiting values for the diffusion coefficient, Dl

0, for which xt ≥ L.
The parameters used for all sandpile simulations are: Zc = 26, Nf = 12 and P0 = 10−3.

4.2. Tracer particle confinement time

From the point of view of a grain, however, the confinement time is defined
as the average time needed by the grain to traverse the sandpile:

τ tracer = 〈Ttr〉 . (6)

We will refer to it also as the transit time.
Since the width of the active layer is Nf at any cell, as mentioned previ-

ously, up to Nf different tracers can be initialized at a single cell. Thus, in
order to gather meaningful statistics (that require many more tracers than
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Nf ), we need to initialize tracers at various cells which implies that the dis-
tances that separate them from the sandpile edge are quite different. In order
to make later comparisons among different realizations more meaningful, we
have introduced a normalized tracer confinement time:

τ̄ tracer =
L− 1

L− 〈x0〉
τ tracer, (7)

where L is the number of cells of the sandpile and 〈x0〉 is the average ini-
tial position. Since our tracer initializations are all random and uniformly
distributed in the range [xmin

0 , xmax
0 ], 〈x0〉 =

(
xmin
0 + xmax

0

)
/2.

Figure 3 shows the normalized confinement times obtained from many
simulations as a function of the diffusivity parameter, D0. Two different
types of initialization have been used in these simulations. First, in Type I
initializations all tracked grains are initialized within the upper 10% of the
cells. In type II runs, tracked grains are initialized within the full domain,
[1, L]. The normalized confinement time obtained in each case (represented,
respectively, by open and closed circles in Fig. 3) is similar, but not iden-
tical. The first thing to note in Fig. 3 is that, for diffusivities D0 < 10−6

the confinement time is roughly independent of the diffusivity, but scales
with the sandpile size. In particular, it can be seen that τ̄ tracer ∼ L0.4,
that is consistent with the expected value for the non-diffusive sandpile [18],
previously found to follow the scaling law τ̄ tracer ' 0.34L0.4Nf/P0. Trans-
port in this regime exhibits all the classical SOC characteristics: avalanches,
self-similarity, memory, and so on, that seem completely unaffected by the
presence of finite diffusion.

An abrupt change in scaling is observed at around D0 ∼ 10−6, for the
parameters used. The confinement time is suddenly reduced, becoming in-
dependent of both diffusivity and system size. Such a dynamical transition
has been known for quite some time [14], and is apparently controlled by
the critical parameter κ = D0N

2
f /P0, a combination of the drive, diffusion

and overturning size. The physical meaning of κ is related to the average
roughness of the sandpile profile, quantified in terms of the variance of the
height profile [20]. In our simulations, the change in behaviour takes place at
κc ∼ 22−24, consistent with the critical value (κc = 23) reported in previous
studies [14, 16]. It is also worth mentioning that the transition takes place
even when the fraction of transport diffusively driven out of the sandpile,
D0Za, is still much lower than the integrated source, P0L.

Transport becomes markedly different above the transition (i.e., for D0 >
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Figure 3: Normalized tracer confinement times as a function of D0 for different sandpile
lengths and initializations: red (L = 10000), green (L = 3000), blue (L = 1000) and cyan
(L = 300). Hollow symbols stand for initializations of the type I, whilst filled symbols
stand for initializations of the type II (see in the text). The parameters in common for all
simulations were: Zc = 200, Nf = 30 and P0 = 10−4.

DII
0 := D(κc) = κcP0/N

2
f ). It is now dominated by large quasi-periodic

events that have an extent that covers almost completely the outer part
of the sandpile, x > xt. The frequency of these large events, Pq, can be
estimated by balancing the integrated source, P0L, and the flux leaving the
last cell [16]:

P0L ' D0Za + 2 (L− xt)NfPq. (8)

The first and second terms in the r.h.s. of Eq. (8) represent the contributions
of the two active transport channels: the diffusive one and that related to the
large, quasi-periodic events. Inserting the previously obtained expressions for
Za and xt, it is found that:

Pq '
P0

2Nf

(
1− (D0/P0L)(Zc −Nf/2)

1− (D0/P0L)(Zc −Nf )

)
, (9)

that matches very well with the frequency observed in the simulations. It
should be noted that, for Zc � Nf , Pq ≈ P0/2Nf , becoming independent of
the diffusivity D0. The average confinement time in this regime seems to be
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well approximated by τ̄ tracer ∼ P−1q /2 ∼ Nf/P0, a reflection of the fact that
tracers will leave the sandpile after the lapse of time that passes from the
moment when they are added to the sandpile and the triggering of the next
quasi-periodic event.

It is also observed in Fig. 3 that the confinement time first increases at
the end of the quasi-periodic avalanche region (region II), and then decreases
again. The values of D0 at which the increase and later decrease take place
both increase with the system size. The explanation for this behaviour has to
do with the dependencies of the transition point, xt = D0(Zc−Nf )/P0, that
increases with diffusivity. Since tracked grains are always initialized at the
same locations, it happens that, as the value of D0 is raised, an increasingly
large number of tracers will initially fall within the inner region, where only
the diffusive channel is active. As a result, these grains need a longer time to
reach the outer region dominated by the quasi-periodic events. The longer,
the larger the sandpile is. Since the confinement time is the sum of the time
needed by the tracer to traverse the inner or diffusive region, τ̄ tracerd , plus the
time needed to traverse the outer region, τ̄ tracerqp = Nf/P0, the average time
needed to exit the sandpile via quasi-periodic events becomes:

τ̄ tracer = τ̄ tracerd + τ̄ tracerqp = τ̄ tracerd +
Nf

P0

. (10)

Finally, the last scaling region seen in Fig. 3 corresponds to the fully
diffusive region (region III). That is, when D0 is sufficiently large so that
xt ≥ L. Clearly, the minimum diffusivity value needed scales linearly with L
since it must satisfy:

L ∼ DIII
0

P0

(Zc −Nf )→ DIII
0 =

P0L

Zc −Nf

. (11)

For D0 > DIII
0 , only the diffusive transport channel is active. In this region,

the tracer confinement time increases linearly with L, and scales as D
−2/3
0 .

This is different from the expected D−10 for pure diffusive processes, but is
only due to the specific set of rules we have chosen to advance the tracked
grains: only those located in the active layer of each cell are affected by
avalanches and/or diffusion, whilst the rest of regular particles remain at rest
(pure diffusive scalings would have indeed been recovered if tracked particles
had be chosen from within the full cell population instead!). The tracer
confinement times also exhibits a peak at the transition between regions
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II and III (D0 = DIII
0 ) that deserves an explanation. In contrast to the

case D0 < DIII
0 , in which the distance the tracers have to travel diffusively

increases proportionally with increasing D0 (this distance is equal to xt− x0
and xt is proportional to D0), in the case D0 ≥ DIII

0 , the distance that tracers
have to travel diffusively does not increase with D0, since now xt > L and,
therefore, the distance the tracers have to travel diffusively is L − x0, no
longer dependent on D0. In these conditions, the confinement time decreases
with increasing diffusion. As a side effect, a sudden disappearance of the
outer region takes place, that requires that the Nf/P0 term must be dropped
from τ̄ tracer in Eq. (10).

4.3. Probability distribution function of jump-sizes

In the standard running sandpile (without diffusion), one can easily define
the jumps carried out by a tracked grain as the number of cells advanced as a
consequence of an avalanche that moves it down the slope. Waiting-times for
the same grain are defined as the periods of time in which the grain remains
at rest. In the diffusive sandpile, however, things are not so clear, since grains
could still be moved by diffusion almost continuously. In order to facilitate
the comparison with the standard running sandpile, we have considered that
a jump starts in the diffusive sandpile when a tracked grain first changes
its position as a consequence of a relaxation event, and ends when it is no
longer transported by the ensuing avalanche. The size of the jump is thus
given by the total number of cells traversed during the avalanche (in the
same vein, a waiting-time will be defined in the next section as the number
of iterations between two successive jumps, not by the extent of rest periods).
Figure 4 shows the jump-size pdfs obtained for simulations with low values
of D0 (region I in Fig. 3) and type I initializations (i.e., in the first 10% of
the sandpile cells). These results agree with those obtained for the classical
running sandpile (D0 = 0), that were characterized by self-similar, critical
dynamics [21] (since the tail of the pdfs decay with exponents p(s) ∼ s−(1+α)

with 0 < α < 1), that are only limited by the maximum jump size imposed
by the finite domain of the sandpile.

Beyond the transition (i.e., for DII
0 < D0 < DIII

0 ), transport becomes dom-
inated by near system-size, quasi-periodic avalanches previously described.
Figure 5(a) shows the pdfs of the jump-sizes obtained for simulations with
values of D0 within region II of Fig. 3. Here, xt ranges from 19 to 7140. For
tracers initialized within the outer region, the shape of the pdf is exponential
up to jump-sizes of the order of L− xmax

0 . Then, it becomes flattish [see Fig.
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Figure 4: Pdfs for the jump-sizes of the tracked particles as they move across a diffusive
sandpile. All values shown for D0 are within region I in Fig. 3. Other parameters used
are: L = 10000, Zc = 200, Nf = 30 and P0 = 10−4. Power-law fits over the range of
interest are also included.

5(b)], and ends with a peak at jump size L− xt, vanishing for larger values.
Clearly, any trace of self-similarity is now gone.

The explanation of this shape is relatively simple. First, one needs to
remember that the dynamics are diffusive for x < xt, whilst for x > xt
transport is governed by large periodic events that empty the active layer
in the interval [xt, L]. Any tracked grain initially located at x0 > xt will
execute a single jump of length L− x0 as it is carried out of the system by a
quasi-periodic event. As a result, the distribution of jump sizes will be flat
between L − xmax

0 and L − xt (i.e., the minimum and maximum allowable
values for any jump starting at any x0 > xt). The peak at jump-size L− xt
is due to the tracked grains initialized instead at x0 < xt. These particles
must first be moved diffusively to xt. Once there, they will execute a single
jump of size L−xt as soon as they can be transported out of the system by a
quasi-periodic event. Clearly, jumps larger than L−xt are not possible since
they are limited by the size of the outer region. Finally, the exponential
shape observed for jump-sizes up to L − xmax

0 corresponds to the smaller-
size avalanches that take place in between periodic events. These avalanches
are triggered randomly, a consequence of the continuous smoothing of the
profiles carried out by diffusion in between quasi-periodic events, as pointed
out elsewhere [14].

The behaviour of the jump-size pdfs for ∆x < L− xmax
0 is well modelled

by exponential functions of the type P (∆x) = A exp (−∆x/∆xc), where
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Figure 5: (a) Pdfs for the jump-sizes of the tracked particles as they move across a diffusive
sandpile. All values shown for D0 are within region II in Fig. 3. The dashed region in (a)
has been enlarged in (b) to better appreciate the different domains of the pdfs explained
in the text. (c) Characteristic scale length for tracer jump-size pdfs when ∆x < L− xmax

0

as a function of D0. (d) Position of the peak in the jump-size pdf coming from simulations
(circles). The theoretical prediction, ∆xmaxL− xt, is also plotted (dashed line). The rest
of the parameters used are the same as in Fig. 4.

∆xc is a scaling length for avalanches triggered in between quasi-periodic
events. Exponential fits are shown in Fig. 5(a) as dashed, red lines matching
quite well with the original pdfs. Figure 5(c) shows that the dependence
of the exponential scaling length with diffusion is given by ∆xc ∼ D−10 .
Finally, Fig. 5(d) shows the scaling of the maximum allowable tracer jumps
(i.e., the position of the peaks in jump-size pdfs) with D0. The numerical
results coming from simulations agree with the theoretical prediction given
by ∆xmax = L− xt = L−D0(Zc −Nf )/P0.

For D0 > DIII
0 , both avalanches and quasi-periodic relaxations disappear

(indeed, since xt > L!) and transport of tracers is purely diffusive across the
whole sandpile.
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4.4. Probability distribution function of waiting-times

We proceed now to discuss the pdfs obtained for the waiting-times be-
tween successive jumps of the tracked grains. Figure 6(a) shows the pdfs
obtained for a selection of the simulations done for D0 < DII

0 (i.e., inside of
region I in Fig. 3) and type I initializations, using the same parameters as
in the previous section. All pdfs exhibit extended power-laws with tails that
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Figure 6: Pdfs for waiting-times of sand particles moving across a diffusive sandpile. In
(a), all values for D0 are in the range covered by region I in Fig. 3. Power-law fits over
the range of interest are also included. In (b), all values for D0 are in the range covered
by region II in Fig. 3. The rest of the parameters in common in (a) and (b) were the same
as in Fig. 4.

roughly decay as ψ(w) ∼ w−1.5, very reminiscent of the pdfs obtained for
the standard running sandpile (i.e., with D0 = 0). This behaviour is thus
indicative of the presence, for D < DII

0 , of the same kind of self-similar, SOC
dynamics. The value of the exponent is also consistent with critical dynamics
[21], that requires ψ(w) ∼ w−(1+β) with β ∈ (0, 1). It is worth noting that,
in contrast to the jump-size pdfs (see Fig. 4), where the maximum size is
limited by the sandpile size L, there is no limitation here for the possible
values of the waiting-times. This is the reason for not seeing any exponential
cutoffs in waiting-time pdfs.

The waiting-time pdfs no longer exhibit power-law tails after the tran-
sition takes place (i.e., for DII

0 < D0 < DIII
0 ), as can be seen in Fig. 6(b).

Instead, there is a well-defined peak at roughly wc ∼ 2.9 × 105 that, when
fitted to a Gaussian law, yields a width value of about σ ' 5.7×104. It turns
out that the location of this peak is very close to the value P−1q /2 ∼ Nf/P0

(equal to 3 × 105 for the parameters used in the simulations), half of the
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inverse frequency of the quasi-periodic relaxations. This was expected since
tracers are being transported out of the sandpile whenever one of these events
take place and, since they can be added to the system at any time, the av-
erage time they have to wait for the next relaxation to take place is half a
period.

A new interesting behaviour is observed as D0 approaches the values for
which the confinement time was seen to ramp up in Fig. 3. The waiting-time
pdf becomes then broader and peaks at times increasingly (with D0) later
than P−1q /2 [see Fig. 6(b)]. The reason must be sought in the tracer initial-
ization used that, for all the runs considered, takes place at values of x0 ∈
[1, xmax

0 ] = [1, 1000] < xt, as discussed previously (for D0 = 210 × 10−5 =⇒
xt = 3570 and for D0 = 420 × 10−5 =⇒ xt = 7140). All tracked grains are
thus initialized within the inner region, where only the diffusive transport
channel is active. As a result, these grains have to travel initially only via
diffusion, which increases the values of their waiting-times well beyond the
maximum calculated for grains that are initialized within the interestig re-
gion, given by w � wmax = P−1q ≈ 6 × 105. Additionally, the higher the
diffusion, the greater the broadening of the pdf.

5. Effective transport models

In a recent work [18], we showed that the fractional transport equation
given by,

∂n

∂t
= 0D

1−β
t

[
Dα,β

∂α,1n

∂|x|α,1

]
+ S(x, t), (12)

provides a good effective model for transport across the active region of the
standard (i.e., non-diffusive) running sandpile in its steady state. Here, 0D

s
t

is a Rieman-Liouville fractional derivative [17] of order 0 < s < 1 and start-
point at t = 0, whilst ∂α,1/∂|x|α,1 is the fully asymmetrical, left-sided Riesz-
Feller fractional derivative [17, 22] of order 0 < α < 1. S(x, t) is an external
source of particles. The two fractional derivatives that appear in Eq. (12) are
integro-differential operators that introduce the importance of non-locality
and past-history that are characteristic of self-similar dynamics such as SOC
into the transport description. The fractional exponents α and β must be
determined before the model can be used. Various ways have been proposed
in the literature to do this [23, 24, 25, 13]. Probably, the optimal way is to
estimate them by constructing numerically the propagator of Eq. (12). That
is, the probability G(x, t|x′, t′) of finding a particle at location x at time t if it
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was previously at x′ at time t′. Tracers can be easily used for this task simply
by considering the temporal evolution of an initially localised population of
them. Or the temporal evolution of the distribution of population of tracers
that may not be initially localized, but to whose position one subtracts their
initial location. Once the propagator is available, one can estimate the values
of the exponent α from its asymptotic behavior at fixed time,

G(x, tc|x0, 0) ∼ (x− x0)−(1+α), (13)

for x − x0 � D
1/β
α,β t

β/α
c , and the exponent β from its asymptotic behaviours

at fixed position,

G(xc, t|x0, 0) ∼ tβ, for t� D
1/β
α,βx

α/β
c , (14)

and
G(xc, t|x0, 0) ∼ t−β, for t� D

1/β
α,βx

α/β
c . (15)

In this section we use this technique to estimate α and β for the diffusive
running sandpile for values of D0 below the transition, being that the only
case in which a representation such as Eq. (12) makes any sense (it is also
the regime of interest for applications such as magnetically confined plasmas,
where diffusion remains strongly subdominant to the avalanche channel [18]).

Figure 7(a) shows an snapshot (at fixed time, ∆t = 1.6× 106 iterations)
of the propagators for six different values of D0 < DII

0 . Each propagator
is obtained by ensemble averaging 16 realizations with identical parameters.
In Fig. 7(b), the same propagators have been artificially shifted by multi-
plying the originals successively by powers of 2 from green (×2) to orange
(×32) in order to see more clearly the various regions where fits have been
performed. The power-law fits show that all of them scale similarly. A fit
such as G(x, tc|x0, 0) ∼ (x − x0)−1+α yields an average value for the spatial
exponent of α = 0.70± 0.06.

On the other hand, Fig. 7(c) shows the growth and later decay of the
propagators at a fixed location, ∆x = 100 cells, for the same diffusivities.
Again, each propagator is obtained by ensemble averaging 16 realizations
with identical parameters. In Fig. 7(d), the same propagators have been
shifted again in the same way as in Fig. 7(b) to facilitate their analy-
sis. Power-law fits were performed separately to the “growth” and “decay”
phases, yielding a scaling ∼ t0.62±0.08 for the growth phase, and ∼ t−0.63±0.06

for the decay phase. Since they should theoretically correspond to the same
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Figure 7: (a) Snapshots of the propagator at fixed time (1.6 × 106 iterations), for six
values of D0 below the transition value (D0 < DII

0 ). In (b), the same propagators have
been shifted to better appreciate the power-law regions scaling as p(∆x) ∼ ∆x−(1+α).
In (c), the growth and later decay of the propagator at fixed location (∆x = 100) is
plotted as a function of time, for six values of D0 below the transition value. In (d), the
same propagators have been shifted to better appreciate the power-law regions scaling as
p(∆t) ∼ ∆t±β . The rest of the parameters used were the same as those in the runs shown
in Fig. 4.
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value, their average leads to a temporal fractional exponent β ' 0.63± 0.07
below the transition. Figure 8 gathers all the results for both the spatial and
temporal fractional exponents, α and β, from the corresponding power-law
fits of the propagators at fixed time, (∆t = 1.6 × 106 iterations), and fixed
location (∆x = 100 cells).
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Figure 8: Summary of the results found for the spatial and temporal fractional exponents
in the study of the propagator at fixed time (a) and fixed location (b), for the same
diffusivities below the transition value (D0 < DII

0 ) shown in Fig. 7. In (b), full circles
stand for the growing phase of the propagator whilst open circles stand for the decaying
phase.

It is interesting to note that the values of the fractional exponents pro-
vided by the propagator analysis, α ∼ 0.7 and β ∼ 0.6 are not far from
those that respectively describe the decay of the jump-size and waiting-time
pdfs of the tracers, discussed in previous sections. This was expected since
Eq. (12) can be derived [18] as the asymptotic limit of a fully asymmetric
continuous-time random walk [26] defined by a jump-size distribution de-
caying as p(s) ∼ s−(1+α), with 0 < α < 1, and waiting-time distribution
ψ(w) ∼ w−(1+β), with 0 < β < 1.

In regards to the situation above the transition, a fractional transport
model such as Eq. (12) is no longer appropriate. In the range where transport
is dominated by quasi-periodic relaxations, DII

0 < D0 < DIII
0 , there is no

self-similar dynamics of any sort. A better transport model would be to
consider sudden relaxations taking place with frequency P−1q that vacate the
full contents of the active layer of the sandpile. In the fully diffusive region,

20



D0 > DIII
0 , the effective transport model is, naturally, the usual classical

diffusion equation.

6. Conclusions

In this work, we have characterized, by means of a collection of marked
grains of sand whose individual trajectories are recorded and analyzed, the
three different dynamical transport regimes that take place in the diffusive
sandpile as the relative intensity of the diffusive transport channel, with
respect to the avalanche-like transport channel, is increased from zero. If all
other parameters that define the sandpile are kept fixed, the access to each
of the three regimes only depends on the specific value of the diffusivity D0.
If D0 < DII

0 ' κcP0/N
2
f (with κc ' 23), the dynamics are very reminiscent

of the SOC dynamics that govern the sandpile in the absence of diffusion.
Transport could then be described by transport equations based on fractional
differential operators, very similar to the ones used in the absence of diffusion.

For values of the diffusivity DII
0 < D0 < DIII

0 ' P0L/(Zc−Nf ), transport
across the diffusive sandpile becomes instead dominated by quasi-periodic
events, and all traces of self-similarity are lost. We have shown that this
change of dynamics is perfectly captured by the analysis of the tracked grains
trajectories. As a result, effective transport models in terms of fractional
derivatives are no longer possible, since transport is now endowed with well
defined temporal and spatial scales. Namely, the period between events, P−1q ,
and their extension, roughly given by the size of the avalanche region, L−xt.
Finally, for D0 > DIII

0 the transport dynamics of the sandpile become diffu-
sive in the traditional sense, being perfectly described by the usual diffusive
equation.
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