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ABSTRACT

We model the strong lensing effect in the galaxy cluster PSZ1 G311.65-18.48 (z = 0.443) with an improved version of the hybrid
method WSLAP+. We extend the number of constraints by including the position of critical points, which are combined with the
classic positional constraints of the lensed galaxies. We pay special attention to a transient candidate source (Tr) previously discovered
in the giant Sunburst arc (z = 2.37). Our lens model predicts Tr to be within a fraction of an arcsecond from the critical curve, which has
a larger magnification factor than previously found, but still not large enough to explain the observed flux and lack of counterimages.
Possible candidate counterimages are discussed that would lower the magnification required to explain Tr, but extreme magnification
factors (µ > 600) are still required, even in that case. The presence of a small mass perturber with a mass comparable to a dwarf
galaxy (M ∼ 108 M�) near the position of Tr is needed in order to explain the required magnification and morphology of the lensed
galaxy. We discuss how the existence of this perturber could potentially be used to constrain models of dark matter. The large apparent
brightness and unresolved nature of the magnified object implies a combination of extreme magnification and a very luminous and
compact source (r < 0.4 pc). Possible candidates are discussed, including an hyperluminous star, a small group of stars, or an accretion
disk around a relatively small supermassive black hole (SMBH). Based on spectral information and flux requirements, we argue that
a luminous blue variable (LBV) star caught during an outburst is the most likely candidate. Owing to the extreme magnification and
luminosity of this source, we dub it Godzilla.
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1. Introduction

PSZ1 G311.65-18.48 is a massive cluster at zl = 0.443 which
was first identified thanks to its strong Sunyaev-Zeldovich signa-
ture in Planck data (Planck Collaboration XXIX 2014). Optical
follow-up of this cluster from the ESO revealed a strongly lensed
bright galaxy at redshift zs = 2.3702 (Dahle et al. 2016). The
lensed galaxy formed a giant arc with nearly circular symmetry,
suggesting a roundish morphology (in projection) for the cluster
mass. Space images from the Hubble Space Telescope (HST)
and detailed spectroscopy from the ground have allowed for
the identification of a powerful ionizing source at the giant arc.
More specifically, Rivera-Thorsen et al. (2017) found evidence
of direct Lyman α emission from the source at zs = 2.3702.
Because of this, the giant arc was dubbed the Sunburst arc. The
hypothesis of escaping ionizing photons was later confirmed in
Rivera-Thorsen et al. (2019) and Vanzella et al. (2020a). Ioniz-
ing emission was identified in an unprecedentedly large number
of multiple images (12) of the same unresolved feature, or knot.
This knot was later constrained to have a very small size, most
likely a compact star cluster (effective radius of ≈8 pc) with an
estimated mass of 107M� (Vanzella et al. 2022).

A peculiar object, classified as a transient candidate (referred
to as Tr hereafter), was identified in the Sunburst arc in

Vanzella et al. (2020b), with a magnitude F814W ≈ 22 and at the
same redshift as the Sunburst arc. In that work, the authors report
a minimum magnification of 20 for Tr, but it could be higher due
to the proximity of Tr to the critical curve. The authors argue that
the magnification cannot be larger than 100 based on its loca-
tion in a region where no critical curves are expected nearby.
However, this argument can be revisited since it is based on the
distance to the estimated position of critical points (or symme-
try points). A constraint in the position of such symmetry points
is not enough to constrain the minimum distance to the criti-
cal curve, or the presence of a small mass perturber, that could
bring the critical curve closer to the position of Tr. If the mag-
nification is less than 100, the intrinsic luminosity at Tr must be
comparable to that of a supernova (SN), or absolute magnitude
MV ≈ −19. In this case, the SN should be observed at other loca-
tions along the Sunburst arc, with a time delay due to the combi-
nation of geometric plus Shapiro delays. On cluster scales, these
time delays can range from weeks to years, but in configurations
resembling perfect Einstein rings, the time delays are expected
to be relatively small (less than a year). The counterimages of
the alleged SN have not been identified, despite Tr being present
in observations spanning ≈7 yr, raising questions about the true
nature of Tr. In an alternative scenario, where the magnifica-
tion can be significantly larger than 100, it would be possible to
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consider relatively faint sources to explain Tr, such as bright
luminous stars at high redshift. Very large magnification fac-
tors for Tr would also naturally explain the apparent lack of
counterimages, since only one of them (Tr) would be detectable,
thanks to its very large magnification factor. Examples of stars at
extreme magnification factors have already been observed, with
Icarus being the first star at cosmological distances observed
through this mechanism (Kelly et al. 2018). Other recent exam-
ples can also be found in the literature, for example in Chen et al.
(2019), Kaurov et al. (2019), and more recently in Welch et al.
(2022).

Vanzella et al. (2020b) discuss how Tr has stayed bright for
almost one year in the rest frame of the source. Visual inspec-
tion of recent HST images taken in June 2021 reveal that Tr
is still bright at that time, which combined with earlier obser-
vations from March 2014 that already show the presence of Tr
(specially in the z-band image taken with the ESO Faint Object
Spectrograph and Camera version 2 (EFOCS2) at the New Tech-
nology Telescope (NTT), as shown in Fig. 2 of Dahle et al.
(2016)) extend the bright phase to at least ≈2 yr in the rest frame.
This is in tension with the explanation of Tr as a SN during peak
emission.

The observation of 2014 is useful to establish that Tr was
already detectable at that time, but the low resolution of the z-
band image does not allow one to constrain its flux with enough
accuracy to determine if a modest flux variation is taking place
between 2014 and the latest observations in 2021.

In follow-up work, Vanzella et al. (2022) delensed the Sun-
burst arc and constrained its intrinsic size to ≈3 kpc2. Tr is men-
tioned again in this work, but without discussing its nature. In
the same work, two possible faint counterimages of Tr are men-
tioned, 5.7c and 5.7d. However, as we discuss later, 5.7c and 5.7d
in Vanzella et al. (2022) are not valid counterimages of Tr based
on their location within the giant arc.

Hence, Tr remains without clear identifiable counterimages
in the literature. The lack of bright counterimages for Tr is puz-
zling, but offers important clues that help constrain the possible
nature of this source. Given the timescale over which the object
has been observed (≈2 yr in the rest frame), and the time delay
between pairs of images appearing near critical curves (typically
much less than a year), a source that is bright enough, such as
a SN, should be multiply lensed and observed at other locations
around the arc. The fact that it is only observed once has been
suggested as evidence in support of the transient hypothesis in
Vanzella et al. (2020b) (for instance a SN). In the present work,
we discuss an alternative scenario in which Tr is not a transient,
but a relatively persistent yet fainter and minute source (a hyper-
luminous star or similar compact object such as an accretion
disc), which is being magnified by extreme factors (µ > 1000),
such that it can be detected in HST in only one location, without
producing detectable counterimages.

Any possible interpretation of Tr needs to be supported
by lens models. A lens model is presented by the same team
in Pignataro et al. (2021). In that work, and taking advantage
of integral field spectroscopy in a large portion of the clus-
ter with the Multi Unit Spectroscopic Explorer (MUSE) instru-
ment, the authors identify 5 lensed galaxies, with 81 identi-
fiable knots that can be used as lensing constraints. Most of
these knots belong to the giant Sunburst arc, or system 5. Sys-
tem 1 in that work is not used as a lens constraint since one
of the counterimages falls outside the footprint of the observa-
tion with MUSE, and is not confirmed spectroscopically. Hence
the lens model in Pignataro et al. (2021) is derived with 4 out
of the 5 reported systems, all of them confirmed spectroscop-

ically, and with system 5 contributing with most of the lens-
ing constraints. In Sect. 2 we discuss brefly the lensing con-
straints. The lens model in Pignataro et al. (2021) is based on
the public code Lenstool (Kneib et al. 1996; Jullo et al. 2007;
Jullo & Kneib 2009), a parametric model that places small scale
halos in the member galaxies and then one or several large scale
halos to represent the cluster halo. Parametric models are power-
ful and often reliable but, such as any other method, are not free
of systematic effects. One of the limitations of parametric mod-
els is that the halos (small and large) are assumed to have some
form of symmetry. Although this may be a good approximation
in many scenarios, it does not capture nonsymmetric mass distri-
butions due to tidal forces, which are prevalent in galaxy cluster
environments. For the particular case of the Sunburst, detailed
mass modeling is required in order to interpret features, such as
Tr, that fall near critical curves. The critical curve of the model
in Pignataro et al. (2021) reproduces well the symmetry points
of the Sunburst. This, however, comes at a cost. In order to
reproduce the observed features, some galaxies need to be opti-
mized independently. In particular, Pignataro et al. (2021) had to
include a barred galaxy with a relatively large mass and extreme
ellipticity (named 1298 in that work) in order to reproduce some
features around the position of Tr. Whether the mass and ellip-
ticity are good approximations to the real mass and ellipticity
of this particular galaxy is an open question, but it could also
be a manifestation of the limited flexibility of the parametric
model.

Additional lens models can explore the degeneracies in the
lens model and provide alternative solutions for the critical curve
that winds around the Sunburst arc. In addition, if Tr is indeed
a transient event, time delays are a useful prediction from a lens
model. Time delay between counterimages can provide an expla-
nation for the lack of counterimages. They are also helpful in the
preparation of observing campaigns, should a counterimage be
predicted to appear. This was the case for SN Refsdal, where
lens models accurately predicted its reappearance and facilitated
its observation with HST (Diego et al. 2016; Kelly et al. 2016).
Unfortunately Pignataro et al. (2021) provides no information
about the time delay associated with Tr. In this work we present
a new lens model together with its predicted magnification and
time delays at the expected positions of the counterimages of Tr,
and discuss its implications in relation to the possible nature of
Tr.

We complement the earlier comprehensive study of this
very interesting object by providing the first hybrid lens model
of PSZ1 G311.65-18.48. We base our lensing analysis on the
detailed data compilation in Pignataro et al. (2021). We use an
improved version of our hybrid code WSLAP+ that takes advan-
tage of a new type of constraint, namely the position of critical
points, or points where critical curves are known to be passing
through. These points can be identified from the data following
symmetry arguments, since near critical curves identifiable knots
are expected to be nearly equidistant to the critical curve. The
high-resolution of HST combined with the spectroscopic infor-
mation provided by MUSE allowed Pignataro et al. (2021) to
identify a wealth of features in the Sunburst arc that we exploit
here to pinpoint the position of critical points. PSZ1 G311.65-
18.48 is the first cluster where this new improvement is tested
with WSLAP+.

The paper is organized as follows. In Sect. 2 we describe the
lensing constraints, the majority of which are directly adopted
from Pignataro et al. (2021), though we also discuss the new
type of constraints added to WSLAP+. The lens models derived
using the lensing constraints and our hybrid lens reconstruction
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algorithm WSLAP+ are presented in Sect. 3. In Sect. 4 we dis-
cuss Tr, and possible counterimages of Tr, which are later used
to constrain the magnification of Tr. Time delays and magnifi-
cations derived from the lens model at Tr, and the alleged coun-
terimage positions, are also discussed in this section. Section 5
provides an alternative estimation of the magnification of Tr
based on photometric measurements and flux ratios at the candi-
date counterimage positions. Uncertainties from the lens model
on the magnification of Tr are discussed in Sect. 6. In this section
we discuss also how a small scale perturber is needed in order to
interpret the observations. The mass and location of the perturber
is constrained in Sect. 7 and the implications of the existence of
such a perturber on different dark matter models is discussed in
Sect. 8. Section 9 reviews the different constraints on Tr from
the lens models and the observations. The true nature of Tr is
discussed in sect. 10, where we introduce a possible LBV star,
which we dub Godzilla. We discuss our results in Sect. 11, and
summarize in Sect. 12.

For the sake of flow and clarity, and to avoid distractions
from the main focus of the paper, we move the more techni-
cal and tedious calculations to the appendices. This includes
the description of our improved lensing reconstruction method
WSLAP+, predictions from the lens model including possible
new lensed systems, and modeling the PSF. We adopt a standard
flat cosmological model with Ωm = 0.3 and h = 0.7. At the red-
shift of the lens, and for this cosmological model, one arcsecond
corresponds to 5.7 kpc, while at the redshift of the Sunburst one
arcsecond corresponds to 8.16 kpc. The distance modulus to the
Sunburst arc is 46.45.

2. Gravitational lensing constraints

We derive our lens model using an improved version of the
hybrid method WSLAP+. This algorithm has been described
extensively in the past (Diego et al. 2005, 2007, 2016). We
include a description of the technical aspects of this algorithm
in Appendix A. This appendix describes also the new improve-
ment implemented in the code, which now incorporates as new
constraints the estimated position of critical curves at a given
redshift. In this section we describe the new critical curve con-
straints, together with the standard strong lensing constraints
used to derive the lens model.

In order to constrain the lens model, we use the multi-
ple image identification from Pignataro et al. (2021), which are
robust identifications of multiply lensed images thanks to spec-
troscopic confirmation with MUSE. System 1 at z = 3.505,
which was not used in Pignataro et al. (2021) is used in our
model reconstruction. This system was excluded from the anal-
ysis of Pignataro et al. (2021) because one image was confirmed
spectroscopically by MUSE (the counterimage falls outside the
footprint of MUSE observations). In addition, Pignataro et al.
(2021) reports that when the nonconfirmed counterimage is
included in the lens model, a third counterimage for system
3 is predicted but not observed. Earlier models derived with
WSLAP+ prior to the publication of the spectroscopic confir-
mation, predicted system 1 with a redshift larger than 3 (as later
confirmed by MUSE data). Our lens model predicts also the cor-
rect morphology and position of the unconfirmed arc as shown
in Fig. 1. Excluding this system from our model poses a similar
dilemma to including it in the model of Pignataro et al. (2021),
since at redshift z = 3.505 a counterimage for image 1b is
expected around the position of the unconfirmed image 1a. The
color, geometry, flux, and position of image 1a is consistent with
the prediction from our earlier model. Given the greater flexibil-
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Fig. 1. Prediction for system 1 based on the confirmed counterimage
in Pignataro et al. (2021). Left and right panels: data and predictions
respectively. Both morphology and parity are well reproduced by the
lens model. The circles in the left panel mark the positions of the 4 knots
identified in Pignataro et al. (2021). These circles are reproduced in the
same position in the right panel, in order to better appreciate the offset
between the predicted and the observed positions. Offsets of order 1′′
are typical in free-form reconstructions, especially in regions of the lens
plane where constraints are scarce. We note how the tangential magnifi-
cation between knots 1 and 2 is smaller for the predicted images, while
it is larger for knots 3 and 4. Unless noted otherwise, this and other
color images are made with a combination of the F390W, F606W and
F814W filters.

ity of WSLAP+, and the solid evidence in favor of the uncon-
firmed candidate 1a in system 1, we include this system (1a and
1b) in our reconstruction. The total number of strong lensing
knots is then 81, which translates into 162 constraints (see equa-
tions in the system of linear Eq. (A.2), where each knot results
in two linear equations, one for the x position and one for the y
position).

In addition to the positions of the arcs from the 5 systems
identified in Pignataro et al. (2021), we use the high resolution
HST images to identify seven points which can be associated
with critical points, that is a critical curve must pass through
these points. This identification is done based on symmetry argu-
ments, since near a critical curve a pair of lensed images must
be almost equidistant to the critical curve. Hence, critical points
are expected to lay close to the middle point between pairs of
images. In Table 1 we list the positions of the critical points
identified in the HST images, and the angles φ derived from
the direction of the lensed arcs. All critical points are identified
using the giant arcs of system 5. Two critical points that can be
easily identified in the data between images 5.1d, 5.1e and 5.1f
are not included because they are overlapping a member galaxy,
or perhaps a background galaxy, as discussed in Pignataro et al.
(2021). The unknown contribution to κ from this galaxy makes
these two critical points unreliable in our new set of constraints,
and hence are not included in our analysis. In total we identify
seven reliable critical points that are listed in Table 1, and shown
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Table 1. Position and angles of the seven critical points used in this
work.

ID RA Dec φ(◦)

1 15:50 06.658 −78:10:57.63 −13.0
2 15:50 06.061 −78:10:58.22 −25.0
3 15:50 05.316 −78:10:58.85 −10.0
4 15:50 01.653 −78:11:06.79 −43.0
5 15:50 00.121 −78:11:11.82 −58.0
6 15:49 59.862 −78:11:13.09 −60.0
7 15:49 58.723 −78:11:22.75 −78.0

Notes. All points correspond to critical points at the redshift of system 5.
The angle is measured counterclockwise from the west. Hence negative
angles go in clockwise direction from the west.

in Fig. 2 as black crosses. The 7 new constraints translate into
14 new linear equations in system (A.2) (7 for constraints of the
type given by Eq. (A.7) and 7 for the type given by Eq. (A.8)).
Hence, combined with the total number of linear equations in
system (A.2), the total number of constraints is 176, which is
comparable to the number of grid points (177) used to describe
the mass distribution.

The lens model is later used to identify new lensed system
candidates. These are discussed in Appendix C. The location of
the systems discussed above and the new candidate systems is
also shown in Appendix C.

3. Lens models

The minimization process begins by deriving a first model
obtained after setting the grid to a regular distribution of 16x16
grid points (i.e., all grid points are equally spaced). For this first
solution we use only the classic strong lensing constraints (i.e.,
the positions of the knots). This first solution is used to derive a
dynamical grid which traces the surface mass density, assigning
smaller grid points (i.e., smaller FWHM for the Gaussians) to
regions of higher mass density. This process is iterated 3 times,
after which both the surface mass density and grid have con-
verged to a stable configuration.

In Fig. A.1 we show the grid obtained after these 3 iterations.
This grid is obtained through a Monte-Carlo process where the
previous solution for the mass distribution is used to place grid
points that follow that distribution. This procedure results in grid
points being more concentrated around regions of higher surface
mass density. The FWHM of each Gaussian associated to each
grid point is inversely proportional to the surface mass density.
The number of grid points in this example is 175, comparable to
the number of equations in the system of linear Eq. (A.2).

Pignataro et al. (2021) finds two background sources at red-
shifts 0.5578 and 0.7346 very close to the Sunburst arc (see
Fig. 2). Due to this proximity, it is expected that these galax-
ies have some nonnegligible effect in the morphology of that
giant arc. In order to account for these galaxies, we simply add
two small Gaussian cells (of FWHM 1.8′′) at their position, and
allow WSLAP+ to determine their masses. These additional grid
points are marked with a red circle in Fig. A.1 and bring the total
number of grid points to 177. We note that the real position of
these galaxies is unknown since they are also being lensed by the
cluster. However, since the photons from the Sunburst arc and
from these galaxies follow very similar geodesics, the path of the
Sunburst photons passes close to these galaxies in their respec-
tive redshift planes. Placing a perturbing mass at the observed

position of these galaxies can mimic the lensing distortion from
these galaxies, but caution must be taken to not interpret their
masses as the real mass of those galaxies.

Since critical point constraints have not been used before in
WSLAP+, it is interesting to explore the role of the new con-
straints. Hence we derive three different solutions: i) a solution
where only strong lensing (or SL) constraints are used (below we
refer to this solution as model M1); ii) a solution where only crit-
ical point constraints are used; and iii) a solution that uses both
SL and critical point constraints (below we refer to this solution
as model M2).

Figure 2 shows the critical curves from the three solutions.
In red we show the critical curve for the case where only the 81
strong lensing constraints are used (our model M1). This curve
suggests a very round structure for the cluster, similar to the one
found by Pignataro et al. (2021). Close inspection of this model
shows that it fails at reproducing with accuracy the position of
the critical points (marked with black crosses in the zoomed
regions). These points can be easily identified using the multi-
ple knots of system 5 (the Sunburst arc). The position of knot
5.1 is marked with yellow circles in Fig. 2 and labeled a–m.
This knot corresponds to the compact stellar cluster discussed in
Vanzella et al. (2022). The accuracy on the prediction of the crit-
ical points improves, as expected, in the green critical curve, that
uses only as constraints the positions of the seven critical points
listed in Table 1. In this case, the critical curve passes through all
critical points. However, this model fails at reproducing the mor-
phology of the arcs, and differs significantly from the previous
model specially in the east section of the cluster, where critical
point constraints are not used. The model that combines both the
81 strong lensing constraints and the 7 critical point constraints
predicts the critical curve in blue (our model M2). This model
captures the desired features of the two previous models. On one
hand it is able to reproduce the configuration of all 5 systems
while simultaneously reproducing the critical points, although a
small offset is observed in the critical point between knots h and
i (see panel C in Fig. 2). We discuss this offset in more detail in
Sect. 6 below.

Based on model M1 we showed earlier in Fig. 1 the pre-
dicted morphology of the candidate 1 of Pignataro et al. (2021)
that was not used in their analysis. Our lens model predicts the
correct morphology at the correct location for the spectroscopic
redshift of its confirmed counterimage. The left panel in the
figure shows the real data, while the right panel shows the pre-
diction. The white circles in both panels are placed at exactly the
same coordinates, in order to better appreciate the relative error
between the predicted and observed positions. Pignataro et al.
(2021) excluded this image from their analysis based on the fact
that it falls outside the footprint of MUSE (hence it cannot be
confirmed spectroscopically), but also with the argument that
adding this counterimage results in a lens model that predicts
a third (unobserved) counterimage for system 4. Our lens model
does not predict that third counterimage, while making a fair pre-
diction of system 1, hence adding great confidence in this system
(although still pending its spectroscopic confirmation).

In terms of integrated mass, the total integrated mass within
a cylinder along the line of sight with radius of 40′′ from
the BCG is M(<40′′) = 2.47 × 1014 M� for model M1 and
M(<40′′) = 2.54 × 1014 M� for model M2. Beyond this radius
there are no lensing constraints and the model cannot be prop-
erly constrained. In Pignataro et al. (2021), the authors quote a
mass of ∼2 × 1014 M� within ∼200 kpc. For this radius, we find
M(<200 kpc) = 2.20 × 1014 M� and M(<200 kpc) = 2.23 ×
1014 M� for models M1 and M2 respectively.
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Fig. 2. Critical curves at the redshift of the Sunburst arc for three different models derived using different combinations of constraints. The red
critical curve shows the case where only strong lensing (SL) arc positions are used as constraints. The green critical curve corresponds to the
case where only the adopted position of the critical points are used as constraints. Finally the blue critical curve is for the model where both arc
positions and critical point positions are used as constraints. Panel A shows the entire cluster region while panels B, C, and D show zoomed regions
around selected areas including key lensing features such as the observed position of knot 5.1 in system 5 (yellow circles). The letters next to each
circle follow the labeling scheme for knot 5.1 in Pignataro et al. (2021). The inferred position of the critical points used in this work are marked
with black crosses. Two background galaxies at redshifts 0.5578 and 0.7346 are marked with white ellipses in panel C. The red arrows mark two
critical points not used in our analysis due to the proximity of a lensing galaxy which can bias the values of κ. The white arrow marks the barred
galaxy modeled independently in Pignataro et al. (2021). Finally, the red circle marks the position of Tr in Vanzella et al. (2020b). The distance
between Tr and the blue curve is 0.55′′.

4. Candidate counterimages of Tr and time delays

The source Tr, first discussed in Vanzella et al. (2020b), has no
obvious counterimages. This apparent lack of counterimages
was one of the reasons in Vanzella et al. (2020b) to classify Tr as
a stellar transient object (the stellar part due to its unique spec-
tral features, similar to those of stars such as Eta Carinae). As
mentioned earlier, Vanzella et al. (2022) suggests two possible
counterimages for Tr, and labeled 5.7c and 5.7d in that work.
However, the position of these knots in the giant arcs is inconsis-
tent with the expected position of the counterimages of Tr, which
should appear between knots 5.1x and 5.2x in Vanzella et al.
(2022), where x refers to the arc label for system 5 (i.e., from
“a” to “n” as shown in Fig. 2). For convenience we drop the let-

ter x, referring to the arc label and refer to these knots simply
as 5.1 and 5.2). In this section we present possible counterim-
age candidates for Tr. Based on the observed position of Tr with
respect to knots 5.1 and 5.2, and the lens model prediction, any
counterimage of Tr must be also between these knots 5.1 and 5.2
in the giant arcs, and in general closer to the brighter knot 5.1
than to the fainter knot 5.2 (as shown by the model prediction in
Fig. D.2).

We find five candidate counterimages that meet these
requirements and show them in Fig 3. For simplicity we name
these candidates t1–t5, as indicated in the figure. We note that
knots t1 through t4 correspond to the knots 5.4a through 5.4d in
Pignataro et al. (2021), which also identify these knots as being
multiply lensed images of the same object, but does not link
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Fig. 3. Suggested candidates for the counterimages of Tr based on our
lens model. Labels “a” through “g” are used to mark the position of
the bright LyC knot 5.1, as in Fig. 2. All images, except t5 are partially
blended with knot 5.1.

them to Tr. Knot t5 is not used in Pignataro et al. (2021), and is
not associated with the family of knots 5.4 in that work. Among
these images, only t5 is not partially blended with the bright LyC
knot 5.1. A lens model prediction for t5 is shown in Appendix D.
A lens model prediction for the other candidates is not as reli-
able since they are significantly farther away from Tr than t5
(t1 is for instance 24′′ away from Tr vs. 6.6′′ for t5), but as in
t5, they should fall between knots 5.1 and 5.2 of system 5. We
do not identify additional candidates close to the remaining 7
LyC knots. This can be explained if the source responsible for
Tr lies beyond the corresponding caustic for these knots (similar
to the case of knots e,f,i,l in Fig. 2), or because the images have
smaller magnification factors resulting in a fully blended image
with the LyC knot 5.1 (as in the case of knots m and n), or simply
because they are too faint to be detected (i.e., small magnifica-
tion factors, as predicted also for images m and n). Close inspec-
tion of t5 shows a larger than expected distance to the bright LyC
knot g, casting some doubt on the association of this knot with
Tr. Nevertheless, we keep t5 in our list of possible candidates,
noting that if it turns out to be a false positive it would imply
the magnification derived below for Tr is even larger than when
considering t5 a viable counterimage of Tr. Comparison of the
photometric measurements in the F390W and F60W bands (see
Table 2), show that within photometric uncertainties t1–t5 have
a similar color as Tr (where we define the color as the difference
F390W-F606W).

Adopting these candidates as possible counterimages of Tr,
we can constrain the magnification of Tr based on flux ratio argu-
ments. All five candidates are more than 2 mag fainter than Tr.
Smooth lens models predict t5 (which is only 6.6′′ away from
Tr) to have very similar flux, but t5 is observed more than 4 mag
fainter than Tr.

Based on the 5 positions t1–t5, we compute the magnifica-
tion and time delays in those positions. The values of the mag-

nification and time delay are listed in Table 2 for the two lens
models. For convenience we list the time delays (in days) rela-
tive to the time of arrival of photons at Tr. Column 3 lists the
magnitudes observed at these positions. Due to the partial blend-
ing of t1–t5 with nearby knots, for these positions we fit a point
source convolved by our PSF model to the nearby bright knot
(see Appendix E), and subtract it before fitting our PSF model
to the positions t1–t5. Columns 4 and 5 show the magnifica-
tion and time delay predicted by the model M1, which corre-
sponds to the model that uses only the strong lensing constraints
(i.e., the position of the lensed knots from Pignataro et al. 2021).
Columns 6 and 7 list the values predicted by the model M2, or
lens model derived with both types of constraints, the strong
lensing and critical point positions.

From Table 2, comparing the observed magnitudes (listed in
the Col. 3), with the predicted magnifications it is obvious that
there is a contradiction between the observation and the models,
since the latter do not predict Tr as the brightest image, while the
observations clearly indicate that Tr is the brightest image. This
tension hints at a missing ingredient in the lens model. The dis-
crepancy is also evident when looking at the magnification ratios
between the predicted magnifications at positions t1–t5 and at
the position Tr (Cols. 8 and 9). Lens model M1 predicts that the
brightest image should be t3, while model M2 predicts that the
brightest image should be t2.

We can compare the predicted magnification ratios with the
values obtained directly from the data. We infer this ratio in two
alternative ways. First we compute the separation between the
pair of knots 5.1 and 5.2 bracketing Tr at the five positions t1–t5.
This separation correlates with the underlying magnification so
it can be used as a proxy for the magnification at each location.
This is a purely geometric estimator and gives an idea of the
average magnification between knots 5.1 and 5.2 in the six posi-
tions listed in Table 2. This estimator is unaffected by microlens-
ing since it does not rely on measured fluxes. In addition, this
estimator does not rely on the need for t1–t5 to be real counter-
images of Tr, since it does not use the fluxes at these positions.
The magnification ratio derived this way is listed in Col. 10 of
this table, µd/µ

Tr
d . A more direct approach is by estimating the

flux at each of these six positions and then computing the flux
ratio. This gives us a direct measurement of the flux ratio in a
model-independent way, but is affected by deblending of some
of the images t1–t5, and obviously it would be a biased estima-
tor if t1–t5 are not real counterimages of Tr. The result of this
second approach is shown in the last column of Table 2, f / f Tr.

By construction, both µd/µ
Tr
d and f / f Tr must be 1 at Tr. If

we focus on the geometric estimator of the magnification ratio
listed in Col. 10, µd/µ

Tr
d , that does not require t1–t5 to be coun-

terimages of Tr, additional counterimages of Tr should be easily
identifiable at the expected positions t1 through t4 in Table 2,
and even in t5 with magnitude ≈24. If we focus on the flux ratios
given in the last column, we observe a clear tension between
these flux ratios and the ones inferred from the geometric esti-
mator. The flux at Tr is much larger than expected from the sim-
ple geometric estimator. The magnification at Tr must be ≈10
times larger than the magnification at any of the positions t1–t5.
Any plausible lens model has to boost the magnification locally
around Tr, in order to significantly increase the magnification at
that location with respect to the simple ratio provided by the geo-
metric estimator. This simple test suggests the need for a small
scale perturber around Tr that can deliver the required local boost
in magnification, without affecting the geometry of the arc.

In Table 2 we provide also time delay estimates at the posi-
tions t1–t5. These time delays are relative to the time of arrival of
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Table 2. Counterimage candidaes f Tr.

1 2 3 4 5 6 7 8 9 10 11
Id RA Dec MABF606W (F390W) µ1 ∆T1 µ2 ∆T2 µ1/µ

Tr
1 µ2/µ

Tr
2 µd/µ

Tr
d f / f Tr

Tr 15 50 00.66 −78 11 09.96 22.05± 0.06 (22.17) 48 0 177 0 1 1 1 1
t1 15 50 07.33 −78 10 57.29 24.40± 0.10 (24.59) 46 −155 874 112 0.96 4.94 0.92 0.115
t2 15 50 06.24 −78 10 58.00 24.54± 0.10 (24.54) 160 −145 1064 230 3.33 6.01 0.68 0.101
t3 15 50 05.93 −78 10 58.38 24.58± 0.49 (25.33) 195 −179 434 197 4.06 2.45 0.44 0.097
t4 15 50 04.65 −78 10 59.57 24.44± 0.59 (24.48) 25 −126 453 176 0.52 2.56 0.50 0.111
t5 15 50 02.19 −78 11 05.28 26.21± 0.19 (26.20) 19 −59 105 −172 0.40 0.59 0.18 0.022

Notes. Columns 1 and 2 show the RA, Dec of Tr and its five counterimage candidates. Column 3 lists the magnitudes in the filter F606W (or in the
filter F390W and in the Vega system in parenthesis). Columns 4 and 5 show the magnification and time delays predicted by lens model M1, while
for model M2 are shown in Cols. 6 and 7. Time delays are expressed in days. Magnification ratios with respect to Tr are shown in Cols. 8 and 9
for models M1 and M2 respectively. Column 10 shows the magnification ratio with respect to Tr estimated from the ratio of distances between the
knots 5.1 and 5.2 bracketing the positions of Tr and t1–t5. The last column shows the flux ratio between the observed fluxes and the flux at Tr.

EM radiation at Tr and are expressed in days. Model M1 predicts
that the image at Tr arrives last, but the maximum time delay is
less than half a year. Since Tr has been observed for ≈7 yr, time
delays cannot be the explanation for the lack of counterimages.
The same logic applies to model M2, with the only difference
that Tr is the second image to arrive and the maximum time delay
is about two months longer than in model M1.

Given the fact that time delays cannot explain the lack of
counterimages, and the arguments given above about the anoma-
lous flux at Tr, we can only conclude that a small scale distortion
in lens potential is responsible for the anomalously large flux
of Tr. Before we come back to this point in Sect. 7, in the next
section we provide an alternative estimation for the magnifica-
tion of Tr, based on the assumption that t1–t5 are counterimages,
and the lens model predictions.

5. Inferred magnification of Tr from t1–t5

We measure the fluxes in each of the positions t1–t5 and Tr by
fitting the PSF model described in Sect. E to the different posi-
tions. For the case of t1–t5, we first fit the flux of the nearby
bright knot 5.1, and subtract it from the data before estimating
the flux at t1–t5. The derived magnitudes are listed in Table 2.

Based on the observed flux of Tr, and the fluxes of the 5
candidate counterimages, we can estimate the relative magni-
fication between Tr, and the 5 counterimage candidates. Then,
based on the lens model predicted magnifications, we can infer
the delensed flux of the source (from t1–t5). Finally, from the
ratio of the observed flux at Tr and the delensed flux estimates,
we can infer the magnification needed to explain the observed
flux at Tr.

As mentioned earlier, this method will give us only a lower
limit for the magnification of Tr, since it is based on the assump-
tion that t1–t5 are real counterimages of Tr. If this assumption is
proven to be wrong with future data (for instance by identifying
spectral features at t1–t5 that are different than those observed
in Tr), then the counterimages remain undetected and must have
even smaller fluxes, implying an ever larger magnification for
Tr. Based on the observed fluxes in positions t1–t5, and the
magnification predicted by the two lens models, we can infer
the delensed flux. Since we have 5 different estimations of the
delensed flux, we combine them assigning a Gaussian distribu-
tion to each estimation, and add the Gaussian distributions (i.e.,
we adopt the sum rule of probabilities; P(A + B) = P(A) + P(B)
since the delensed flux must be unique). The probability of the

delensed flux is then given by;

P( f ) =
∑

i

exp
 ( f − fi/µi)2

2σ2
i

 , (1)

where the index i runs from 1 to 5, fi is the observed flux for
each one of the 5 candidate counterimages. For σi we take three
times the error in the measured flux divided by µi. The magnifi-
cation µi in the above equation is the corresponding value at each
position, as predicted by each lensing model. The previous equa-
tion can also be interpreted as a weighted median value for the
delensed flux. The combined probability for the delensed flux
is shown in Fig. 4. The violet curve shows the probability for
model M1, while the red curve shows the corresponding proba-
bility for model M2. The predicted delensed fluxes in model M2
are naturally smaller than in model M1, owing to the larger pre-
dicted magnification. Using the values of the flux at the peak of
the probabilities and the observed value of the flux at the position
of Tr, we can directly estimate the magnification at Tr for both
models, finding µ ≈ 1700 for model M1, and µ ≈ 4000–7000 for
model M2. Since in Pignataro et al. (2021), our positions t1–t4
correspond to their positions 5.4a–5.4d, we can repeat the pro-
cess using the magnification values at those positions to infer
what would be the magnification at Tr, assuming 5.4a–5.4d are
counterimages of Tr. In this case we find that since the mag-
nification predicted by the model in Pignataro et al. (2021) is in
general smaller than the values from our two models, the inferred
magnification at Tr is also smaller. In particular we derive a value
of µ ≈ 600 at Tr for their model. The above estimations are
derived using the photometric measurements listed in Table 2
for the filter F606W. If we use instead the values derived from
the F390W filter (values in parenthesis), the inferred magnifica-
tions are very similar; µ ≈ 1400 for M1, µ ≈ 8000 for M2 and
µ ≈ 600 for the model of Pignataro et al. (2021).

In summary, if the t1–t5 are real counterimages of Tr, we
must conclude that the magnification at Tr must be at least
≈600, adopting the most conservative case scenario model from
Pignataro et al. (2021), but could be as high as µ ≈ 7000 if we
adopt the most optimistic model. These magnification factors
translate into a gain of 7–9.6 mag at Tr, which then would have
an absolute magnitude between Mv ≈ −17 and Mv ≈ −14.3.

It is important to reiterate that using t1–t5 as candidate coun-
terimages of Tr results on lower limits for the magnification of
Tr. Should future observations rule out the possibility of any
of these candidates being counterimages of Tr, the flux ratio
between Tr and any other possible counterimage (and hence the
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Fig. 4. Inferred delensed flux of Tr in the source plane, in internal HST
units based on the measured flux at the t1–t5 positions. In these units,
the observed flux at Tr is 40.16 e− s−1 in the HST F606W band. If we
adopt as the delensed flux the maximum of the probabilities, this implies
a magnification factor at Tr of ≈1700 for model M1 and ≈4000–7000 for
model M2. Using the magnification in Pignataro et al. (2021) we infer a
magnification of ≈600 at Tr.

magnification of Tr) will be larger than the one derived in this
work under the assumption that any of the 5 candidates is a real
counterimage of Tr. This would only accentuate the need for a
small scale perturber to explain the even larger magnification at
Tr.

Before considering a possible small scale perturber to
explain the extreme magnification at Tr, we need to contemplate
the possibility that small variations in the large scale potential
of the cluster could increase the magnification at Tr. Since the
critical curves from the lens model are relatively close to Tr, it
is possible that a different configuration in the parameters of the
reconstruction algorithm naturally explains the needed magnifi-
cation, for instance by producing a critical curve passing through
Tr (a perfectly aligned critical curve would produce a pair of
unresolved images with very large magnification factors). We
explore this possibility in the next section.

6. Uncertainty in the position of the critical curves
near Tr

Given the proximity of Tr to the critical curve, small changes in
the lens model can result in big changes in the magnification. We
explore the uncertainty in the separation between Tr and the crit-
ical curve by varying some of the parameters in WSLAP+. Since
there is some freedom in the number of iterations and the defini-
tion of the grid component, we study how the solution depends
on the choices made for these two configurations. We take as
a reference the solution obtained when both knot positions and
critical point positions are used as constraints. This model corre-
sponds to the blue critical curve in Fig. 2. We construct a differ-
ent random realization of the grid with a similar number of grid
points (185 grid points instead of the 177 considered in the refer-
ence model). The resulting model predicts a critical curve that is
very similar to the one from the reference model, although with
small deviations. We show the difference between this model and
the reference model near the position Tr in Fig. 5, where the ref-
erence model is shown as a blue curve and the new model with

185 grid points is shown as a green curve. For this alternative
grid, the green curve moves 0.24′′ away from the position Tr. A
different realization (not shown) but with a smaller grid points
(146) reverses the shift and puts the critical curve 0.05′′ closer to
Tr.

Next we change the number of iterations. As discussed in
earlier work (Diego et al. 2005, 2015) a solution with a larger
number of iterations is not necessarily a better solution. For a
larger the number of iterations the residual in the lens equa-
tion gets smaller, but a solution with zero residual will always
be biased with respect to the true underlying mass distribu-
tion, since the parameterization of the mass distribution (grid or
smooth component plus compact component) can never capture
all the details of the true mass distribution. Hence, a solution
that predicts zero residual with an imperfect parameterization is
in general more biased with respect to the true underlying mass
distribution than a solution that allows for a small residual. In
general good solutions are obtained with WSLAP+ when the
distance between the predicted and observed positions is in the
range 0.4′′–0.7′′. Smaller separations can be obtained but often
at the expense of introducing spurious fluctuations in the mass
distribution. The blue curve in Fig. 5 is obtained with 500 000
iterations. For comparison we show the solution for 250 000 iter-
ations as a red curve. We appreciate that the critical curve moves
closer to the position of Tr.

Interestingly, the distance between the critical curves and Tr
is comparable to the error between the predicted and observed
positions of critical point number 5 (≈1′′, see Fig. 5). The param-
eterization of the lens plane does not have enough flexibility to
reproduce this critical point well, but if the shape of the criti-
cal curves is correct, they should be displaced approximately 1′′
toward the arc in order to reproduce the critical point number 5.
This shift would put the critical curve on top of Tr, offering a
possible explanation for its nature, since then it could be inter-
preted for instance as a lensed star, such as Icarus (at z = 1.49
Kelly et al. 2018).

Close inspection of the arc around critical point 5, suggest
that instead of the middle point between knots considered for
this critical point, an alternative position for this critical point
may be possible. We mark this alternative position (5′) with a
white arrow in Fig. 5. This new position is based on the fact
that the bright feature marked with the white arrow is not seen
on the other side of critical point 5. Hence, the critical curve
is possibly going through this bright feature. We derive a new
lens model using critical position 5′ instead of 5, and the same
configuration as in the red curve (i.e., 250 000 iterations and grid
with 177 points). The resulting model is very similar to the one
obtained with critical point 5, and is shown as a white critical
curve in the inset of Fig. 5.

Also intriguing is the fact that the parities of knots “i” and
“l” (marked in yellow) are not well predicted for any of these
models. Knot h is robustly predicted with positive parity. Given
the separation between knots “i” and “l”, they should have nega-
tive and positive parities respectively. This again indicates a lack
of flexibility in the lens model around this position that should
predict a more arched critical curve between knots “i” and “l”.
The model of Pignataro et al. (2021) achieves this by setting a
relatively large mass, and large ellipticity to a barred galaxy a
few arcseconds south from these knots (see Fig. 2). Our model
does assign a smaller mass (ellipticity is fixed by the distribution
of light) to this galaxy which could explain our smoother critical
curve around this position.

Even in the hypothetical case that a smooth lens model pro-
duces a critical curve right at the position of Tr, this would pose
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Fig. 5. Variability of the critical curves near the position Tr. The blue
critical curve corresponds to the same model shown in blue in Fig. 2.
The red curve is for a model derived with the same configuration but
with half the number of iterations. The green curve is for an alternative
model for the same number of iterations as the blue curve, but with
a different realization of the grid. The crosses mark the position of the
critical points used as constraints. Knot number 1 for system 5 is marked
with yellow labels (h,i,l). The white arrow marks a possible alternative
location (5′) for the critical point 5. Using this position 5′ as a constraint
instead of position 5, brings the critical curve a bit closer to the position
Tr (white curve in the inset in the top-right corner).

another problem since immediately a counterimage of knot h in
Fig. 5 should be expected on the opposite side, and nearly at the
same distance from Tr. Figure 5 clearly shows that this counter-
image does not exist and that Tr is not a symmetry point, ruling
out directly the possibility of a cluster scale critical curve pass-
ing through Tr. Given the impossibility of a smooth model to
explain Tr, we consider in the next section a small scale pertur-
bation that provides the answer we are seeking to the conundrum
of Tr.

7. A perturber to explain Tr

As discussed earlier, a critical curve passing through Tr and
explaining its large magnification would produce an additional
counterimage of knot h in system 5 on the opposite side of Tr,
nearly equidistant to it, and similar in flux. Such an additional
counterimage is not observed, nor any symmetric features, hence
ruling out this possibility. However, one can achieve the extreme
magnification needed for Tr, while at the same time avoiding
additional counterimages of h, if a small perturber is placed near
the position Tr. Proximity to the critical curve guarantees that a
small perturber can fall below the detection threshold of HST,
while still being able to produce a gravitational lensing effect
strong enough to amplify the object at Tr to the needed values
(the effective lensing mass of the perturber scales as the macro-
model magnification, while the magnification of the cluster does
not affect the observed flux from the perturber if the perturber is
at the same (or lower) redshift as the cluster).

We consider the case of a small perturber, which for simplic-
ity we parameterize as circularly symmetric, and with a mass
ME inside its Einstein radius. First we study the simpler but
pedagogical case where the perturber and the source are per-
fectly aligned, producing maximum magnification. In this sce-
nario the image forms a perfect Einstein ring, although in reality
this is not possible since the shear from the cluster stretches the
critical curves from a circular shape into an hour glass shape,
as can be appreciated for instance around some of the galaxies
near the critical curve in Fig. 2. However, this basic approxi-
mation will let us do some simple calculations that should be
accurate within a factor of a few, and will give us a useful con-
straint on the minimum mass of the perturber. Exploiting the
fact that Tr is unresolved, we can then constrain the mass inside
the hypothetical Einstein ring, and hence the mass of the per-
turber. In order to do this we need to take into account the role
played by the cluster, since the effective mass of the perturber
is amplified by the magnification, µc, from the cluster, that is
Meff ≈ µc ∗ Mpert.

At the redshift of the cluster and source, the Einstein ring
radius scales with the effective mass as

θe(′′) = 0.11

√
Meff

1010 M�
. (2)

As shown in Appendix E, the maximum diameter of an Einstein
ring in order to not be resolved in the HST images is ≈30 mas.
Hence, adopting a maximum Einstein ring radius of 0.015′′, we
get that the effective mass must be less than Meff < 2 × 108 M�,
which for a conservative limit of µc ≈ 50 results in Mpert <

4 × 106 M� inside its Einstein radius.
If we consider a perturber with this mass, Mpert = 4×106 M�,

it would form an Einstein ring of θe(′′) ≈ 0.015′′ which would
not be resolved by HST. The magnification is then µ = [(Re +
rs)2 − (Re − rs)2]/r2

s = 4Re/rs where Re is the Einstein radius
in physical units, rs is the radius of the source, and we have
assumed the lensed source forms an Einstein ring with a thick-
ness similar to the thickness of the source. For rs = 0.01 parsec,
we get µ ≈ 3400, a value between the magnifications from mod-
els M1 and M2 predicted in Sect. 5.

The discussion above is based on the hypothesis that the
perturber is perfectly aligned with the position Tr. We have
also ignored the fact that the cluster shear breaks the circu-
lar symmetry of the Einstein ring around the perturber. In the
more realistic scenario where Tr and perturber are not per-
fectly aligned, and the cluster breaks the circular symmetry
of the Einstein ring, we would expect a smaller magnification
for the same mass of the perturber. A perturber that is far-
ther away from Tr, but with a larger mass, can still produce
the magnification required to explain Tr, but not in an Ein-
stein ring configuration. In this case, the Einstein ring would
be larger than the resolving power of HST, and we would
expect to see symmetric features around the perturber’s critical
curve.

Interestingly, an additional pair of fainter knots (≈1 mag
fainter) are found at ≈0.35′′ and ≈0.5′′ from Tr in the SW direc-
tion (this pair is marked with white arrows and the label P in
the inset of Fig. 5). From now on we refer to this pair of knots
as the “P knots”. These P knots are not discussed in earlier
work and as for Tr, have no recognizable counterparts anywhere
else in the lens plane. Although we cannot reject the possibil-
ity that it is at different redshift, the P knots overlap perfectly
with the sunburst arc, and they follow the geometry of the arc,
suggesting that they could also be parts of the same galaxy,
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Fig. 6. Modification of the critical curve near Tr by a nearby small per-
turber. This perturber is modeled as a spherical halo with surface mass
density profile Σ ∝ r−1 and a small core of 50 parsec. The halo is dis-
placed 0.26′′ south of Tr. With an enclosed mass of 1.38×108 M� within
this radius, this perturber is able to simultaneously explain the extreme
magnification at Tr and the pair of knots between Tr and knot h of sys-
tem 5. The HST image corresponds to the F814W band.

and are being strongly lensed. We then consider the possibil-
ity that a critical curve from a perturber passes through both Tr
and the middle point of the P knots. In this case, the mass of
the perturber would be larger than the mass considered above
(Mpert ≈ 4 × 106 M�). Based on the configuration of the P knots,
they cannot be counterparts of Tr since the maximum magnifi-
cation is observed at the position Tr, which would correspond to
a double image. Since the P knots are already forming a dou-
ble image, the third image must be fainter, unlike Tr which is
brighter. Also, the P knots are bluer than Tr suggesting a dif-
ferent origin. Hence we conclude that the P knots are due to a
different source than Tr, although close to it in the source plane.
In order to test the hypothesis that a small perturber can explain
both the extreme magnification of Tr and the configuration of
the P knots, we place a small perturber with circular symme-
try 0.26′′ south from Tr, and add its potential to the WSLAP+
lens model solution. We adopt a r−1 density profile for simplic-
ity and find that a mass of 1.38 × 108 M� enclosed within the
radius of 0.26′′ produces a critical curve (in conjunction with
the deflection field from our lens model for the cluster) pass-
ing through Tr, as well as in between the P knots (see Fig. 6).
This small perturber would explain the extreme magnification
of Tr as an unresolved double image, as well as the P knots
as a double image. The third image from Tr would be some-
where else along the giant arc but with a much smaller magnifi-
cation and possibly overlapping with other bright features in the
arc (hence unobserved). The same reasoning applies to the third
image of the P knots. The source responsible for the P knots
is by itself interesting but without spectroscopic confirmation
of the P knots, we can only speculate about its nature. Other
configurations for the perturber are possible, for instance having
a different slope, position or mass, but a detailed modeling of

the possible perturber is beyond the scope of this paper, given
the limited number of lensing constraints available. The inferred
mass for the perturber is comparable to the mass of a dwarf
galaxy. These galaxies are faint and would not be detected in
the current HST images, so it is very possible that the perturber
corresponds simply to a dwarf galaxy in the cluster. Similar
dwarfs are long known to inhabit nearby clusters such as Virgo or
Coma (Sandage & Binggeli 1984; Thompson & Gregory 1993).
In these dense environments, and due to their relatively weak
gravitational potential, dwarf galaxies suffer from quench-
ing of star formation via ram pressure stripping and galaxy-
galaxy interactions, reducing even further their brightness
(Rude et al. 2020).

The existence of a perturber with a mass ≈1.4 × 108 M�
in a cluster environment is interesting and can be used to con-
strain dark matter (or DM) models. Before exploring in more
detail the source responsible for Tr, in the next section we
briefly discuss the implications that the existence of small-scale
halos, such as the one discussed in this section, have for DM
studies.

8. Implications for dark matter models

In standard ΛCDM cosmology, dark matter halos are expected
to exist down to Earth-mass scales, M ∼ 10−6 M� (Zybin et al.
1999; Hofmann et al. 2001; Berezinsky et al. 2008), while the
threshold halo mass for galaxy formation is on the order
108 M� (Nadler et al. 2019b). Between these scales may exist
a wealth of cold invisible substructure. However, the proper-
ties and interactions of the DM particle may suppress such
structure on small scales. For example, warm DM is produced
with a substantial velocity, giving it a large free-streaming
length and leading to a cut-off in the matter power spec-
trum (Hogan & Dalcanton 2000). Alternatively, strong inter-
actions between cold DM and baryons (Nadler et al. 2019a;
Buen-Abad et al. 2022) can dampen the growth of structure on
small scales. Strong lensing provides a unique opportunity to
search for DM substructure and therefore probe the temperature
and interactions of DM (Coogan et al. 2020; Ostdiek et al. 2022;
Wagner-Carena et al. 2022). We now estimate the possible con-
straints which could be derived if the presence of a DM perturber
with mass Mpert = 1.38 × 108 M� is confirmed.

Constraints on warm dark matter (WDM) can be derived
in terms of the ‘half-mode mass’ Mhm, the mass at which the
transfer function relating the WDM and CDM power spectra
drops to a value of 0.5. Power on scales M < Mhm is substan-
tially suppressed by the effects of DM free-streaming. Using the
WDM transfer function from Schneider et al. (2012) and equat-
ing Mhm = Mpert leads to a constraint on the WDM mass of
mWDM & 4.2 keV. This would be slightly weaker than (but
comparable to) competing constraints from the Lyman-α for-
est, Milky Way satellites and other lensing studies (Iršič 2017;
Gilman et al. 2020; Enzi 2021).

In the context of DM-proton scattering, Nadler et al. (2019a)
estimate the minimum mass Mcrit of DM halos which can form,
for which the initial perturbation is not erased by this scatter-
ing process. Requiring Mcrit < Mpert would exclude DM-proton
scattering cross sections greater than σp = 1.4 × 10−28 cm2

for DM particles of mass 100 MeV/c2 (Nadler et al. 2019a).
This would be competitive with similar constraints coming
from observations of Milky Way satellites (Nadler et al. 2019a)
and complementary to direct searches for DM in this mass
range (Armengaud 2019).
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An alternative to a perturber is to consider a model of DM
that naturally produces anomalous flux fluctuations near criti-
cal curves, as in wave dark matter (or ψDM; Schive et al. 2016).
Lensing is sensitive to the de Broglie scale fluctuations from
ψDM resulting in a highly corrugated critical curve (Chan et al.
2020). In this type of model, high magnifications up to µ < 104

can be produced out to a fraction of an arcsecond from the crit-
ical curve of the equivalent smooth model, so that a high mag-
nification solution for Tr is plausible in the context of ψDM. A
more detailed analysis of the constraints imposed on this type of
model is beyond the scope of this paper but obtaining constraints
on the boson mass via the de Broglie scale is conceivable using
Tr, and other well-constrained cluster lenses where the intrinsic
luminosity of the lensed source is independently estimated.

One of the limitations that prevents us from imposing tighter
constraints on dark matter models is the depth and spatial reso-
lution of the images. Future telescopes such as the ELT, and the
recently launched JWST, will soon improve the image quality,
allowing more detailed studies of Tr and other similar objects1.
JWST observations, in conjunction with HST archival data will
soon be used to fit SED models to the photometric observations,
narrowing down the possible candidates for Tr. JWST data will
also allow us to study in greater detail possible variations in flux
that are expected if Tr is an intrinsically variable source. Based
on these data and detailed lens models, it will be possible to
identify objects similar to Tr, whose observations demand the
presence of small scale perturbers (or more generally small scale
perturbations of the dark matter field). The accuracy in the mass
estimation of these perturbations, as well as their abundance, will
improve dramatically in the coming years. Better data will also
allow us to reduce the minimum observable mass through this
technique, resulting in competitive constraints on DM models.

9. Lens model constraints on Tr

The nature of Tr remains unclear. The time delay and magnifi-
cations predicted by the lens model clearly indicate that if Tr is
being magnified by factors of 100 or less, as suggested in earlier
work, other counterimages should have been clearly observed.
An object such as a SN, with absolute magnitude ≈−19, and
amplified by a minimum factor of 20 (a conservative limit for
the lens model in positions near t1–t5), would have been easily
observed in HST images. This is not the case, posing a serious
problem for the SN interpretation. In order to identify a possi-
ble explanation for Tr, we discuss below the different constraints
that can be derived from the lens models, and observations.

9.1. Time delays

Assuming a magnification factor of order µ ∼ 100 for Tr (that
is, a magnification boost of 5 mag), a bright SN at z = 2.37 with
absolute magnitude of ≈−19 would have an apparent magnitude
of ≈22.5 (ignoring k-corrections and extinction). This hypoth-
esis to explain Tr is discussed in Vanzella et al. (2020b). How-
ever, typical SN remain in the bright phase for a relatively short
time of typically 1 month, with SN of type II being able to stay
bright for several months. In Vanzella et al. (2020b), it is dis-
cussed how based on 2016 spectroscopic observations, and 2019
HST observations, Tr remains a bright source for at least 11.9
months in the rest frame (or 3.3 yr in the observer frame, extend-
ing to over 5 yr if one considers the most recent HST observa-

1 A proposal to observe Tr with JWST has been already approved, GO
2555.

tions from June 2021, where Tr is still clearly visible). Visual
inspection of NTT/EFOCS2 images taken in March 2014 and
shown in Dahle et al. (2016), reveal a bright unresolved source at
the position of Tr which would imply the source has been persis-
tent for at least 7.2 yr (1.93 yr in the rest frame). If the SN inter-
pretation is correct, this would make Tr a SN with an unusually
long bright phase, although Vanzella et al. (2020b) argues that
SNe that interact with the circumstellar material can have long
durations. The data taken in 2014 is useful to establish that Tr
was already visible at that time, but given the relative poor reso-
lution of the NTT/EFOCS2 image (compared with HST images),
the older images are less than ideal to study the possible variabil-
ity of the source.

The possibility that t1–t5 are counterimages of Tr would ease
the tension with the SN interpretation and the time delay con-
straint, since the expected counterimages would be present in the
image. However, this would still require an unusually long dura-
tion SN. In addition, given the constraint on the minimum mag-
nification (µ > 600), it would imply a relatively faint SN during
the bright phase (absolute magnitude fainter than MV = −17). Tr
is probably not a shortlived event, but a long-duration event or
even a stable source in terms of its flux (in timescale of decades).
The SN interpretation is hence unlikely.

9.2. Luminosity of the Tr

As discussed in Sect. 5, if t1–t5 are counterimages of Tr, the
magnification at Tr ranges from µ ≈ 600 to µ ≈ 7000. This
directly translates into absolute magnitudes in the range −14.8 <
MV < −17.5 (ignoring k-corrections or extinction).

If t1–t5 are not counterimages of Tr, and no counterimages
are observed elsewhere in the lens plane, this sets an upper limit
on its absolute magnitude. HST images with exposure times of
approximately 1 h (similar to the observations of Tr) can reach
magnitudes MAB ≈ 27.5 in F814W (see for instance Coe et al.
2019). Adopting as the minimum magnification for the counter-
images of Tr a conservative limit of µmax = 50 at positions near
t1–t5 in Table 2 (this magnification would be even larger in the
model of Pignataro et al. 2021), we can infer that Tr must be
fainter than Mabs ≈ −14.7, otherwise it would be observed in the
HST images in at least one of the t1–t5 positions (again, ignoring
k-corrections or extinction).

Finally, in Vanzella et al. (2022), the absolute UV luminos-
ity of t1 (5.4a in that work) is reported as MUV = −16.51± 0.32,
and it is interpreted as a young stellar cluster with age &7 Myr,
mass 3.6 × 106 M�, and radius less than 5.4 pc (only upper lim-
its are quoted for the size since the images are unresolved). The
inferred luminosity in Vanzella et al. (2022) agrees well with the
range given at the beginning of this subsection, and would imply
that the magnification at Tr is µ ≈ 1400. Of course, this esti-
mate is based on the lens model used in that work, and which
corresponds to the model in Pignataro et al. (2021) that predicts
a magnification of 56± 26 for t1. Also, it is based on the estima-
tion of just one of the knots t1–t5. The estimate of the luminosity
will vary when using other knots of the same 5.4 family.

9.3. Minimum magnification of Tr

We have seen in Sect. 5 that if t1–t5 are counterimages of Tr,
the minimum magnification predicted by the lens models is µ ≈
600 (from the model in Pignataro et al. 2021). If t1–t5 are not
counterimages of Tr, the minimum magnification must be larger,
since it needs to account for a larger flux ratio between Tr and
the other counterimages (that should have been visible within the
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time range covered by observations). If no counterimages of Tr
are observed, the minimum magnification must be such that it
boosts the flux at Tr at least ≈5.5 mag. That is the magnification
must be 160 times stronger at Tr than at any other position in
the Sunburst arc. Adopting a conservative lower limit of µ =
20 at any of the expected locations of the counterimages (these
positions must be near t1–t5, or between knots 5.1 and 5.2 in
system 5), this translates into a minimum magnification for Tr of
µ = 3200.

9.4. Maximum magnification of Tr

Smaller (but intrinsically fainter) sources such as individual stars
can be magnified to extreme factors owing to the small intrinsic
size, since the maximum magnification scales with the inverse of√

r, where r is the radius of the source. At magnification factors
of 105, a superluminous star with absolute magnitude MV ≈ −9.5
at z = 2.37, would appear with a flux similar to the one observed
at Tr. These large magnification factors cannot be maintained
over periods of years since the relative motion between the star
and the caustic would eventually reduce the magnification sig-
nificantly, unless the source is moving in a fine tuned direction
parallel to the caustic, which is unlikely. Also, microlenses in
the lens plane reduce the maximum magnification, making val-
ues above a few tens of thousands very unlikely.

9.5. Maximum magnification in the presence of microlensing

The ubiquitous presence of microlenses from the cluster intra-
cluster medium results in microcaustics in the source plane. The
number density of microcaustics grows with the magnification
from the cluster (Venumadhav et al. 2017; Diego et al. 2018).
The effective optical depth can be approximated by τeff = κml µc,
where κml is the coarse-grained surface density of microlenses
divided by the critical surface mass density and µc is the cluster
magnification factor (see for instance Diego et al. 2018). While
the abundance of intracluster stars intervening the line of sight
toward Tr is yet to be measured, typical values for κml found at
the cluster Einstein radius range between 10−3 to 10−2. Hence,
for values of µc > 103 the effective optical depth exceeds unity.
In this situation, Tr’s motion across a network of micro caustics
on the source plane should result in a variable flux. Tr is bright
enough in the rest-frame FUV that flux variations at ∼5–10 %
level should be easily detectable. Nondetection of flux variation
would be explained by a value τeff < 1 (i.e., small values for
κml, or µc, or both). If τeff � 1, flux variations can be small.
This is known as the “more-is-less” effect, and is analogous to
the effect studied in Dai (2021). In this regime, a high density
of micro caustics overlap at any position in the source plane.
Crossing one of these microcaustics results in a relatively small
change in the total flux, which sums over a large number of micro
images.

Random ray deflections due to a population of microlenses
“smooth out” a sharp macro caustic into a structure
of a finite thickness where the persistent magnification
plateaus (Venumadhav et al. 2017), as if the source has a larger,
effective angular size (Dai & Pascale 2021) ∼κ1/2

ml θml = 0.03–
0.1 µas, where θml ≈ 1 µas is the angular Einstein radius corre-
sponding to the typical main sequence dwarf star ∼0.3 M�. This
translates to a physical scale of &50–170 AU for the effective
source size. High magnification values that would have to be
achieved at source positions closer to a sharp cluster caustic than
this “smooth out” length scale are not realized in the presence
of intracluster microlenses. This limitation on the highest possi-

ble magnification is estimated to be a few times 104 for typical
strengths of a cluster caustic.

If the source is situated further from the macro caustic than
the “smooth out” scale, its persistent magnification (i.e., aver-
aged over timescales longer than that of possible microlensing-
induced variability) is unaffected by intracluster stars. Nonethe-
less, flaring events associated with micro caustic crossing can
still arise; an estimated peak magnification is µpk ∼ (0.4−2) ×
104 (RS /AU)−1/2, for κml = 10−3−10−2 and typical parameters of
cluster macro caustic.

9.6. Maximum size of Tr

The fact that Tr is not resolved is another useful clue. The mor-
phology of the Sunburst arc in the different counterimages shows
a similar thickness of ≈0.4′′–0.5′′ or equivalently ≈2–3 kpc. This
size is typical for galaxies at z > 2, suggesting that in all the
counterimages the radial magnification, µr, is close to 1. We
also recall that Vanzella et al. (2022) constrained the size of the
source to be ≈3 kpc2. Hence most of the magnification can be
attributed to the tangential component, µt, as expected in giant
arcs forming near the Einstein radius of the lens. This is con-
firmed by our lens model that predicts µr = 1.38 and µr = 2.08 at
Tr for model M1 and model M2 respectively. If we adopt the most
conservative value of the magnification from the previous sub-
section (i.e., µ ≈ 600 from the model in Pignataro et al. 2021),
the tangential magnification is ≈300, which combined with the
fact that Tr is unresolved, constrains the size of Tr to be less
than 0.4 parsec. This constraint is obtained after assuming that
any separation between two point sources larger than 0.03′′ is
resolved in the HST images in the F606W band, and hence the
separation to the critical curve cannot be larger than 0.015′′ (see
Appendix E). If instead we assume the minimum magnification
derived under the assumption that t1–t5 are not counterimages,
that is µmin = 2000, then the size of the source must be less than
≈0.06 parsec.

10. Godzilla, an extremely luminous and magnified
star at z = 2.37

The above constraints on persistence in time, luminosity, and
size reduces the number of candidates to a small number. Tran-
sient luminous objects, such as classic SN or other shortlived
events (<2 yr) can be ruled out given the fact that the image has
remained bright for ≈7 yr and time delays between the expected
position of the brightest counterimages must be smaller than 1 yr.
A standard globular cluster or star forming region could be bright
enough to explain the flux of Tr if one assumes a magnification
µ > 600, but it does not satisfy the constraint on the size, since
it would require the flux to be contained in a region smaller than
0.4 parsec. Very compact groups of stars are considered in a sep-
arate subsection below.

Given the constraints on the maximum size, minimum lumi-
nosity, and duration of the event, the number of possible can-
didates is very small. We contemplate two possibilities: (i) an
accretion disk around a supermassive black hole (SMBH), and
(ii) a hyperluminous star.

10.1. Supermassive black hole

First we consider a small accretion disk around a black hole.
Since the luminosity of the accretion disk grows with the mass of
the black hole at its center, one could in principle have an object
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that is luminous enough, but contained in a region that is suf-
ficiently small. Accretion discs can be luminous over extended
periods of time, easily meeting the constraint on persistence of
the source.

The bolometric luminosity of an accretion disk radiating
at the Eddington limit scales with the mass of the BH as
Rybicki & Lightman (1979), Miller & Colbert (2004)

L� = 1.3 × 1038
(

M
M�

)
erg s−1 = 3.38 × 104 MBH

M�
.L�. (3)

An intermediate mass black hole (IMBH) at z = 2.37, with mass
≈105 M� would be luminous enough to be observed with mag-
nitude F606W ≈ 22, provided the magnification is ≈5 × 103.
The part of the energy that is radiated in the UV and optical
bands is probably a small fraction of this energy. Some of the
energy radiated as X-rays or UV is expected to be reprocessed
into the observed optical bands, especially if there is circumstel-
lar material around the source, as suggested by the Bowen fluo-
rescence discussed in Vanzella et al. (2020b). If we assume that
10% of the bolometric flux is radiated in the UV-optical part of
the spectrum, we can compensate for this by increasing the mass
of the black hole by a corresponding factor 10. Smaller frac-
tions would translate to correspondingly higher masses. Since
the accretion disk around a BH is simply a working hypothesis,
and it is beyond the scope of this paper to constrain with accu-
racy the possible mass of the IMBH, we simply consider a BH
with mass ≈106 M� in order to explain the observed flux in the
UV-optical bands. Typically above 106 M� black holes are refer-
eed to as supermassive black holes (SMBH), so from now on we
refer to this candidate as a SMBH.

Since accretion discs of SMBH can be significantly larger
than a star, we can constrain the maximum mass of the SMBH
(and hence the minimum magnification) by using simple scaling
relations. The half-light radius of an accreting disc, for a given
wavelength λ, scales as (Blackburne et al. 2011)

r1/2 = 1.68 × 1016 cm
(

MBH

109M�

)2/3 (
λ

µm

)4/3

, (4)

where we have assumed the disk is emitting at the Eddington
limit. This scaling law is derived for masses which are larger than
the ones considered in this work and is relatively poorly con-
strained, but it will serve for the discussion in this section. Since
the most accurate constraints on the size are given by the HST
observations in the UV filters (where Tr remains unresolved), we
considered the typical rest frame equivalent wavelength of these
filters, which is λ ≈ 0.1 µm. For this wavelength and a mass
of 106M�, we find r1/2 ≈ 1 AU. Hence the accretion disk of a
SMBH with mass 106 M�, in the UV part of the spectrum, would
be much smaller than the size constraint found in Sect. 9.6 for
µ = 5 × 103. The mass of the SMBH could be larger by several
orders of magnitude and still satisfy the constraint on the maxi-
mum size. In this case, since the luminosity would increase by a
similar factor, the magnification can be reduced accordingly. As
discussed earlier, the magnification at Tr must be at least µ > 600
in order to explain the flux ratio between Tr and the t1–t5 alleged
counterimages (and even larger magnification if t1–t5 are not
counterimages of Tr), so under the assumptions above, the mass
of the possible SMBH should be less than ∼107 M� in order to
fit the observed flux.

X-ray emission and Ly-α. One of the characteristic features
of accretion discs is their X-ray emission. Chandra data acquired
in 2020 (40 ks, PI M. Bayliss, Obs ID 20442) reveals no source at

the position of Tr. Even with no detection, and given the extreme
magnification factors considered in this work, we should check
if a SMBH with MBH = 106 M� and µ = 5 × 103 is consis-
tent with no detection. Following Mayers et al. (2018), we esti-
mate that such a SMBH would have an X-ray luminosity of
LX[2−10] keV < 1040 ergs s−1. After magnification this translates
into LX[2−10] keV < 5 × 1043 ergs s−1. In the same energy range,
and for the redshift of Tr, it is found that the deepest observations
available with Chandra (>2 Ms exposures) can reach AGN-type
objects with luminosity as low as LX[2−10] keV ≈ 3 × 1043 ergs s−1

(Silverman et al. 2008). Hence, we do not expect to see X-ray
emission form this source in the much shallower 40 ks obser-
vation of this cluster. Another typical feature in accretion discs
is Ly-α emission. Inspection of the spectrum from XShooter
reveals no obvious Ly-α emission at the position of Tr. LyC con-
tinuum at shorter wavelengths is also undetected in the UV imag-
ing presented in Rivera-Thorsen et al. (2019), while it is clearly
observed in all 12 positions of the knot 5.1 of system 5, despite
Tr being comparable in brightness in the UV and optical bands as
the brightest counterimage of knot 5.1. It is possible that the Ly-
α and LyC emission are heavily absorbed, but that would require
a fine-tuned configuration in order to explain the other spectral
features shown in Vanzella et al. (2020b). The lack of Ly-α and
LyC emission weakens the interpretation of a SMBH. As dis-
cussed in Vanzella et al. (2020b), these spectral features resem-
ble those of massive LBV stars. In the next section we consider
this type of star as the most viable candidate to explain Tr.

10.2. A very compact group at z = 2.37

Given the most conservative constraint on size found in Sect. 9.6
(R < 0.4 pc for µ = 600), regular clusters cannot explain Tr
since they are typically an order of magnitude larger in size.
If Tr is composed of a small (and very compact) group of
stars, that could explain its intrinsic high luminosity and lack of
apparent flux fluctuations. Very compact groups can be found
in the center of star forming regions. A well studied exam-
ple is R136a in the Large Magellanic Cloud. Earlier images of
R136a showed it as an unresolved object (Feitzinger et al. 1980;
Cassinelli et al. 1981; Savage et al. 1983). These earlier work
could not distinguish between a small supermassive star (with
mass above 1000 solar masses) and a small group of very lumi-
nous stars. The debate was settled with HST space images that
were able to resolve R136a into a small group (R ≈ 0.5 pc) of
≈40 stars (Hunter et al. 1995). If one considers the case of R136a
as a possible analog for Tr, its total luminosity of ≈6 × 107 L�
(Savage et al. 1983) is orders of magnitude smaller than the
luminosity required to explain the observed flux at Tr (in the
conservative scenario considered in this subsection, µ = 600
and R < 0.4 pc). Considering the brightest star in the group
R136a, (R136a1), it would take approximately 500 stars such
as R136a1 in a radius less than 0.4 pc to reach the required lumi-
nosity, that is, at least an order of magnitude larger than the total
number of stars observed in the small group R136a. In addition
to the luminosity, other bright structures are found surround-
ing R136a making the size of the entire R136 complex larger
than the actual constraint in size from this work. These extended
structures would be equally magnified by extreme factors. In the
case of Tr, there is no indication of bright substructures extend-
ing beyond the 0.4 pc radius. Increasing the magnification does
not alleviate the problem. A larger magnification factor does not
require such a luminous source since the intrinsic luminosity of
Tr scales as µ−1, but the constraint on the size of Tr would be
also tighter since it scales with the same factor µ−1.
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From the discussion above, it is clear that an extreme object
such as R136a can satisfy the constraint on size but cannot offer
a satisfactory explanation for the flux of Tr. At the redshift of the
Sunburst one could expect clusters as dense as (or even denser
than) R136a to be more common than in the present epoch, but
they should be substantially more luminous in order to explain
Tr. Hence, if Tr is a small group of stars, it must contain at least
one extraordinarily bright star that contributes to the flux in a
significant way in order to make Tr luminous enough. In the next
subsection we consider the particular case of a single massive
star that could explain Tr.

10.3. Godzilla: A hyperluminous star at z = 2.37

Among the most luminous stars in the local universe we find
Wolf-Rayet stars similar to R136a1 with an estimated radius
of ≈0.2 AU and bolometric luminosity ≈−12.2 (MV ≈ −8.2;
Doran et al. 2013; Bestenlehner et al. 2020). At these luminosi-
ties, one would need magnification factors ∼5 × 104, which are
tremendously unlikely and very difficult to maintain for more
than a few weeks (due to relative motions between the source
and the caustic). One would naively expect that significantly
more massive stars could have much larger luminosities. Unfor-
tunately, the scaling between mass and luminosity discussed in
the previous subsection cannot be applied to stars above a certain
mass. Stars are supported by thermal pressure, and above masses
of O(100) M� they became unstable due to radiation pressure
(Figer 2005; Zinnecker & Yorke 2007; Crowther et al. 2010).
We do not consider here the hypothetical case of very massive
stars with mass above several hundred solar masses, although
these stars are theoretically possible but shortlived (Belkus et al.
2007), nor metal-free Pop III stars. These stars are believed to
have existed in the early universe and could be detected through
gravitational lensing (Windhorst et al. 2018). However, Godzilla
is unlikely a PopIII star given its redshift and presence of metals
in its spectrum as shown in Vanzella et al. (2020b).

Hence, at first glance it appears that ordinary stars cannot
be luminous enough to explain the observed flux at Tr, unless
one considers unreasonably high magnification factors. How-
ever, there are stars in our local universe that momentarily can
increase their luminosity by a substantial amount.

Luminous blue variable (LBV) stars such as Eta Carinae,
also mentioned in Vanzella et al. (2020b) are very hot and lumi-
nous (Crowther 2007; Ramachandran et al. 2019), and show
spectral features similar to the ones observed in Tr. More impor-
tantly, during an outburst they can reach the required luminos-
ity. These outbursts can be relatively short, making these stars
resemble SN explosions when observed at large distances (SN
impostors), but the outbursts can also last decades (such as the
Great Eruption in Eta Carinae), satisfying the requirement on
the duration of the event. This type of star would also explain
the Bowen fluorescence observed in Vanzella et al. (2020b) as
they are often surrounded by circumstellar material from pre-
vious outbursts, and other peculiar spectral features such as
P Cygni profiles from intense stellar winds, clearly observed
in the C-IV line in the MUSE spectrum at the position of Tr.
Currently having an absolute magnitude of MV ≈ −8.5, histori-
cal records of Eta Carinae show that during the Great Eruption
between 1822 and 1864, its luminosity increased by ≈5 mag
(Frew 2004; Smith & Frew 2011). Other variable stars, such as
the SN impostor SN 2002bu, have reached even larger luminosi-
ties than Eta Carinae (MV = −15 Szczygieł et al. 2012) although
it remained in this bright phase during a shorter period of time
than Eta Carinae.

Assuming our most conservative limit for the magnification
factor of µ ≈ 600, the source should have an absolute magnitude
of MUV ≈ −17.4 in order to make it consistent with the observed
flux. During an outburst phase, no known LBV star has ever been
observed in our local universe maintaining this luminosity for
two years or more, which would make this star the brightest ever
seen. At larger magnifications factors of µ ≈ 2000, the lumi-
nosity reduces to absolute magnitude −15.7, close to but still
above the maximum luminosity observed in Eta Carinae during
the Great Eruption, but almost as luminous as the SN impostor
2002bu during the 2002 outburst (Szczygieł et al. 2012). Even
at this large magnification factors, the source responsible for Tr
would be a monster star, more luminous than any other star ever
observed. It would not be surprising to expect LBV stars more
luminous than the ones observed in our local universe after one
considers the gain in volume probed at high redshift. Thanks to
gravitational lensing, LBV stars can be observed at z > 1 in
a volume ∼10 orders of magnitude larger than the volume of
the local group (up to M31 or ≈1 Mpc distance from the Milky
Way), enough to compensate for the very low probability of hav-
ing µ > 1000. If we adopt the maximum magnification inferred
from model M2, that is µ ≈ 7000, the luminosity can be reduced
by ≈1.3 mag, bringing the luminosity in line with the luminosity
of LBV stars in our local group during an outburst phase, such
as the Great Eruption in Eta Carinae.

Magnifications larger than ∼104 would reduce the needed
intrinsic luminosity even further but are very unlikely, due to
the universal scaling of the lensing probability with magnifi-
cation (P(>µ) ∝ µ−2). In addition, as discussed earlier, the
presence of ubiquitous microlenses disturb the macro-caustic
of the cluster+perturber, and effectively reduce the maximum
possible magnification of a star close to a cluster caustic
(Venumadhav et al. 2017; Diego et al. 2018).

It seems then very plausible that given the expected abun-
dance of LBV stars at high redshift, and the vast volume accessi-
ble through gravitational lensing, that these stars can be detected
during their flaring phase. This is especially true for outbursting
LBV stars that inhabit well studied giant arcs, which naturally
act as beacons in space of large magnification factors.

Based on all the arguments presented so far, we can then
establish that the most likely candidate is a very massive and
luminous LBV star captured during a long duration and ener-
getic outburst. Because of the combination of extreme luminos-
ity and magnification, from now on we refer to this monster star
as Godzilla.

As discussed in Sect. 10.2, Godzilla could be part of a small
group of stars similar or denser than R136a. In this case, the
requirements on the total luminosity of Godzilla could be relaxed
even further since part of the flux could be attributed to the
neighboring stars. If the group of stars surrounding Godzilla
is as luminous as R136a, most of the flux would still be due
to Godzilla. That is, even in this scenario Godzilla must be in
an outbursting phase in order to produce the observed flux and
explain the peculiar features observed in its spectrum.

Probability of observing a Godzilla star. After discussing
the possible nature of Godzilla as an outbursting LBV star, we
turn our attention to the probability of such an event. With the
cluster+perturber model shown in Fig. 6, we can estimate the
strength of the critical curve at Tr position. We fit the magnifica-
tion in a direction perpendicular to the critical curve with the uni-
versal law µ = µo/d, and find µo ≈ 50′′. We use this result to esti-
mate the distance between the counterimages and the caustic for
a given magnification. Since the image of Godzilla is unresolved,
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Fig. 7. Caustic region at the redshift of Godzilla. Right panel: central region, with the predicted position of Godzilla marked with a red dot. The
overlapping of several caustics in this region is the reason behind the large multiplicity of knot 5.1, which appears 12 times. Godzilla must be a
fraction of a parsec from one of these caustics.

it must be forming a pair of counterimages, with one counterim-
age in each side of the critical curve, at a distance of 15 mas at
most (see Appendix E). From this separation and the law derived
before, we infer the magnification is at least µ ≈ 3330. If we
assume the radial magnification is again µr ≈ 2, after dividing
the 15 mas separation by the tangential magnification we obtain
that Godzilla must be at most ≈0.073 pc away from the caustic.
This is a very small separation to the caustic. The probability that
Godzilla is that close to the cluster+perturber would be equally
small.
However, one needs to consider the fact that the galaxy host-
ing Godzilla is already in an area of large magnification, and
that multiple caustics cross that galaxy. The bright knot 5.1
for instance (close to Godzilla in the source plane), is multiply
lensed a record number of 12 times. This implies that multiple
overlapping caustics are surrounding Godzilla. The probability
of being magnified by a large factor needs to take into account
the fact that Godzilla could have been amplified by any of the
other nearby caustics. Also, the combined effect of the multi-
ple overlapping caustics has a multiplicative effect in terms of
the final amplification factor. This is demonstrated in Fig. 7,
where we plot the caustic network of the cluster, and the posi-
tion of Godzilla predicted by our lens model in relation to the
caustic network. As can be appreciated, Godzilla is surrounded
by several very powerful caustics. Given the limited resolution
of the lens model, the caustics cannot be well resolved, but the
plot clearly shows how multiple caustics overlap near Godzilla’s
position.

In order to better estimate the probability of being magni-
fied by an extreme factor of >3330 we rely again on our lens
model. We compute the probability of magnification based on
the magnification map and find that the probability of magnifi-
cation scales as the canonical µ−3. In particular we find dA/dµ =
10(103/µ)3 pc2 (this law offers an excellent fit between µ = 100
and µ = 10 000, which is approximately the maximum mag-

nification that can be measured with enough statistical power
given the pixel size in our model of 0.03′′). We can integrate this
law to infer the area above a given magnification and find the
following:

A(> µ) = 50
(

104

µ

)2

pc2. (5)

Hence there is an area in the source plane of ≈450 pc2 with
µ > 3330. Considering that the area in the host galaxy that con-
tains rich star forming regions is ≈500 pc×100 pc (see the source
reconstruction in Appendix D), the probability of Godzilla to be
in an area of 450 pc2 is ≈1%. Considering that Vanzella et al.
(2022) estimated a very high star formation rate for the Sunburst
arc, and that these type of stars must be abundant in the area
of ≈500 pc × 100 pc considered above, it is not unreasonable to
expect one star such as Godzilla to be observed at these magni-
fication factors.

In a broader sense, we can estimate the abundance of
extremely magnified LBV stars (or EMLBV) at cosmological
distances. We consider the volume in the redshift shell 1 < z < 3,
which is V ≈ 900 Gpc3. The abundance of LBV stars can be
estimated only in our local volume, but this should be consid-
ered as a lower limit since the star formation rate is known
to be higher at redshift z > 1. From the recent compilation
of Richardson & Mehner (2018), there are 40 confirmed LBVs
up to the distance of M33 (d ≈ 1 Mpc). Extrapolating this
number to the redshift shell above, we expect a number of at
least 1013 LBV stars in that redshift interval. These stars are
not observable through ordinary means, but can be accessed
thanks to the boost of gravitational lensing, especially during an
outburst phase. These outbursts can take place relatively often
(Pastorello et al. 2010) or can happen with time intervals of cen-
turies. In stars similar to Eta Carinae, large outbursts have been
estimated to take place approximately every 3 centuries during
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the last millennia (Kiminki et al. 2016). Assuming a conserva-
tive average of one outburst per 1000 yr for these stars, and a
duration for these outbursts of one year (both in the observer
frame), we expect at least 1010 stars to be outbursting at any
time between redshifts z = 1 and z = 3. These stars would
still have apparent magnitudes Mg ≈ 30 and remain unde-
tectable without the aid of extreme magnification. If we con-
sider magnification factors larger than µ = 1000 (i.e., a boost
of 7.5 mag), the probability of magnification P(µ > 1000) ≈
2 × 10−9 (Diego 2019), resulting in ≈20 EMLBV stars observ-
able at each moment above apparent magnitude Mg ≈ 24–25.
Some of these stars will be bright enough (such as Godzilla)
to be detected by upcoming surveys such as Euclid or LSST.
If we assume a more modest magnification of µ > 100, these
stars would have apparent magnitudes Mg ≈ 27, well within
reach of routine observations with JWST. At these magnifica-
tion we expect two orders of magnitude more, that is a few
thousand magnified outbursting LBV at any given time. Recall
that the estimates above are derived under conservative assump-
tions and that the number of detectable EMLBV stars is probably
higher.

Recognizing that these EMLBV stars will most likely be
found in giant arcs, and that many of these arcs have been
already identified and observed, Godzilla is probably the first
of a list of EMLBV stars that will soon grow in number. It is
very possible that some strongly lensed but unresolved luminous
objects, already found in these giant arcs and identified as ultra-
compact star forming regions or globular clusters, are instead
flaring EMLBV stars similar to Godzilla. A good example would
be the knot t1 (if it is finally confirmed as a counterimage of
Godzilla), that has been interpreted as an unresolved young star
forming region (see Vanzella et al. 2022, where t1 corresponds
to knot 5.4a in that work).

Future surveys such as Euclid and LSST will detect thou-
sands of new strongly lensed arcs in the coming years. Space
telescopes such as HST and JWST will be used to observe
in greater detail these arcs, opening the door to a large num-
ber of stars similar to Godzilla. These observations will unveil
new EMLBV stars, but also new caustic crossing stars such
as Icarus. The main difference between caustic crossing events
and EMLBV is timescale. While caustic crossings can last sev-
eral weeks, EMLBV stars can be observed for years. Also,
since outbursting LBV stars are intrinsically more luminous than
stars such as Icarus, they can appear with magnitudes acces-
sible by large survey telescopes such as Euclid and Rubin,
opening the door to their identification by these large sur-
veys. At magnitudes brighter than 23, these stars can be mon-
itored by relatively small ground telescopes, which together
with the relatively long timescales of the outbursts, make
them ideal targets to study microlensing by stars in the lens,
but also compact dark matter candidates such as primordial
black holes (PBH; Green & Kavanagh 2021). Given the fact
that these stars can be observed only when extreme mag-
nification factors are involved, the overlap of microcaustics
from microlenses is expected to be significant. This will result
in relatively frequent microcaustic crossings, that will allow
us to determine with accuracy the relative motion (direction
but also velocity) of the EMLBV star with respect to the
web of microcaustics. Well-sampled light curves of EMLBV
can then be used to set limits on the abundance of PBHs
after accounting for the contribution from stars and remnants.
This later contribution can be constrained from accurate SED
fitting of the intracluster light around the position of the
EMLBV.

11. Discussion of the results

Assuming Godzilla is a compact source, the observed flux con-
strains the source size at given magnification µ. For the discus-
sion below, we assume a fiducial magnification of µ = 5000,
but present results in its generic form, explicitly including the µ
dependency. From the MUSE measurement of the FUV contin-
uum, the luminosity in the rest-frame wavelength range 1400–
2750 Å is L1400−2750 = 1.2× 1041 erg s−1 (µ/5000)−1 (neglecting
dust extinction). This sets a lower bound on the bolometric lumi-
nosity at given µ:

Lbol & 1041 erg s−1 (µ/5000)−1 . (6)

If the source luminosity is Eddington-limited, a lower bound
on the mass M of the central object is

M & 1000 M� (µ/5000)−1 . (7)

Since the FUV continuum shape resembles that of OB stars, the
surface temperature of the continuum source Ts is likely to be
similar to those of OB stars. To match the observed flux density
∼3 × 10−18 erg−1 s−1 cm−2 Å −1 at rest-frame 1400 Å the source
size is

R ≈ 0.4 AU
(
e105 K/Ts − 1

)1/2
(µ/5000)−1/2. (8)

At the fiducial magnification µ = 5000, R ≈ 11 AU if Ts =
15 000 K, and R ≈ 2 AU if Ts = 30 000 K.

Combining Eqs. (7) and (8), we infer the dynamic velocity
near the photosphere

vvir = (G M/R)1/2 & 280 km s−1
(
µ

5000

)−1/4
 e105 K/Ts − 1

e105 K/15 000 K − 1

−1/4

.

(9)

The inferred value decreases with larger µ or lower Ts,
albeit with weak power-law dependence. Magnification factors
µ & 104 are physically difficult to realize, and the observed
FUV continuum shape suggests Ts & 15 000 K. Thus the
dynamic velocity near the source is significantly higher than
the velocity dispersion .100 km s−1 of the observed UV emis-
sion lines (Vanzella et al. 2020b). This hints at nebular line for-
mation at larger distances from the source (probably powered
by photoionization by the continuum source). The significant
implication here, particularly constraining for the accretion disk
scenario, is that the nebular source size may far exceed the con-
tinuum source size – an extremely high magnification physically
possible for the latter may not be realizable for the former.

The constraints in Eqs. (7) and (9) are loosened if the con-
tinuum source is super-Eddington. A notable example is an
LBV in the outbursting phase when fast ejecta are launched
in a nonterminal explosion, interact with dense circumstellar
material, and dissipate a tremendous amount of kinetic energy
up to 1050 erg over a period extending years or even decades.
Recent observations have uncovered candidates of long-lasting
LBV eruptions in low-z dwarf galaxies. One object, SDSS
1133, reached peak luminosity Mg = −16 (Koss et al. 2014)
and has an estimated FUV luminosity in the range of 1041–
1042 erg s−1 (Kokubo 2022). A similar object PHL 293B per-
sisted for nearly a decade (Burke et al. 2020), although radia-
tion transfer modeling suggested a moderate L ≈ (2.5−3.5) ×
106 L� (Allan et al. 2020), which would not be easy to recon-
cile with Eq. (6). Provided that massive stars must be abun-
dant in the host galaxy (Vanzella et al. 2022), Godzilla may be a
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Cosmic Noon example of this outbursting LBV class. This
explanation, however, appears imperfect – prominent Balmer
emission lines, which are widely used as a diagnostic to study
the outflowing surroundings of LBVs, are not clearly detected
for Godzilla (Vanzella et al. 2020b). Moreover, known LBVs in
a prolonged outburst state often show varying fluxes of more
than 10% or larger on the timescale of years.

11.1. Spectral features

In the rest-frame wavelength range 1400–2750 Å covered by
MUSE, the most prominent absorption feature is the broad C IV
1550 Å P Cygni profile (see Fig. 8), whose shape is curiously
coincident with that of fast O-star winds. This indicates that a
fast outflow at∼2000 km s−1 obscures the continuum source. The
outflow may be either a stellar wind or a disk wind. In the latter
case, an inferred dynamic velocity of several thousand km s−1 of
the accretion disk is consistent with Eq. (9).

All reported emission lines of Godzilla are associated
with metal ions that can form via photoionization by OB
stars (Vanzella et al. 2020b). Those include intermediate ioniza-
tion species that live in a He I/H II zone, Si III, Fe III and O
II, as well as high ionization species that live in the He II zone,
O III, N III, C III and Ne III. Emission lines from higher ion-
ized species that require a harder ionizing spectrum typical of
an accreting BH are not seen. As for the He II 1640 Å recom-
bination line reported in Vanzella et al. (2020b), we instead sug-
gests O I] 1641 Å based on the line center measurement. This
line is powered by Lyβ pumping in a high optical depth neutral
gas, and is seen from gas condensations around η Car (Hamann
2012). These spectral features favor a stellar source more than a
hot accretion disk.

Since massive stars are rarely found isolated, it is possible
that Godzilla is not a single object. We discussed in Sect. 10.2
how this possibility cannot be ruled out categorically. However,
if such a group is as luminous as R136a, this group alone can no
explain the observed flux and the presence of an ultraluminous
star such as Godzilla is still required. Interestingly, Savage et al.
(1983), Crowther & Dessart (1998) show how the spectral fea-
tures of stars in the small group R136a can match those observed
in Godzilla, in particular they do show P Cygni profiles in the
same CIV line as in Godzilla. The existence of a small group of
stars around Godzilla would contribute to the total flux relaxing
the flux requirements on Godzilla.

11.2. The role of microlensing

Either a hyperluminous star or an accretion disk is a compact
continuum source which would likely involve a magnification in
excess of a thousand. Therefore, microlensing effects from intra-
cluster stars are likely to be important, whether the macro caustic
results from a smooth cluster lens consisting of only galaxies and
galaxy-sized DM subhalos, or is caused by perturbing effects of
subgalactic, star-free DM subhalos (Dai et al. 2018). Intraclus-
ter stars that intervene the line of sight toward Godzilla probably
account for κml > 10−3 of the total surface mass density. This
is sufficient for creating overlapping micro caustics if the macro
magnification exceeds ∼1000.

Godzilla would be traversing the corrugated micro caus-
tic network at a typical velocity ∼300–1000 km s−1. The resul-
tant flux variations due to a time-dependent magnification may
be achromatic if Godzilla is a hyperluminous star with a
wavelength-independent photosphere (ignoring small limb dark-
ening effects), but may involve subtle color changes if it is a daz-
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Fig. 8. Spectrum of Godzilla derived from MUSE data. The blue lines
show the subtracted background containing mostly sky lines. Some
spectral features are marked.

zling accretion disk with a radial temperature profile. Searches
for microlensing-induced flux variations would provide a key
test of the hypothesized compact source under extreme mag-
nification, and potentially offer an opportunity to resolve the
source’s physical structure at a Cosmic Noon distance. We fur-
ther note that if Godzilla is proven to be a compact stellar source
having an extreme magnification factor of thousands or even
ten thousand, it could be useful as a sensitive lensing probe
to constrain minuscule DM substructures such as axion mini-
halos (Dai & Miralda-Escudé 2020), or primordial black holes
(Diego et al. 2018).

12. Summary and conclusions

We study the strong lensing effect in the galaxy cluster PSZ1
G311.65-18.48, using an improved version of our hybrid method
for lens reconstruction, WSLAP+. We include new constraints
consisting of the positions of critical points, useful to better
constrain the lens model near the regions of maximum magni-
fication. The addition of the new constraints help improve the
lens model, in particular by positioning the predicted critical
curve closer to the known position of critical points. We find
that the critical curve from our lens model passes near the posi-
tion of a very bright transient candidate previously identified in
Vanzella et al. (2020b), but does not intersect Tr position. We
identify candidate counterimages for Tr based on lens model
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predictions, but argue that it is possible that these candidates
are not real counterimages. In the most conservative scenario
where these candidates are counterimages of Tr, we constrain
the magnification at Tr position to be between ≈600 and ≈7000.
Based on these values for the magnification, we conclude that
the size of the source must be less than 0.4 pc, ruling out typical
luminous HII regions or normal globular clusters. We consider
the case of ultracompact groups of stars similar to R136a but
find that they are not luminous enough and if Tr is formed by a
group of stars, this group must contain at least one hyperlumi-
nous star such as Godzilla. Time delays from the available lens
models rule out classic SN candidates, as these should have been
clearly observed elsewhere in the image data. We conclude that
the source is most likely (or contains) an outbursting hyperlumi-
nous, and extremely magnified LBV (EMLBV) star which we
dub Godzilla. Other candidates such as an accretion disk around
an IMBH or SMBH are less likely based on the lack of spec-
tral signatures typical of this type of object, but cannot be cat-
egorically ruled out with the available information. We discuss
how Godzilla is the first object of its kind found at cosmologi-
cal distances, and how more objects such as Godzilla should be
identifiable in current data by searching for persistent unresolved
knots in giant arcs in regions where the magnification can reach
extreme values (that is, at a fraction of an arcsecond from a crit-
ical curve). We have estimated that several thousand EMLBV
stars can be observed at any time between z = 1 and z = 3 above
magnitude Mg ≈ 27. Since these stars are most likely to be found
in giant arcs, and many of these are known and studied in detail
by HST, a dedicated analysis of current HST data will proba-
bly unveil additional examples of EMLBV stars, near regions of
maximum magnification.

We find that in order to explain the extreme magnification
of Godzilla we need to include a small mass-scale perturber
(M ∼ 108 M�) in the lens plane, possibly one of the dwarf galax-
ies in the cluster. This perturber is also able to explain a pair of
images near Tr. Models of dark matter (DM) such as a warm
DM or wave DM can suppress the formation of structure on the
scale of dwarf galaxies and below. We therefore discuss how the
existence of this perturber can be used to constrain such DM
models.

Future observations of Godzilla should reveal flux fluctua-
tions due to its relative motion with respect to the cluster caustic,
but also due to the motion relative to the web of microcaustics
that are expected to be pervasive near cluster critical curves. This
will allow us to constrain further the nature of Godzilla, as well
as giving rise to pioneering constraints on a range of models of
dark matter, including compact dark matter that could play a role
in microlensing.
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Appendix A: Free-form modeling with WSLAP+

Our lens model optimization is based on the code WSLAP+
(Diego et al. 2005, 2007; Sendra et al. 2014; Diego et al. 2016).
WSLAP+ models are considered a hybrid type of model since
they combine a free-form decomposition of the lens plane for
the smooth large-scale component with a small-scale contribu-
tion from the member galaxies. Details can be found in these
earlier references. Here we give a brief description of the method
which we divide in two subsections; the first one describing the
classic version of WSLAP+ (that can include weak and strong
lensing constraints), and a second subsection where we describe
the extension of the algorithm to include the new type of con-
straints at the critical points.

A.1. WSLAP+

We adopt the standard definition of the lens equation

β = θ − α(θ,Σ) , (A.1)

where θ is the observed position of the source, α is the deflection
angle, Σ(θ) is the unknown surface mass-density of the cluster
at the position θ, and β is the unknown position of the back-
ground source. The optimization of the WSLAP+ solution takes
advantage of the fact that the lens equation can be expressed
as a linear function of the surface mass density, Σ. WSLAP+
parameterizes Σ as a linear superposition of functions, which
translates into α(θ,Σ) being also linear in Σ. WSLAP+ takes
advantage of this linear dependency with the mass in order to
quickly optimize the lens model. Since the shear components can
be expressed as spatial derivatives of the deflection field, they
can also be linearized in terms of the mass, thus allowing shear
measurements (when available) to be easily integrated into the
same optimization scheme. An example of lensing reconstruc-
tion with WSLAP+ combining weak and strong lensing can be
found in Diego et al. (2015).

In WSLAP+, the surface mass density, Σ, is described by
the combination of two components; i) a soft (or diffuse) com-
ponent (usually parameterized as superposition of Gaussians)
corresponding to the free-form part of the model, or large scale
cluster potential; and ii) a compact component that accounts for
the mass associated with the individual galaxies in the cluster.

For the diffuse component, different bases can be used, but
we find that Gaussian functions provide a good compromise
between the desired compactness and smoothness of the basis
function. A Gaussian basis offers several advantages, including
a fast analytical computation of the integrated mass for a given
radius, a smooth and nearly constant amplitude between overlap-
ping Gaussians (with equal amplitudes) located at the right dis-
tances, and a orthogonality between relatively distant Gaussians
that help reduce unwanted correlations. For the compact com-
ponent, we adopt directly the light distribution in the IR band
(F160W in the public HST data) around the brightest member
elliptical galaxies in the cluster. For each galaxy, we assign a
mass proportional to its surface brightness. This mass is later
re-adjusted as part of the optimization process. The number of
parameters connected with the compact component depends on
the number of layers adopted. Each layer contains a number of
member galaxies. The minimum number of layers is 1, corre-
sponding to the case where all galaxies are placed in the same
layer (i.e., they are all assumed to have the same light-to-mas
ratio). In this case, the single layer is proportional to the light
distribution of all member galaxies and is assigned a fiducial
mass for the entire mass of the member galaxies. There would

  

10”

Fig. A.1. Distribution of grid points in the dynamical grid used to per-
form the reconstruction. This distribution is derived from a Monte-Carlo
realization of a previous solution. Areas with a higher surface mass den-
sity have a higher concentration of grid points. The red circles mark
the two additional grid points added to account for the two background
galaxies near the sunburst arc at redshifts 0.5578 and 0.7346.

be only one extra parameter which accounts for the renormaliza-
tion constant multiplying the map of the mass distribution, that
is optimized by WSLAP+. When lensing constraints are avail-
able near the central galaxy, it is customary to consider at least
two layers, with the BCG galaxy having its own layer since typ-
ically the light-to-mass ratio of BCGs differ from those of reg-
ular galaxies. In this case there would be two extra parameters
being optimized; one for the mass of the BCG galaxy, and one
for the mass of the remaining galaxies which would be placed
in the second layer. In other cases individual galaxies near arcs
can be placed in their own layers if they need to be optimized
separately. For our particular case, since most of the constraints
are near the Sunburst arc, and no central constraints are avail-
able, we consider only one layer and place all member galaxies,
including the BCG, in the same layer.

As shown by Diego et al. (2005, 2007), the strong and weak
lensing problem can be expressed as a system of linear equations
that can be represented in a compact form,

Θ = ΓX, (A.2)

where the measured strong lensing observables (and weak lens-
ing if available) are contained in the array Θ of dimension
NΘ = 2Nsl (plus 2Nwl if weak lensing data is available), the
unknown surface mass density and source positions are in the
array X of dimension

NX = Nc + Nl + 2Ns, (A.3)

and the matrix Γ is known (for a given grid configuration and
fiducial galaxy deflection field) and has dimension NΘ × NX. Nsl
is the number of strong lensing observables (each one contribut-
ing with two constraints, x, and y), Nc is the number of grid
points (or cells) that we use to divide the field of view, Nl is the
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number of layers (Nl = 1 in our case as mentioned above), and
Ns is the number of background sources being strongly lensed
(each source represent two unknowns in X, βx, and βy). Each
grid point contains a Gaussian function. The width of the Gaus-
sians are chosen in such a way that two neighboring grid points
with the same amplitude produce a plateau in between the two
overlapping Gaussians. In this work, we consider an adaptive
grid configuration which is derived in an iterative manner (a first
solution is derived with a regular grid and that solution is later
used to derive an adaptive grid). Irregular grids are useful when
there is a clear peak in the mass distribution, for instance when
the cluster has a well defined center or a single BCG.

The solution, X, of the system of equations (A.2) is found
after minimizing a quadratic function of X (derived from the sys-
tem of equations (A.2) as described in Diego et al. 2005). The
minimization of the quadratic function is done with the con-
straint that the solution, X, must be positive. Since the vector
X contains the grid masses, the renormalization factors for the
galaxy deflection field and the background source positions, and
all these quantities are always positive (the zero of the source
positions is defined in the bottom left corner of the field of view).
Imposing X > 0 helps constrain the space of meaningful solu-
tions, and to regularise the solution, as it avoids unwanted large
negative and positive contiguous fluctuations. The quadratic
algorithm convergence is fast (a few minutes on a standard lap-
top), allowing for multiple solutions to be explored in a relatively
short time. Different solutions can be obtained after modifying
the first guess in the optimization and/or the redshifts of the sys-
tems without spectroscopic redshift. A detailed discussion of the
quadratic algorithm can be found in Diego et al. (2005). For a
discussion of its convergence and performance (based on simu-
lated data), see Sendra et al. (2014).

A.2. Adding critical points to WSLAP+

Up to this point we have described the current version of
WSLAP+. In this paper we include an additional set of con-
straints based on the known position of critical points, that is,
positions in the lens plane where critical curves are known to be
passing through. These points can be identified following sym-
metry arguments of pairs of lensed images near critical curves,
since in this situation, the critical curve is expected to pass
through (or very close to) the middle point of the image pair.
For the particular case of the Sunburst arc, several critical points
can be identified based on the location of knot 5.1 in system 5,
but also other identifiable features in system 5.

At a critical point, the inverse of the magnification is zero.
In the particular case of tangential critical curves (similar to the
one near the Sunburst arc), critical points satisfy the following
condition.

1 − κ − γ = 0. (A.4)

We use this equality as additional constraints in each of the crit-
ical points identified in the Sunburst arc. However, the condi-
tion in Eq. (A.4) cannot be used directly in WSLAP+, since that
equation is not linear in the mass. The term κ satisfies the linear-

ity requirement, but the term γ =

√
γ2

1 + γ2
2 does not (although

both γ1 and γ2 are linear in mass). Fortunately, we can apply
a simple transformation to the observables at the critical point
position that will linearize equation (A.4). If the critical point is
observed at a position where there is a lensed arc, one can deter-
mine the direction (given by the angle φ) of the shear from the
lensed arc. Then a rotation by the angle 2φ can be applied to the

shear components γ1 and γ2.

γR
1 = cos(−2φ) ∗ γ1 − sin(−2φ) ∗ γ2 (A.5)

γR
2 = sin(−2φ) ∗ γ1 + cos(−2φ) ∗ γ2. (A.6)

After this rotation, one gets and γR
2 = 0 and γR

1 = γ. Conse-
quently we also get 1 − κ − γ = 1 − κ − γR

1 = 0. After this
transformation of γ1 and γ2, we get two sets of new linear equa-
tions in the mass that can now be added to the original system of
linear equations (A.2)

1 = κ + γR
1 , (A.7)

0 = γR
2 . (A.8)

The vector element Θ in (A.2) gets expanded with the left
side of Eqs. (A.7) and (A.8) (i.e., the new observations). Simi-
larly, the matrix Γ in (A.2) gets expanded with the terms γR

2 , and
κ + γR

1 , where each new term Γi, j in this expansion corresponds
to the contribution to γR

2 and κ + γR
1 at position j from the cell i.

Details on how the shear terms γ1 and γ2 are computed for each
Gaussian cell are given in Appendix A. For the compact com-
ponent of the mass distribution, we similarly compute γ1 and γ2
from the fiducial compact mass component at the critical point
positions and use that rotated shear contributions to build the cor-
responding column (or columns depending on how many layers
are defined) in the Γ matrix. Once the vector Θ and matrix Γ are
expanded with the new constraints given in Eqs. (A.7) and (A.8),
the optimization of the solution proceeds the same way as in the
original WSLAP+ version, where the quadratic programming
algorithm finds a quick solution X (masses in the grid points,
renormalization constants for the layers, and the source posi-
tions) of the system of linear equations.

Appendix B: Shear components of a Gaussian cell

In this section we detail how the shear components are computed
for each if the Gaussian cells. The shear components γ1 and γ2
can be easily computed for each one of the Gaussian cells. The
components αx and αy of the deflection filed for a Gaussian dis-
tribution of mass (or any circularly symmetric mass) is given
by,

αx(θ) = δ
M(θ) x
θ2 , (B.1)

αy(θ) = δ
M(θ) y
θ2 , (B.2)

where M(θ) is the mass inside radius θ =
√

x2 + y2, and we
define δ as:

δ =
4G
c2

Dls(z)
Dl(z) Ds(z)

. (B.3)

The shear components are obtained from the derivatives of this
deflection field as:

γ1 =
1
2

(
∂αx

∂x
−
∂αy

∂y

)
, (B.4)

γ2 =
∂αx

∂y
=
∂αy

∂x
. (B.5)

These derivatives can be easily obtained after using the chain
rule for the derivatives of the mass; ∂M/∂x = (dM/dθ)(x/θ) and
∂M/∂y = (dM/dθ)(y/θ) we get

∂αx

∂x
(θ) = δ

(
dM(θ)

dθ
x2

θ3 + M(θ)
y2 − x2

θ4

)
, (B.6)
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∂αy

∂y
(θ) = δ

(
dM(θ)

dθ
y2

θ3 + M(θ)
x2 − y2

θ4

)
, (B.7)

∂αx

∂y
(θ) =

∂αy

∂x
(θ) = δ

(
dM(θ)

dθ
xy
θ3 − 2M(θ)

xy
θ4

)
. (B.8)

Although we have assumed a Gaussian distribution for the
mass in each cell, these expressions are general for any circularly
symmetric mass distribution (see for instance equations 3.29 and
3.30 in Meneghetti 2021). The particular shape of the mass dis-
tribution determines the term dM/dθ, which is easily derived for
the Gaussian function.
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Appendix C: New system candidates

We use model M1 to search for new multiply lensed galaxies.
Model M1 is better suited to reproduce the morphology of the
arcs than model M2, since the later is only more accurate in the
regions near critical points. We identify 4 new sets of families
that we list in table C.1. The redshifts listed in this table are
the ones predicted by the lens model, needed to reproduce the
images near the observed location. The location of the new can-
didate systems is shown in figure C.1 (red) together with the
location of the five systems having spectroscopic redshift (yel-
low), and that were used to derive the lens model.

The predicted images are shown in figures C.2, C.3, and C.4.
In all three cases we use counterimage "a" to predict the other
counterimage(s). New system 6 is formed by a prominent red
radial arc, with symmetric features. Its counterimage is a red

dusty galaxy at a predicted redshift of 3.25. South of this galaxy
we find a bluer lensed galaxy, 8a. This galaxy predicts a set of
two radial images, 8b and 8c, north of 6b and 6c (see figure
C.2). The redshift of this galaxy must be ≈ 4 in order to repro-
duce these two arcs. System 7 forms a very prominent arc, 7b,
near image 1a. The counterimage, 7a, is much smaller but it has
distinctive features that allows us to match the prediction, 7b’,
with the observed image (see figure C.3). The lens model pre-
dicts a redshift of 2.5 for this system. Finally, system 9 corre-
sponds to a lensed galaxy with a predicted redshift of 1.9, that
has also some distinctive features. Spectroscopic confirmation of
these systems, and their redshifts, will allow one to improve the
lens models, specially in the central region with the addition of
the radial arcs, and in the northeast sector were constraints are
scarce.
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Fig. C.1. Systems used for the lens model reconstruction (marked in yellow) plus system candidates (marked in red). The image marked in orange
corresponds to the counterimage of system 1 that falls outside the footprint of MUSE so it has not been confirmed spectroscopically.
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6a

8a

6c
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8b'

8c'

6b'

6c'

Z
mod

= 3.25 (system 6)

Z
mod

= 4 (system 8)

A

B C

Fig. C.2. Prediction for new systems 6 and 8. The left panel (A) shows
the images 6a and 8a used to predict the counterimages. The middle
panel (B) shows the observed counterimages 6b, 6c, 8b, and 8c. The
right panel (C) shows the predicted images 6b, 6c, 8b, and 8c. The coor-
dinates, orientation and dimension of panels B and C are the same.

  1”

7a

7b 7b'

Z
mod 

= 2.5

Fig. C.3. Prediction for new system 7. The left panel shows the observed
arcs. Image 7a is used to predict the image 7b’ in the right panel. We
note how the tangential magnification in 7b’ is smaller than in 7a, but
the tangential one is larger.

Table C.1. New candidate systems.

Id RA DEC zmodel

6a 15:49:55.348 -78:11:32.66 3.25
6b 15:50:10.237 -78:11:25.69 –
6c 15:50:10.437 -78:11:25.44 –
7a 15:50:00.263 -78:11:39.44 2.5
7b 15:50:17.326 -78:11:12.54 –
8a 15:49:55.696 -78:11:38.30 4
8b 15:50:09.184 -78:11:24.72 –
8c 15:50:11.608 -78:11:18.94 –
9a 15:50:01.893 -78:11:44.57 1.9
9b 15:50:15.182 -78:11:04.21 –

Notes. The coordinates mark the position of the images identified in
HST data. The last column shows the redshift of the system that is
required for the lens model to match the predicted and observed posi-
tions (with a small error).

  

9b

1”
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9b'

Z
mod
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Fig. C.4. Prediction for new system 9. As in figure C.3, image 9a is
used to predict image 9’. The blue circle marks the position of a small
feature that can be observed in all three images.
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Appendix D: Lens model predictions

This section presents predictions based on our lens for the coun-
terimages of the giant arc, as well as for the geometry of the
background host galaxy of Godzilla. The source position for sys-
tem 5 is constrained within a fraction of an arcsecond, but even
within this small uncertainty, at large magnification factors small
shifts in the source plane can result in large changes in the image
plane.

Among the counterimages of system 5, we use counterim-
age number 12 as a template, since it contains a full image of
the lensed galaxy, and the lensing distortion is more moderate.
Other counterimages intersect a critical curve or are more dis-
torted making them less than ideal to serve as templates. Using

model M1, we delense counterimage 12 into the source plane,
and use that delensed image to relens it into the image plane.
The result is shown in Fig. D.1. Panels A, B, and C show the
observed data for the counterimages, while panels A’, B’ and
C’ show the corresponding predictions. We note that the cen-
tral counterimage in C has not been identified. The lens model
predicts an image near the center of the BCG, although with a
small magnification factor. Also, the presence of a central mass,
such as a SMBH, would make this central counterimage even
less magnified. In general, the predicted images shown in pan-
els A’, and B’, reproduce well the position and geometry of the
observed arcs. Small offsets of order 1′′–2′′ can be appreciated
but are normal in this type of reconstructions with WSLAP+,
specially at large magnification factors.
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Fig. D.1. Predicted giant arcs from the lens model when the smallest counterimage of system 5 is used as a template. The small inset in the
bottom-left part of panel A’ shows the template. Panels A’, B’ and C’ in the bottom part of the figure show the predicted counterimages from
this template. Panels A, B, and C show the data version in the same portion of the sky as in panels A’, B’, C’. We note that the predicted central
counterimage C’ has not been identified spectroscopically, but small blue knots can be found near the center of the BCG.
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t5

Tr

CC

Tem
plate

Prediction

CC

Fig. D.2. Predicted counterimage for Godzilla. The left panel shows the
giant double arc containing Godzilla. The approximated position of the
critical curve predicted by our lens model is marked by a dashed line.
The position of Godzilla is marked by a yellow line in the southern arc.
In the northern arc a small faint point source is found in the expected
position of Godzilla. This is marked with a yellow arrow and labeled
t5. A source is also found at the expected position of Godzilla near the
LyC knot 5.1, but is partially blended with it. The predicted position of
Godzilla based on the lens model is shown in the right panel, where we
have used the southern part of the arc as a template to predict the north-
ern part of the arc. Multiply lensed features are marked with arrows with
the same color.

Next, we use counterimage 8, containing Tr, to predict the
counterimage 7 on the other side of the critical curve. From sim-
ple smooth lens models, counterimage 7 should contain also a
counterimage of Tr, with similar apparent brightness. We select
the portion of counterimage 8 that is to the right side if the crit-
ical curve dividing counterimages 7 and 8, and use it to delens
this part of the arc and relens it into the other side of the critical
curve. The result is shown in Fig. D.2 where in the left panel we
show the observed arc, and in the right panel the lens model pre-
diction. For convenience we mark with a vertical dotted line the
approximated position of the critical curve from our lens model.
In the left panel we mark Tr with a yellow arrow. A second arrow
in the top-left part of this figure shows a small and faint knot
that falls in the expected position of the counterimage of Tr. The
right panel shows this predictions, where the yellow arrows are
used again to mark Tr and its predicted counterimage. A thinner
yellow arrow shows the P knots and its predicted (unobserved)
counterimage. Other features are also marked with blue arrows.
The small faint knot marked t5 and a yellow arrow in the left
panel is the alleged counterimage t5 discussed in section 4. It
is possible that t5 is not a real counterimage of Tr, and that Tr
remains without observable counterparts, but in this work we
adopt the conservative hypothesis that t5 is a real counterimage.
If this hypothesis is proven wrong (for instance through spec-
troscopic confirmation that t5 is not the same source as Tr), it
signifies that the magnification of Tr must be even larger than
the values inferred in this work, so they should be considered
lower limits. Finally, based on the lens model prediction for the
magnification of t5, and the observed flux ratios from the nearby
LyC knot 5.1, if t5 is a counterimage of Tr, other counterimages
must be also present and detectable in the image. We identify
these additional counterimages as t1–t4 in section 4. The same
conservative hypothesis argument discussed above applies to t1–
t4. That is, if they are proven to not be counterimages of Tr, then
the magnification of Tr must be larger than the values inferred in
this work.

  1 kpc

Source plane

Image plane

Fig. D.3. Reconstruction of the source based on counterimage 12 in
system 5. This is the only counterimage that shows the full morphol-
ogy of the arc. All other counterimages show only portions of the arc.
In gray we show the source surface brightness. The blue background
indicates magnification. The masked region corresponds to a diffraction
spike from a nearby star. The original data is shown in the bottom right
part of the figure. The blue line in the image showing the original data
indicates the position of critical curve at the redshift of the source.

Next we turn out attention to the reconstruction of the source.
Since there are two full images of the source, and 10 partial
images, we can perform different reconstructions, depending on
which image we choose to delens in the image plane. For the
source reconstruction, we use model M1 because it reproduces
the arcs in the mage plane better than model M2.

First we start with counterimage 12, that as discussed earlier,
offers a full view of the source, and at a moderate magnifica-
tion factors. We show the reconstructed version of the source,
based on counterimage 12, in Fig. D.3. The original image being
delensed is shown in the small panel in the bottom right part of
the figure. The reconstructed image shows three distinctive fea-
tures corresponding to the brightest LyC knot 5.1, and knots 5.2
and 5.3 (following the notation of Pignataro et al. (2021)). The
separation between all these knots is ≈ 1 kpc. The elongation of
these three features is due to the fact that the radial magnifica-
tion is much smaller than the tangential one, resulting in features
more compressed in the tangential direction. This is an artifact
due to the limited resolution of the telescope. This elongation
would disappear if we had an instrument with much higher spa-
tial resolution.

In addition to counterimage 12, we use four more counter-
images that provide better resolution in the source plane, thanks
to the larger magnification factor. In particular we delens coun-
terimages 3, 4, 7 and 8. Among these, counterimage 8 is the
one that contains Tr, while counterimage 7 is the one where we
would have expected to see a counterimage of Tr with similar
brightness. However, this counterimage is clearly not seen in the
other reconstructions. To ease the identification of features, we
mark them with arrows of the same color in the image and source
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Fig. D.4. Partial reconstruction of the source of system 5 based on counterimages 3 (top-left), 4 (top-right), 7 (bottom-left) and 8 (bottom-right).
For each panel, the original data is shown as a smaller inset in a corner of the panel. Both in the main panel, as in the inset critical curves and
caustics are shown in blue. The letters denote the bright LyC knot 5.1, as in Fig. 2.

planes. Based on the reconstructions in the top two panels, the
intrinsic size of the source is larger than the size predicted from
the reconstruction in Fig. D.3 by a factor 2–3. This type of dif-
ference is expected since the model may not be self-consistent
in terms of magnification (or flux) ratios, as these ratios are not
being used as constraints.

Flux ratios are an interesting observable that could be
exploited in future work to better constrain this lens model. In
particular, we can use the observed flux at the 12 positions of the
bright LyC knot 5.1 and compare the observed flux ratios with
the observed magnification ratios. A perfect lens model should
predict magnification ratios identical to the observed flux ratios.

Departures between predicted and observed ratios can be used to
identify regions in the lens plane where the lens model is inaccu-
rate, although it should be emphasized that near critical curves,
small changes in the lens model can result in large changes in the
predicted magnification. With this caveat in mind, we compute
flux ratios for knot 5.1 based on the photometric measurements
of Rivera-Thorsen et al. (2019) in the F814W band. Then we
compare these flux ratios with the magnification ratios predicted
by the lens models, including the lens model of Pignataro et al.
(2021), that provides magnification factors at the position of knot
5.1. As a reference point, we use knot h (or LyC number 8 in
the figure), which is the closest one to Tr, since we are most

A134, page 28 of 31



J. M. Diego et al.: Godzilla

Fig. D.5. Flux ratio (triangles) vs magnification ratios (asterisks) pre-
dicted by different models at the 12 positions of the LyC knot 5.1. The
bottom panel compares the flux ratios with the magnifications predicted
by model 1 in this work. The middle panel is similar but for the model 2,
and the top panel is for the model in Pignataro et al. (2021). Flux mea-
surements for the LyC knot are taken form Rivera-Thorsen et al. (2019)

interested in how the models perform near this position. The
result is sown in Fig. D.5, where triangles indicate the observed
flux ratios and asterisks the magnification ratios. The prediction
from Pignataro et al. (2021) is shown in the top panel, while the
predictions from our models M1 and M2 are shown in the middle
and bottom panel respectively. All three models fail at reproduc-
ing the flux ratio with accuracy in several positions. The model
of Pignataro et al. (2021) predicts significantly fainter fluxes for
knots 5.4, 5.5, 5.6, and 5.7. Models M1 predicts substantially
more flux in knots 5.2, and 5.3. This not surprising since knots
5.2 and 5.3 are close to each other and with a critical curve pass-
ing through. WSLAP+ models can be shallower than paramet-
ric models in certain parts of the lens plane, resulting in larger
predicted magnification factors. Model M2 also predicts higher
fluxes in knots 5.2 and 5.3, but also in knots 5.1 and 5.9, while
for knot 5.12 predicts a much smaller flux. All three lens mod-
els predict knot 5.7 to be fainter than knot 5.8, and knot 5.9 to
be brighter. Real flux measurements agree with the fainter knot
5.7 but disagree with knot 5.9 that is fainter than knot 5.8, con-
trary to all model predictions, and indicating some bias in all lens
models in this part of the lens plane.

Appendix E: PSF model and maximum separation
for unresolved pairs

Under the hypothesis that Tr is is forming an unresolved double
image, the separation between the images forming the pair must

be small enough so the double image appears resolved. In this
section we constrain the maximum allowed separation between
the alleged pair of lensed images in HST data, so they still appear
unresolved. We use the image in the F606W band, which offers
a good compromise between spatial resolution and signal-to-
noise. We identify two stars near Tr, which we use to model the
PSF in this band. Since we are interested in the resolving power
of HST in the direction where the magnification is maximum
(i.e., in the direction of the giant arc), we restrict our analysis
to one-dimensional profiles that intersect the stars and/or Tr. For
each star, and for Tr we derived 4 one-dimensional profiles. Each
profile intersects the maximum of the source and follows a differ-
ent direction. Two of the profiles go in the horizontal and vertical
direction, while the other two go at 45 degrees and -45 degrees.
The direction at -45 degrees is very close to the direction of the
giant arc at the position of Tr. Hence the profile at -45 degrees is
where we can impose the tightest constraints on the separation
of the pair of lensed images. The profiles for all three sources are
shown in Fig. E.1.

In order to get a sense of the error in the PSF model, we
perform a fit to six nearby and unsaturated stars. We fit a model
for the PSF of the following form,

PS F = exp
 d2

2σ2
1

 + B × exp
 d2

2σ2
2

 + C × exp
 d2

2σ2
3

 . (E.1)

We find that a model with values σ1 = 0.027′′ ± 0.002′′,
σ2 = 0.053′′ ± 0.003, σ3 = 0.39′′ ± 0.008, B = 0.25 ± 0.04,
andC = 0.0019 ± 0.0005 reproduces well the observed profiles
for the six stars (see black solid curve in Fig.E.1, where for clar-
ity we only show the first two stars). The right panel of Fig E.1
shows the 4 derived profiles at the position of Tr, compared with
the PSF model from Eq. (E.1). The red solid curve shows the
direction at -45 degrees (measured from north to east, assuming
the pixels are oriented this way) which is a direction very close
to the arc. The P knots can be easily appreciated in this profile at
≈ 0.3′′. The inset plot show zoomed versions of the profiles,
and span approximately one order of magnitude in flux from
the maximum flux. Comparing the zoomed versions of the plot,
we appreciate that the red solid curved intersecting Tr departs
slightly from the PSF model at 1/10 the maximum of the peak.

It is unclear where this deviation is due to a partially resolved
source underneath, or the contribution from the rest of the arc,
but we can use this deviation to set an upper limit on the separa-
tion of two unresolved counterimages.

Using the PSF model derived previously, we can simulate
two point sources at a given separation and convolve them with
the lens model. The simulation is done with a pixel scale of 3
mas, that is ten times better than the native 30 mas pixel in the
HST image. We test two separations, 30 mas and 30 ×

√
2, the

first separation is similar to the size of the HST pixel, while the
second is the size of its diagonal. The simulated convolved image
is finally repixelized to match the 30 mas HST pixel size. The
two point sources are placed in the horizontal axis, and the pro-
file is computed in the same axis, in order to match the direction
of maximum elongation along the arc. The resulting profiles are
shown in Fig. E.2 and Fig. E.3. Clearly the larger separation of
30×

√
2 exceeds the observed profile shown in the right panel of

Fig. E.1. On the contrary, the profile corresponding to the 30 mas
separation is still consistent with the observed profile. Hence we
can conclude that the separation must be ≈ 30 mas at most. As
mentioned earlier, it is possible that the deviation from the PSF
model observed in the profile of Tr (red solid curve in the right
panel of Fig. E.1) is due to the contribution from a nearby source
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Fig. E.1. PSF fit model. The left and middle panel shows the profiles (dotted lines) and PSF model (solid line) for two bright stars found near Tr
in the F606W band image. For each star, we derive 4 profiles. The two blue dotted lines correspond to the horizontal and vertical profiles, while
the red dotted lines correspond to two profiles at 45◦ and -45◦. The right panel shows the profiles in the same 4 directions at the position of Tr.
The red dotted line is in a direction 45 degrees north to east, that is nearly perpendicular to the arc. The red solid line is in a direction -45 degrees
north to east, that is close to the direction of the arc. At ≈ 0.3′′, this profile intersects the P knots. The red solid curve is where we best expect to
see a possible resolved image since it follows the direction of the shear. In all three panels, the inset shows a zoomed version near the peak, and
covering approximately between the maximum of the peak to 1/10 the maximum.

Fig. E.2. Simulated profile of a pair of images separated by 30 mas.
The solid black curve shows the PSF model. The solid red curve is the
resulting profile after convolving the two images by the PSF model.
The red dashed line is the corresponding profile after re-pixelizing the
simulated data to the 30 mas pixel in HST. As in in Fig. E.1, the inset
covers a zoomed version near the peak.

in the underlying arc. This would result in an even smaller sep-
aration between the pair of images, but we adopt the separation
of 30 mas as a conservative upper limit.

An upper limit of 30 mas in the separation of the double
image can be directly applied to infer the maximum size, or sep-
aration of the source, to caustic of the perturber. The distance
from each image in the pair to the critical curve must be d < 15
mas, or d < 85.5 pc. Adopting the most conservative estimate
of the magnification, derived from the model of Pignataro et al.
(2021) of µ ≈ 600 (see section 5), and assuming the radial com-
ponent of the magnification is 2, the distance in the source plane,
or radius of the source must be r < 0.4 pc. Such a small radius
rules out bright compact sources such as ordinary globular clus-
ters, which are typically about an order of magnitude larger. As
mentioned in subsection 10.2, very small and compact groups
of luminous stars similar to R136a could still marginally satisfy

Fig. E.3. As in Fig. E.2 but for a separation of 30 ×
√

2 mas, which is
the distance between the extreme of diagonal points in the 30 mas pixel.

the constraint on size, but only in the most conservative scenario
considered in this work, where the total magnification is as low
as ≈ 600. Adopting instead the upper limit of the magnification,
µ ≈ 7000, and the same value for the radial magnification µr = 2,
we derive an upper limit for the size of r < 0.024 pc or r < 5000
AU. That is, an order of magnitude smaller than groups such as
R136a.

The PSF model above is also used to derive fluxes at the
positions of t1–t5, as well as in Tr. In order to account for the
uncertainty in the PSF model, we model six nearby and unsat-
urated stars with a model of the form given in Eq. (E.1). For
each of the six star models, we determine the flux by minimiz-
ing the variance of the residual, R, given by R = data − model
in an aperture of radius 0.1". Since t1–t5 are partially blended
with nearby brighter unresolved sources, we fit and subtract the
flux from these sources before estimating the flux at t1–t5. For
some counterimages, accurate photometry is harder to obtain
since the position of the source cannot be established with clar-
ity. Clear examples are t3 and t4 which are the ones that are
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Fig. E.4. PSF model fitting to the sources in t1–t5 and Tr. For each
pair of images, the left panel shows the original F606W band, with the
source being fitted marked by a circle. In all panels, except in the bottom
right, a brighter nearby source is subtracted before. In each case, the
right panel shows the image after subtracting the point sources. For t3
and t4, the right panel also marks with a circle the original position if
the source being subtracted.

closest to knot 5.1. To account for this uncertainty, we also mod-
ify slightly the position of the source being subtracted several
ties and obtain different measurements. At the end of the process
we have several photometric measurements where both the PSF
model and the source position are varied. With these measure-
ments we obtain the mean and dispersion of the flux and trans-
form them into magnitudes. The magnitudes derived this way
are listed in the fourth column of table 2. The resulting PSF sub-
tracted images are shown in Figure E.4, together with the orig-
inal data before subtraction. Imperfections from the PSF model
can still be appreciated, specially near bright sources. These
imperfections are both positive and negative, partially canceling
each other, and are mostly due to a nonsymmetric PSF, but also
photon noise.

Finally, we test the performance of the PSF model when
extracting fluxes by comparing the input and recovered fluxes of
simulated sources. In order to test possible errors emerging from
the fact that t1-t5 appear blended with the bright LyC cluster, we
simulate two point sources that are close enough so their profiles
are partially blended. The simulation corresponds to a region of
40 × 40pixels in the F606W filter, and includes also an elon-
gated feature mimicking the underlying arc. This arc includes

Fig. E.5. Performance of the flux estimation in the case of simulated
data mimicking the blended sources in the Sunburst arc. The left panel
shows the original simulated data and the right panel the residual after
the two point source subtractions. The fainter source is placed south-
west from the brighter source, and partially blended with it. The flux
of the two sources are 30 and 5 in the same units as the native F606W
image. These fluxes are recovered with typical errors ∼ 5% and ∼ 10%
for the brighter and fainter source respectively.

small random features and photon noise in order to make it more
realistic (added after smoothing as the square root of the counts).
The arc is smoothed assuming a Gaussian kernel with a FWHM
larger than the PSF model in order to account for the fact that
the arc is resolved in the radial direction. The surface brightness
from the arc is comparable to the observed flux. Instrumental
noise is added directly from the data by selecting a region of
the same dimension near the arc but with no visible background
objects, and which is added to the simulated arc after including
the photon noise. Finally, to simulate the two point sources, and
in order to mimic the asymmetric shape of the PSF, we simply
consider a region of 40 × 40 pixels around an unsaturated and
isolated star from the image, and re-scale it to the desired fluxes.
The two re-scaled stars are then added to the arc. The fluxes
of the two point sources are chosen to mimic the fluxes of the
LyC knot and t1-t5. The final image is shown in the left panel
of Fig. E.5. We simulate the same data set multiple times vary-
ing the random features in the underlying arc. We recover the
fluxes with typical errors of ≈ 5% and ≈ 10% respectively for
the brighter and fainter point sources.

The configuration shown in Fig. E.5 corresponds to the
worst-case scenario found in t3 and t4, where the overlap with
the LyC knot is largest. Images t1, t2, and t5 have less overlap,
and the errors are typically less than 10% in those cases. If we
simply simulate one point source, with a surface brightness com-
parable to the one found at Tr (i.e., such as in the bottom-right
panel of Fig. E.4), the typical error in the flux is ≈ 5%.
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