1 A SIMPLE NATIONAL INTERCOMPARISON OF RADON IN WATER

2	
3	Santiago Celaya González ⁽¹⁾ *, Daniel Rábago Gómez(1), Ismael Fuente Merino ⁽¹⁾ , Luis Quindós López ⁽¹⁾ , Núria
4	Bon Carreras ⁽²⁾ , María Trinidad Valero Castell ⁽²⁾ , José Luis Gutierrez Villanueva ⁽¹⁾ , Carlos Sainz Fernández ⁽¹⁾ .
5	
6	⁽¹⁾ LARUC. University of Cantabria. C/Cardenal Herrera Oria s/n. 39011, Santander, Spain
7	⁽²⁾ IPROMA S.L. Department of Quality, Environment and Prevention. Road de la Raya nº46. 12006, Castellón,
8	Spain
9	*Commence diagonation and an a share 124042202207
10	*Corresponding author: celayas@unican.es, phone: +34942202207
12	
12	
17	
14 15	
15	
10	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

31 Abstract

33	Radon-222, a naturally occurring radioactive gas, responsible together with its progeny of
34	around 50% of the average effective dose received by the population, has not been regulated by
35	law until the recent Directive 2013/51 /Euratom. Its transposition into Spanish legislation was
36	made in the recent RD 314/2016, which sets at limit value of 500 Bq·l ⁻¹ for radon-222 in water
37	for human consumption. Intercomparison exercises, such as those carried out by IPROMA SL
38	and the Laboratory of Environmental Radioactivity of the Cantabria University (LARUC) in
39	November 2015 and December 2016, represent the most useful tool available for detecting
40	problems and taking corrective actions necessary for an efficient measurement by part of the
41	laboratories. The participants in these exercises used three techniques: liquid ccintillation
42	counting, gamma spectrometry and desorption followed by ionisation chamber detection.
43	
44	
45	Keywords: radon, water, intercomparison, liquid scintillation counting, gamma spectrometry,
46	ionisation chamber.
47	
48	
49	
50	

53 INTRODUCTION

Radon gas has essentially three isotopes: 222 Rn (T_{1/2}=3.82 d), 220 Rn (T_{1/2}=55.6 s) and 54 219 Rn (T_{1/2} = 3.96 s) (Chu et al., 1999). 222 Rn (hereinafter referred as radon in this manuscript) 55 is a natural radioisotope belonging to the series of ²³⁸U (an alpha particle emitter, 5590.3 keV, 56 with a half-life of 3.82 days). Its two short-lived alpha emitting progeny are ²¹⁸Po (6002.55 57 keV, 3.11 min) and 214 Po (7686.90 keV, 163.69 µs) $^{(2)}$. Exposure to radon and its progeny has 58 an estimated average effective dose of around 50% (1.3 mSv) of the total effective dose received 59 by the general population ⁽³⁾, based on results of the numerous studies conducted in dwellings 60 ⁽⁴⁻⁶⁾. However, little attention has been paid to the radon that is ingested in drinking water, and 61 to the additional risk that arises due to the low transferability of radon from water to air, with 62 an estimated transfer coefficient for dwellings of 10^{-4} (7). 63

Although the dose received by ingestion of water with radon is significantly less than by 64 inhalation of its progeny ⁽⁸⁾, the measurement of radon concentration in water has additional 65 interest in other respects. The radon coming from water contributes very little to the 66 concentration of radon inside dwellings, but it can be significant in certain workplaces such as 67 some thermal spas. In addition, radon gas dissolved in water has proved to be a useful tracer of 68 hydrodynamic processes in aquifers and underground currents ⁽⁹⁾. Being a noble gas, it is not 69 assimilated by any chemical compounds in the environment, but due to its moderate solubility, 70 (0.225 cm³·g⁻¹ at 20 °C), it can be detected in water, especially groundwater ⁽²⁾. Its concentration 71 in groundwater will depend mainly on the radium content of the substrate, the specific surface 72 area of the aquifer, the permeability of the soil and the characteristics of the water itself. When 73 these groundwaters discharge at the surface, the concentration of dissolved radon decreases 74 75 abruptly due to water movement and purification processes. However, where these waters are consumed directly at the point of upwelling, the risk of ingesting radon and its progeny may be 76 significant. 77

There was no limit for radon in the recently repealed RD 140/2003 ⁽¹⁰⁾, which concerned drinking water quality. Thus, the range 100-1000 Bq·1⁻¹ in the EC Directive 2013/51/Euratom of 22 October 2013 represents the first time that a radon limit for drinking water has been set ⁽¹¹⁾. Transposition of this Directive into Spanish legislation was by means of the recent RD 314/2016 ⁽¹²⁾ which sets a limit value of 500 Bq·1⁻¹ for radon in water for human consumption.

The intercomparison exercise reported in this paper, organized by the Radon Group of Cantabria University in collaboration with IPROMA S.L., arose from the need for a quality control for all the national laboratories that measure radon in water. Eleven laboratories participated in November 2015, and 17 in December 2016 (Table 1):

87

88 MATERIALS AND METHODS.

89

90 Sample collection

91

The chosen sampling location was the spa of Las Caldas de Besaya, which has been studied by the Radon Group Cantabria University since the 1980s ^(9,13). The geographical location of the site can be seen in Figure 1.

The spa is located on the banks of the river Besaya in the town of Corrales de Buelna, ~30 km from Santander. These hot springs are characterised by temperatures of 34-37 °C, and are rich in sodium chloride, bicarbonates and nitrates ⁽⁹⁾. A single homogenous water sample was collected from the spa on 23 November, 2016 in a 25-litre container, and taken to the LARUC laboratory where, on the same day, aliquots were transferred to 1-litre low density plastic bottles for shipment to the participating laboratories. These bottle have double stoppers, in order to minimise leaks and the formation of bubbles, which could introduce uncertainty into the participants' measurements. A "protocol" was drawn up by the organisers of the exercise, and sent to each participant. This protocol explained everything necessary for the proper development of the exercise, including implementation a data protection policy that assigned a code to each laboratory to maintain anonymity of results.

Participants received the samples 24-36 hours after sampling, except for the University of
Palmas, where customs clearance took six days, though no incident occurred during shipment
that would have delayed the exercise.

109

110 Measurement techniques

111 The measurement techniques used by the participating laboratories in the intercomparison 112 exercise can be seen in Table 2, which also shows the number of participants using each. Three 113 participants sent results using two different techniques, which is why there were twenty results 114 from only 17 laboratories.

115

116 Desorption technique ²²²Rn in water with ionisation chamber

The equipment used is an AlphaGuard PQ2000-PRO which uses a specific attachment for measuring ²²²Rn in water. By means of a pump, the water is bubbled continuously, which causes desorption of radon from the water and directs it to the detector via a desiccator column. Once inside the detector, the radon enters an ionisation chamber (where a potential of 750V is maintained) flowing over a large-surface fiberglass filter that prevents entry of radon progeny and aerosols. Alpha particles emitted by the radon ionise the air, the cathode attracts the positively charged particles, while the anode attracts the negatively charged ones ⁽¹⁴⁾.

124 To calculate the concentration of ²²²Rn in water, the following equation is used:

125
$$C_{water} = \frac{C_{air} \cdot \left(\frac{V_{system} - V_{sample}}{V_{sample}} + k\right) - C_0}{1000}$$
(1)

where C_{water} is the concentration of ²²²Rn in the water sample (Bq·l⁻¹), C_{air} is the concentration of ²²²Rn in air (Bq·m⁻³) on the AlphaGuard screen, C_0 is the background (Bq·m⁻³) that can be considered 0, V_{system} is the inside volume of the equipment (1117.58 ml), V_{sample} is the volume of the sample (100 ml) and "k" is a factor for the transfer of radon from water to the air, which is a function of temperature ⁽¹⁵⁾.

131

132 *Gamma spectrometry*

This technique is for detecting gamma emissions from soil, sludge, ash, environmental filters and, ultimately, from any sample whose gamma emission falls between 30 and 3000 keV. The equipment used is a HPGe detector. The photons resulting from gamma emissions from the sample enter the active volume of the detector and interact with its atoms. These interactions are converted to electrical pulses that are proportional to the energy of the photons emitted, and which are stored in finite energy increments equivalent over the range of the spectrum ⁽¹⁶⁾.

²²²Rn activity is determined three hours after preparing the bottle with the water sample
 with the count made in the area of the spectrum for ²¹⁴Pb (351.93 keV). This elapsed time that
 is necessary to achieve secular equilibrium between radon and its short-lived progeny (²¹⁸Po,
 ²¹⁴Pb, ²¹⁴Bi and ²¹⁴Po).

143

To calculate the activity due to ²²²Rn in the water, the following equation is used for peak
 ²¹⁴Pb:

$$A = \frac{(N - f \cdot t)}{v \cdot t \cdot P E \cdot E_f} \tag{2}$$

147	where:
148	- A is the radon concentration (Bq·l ⁻¹).
149	- N are the counts.
150	- f is the background in counts per second (cps).
151	- t is the count time (sec).
152	- v is the volume of the sample (litres).
153	- PE is the emission intensity (%).
154	- Ef is the efficiency (cps/Bq).
155	
156	Liquid scintillation counting with alpha/beta separation

The water sample containing ²²²Rn is mixed with a liquid scintillation solution in a transparent vial. The alpha/beta emissions of ²²²Rn and its progeny transfer energy to the scintillator, which releases this energy as photons (measured as light pulses). A distinction between alpha and beta emissions is possible since alpha particles lead to slightly longer light pulses than beta particles.

162 The electrical pulses derived from the photon release is proportional to the radioactive 163 energy emitted. The continuous emission of alpha/beta particles from the radioactive material 164 causes a continuous generation of pulses, so that the counts accumulates progressively ⁽¹⁷⁾.

Equation 3 is used to calculate activity from the ²²²Rn in water (alpha particles) after three hours elapsed time explained above.

167
$$A = \frac{G-B}{Ef \cdot 60 \cdot V}$$
(3)

where A is the activity in $Bq \cdot l^{-1}$; G are the counts per minute (cpm); B is the background in cpm what the equipment counts for a sample prepared with distilled water; Ef is the equipment's efficiency for ²²²Rn, ²¹⁸Po and ²¹⁴Po; V is the sample volume in litres; the inclusion of 60 in the denominator is to transform counts per minutes to counts per second.

172

173 RESULTS AND DISCUSSION

Measurements were returned to the organiser by 14 December. By 22 December, each participant received the report of the exercise showing the results and techniques used by each one (Table 2).

177 Statistical treatment of the measurements by the participants began by discarding data 178 outside of the range median \pm 50% as being incorrect data. By this means, the result from 179 laboratory R04 was eliminated. The most relevant statistics were then calculated, as seen in 180 Table 3.

181 A quantile-quantile plot (q-q plot) was applied to test whether results fit a normal 182 distribution, whereby any deviation from linearity as in Figure 2 implies a non-normal 183 distribution.

184

To establish the consensus statistic for the exercise, an iterative algorithm was applied, according to ISO 13528: 2015, whereby extreme values are given less weight than in a classical treatment of statistical data. This algorithm considers the measurements, of all participants and repositions the extreme values within the interval of acceptable deviation, thus obtaining robust estimators of the consensus value X and the standard deviation σ_{exercise} . As for the objective sigma, σ_{p} , was established as 20%, while for uncertainty μ_{x} , the following equation is applied:

192

193
 where:

 194
 -
$$\sigma_{creative}$$
 is the standard deviation.

 195
 - N is the number of results sent by laboratories

 196
 The statistics of the exercise are presented in Table 4:

 197
 For the determination of the Z_{score} of each participant, the following equation is applied:

 198
 For the determination of the Z_{score} of each participant, the following equation is applied:

 199
 $Z_{score} = \frac{x - \chi}{\sigma_p}$ (5)

 200
 where:

 201
 - x is the measurement provided by each participant.

 202
 . X is the consensus value calculated according to ISO 13528:2015.

 203
 - σ_p is the target standard deviation, set at 20%.

 204
 The Z score values are interpreted as follows:

 205
 The Z score values are interpreted as follows:

 206
 $|Z_{score}| \leq 2$ indicates dubious performance.

 207
 $2<|Z_{score}| \leq 3$ indicates dubious performance and generates an alert.

 208
 Z graphical presentation of the Z scores obtained by each laboratory is given in Figure

 210
 A graphical presentation of the Z scores obtained by each laboratory is given in Figure

 210
 A graphical presentation of the Z scores obtained by each laboratory is given in Figure

 211
 3

 $\mu_{x} = 1.25 \cdot \frac{\sigma_{exercise}}{\sqrt{N}}$

9

(4)

Figure 4 shows the concentrations reported by each laboratory with their respective uncertainties. The red horizontal lines represent the consensus value (112.1 Bq·1⁻¹) and the target standard deviation of \pm 20 % (134.5 and 89.7 Bq·1⁻¹).

As a result of the six-day delay in the delivery of the sample to one of the participants, the organisers decided to do a radon-leak test of the containers used to send samples to the participants. The bottles used in both exercises were made of low density polyethylene (LDPE). The importance of the bottle-material is not significant, other than to know its permeability to radon for future exercises with a reference value (in these exercises were used consensus value).

In order to quantify the leakage λ_{leaks} of the material, a sample of water containing ²²²Rn was divided and stored in two bottles made of different materials, one LDPE plastic and another glass. Samples were taken every 3-4 days and analysed in a liquid scintillation α spectrometer (Triathler 425-034); the results were plotted to observe the decay in the sample over several days. Each graph was fitted to a function of the type:

225

$$A = A_o \cdot e^{-(\lambda radon + \lambda leaks) \cdot t}$$
(6)

227 where:

- A is the final activity of the sample $(Bq \cdot l^{-1})$.
- 229 A_0 is the initial activity of the sample (Bq·1⁻¹).
- 230 λ radon is the decay constant for radon (h⁻¹).
- λ leaks is the constant of the permeability of the material to radon (h⁻¹).

233 This graph (Figure 5) indicates a value of λ_{leaks} of 3.3·10⁻³ h⁻¹ for LDPE, compared to 234 3.5·10⁻⁴ h⁻¹ for glass.

235

236 CONCLUSIONS

237

More laboratories participated in the performance testing in 2016 than 2015, demonstrating a growing interest in measuring ²²²Rn in drinking water. The reason is probably the recent transposition of Directive 2013/51 / EURATOM into Spanish law (as RD 314/2016 of 29 July), establishing for the first time the legally permissible levels of ²²²Rn in drinking water.

This intercomparison exercise by IPROMA and LaRUC, included 17 national laboratories
in 14 provinces, representing 8 of the 17 Autonomous Communities in Spain.

The Liquid Scintillation Counting (LSC) technique, is the most widely used technique by Spanish laboratories specialising in the measurement of ²²²Rn in water (Figure 6). One of the great advantages of this technique is the small amount of sample required for measurements, with the majority of participants using between 6 and 10 ml.

In terms of Z_{score} , the results of the intercomparison exercise (Figure 3), indicate that all the participants produced a satisfactory measurement of ²²²Rn in water, even though (Figure 4), laboratories R04 and R17 presented out of range results with respect to the consensus value ± σ_p . In general, the results of both the 2015 and 2016 exercises, demonstrate the good preparedness of national laboratories for measuring ²²²Rn in water.

255	1	As for the suitability of bottle material used in terms of radon leaks, the results clearly
256	show	that the most suitable material is glass, which gives a λ_{leaks} ten times less than plastic.
257		
258	RE	FERENCES
259		
260	1.	(Chu et al., 1999) S.Y.F. Chu, L.P. Ekström and R.B. Firestone. (1999, February). Table
261		of Radioactive Isotopes. August 10 2015, from http://nucleardata.nuclear.lu.se/toi/
262	2.	Galán López, M., Martín Sánchez, A. and Gómez Escobar, V. Application of ultra-low
263		level liquid scintillation to the determination of 222Rn in groundwater. J.Radioanal.
264		Nucl. Chem. 261(3), 631–636 (2004).
265	3.	Belloni, P., Cavaioli, M., Ingrao, G. and Mancini, C. Optimization and comparison of
266		three different methods for the determination of Rn-222 in water. Sci. Tot.Environ.
267		173/174, 61–67 (1995).
268	4.	Quindós, L. S., Fernández, P. L. and Soto, J. National Survey on indoor radon in Spain.
269		Environ. Int. 17, 449–453 (1991).
270	5.	Quindós, L. S. Un Gas Radiactivo de Origen Natural en su Casa (Santander, Cantabria:
271		Consejo de Seguridad Nuclear y Universidad de Cantabria) (1995) ISBN: 84-87275-59-
272		1.
273	6.	Vázquez, B. F., Consuegra Ávila, F. M., Olaya, M. A. and Fernández, C. S. Técnica de
274		ventilación como medida de rehabilitación frente a la inmisión de gas radón en edificios
275		y su repercusión en la eficiencia energética. Comunicación Congreso Latinoamericano
276		REHABEND 2014 del 1 al 4 abril del 2014. Santander, España (2014).
277		

278	7.	Hess, C. T., Vietti, M. A., Lachapelle, E. B. and Guillemette, J. F. Chapter 5-Radon
279		transferred from drinking water into house air. In: Radon, Radium and Uranium in
280		Drinking Water. Richard Cothern, C. and Rebers, P. A. Eds (Chelsea, MI: Lewis
281		Publishers, Inc) (1990) ISBN 0-87371-207-2.
282 283	8.	National Research Council. National Research Council (US) Committee on Risk
284		Assessment of Exposure to Radon in Drinking Water (Washington, DC: National
285		Academies Press (US)) (1999) 1999. Risk Assessment of Radon in Drinking Water.
286 287	9.	Sainz, C., Rábago, D., Fuente, I., Celaya, S. and Quindós, L. S. Description of the
288		behavior of an aquifer by using continuous radon monitoring in a thermal spa. Sci. Tot.
289		Environ. 543, 460–466 (2016).
290 291	10	de España, G. REAL DECRETO 140/2003 del 7 de Febrero por el que se establecen los
292		criterios sanitarios de la calidad del agua de consumo humano. Madrid: BOE 45. 7228-
293		7245 (2003).
294 295	11	Council Directive 2013/51/EURATOM. Council of the European Union. Council
296		Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the
297		protection of the health of the general public with regard to radioactive substances in
298		water intended for human consumption. Brussels: O.J. EU (2013).
299 300	12	de España, G., REAL DECRETO 314/2016 del 29 de Julio por el que se establecen los
301		criterios sanitarios de la calidad del agua de consumo humano. Madrid: BOE 183.
302		53106–53126 (2016).
303		

304	13. Soto, J., Delgado, M. T., Fernández, P. L., Gómez y, J. and Quindós, L. S. Niveles de
305	222Rn en el Balneario Las Caldas de Besaya. Rev. Sanidad Higiene Públ. 65 (1), 71-
306	75 (1991).
307 308	14. Aquakit. Accessory for radon in water measurement in combination with the radon
309	monitor. Alphaguard, User Manual, Genitron Instruments Germany (1997).
310 311	15. Clever, H. L., u.a. Temperature dependency of the diffusion coefficient 'k'. In: Solubility
312	Data Series, Krypton, Xenon, Radon Gas Solubilities 2. Pergamon Press, Oxford, pp.
313	463–468 (1985).
314 315	16. Fuente Merino, I. Puesta a punto de un equipo de fluorescencia de rayos x portátil con
316	fuentes radiactivas: aplicaciones medioambientales. Tesis Doctoral, University of
317	Cantabria (2015).
318 319	17. Neame, K. D. and Homewood, C. A. Introduction to Liquid Scintillation Counting
320	London, England: (Butterworth & Co) (1974) ISBN: 0-408-70637-6.
321	
322	
323	
324	
325	
326	
327	

328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	
352	FIGURES
353	
354	
355	
356	

Figure 1: Location of Caldas Besaya Spa

Figure 3: Z score of laboratories participating in the exercise

444	
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	TABLES
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	

Table 1: Name and location of the 17 participating laboratories in the intercomparison ofDecember 2016

472	

1	Iproma	Physic-Chemical Laboratory, Castellón 473
2	University of Extremadura	Dept. of Atomic Physics, Badajoz
3	University of Las Palmas de Gran Canaria	Dept. of Physics, Las Palmas
4	Laboratory Labaqua	Alicante 475
5	University Politécnica de Valencia	476 Lab. of Environmental Radioactivity, Valencia
6	University Politécnica de Cataluña	Lab. of Radioactivity analysis, Barcelona 477
7	University of Barcelona	Environmental Radiology Lab, Barcelona 478
8	University of Valencia	Institute of Corpuscular Physics, Burjassot 479
9	Environmental and Sanitary Radiochemistry Unit	Emergency laboratory and water quality, Tarragona
10	University of Cáceres	481 Lab. of Environmental Radioactivity, Cáceres
11	University of Cantabria	Radon Group, Santander 482
2	University of Bilbao	Dept. of Nuclear Engineering and 483 d Mechanics, Bilbao
13	University of Málaga	Radioactive Installation, University of Málaga
14	Canal de Isabel II Management	485 Area of Instrumental Analysis, Madrid
15	University of Granada	486 Dept. of Inorganic Chemistry. Radiochemical Laboratory and Environmental Radiology. Granada.
16	AGQ Labs & Technological Services	488 Lab. of Environmental Radioactivity, Sevilla
17	Health Institute Carlos III	Radioprotection Service, Madrid 489

502	Table	2:	Results	sent	by	participants	("GS"=gamma	spectrometry	HPGe	detector,
503	"LSC"	eliq	uid scinti	llation	cou	nting and "D'	'edesorption with	ionisation cha	mber).	

Laboratory	Result	Uncertainty	Technique	Volume	Time
	(Bq ·l ⁻¹)	(Bq · l ⁻¹)		(ml)	(min)
R01	106	8	LSC	10	60
R02	100	14	LSC	10	100
R03	120	20	LSC	10	400
R04	49.7	3.6	LSC	10	200
R05	93	10	LSC	10	30
R06	114.6	5.9	LSC	10	30
R07	110	16	LSC	10	30
R08-1	104	17	GS	1000	3583
R08-2	75.1	17	D	490	30
R09	82.4	8.5	LSC	10	10
R10-1	127.5	8.9	GS	270	120
R10-2	121	18	LSC	6	10
R11-1	125	4	LSC	10	30
R11-2	127	17	GS	100	16.6
R12	125	19	LSC	6	10
R13	117.6	6.6	LSC	5	30
R14	136.63	1.75	LSC	200	100
R15	115.98	5.97	LSC	10	10
R16	113	14	LSC	10	200
R17	76.6	12.2	D	100	100

....

	Parameter	Value
523		
522		
521	Table 3: Statistics of the results,	with values expressed in $Bq \cdot l^{-1}$
520		
519		
518		

	Number of participants (dimensionless)	16
	Number of measurements (dimensionless)	19
	Average	110
	Median Geometria average	115
	Geometric average Minimum	109 75
	Maximum	137
	Standard Deviation	18
	Standard Deviation Geometric	1.2
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
534		
535		
536		
537		
38		
539		
540		
541		
542		

544	Table 4: Parameters of the exercise
545	
546	

	Parameter	Consensus Value, X	Rob. standard deviation, σ _{exercise}	Objective sigma, $\sigma_{\rm p}$	Uncertainty, μ _x	No. of results
	Radon (Bq·l ⁻¹)	112.1	15.2	22.4	4.4	19
547						
548						
549						