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Abstract. Let p be a prime and Fp the finite field with p elements. We

show how, when given an superelliptic curve Y n + f(X) ∈ Fp[X,Y ] and an

approximation to (v0, v1) ∈ F2
p such that vn1 = −f(v0), one can recover (v0, v1)

efficiently, if the approximation is good enough. As consequence we provide

an upper bound on the number of roots of such bivariate polynomials where

the roots have certain restrictions. The results has been motivated by the
predictability problem for non-linear pseudorandom number generators and,

other potential applications to cryptography.

1. Introduction

For a prime p, we denote by Fp the field of p elements and assume that it
is represented by the set {0, 1, . . . , p − 1}. Sometimes, where obvious, we treat
elements of Fp as integers in the above range.

Here we consider the following computational problem: given the polynomial
Y n + f(X) ∈ Fp[X,Y ] and approximations to (v0, v1) ∈ F2

p where vn1 + f(v0) ≡
0 mod p, reconstruct (v0, v1). By an approximation to an integer point (v0, v1), we
mean an integer point (w0, w1) such that |wi − vi| is small.

This question was presented and studied in [14] for general bivariate polynomials
F (X,Y ) ∈ Fp[X,Y ]. Its has applications to, and has been motivated by, the pre-
dictability problem for non-linear pseudorandom number generators and the linear
congruential generator on elliptic curves (see [3, 6, 7, 13, 16, 19, 21]).

This problem is a particular case of the problem of finding small solutions of
multivariate polynomial congruences. For polynomial congruences in one variable,
an algorithm has been given by Coppersmith in [10].

For multivariate case the existing approach [5, 9, 11, 17, 18] depends on lin-
earization. It gives at least one equation over the integers, satisfied by (v0, v1).
Heuristically, we can hope to find two or more such equations, and solve them si-
multaneously via a resultant. The existence or independence of the second equation
is not guaranteed, such that all created polynomials define an algebraic variety of
dimension 0, so the effectiveness of the method is just heuristic. On the other hand,
the usually the performance of the so called Coppersmith’s methods is not suitable,
because of large dimensión of the constructed lattice.
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As in [14], this paper attempts to replace the heuristic nature by a probabilistic
statement. Given an approximation to an unknown solution (v0, v1), we construct
a lattice with a small solution. The components of this vector are bounded in terms
of the quality of the approximation, and for each choice of these components, we
construct a polynomial G(X,Y ) such that (v0, v1) simultaneously solves G(v0, v1) ≡
vn1 + f(v0) ≡ 0 mod p. Now the probabilistic argument follows taking v0 randomly
and there are a bounded number of “bad” v0 for which we can not recover the
solution. If our true v0 is not among these, the linearization will find only the
correct (v0, v1). Finally, we are able to obtain a much better tolerance than in
[14] since the superelliptic curve polynomials involve a linear number of monomials
instead of a quadratic ones for arbitrary bivariate polynomials, then the associated
lattice dimension grows linearly instead of quadratic and the norm of the shortest
vector grows linearly. We also want to remark that the dimension of the lattices
involved is relatively small comparing with the approach via Coppersmith’s methods
for the same bound of tolerance.

On the other hand, this problem is also a special case of obtaining which is the
number of roots where the roots have certain restrictions, sometimes these kind of
question has been called additive energy, the subject has been studied quite recently
in [2, 12, 23]

The remainder of the paper is structured as follows. We start with a very short
outline of some basic facts about the Closest Vector Problem (CVP), and the num-
ber of Fp-rational points on algebraic curves in Section 2. In Section 3 we formulate
our main result and give outline the plan of the proof Subsection 3.1 which the
proof is given in Subsection 3.2. The study of the error tolerance and comparison
with known results is provide in Subsection 3.3. Then, in Section 4 we discus the
results of numerical tests of our approaches. Finally, we conclude with Section 5
which makes some final comments and poses open questions.

Throughout the paper, we use the convention that the parameters on which the
implied constant in a Landau symbol O are written in the subscript of O. A symbol
O without a subscript indicates and absolute implied constant.

2. Preliminaries

2.1. Closest vector problem in lattices. Here we review some results and
definitions concerning the Closest Vector Problem, all of which can be found in [15].

Let {⃗b1, . . . , b⃗s} be a set of linearly independent vectors in Rr. The set

L = {c1⃗b1 + · · ·+ cs⃗bs | c1, . . . , cs ∈ Z}

is an s-dimensional lattice with basis {⃗b1, . . . , b⃗s}. If s = r, the lattice L is of full
rank.

One basic lattice problem is the Closest Vector Problem (CVP): given a basis of
a lattice L in Rs and a shift vector t⃗ in Rs, the goal is finding a vector in the lattice
L closest to the target vector t⃗. It is well known that this problem is NP-hard
when the dimension grows. However, it is solvable in deterministic polynomial time
provided that the dimension of L is fixed (see [20], for example).

For a slightly weaker task of finding a sufficiently close vector, the celebrated
LLL algorithm of Lenstra, Lenstra and Lovász [22] provides a desirable solution, as
noticed by [1]. Here, we state this result as Lemma 2.1.
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Lemma 2.1. There exists a deterministic polynomial time algorithm which, when
given an s-dimensional full rank lattice L and a shift vector t⃗, finds a lattice vector
u⃗ ∈ L satisfying the inequality

∥t⃗− u⃗∥ ≤ 2s/2 min{∥t⃗− v⃗∥ : v⃗ ∈ L}.

Many other results on both exact and approximate finding of a closest vector in
a lattice are discussed in [15, 19, 24, 25].

2.2. The number of Fp-rational points on plane algebraic curves. Our
second basic result is an upper bound on the number of roots of a bivariate poly-
nomial F (X,Y ) ∈ Fp[X,Y ]. More concretely, we use the following result of [14]:

Lemma 2.2. Suppose that F (X,Y ) is absolutely irreducible bivariate polynomial of
total degree n > 1. Then for M = #{x ∈ Fp | ∃y ∈ Fp, F (x, y) = 0}, the inequality

nM ≥ p+Øn(p
1/2)

holds.

3. Main result

In this section we formulate and prove our main result providing a probabilistic
algorithm to recover a point of a superelliptic curve.

3.1. Formulation and plan of proof. Given a prime p and a positive integer
∆ with p > ∆ ≥ 1, we say that an integer pair (w0, w1) ∈ Z2 is a ∆−approximation
to (v0, v1) ∈ F2

p if there exist integers ε0, ε1 satisfying:

|ε0|, |ε1| ≤ ∆, w0 + ε0 = v0, w1 + ε1 = v1.

We are considering irreducible bivariate polynomials H(n,m,f)(X,Y ) ∈ Fp[X,Y ]
of the form Y n + f(X) and the equation:

(1) H(n,m,f)(X,Y ) = 0

where n,m are positive integers such that nm > 1, and f = f(X) ∈ Fp[X] is a
monic univariate polynomial of degree m, i.e.,

f = Xm + am−1X
m−1 + · · ·+ a1X + a0.

Theorem 3.1. With the above notations and definitions, there exists a set V(∆; f)
⊆ Fp of cardinality

#V(∆; f) = O(A(n,m)∆λn,m)

where

• If m ≥ n

A(n,m) = m2(2m+ 2n)(m+n−1)/2

and

λn,m =
m(m+ 1) + n(n− 1)

2
• If n ≥ m

A(n,m) = n2(2m+ 2n)(m+n−1)/2

and

λn,m =
n(n+ 1) +m(m− 1)

2
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with the following property: whenever v0 ̸∈ V(∆; f) then, given a ∆−approximation
(w0, w1) to a point (v0, v1) of the polynomial H(n,m,f)(X,Y ) one can recovers (v0, v1)
in deterministic polynomial time in m,n and log p.

An outline of the algorithm given in the proof of this Theorem goes as follows.
The algorithm is divided into two stages.

• Stage 1: We construct a certain linear of system of congruences LS(n,m,f)

(see (4) below) and the associated lattice L(n,m,f) (see (6) below) of dimension
m + n − 1; this lattice depends on the approximation (w0, w1). We also

show that a certain vector E⃗ directly related to missing information about

(v0, v1) is a very short vector. Now, we compute a solution T⃗ of the system of
congruences LS(n,m,f) in polynomial time using linear diophantine methods.

Then apply the algorithm of Lemma 2.1 to the vector T⃗ and lattice L(n,m,f),
obtaining a vector u⃗ of the lattice L(n,m,f).

• Stage 2: We show that F⃗ = T⃗ − u⃗ provides the required information about

E⃗ for all (v0, v1) except when v0 lies in a certain exceptional set V(∆; f) ⊆ Fp

of cardinality #V(∆; f) = O(A(n,m)∆λn,m) (which is defined as set of zeroes
of a certain parametric family of 0-dimension bivariate polynomial ideals).

Algorithm 1: Recovering algorithm

Input: (f(X),∆, w0, w1) such that (w0, w1) is a ∆-approximation to a root
(v0, v1) of Y

n + f(X).
Output: (v0, v1) or (0, 0)

1 Compute a solution T⃗ of the system of congruences (4) ;

2 Compute u⃗ a closest vector to T⃗ and lattice (6) using the algorithm in [1];

3 F⃗ ← T⃗ - u⃗ = (f1, . . . , fm, . . . , fm+n−1)

4 ε0, ε1 ← f1/∆
m, fm/∆m;

5 if |ε0| ≤ ∆ & |ε1| ≤ ∆ then
6 return (w0 + ε0, w1 + ε1)

7 else
8 return (0, 0)

9 end

3.2. Proof. We assume that v0 ∈ Fp is chosen so as not to lie in a certain subset
V(∆; f) of Fp. The cardinality of this set is bounded by O(A(m,n)∆λm,n). It
consists of the solutions of a certain 0−dimensional bivariate polynomial ideal. It
is explained through the proof.

Since (v0, v1) is a point of the superelliptic curve defined by the polynomial
H(n,m,f)(X,Y ) ∈ Fp[X,Y ], we have

(2) vn1 + vm0 + am−1v
m−1
0 + a1v0 + a0 ≡ 0 mod p

We assume m ≥ n, (the other case the proof is identical). Using the equalities
v0 = w0 + ε0 and v1 = w1 + ε1, Eq. (2) become:

(w0 + ε0)
m +

m∑
i=1

am−i(w0 + ε0)
m−i + (w1 + ε1)

n ≡ 0 mod p
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=

m−1∑
i=1

f (i)(w0)

i!
εi0 +

n−1∑
i=1

(
n

i

)
wn−i

1 εi1 + εm0 + εn1 + wn
1 + f(w0) ≡ 0 mod p,

where f (i) denotes the i-th order derivative of the univariate polynomial f . Now,
we linearize this polynomial system. Writing:

Ai ≡
f (i)(w0)

i!
mod p, i = 1, . . . ,m− 1,

Bi ≡
(
n

i

)
wn−i

1 mod p, i = 1, . . . , n− 1,(3)

C ≡ (−wn
1 − f(w0)) mod p.

We obtain that vector

E⃗ = (∆m−1ε0,∆
m−2ε20, . . . ,∆εm−1

0 ,∆m−1ε1,∆
m−2ε21, . . . ,∆

m−n+1εn−1
1 , εm0 + εn1 )

= (∆m−1α1,∆
m−2α2, . . . ,∆αm−1,∆

m−1β1,∆
m−2β2, . . . ,∆

m−n+1βn−1, γ)

is a solution to the following linear system of congruences LS(n,m,f):

m−1∑
i=1

∆i−1AiXi +

n−1∑
i=1

∆i−1BiYi +∆m−1Z ≡ ∆m−1C mod p,

Xi ≡ 0 mod ∆m−i, i = 1, . . . ,m− 1,

Yi ≡ 0 mod ∆m−i, i = 1, . . . , n− 1.

(4)

Moreover, E⃗ is a relatively short vector. We have:

|αi| ≤ ∆i, i = 1, . . . ,m− 1,

|βi| ≤ ∆i, i = 1, . . . , n− 1,

∥E⃗∥ ≤
√
m+ n+ 2∆m.

(5)

Let L(n,m,f) be the lattice consisting of integer solutions (X1, X2, . . . , Xm−1,

Y1, Y2, . . . , Yn−1, Z) ∈ Zn+m−1 of the homogeneous system of congruences:

m−1∑
i=1

∆i−1AiXi +

n−1∑
i=1

∆i−1BiYi +∆m−1Z ≡ 0 mod p,

Xi ≡ 0 mod ∆m−i, i = 1, . . . ,m− 1,

Yi ≡ 0 mod ∆m−i, i = 1, . . . , n− 1.

(6)

We compute a solution T⃗ of the system of congruences (4), using linear diophan-
tine equations methods. Applying the algorithm of Lemma 2.1 for the shift vector

T⃗ and the lattice L(n,m,f) we obtain a vector

F⃗ = (∆m−1π1,∆
m−2π2, . . . ,∆πm−1,∆

m−1ρ1,∆
m−2ρ2, . . . ,∆

m−n+1ρn−1, τ)

We have F⃗ = T⃗ − u⃗ (where u⃗ is the lattice vector returned by Lemma 2.1), is a
vector of relatively small norm satisfying Eq. (4). From the algorithmic point of

view, it is important to remark that we can compute F⃗ in polynomial time from the

information we are given. We might hope that E⃗ and F⃗ are the same, or at least,
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that we can recover the approximation errors from F⃗ . If not, we will show that v0
belongs to a subset V(∆; f) ⊆ Fp of cardinality #V(∆; f) = O(A(m,n)∆λm,n).

The vector D⃗ = E⃗ − F⃗ lies in L(n,m,f):

D⃗ = (∆m−1δ1,∆
m−2δ2, . . . ,∆δm−1,∆

m−1σ1,∆
m−2σ2, . . . ,∆

m−n+1σn−1, ϕ)

δi = αi − πi, (i = 1, . . . ,m− 1); σi = βi − ρi, (i = 1, . . . , n− 1); ϕ = γ − τ.

On the other hand, since the dimension of the lattice L(n,m,f) is m + n − 1 by

Lemma 2.1 we obtain that the norm of D⃗ satisfies:

(7) ∥D⃗∥ ≤ ∥E⃗∥+ ∥F⃗∥ ≤ (2(m+n−1)/2 + 1)∥E⃗∥

where the last inequality comes from the application of Lemma 2.1. Eq. (5) and
Eq. (7) imply:

|δi| ≤ (2(m+n−1)/2 + 1)
√
m+ n+ 2∆i, i = 1, . . . ,m− 1,

|σi| ≤ (2(m+n−1)/2 + 1)
√
m+ n+ 2∆i, i = 1, . . . , n− 1,

|ϕ| ≤ (2(m+n−1)/2 + 1)
√
m+ n+ 2∆m.

(8)

If δ1 ≡ 0 mod p and σ1 ≡ 0 mod p, then (v0, v1) = (w0 + π1, w1 + ρ1) ∈ F2
p

and we can recover the original point (v0, v1). So, we can assume δ1 ̸≡ 0 mod p or
σ1 ̸≡ 0 mod p.

Substituting w0 = X−ε0, w1 = Y −ε1 in the first equation of lattice (6) L(n,m,f)

we obtain a bivariate polynomial:

G(X,Y ) =

m−1∑
i=1

f (i)(X − ε0)

i!
δi +

n−1∑
i=1

(
n

i

)
(Y − ε1)

n−iσi + ϕ

= f (1)(X − ε0)δ1 +

m−1∑
i=2

f (i)(X − ε0)

i!
δi + n(Y − ε1)

n−1σ1

+

n−1∑
i=2

(
n

i

)
(Y − ε1)

n−iσi + ϕ.

Since we are assuming that δ1 ̸≡ 0 mod p or σ1 ̸≡ 0 mod p then G(X,Y ) is
a non-zero bivariate polynomial of total degree at most m − 1 whose coefficients
are in Z[ε1, ε0, δ1, . . . , δm−1, σ1, . . . , σn−1, ϕ]. We consider the polynomial system in
Fp[X,Y ] :

(9)
G(X,Y ) ≡ 0 mod p,

Y n + f(X) ≡ 0 mod p.

Since the polynomial Y n + f(X) ∈ Fp[X,Y ] is irreducible, then by the classical
Bezout’s theorem: for every choice of ε1, ε0, δ1, . . . , δm−1, σ1, . . . , σn−1, ϕ with δ1 +
σ1 ̸= 0 the number of values v0 satisfying the above polynomial system (9) is at
most (m − 1)m. We place any solution v0 into the set V(∆; f). We have to show
that the cardinality of V(∆; f) is a claimed in the statement theorem. In order
to do that, we count the total number of polynomials G(X,Y ). We observe that
G(X,Y ) is writing as Taylor expression at point (ε0, ε1) ∈ Z2, so it is enough to
count the number of choices for δ1, . . . , δm−1, σ1, . . . , σn−1, ϕ. Now, using bounds
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(8) we obtain:

ϕ

m−1∏
i=1

δi

n−1∏
i=1

σi = (m+ n+ 2)(m+n−1)/2(2(m+n−1)/2 + 1)∆(m(m+1)+n(n−1))/2

which finishes the proof. □

3.3. The error tolerance λn,m for ∆. The quality of the approximation
(w0, w1) is the measure used to characterize when the method returns the expected
root (v0, v1).

A “bad” set of values for the component v0 is described, provided that whenever
that value lies outside the set, the algorithm works correctly. The size of the set is
asymptotically On,m(∆λn,m). This means that if

∆ < p1/λn,m

and p is large enough the method is unlikely to fail, providing that the root (v0, v1)
is taken at random in the set of all roots of H(n,m,f)(X,Y ). The result in Lemma 2.2
shows a uniform distribution of the first coordinate of the root for absolutely irre-
ducible polynomials. Our theorem shows also that, for most zeros of a polynomial,
the zeros are determined if the most significant bits are fixed. This means that,
given a ∆-approximation, there is only one possible root if ∆ is small enough. We
believe that the roots are spread in many families of irreducible, not necessarily ab-
solutely irreducible polynomials, i. e., given H(n,m,f)(X,Y ) and for most (w0, w1)
and ∆ sufficiently small, H(n,m,f)(X,Y ) has On,m(1) zeros at distance ∆.

On the other hand, as we mentioned in the introduction section, in paper [14]
presented a similar algorithm for recovering points of any irreducible bivariate poly-
nomials modulo a prime:

Theorem 3.2 ([14]). Given an irreducible polynomial F (X,Y ) ∈ Fp[X,Y ] of degree
m in X, n in Y with nm > 1 and, a ∆−approximation (w0, w1) ∈ Z2 to (v0, v1) ∈ F2

p

such that F (v0, v1) = 0, then one can recovers (v0, v1) in polynomial time in m,n
and log p provided that v0 does not lie in a certain set V(∆;F ) ⊆ Fp of cardinality,

#V(∆;F ) = O(A(n,m)∆ωn,m)

where

A(n,m) = (m+ 1)(n+ 1)2(m+1)(n+1)/2

and

ωn,m = 2 +
m2

2
(2n+ 1) +

n2

2
(2m+ 1) +mn.

Now, we have ωn,m is cubic polynomial in variables m and n, but λn,m is qua-
dratic. Of course, it is something expected because of the especial structure of
superelliptic curve polynomial H(n,m,f)(X,Y ).

However, several aspects must be taken into account before considering λn,m the
threshold for ∆ as the error tolerance upon which the algorithm fails. First, the are
constants hidden in the asymptotic reasoning. For instance, we can apply the exact

CVP instead of Lemma 2.1. In this case, the vector F⃗ returned by the CVP to

vector T⃗ and lattice L(n,m,f) is the vector of minimal norm satisfying the LS(n,m,f)

((4)), at most equal to the norm of the solution E⃗, using the bounds (5):
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|πi| ≤
√
m+ n+ 2∆i, i = 1, . . . ,m− 1,

|ρi| ≤
√
m+ n+ 2∆i, i = 1, . . . , n− 1,

|τ | ≤
√
m+ n+ 2∆m.

(10)

Then, bounds (5) and (10) imply that ∥D⃗∥ = ∥E⃗ − F⃗∥ ≤ 2
√
m+ n+ 2∆m and the

norm D⃗ = E⃗ − F⃗ verifies:

|δi| ≤ 2
√
m+ n+ 2∆i, i = 1, . . . ,m− 1,

|σi| ≤ 2
√
m+ n+ 2∆i, i = 1, . . . , n− 1,

|ϕ| ≤ 2
√
m+ n+ 2∆m.

(11)

Then the cardinality of the set V(∆; f) ⊆ Fp is

m(m− 1)(m+ n+ 2)(m+n−1)/22(m+n−1)/2∆λn,m),

which is, obviously, smaller than the stated in the theorem.
Finally, the threshold could be higher, as the “bad” set does not guarantee that

the method necessarily fails.

3.4. Hyperelliptic curve polynomials. For the lattice techniques and practi-
cal applications is very important the lattice dimension. In general the performance
of Coppersmith’s method is bad because of large dimension of the constructed lat-
tice. The lattices in this paper are of fixed and low dimension, one time that n and
m are fixed.

When n = 1 is the polynomial evaluation case, the theorem shows, basically,
the same bound obtained in [4], here the considered univariate polynomial f(X) is
monic. The involved full lattice L(1,m,f) has dimension m and the threshold is

λ1,m =
m(m+ 1)

2
.

When n = 2 is the hyperelliptic curve polynomial, in this special case the involved
full lattice L(2,m,f) has dimension m+ 1 and the threshold is

λ2,m =
m(m+ 1) + 2

2

Finally, the special case n = 2 and m = 3 corresponds to the elliptic curve case.
Here, we have a lattice of dimension 4 and the cardinality for the bad set is ∆7,
which is an improvement of Theorem 2 in paper [14].

4. Empirical results

We have proposed an algorithm to recover points of superelliptic curve. The
input required by the algorithm include approximations to the point.

In the first case, a “bad” set of values for the component x0 is described, prov-
ing that whenever that value lies outside the set, the algorithm works correctly.
Furthermore, the size of the set is asymptotically bounded with ∆λn,m .

We have performed some numerical tests with SageMath implementation of the
main Theorem. Firstly, we fixed the integers n and m and generate a superelliptic
curve H(n,m,f)(X,Y ) over a prime finite field of a desired size by chosing ramdomly
in Fp the parameters/coefficients of the univariate polynomial f to fix Eq. (1).
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Then, we generate randomly a point in the curve by choosing their first coordinate
and trying to solve Eq. (1). For several approximations to the point are given as
input to our algorithms.

We summarize its results in the following tables. We have selected primes of
several sizes, and note the obtained success threshold. As we can see, 1/λn,m

appears as the correct threshold:

• n = 1,m = 5, 1/λ1,5 = 1/15 = 0.066666

log2(p) 50 100 500 1000
logp(∆) 0.65 0.066 0.0664 0.0666

• n = 2,m = 3, 1/λ2,3 = 1/7 = 0.142857

log2(p) 50 100 500 1000
logp(∆) 0.13 0.140 0.14 0.142

• n = 2,m = 5, 1/λ2,5 = 1/16 = 0.06250

log2(p) 50 100 500 1000
logp(∆) 0.05 0.06 0.061 0.062

Another argument to show that the threshold is correct it is the so-called Gauss-
ian heuristic. The so-called “Gaussian heuristic” suggests that and s-dimensional
lattice L with volume vol(L) is unlikely to have a nonzero vector which is substan-
tially shorter than vol(L)1/s. Moreover, if it is known that such a very short vector
does exist, then up to a scalar factor it is likely to be the only vector with this
property.

The involved lattice in this paper L(n,m,f) ((6)) has volumen has volume the
product of the modulo integers, that is,

vol(L(n,m,f)) = p∆
m(m−1)+(n−1)(2m−n)

2

Since the dimension of the lattice L(n,m,f) is m+ n− 1. Then, vector E⃗ is likely to
be the one founded whenever

∆m < p1/(m+n−1)∆
m(m−1)+(n−1)(2m−n)

2(m+n−1) ,

this is,

∆ < p1/λn,m .

Which it is exactly the same bound provided in the Theorem.

5. Remarks and open questions

So far, we have discussed the case where the quality is the same for approxima-
tions w0, w1 to v0, v1 respectively. Indeed, the presented theorem can be slightly
modified consider different bounds for the approximations errors, i.e., let w0 be a
∆1−approximation to v0 and w1 be a ∆2−approximation to v1, for positive integers
∆1 and ∆2. On the other hand, the result can be also extended for arbitrary poly-
nomial f(X), in this case the cardinality of the set V(∆; f) ⊆ Fp is A(n,m)∆λn,m),
where

λn,m =
m(m+ 1) + n(n+ 1)

2
.

Obviously our result is nontrivial only for ∆ = O(p1/λn,m). Thus increasing the size
of the admissible values of ∆ is of prime importance.
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On the other hand, as in [10], we can generate more non-linear equations by
multiplication of several non-linear equations before the linearization step in order
to improve attacks. However in our case the structure of the variables is more
complicated than that of [10], and, after linearization it leads to a lattice of very
large dimension. Thus this approach does not seem to provide any advantages. It
may be very hard to give any precise rigorous or even convincing heuristic analysis
of this approach.

Also, for future work we would like to investigate the applications of this result
to study the cardinality of superelliptic curves points in small boxes, [8].
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