
HW-SW Codesign of a Positioning System. From

UML to Implementation Case Study

Ángel Álvarez, Íñigo Ugarte, Patricia Martínez, Víctor Fernández

University of Cantabria

TEISA Department, ETSIIT, Santander, Spain

angel.alvarezr@alumnos.unican.es, {ugarte, pmartinez, victor}@teisa.unican.es

Abstract—During the last years, there has been a growing

interest in systems related to the location of objects into three-

dimensional environments and virtual reality applications. These

systems, based on high-performance video-processing, have a big

computational load, specially on image analysis phases. This

work presents the process of HW-SW co-design and

implementation of a positioning system. A methodology was

applied in which the requirements and initial functionality was

captured in UML-MARTE. After a high-level profiling of the

system, an acceleration of most time-demanding stages is

achieved by combining the hardware and software capabilities of

Zynq platform targeting a low power embedded system. The

performance obtained through hardware acceleration of critical

parts of the application leads to a significant improvement in the

throughput of the whole system. On the other hand, the

presented work can also be seen as a proof of concept of the

followed methodology.

Keywords— HW-SW Codesign, HLS, Zynq, UML/MARTE

I. INTRODUCTION

In recent years, systems and products related to location of
objects in three-dimensional environments and
virtual/recreated reality technology are being increasingly
deployed in a large number of sectors, such as robotics,
medicine, gaming, among many others [1][2]. To obtain the
position of the user or individual, those systems are based on
the use of many different elements such as cameras, optical
sensors, accelerometers, gyroscopes, GPS or other devices.
The positioning system implemented (see [3] for details) on
this document is able to locate an individual in any type of
environment or light conditions. It is based on image
processing of the region of interest where the individual is
located using algorithms to detect reference LED markers.
When only a reference marker is visualized, the use of stereo
cameras and epipolar geometry is necessary. Otherwise,
through triangulation by knowing the actual distance between
markers and a single camera, it is possible to achieve the
parameters to establish the real 3D coordinates of the target on
the environment.

Model-driven development (MDD) [4], based on
UML/MARTE [5] has been proposed to capture the
functionality and requirements of the system. Video
processing is one of the areas where high-level modelling and
analysis may have a wider impact. From the system model,

where all the high-level specifications, HW and SW resources
and functional allocation into the platform resources are
described, thanks to a software synthesis tool, it is possible to
run the executable binary files of the whole system on the
target platform.

This document goes beyond the software synthesis from
UML/MARTE by carrying out a detailed profiling analysis
with the evaluation in seconds or data/seconds of each system
stage. The methodology presented takes advantage of the
programmable logic in the SoC of the target Zynq [6] platform
to design hardware modules in order to accelerate those stages
with highest computational load.

This paper is organized as follows: Section II provides an

overview of UML/MARTE high-level design and SW

synthesis methodology. Section III presents the HW-SW

partition based on the timing analysis of the algorithm. In

Sections IV and V the HW synthesis workflow and the

integration of the generated IP cores are described. The main

results of the work are presented in Section VI. Section VII

will wrap up the final conclusions.

II. DESIGN METHODOLOGY

The COMPLEX methodology for UML/MARTE
modeling and design space exploration, exposed in [7][8] is
applied. It follows a Model Driven Engineering (MDE),
component-based, software-centric approach. The
methodology supports the separation of concerns paradigm,
keeping the functional and non-functional aspects well-
differentiated. It can completely describe the system, enabling
automatic generation of the input code. More concretely, the
part of UML/MARTE based on graphical descriptions is used
to capture all the required information of the system
functionality, the HW/SW platform and the selected
architectural mapping or resource allocation, all in a single-
source.

A detailed explanation of the UML/MARTE model of the

system goes beyond the scope of this essay. However, the

Application View is presented for the dataflow of the

positioning system in order to have a raw view (see Fig. 1).

The Application View includes the description of the

application components, the relationship among them, and

their interconnection through ports by the set of

required/provided services defined by the corresponding
This work has been supported by Project TEC2014-58036-C4-3-R, funded by

MINECO.

functionalities descriptions. The positioning system presented

in this paper is divided into six components:

 InputData: is in charge of getting the view angle from a
gyroscope and images from a stereo camera.

 MarkerDetection: obtains the image coordinates of the
reference markers.

 MovementType: recognizes the type of movement
performed by the user.

 Geometry: estimates the user position by applying the
positioning algorithms (such as epipolar geometry and
triangulation).

 PossiblePosition: compares different distance values
calculated in the last stage for each type of movement and
selects the correct ones.

 UserPosition: obtains the target object or individual

position in the 3D environment.



Fig. 1. UML Application View.

Once the complete UML/MARTE model has been
developed and all the functionalities are defined, simulation
and synthesis are the next steps. It is possible to easily create
an executable model of the system in the host PC using
eSSYN tool [9]. Only when the PC binaries work properly in
the PC workstation, the process is repeated with eSYYN tool
to generate the selected platform binaries, in order to verify its
correctness in the final execution platform.

The system design flow includes the profiling of the timing
performance for each component. A first approximation to the
model and a time analysis is done, showing that InputData and
MarkerDetection use more than 95% of the whole processing
time with low frame rate achievements. The following
sections explain how to improve these results with a better
utilization of the final platform resources. The InputData
module has a high dependency on the HW resources of the
final platform and, therefore, with few possibilities of
improvement via HW-SW codesign decisions. The focus will
be on the MarkerDetection part of the system.

III. HW-SW PARTITION

The first approach to perform a hardware acceleration of a
system is to carry out a detailed timing analysis of the
algorithm execution. This profiling can reveal whether or not
it is worth the effort to design hardware modules – which
usually imply a larger amount of time than software

development. If acceleration of the algorithm is required, a
complete profiling will provide information about the parts
that take most computing time.

There is a first version of the algorithm for marker
detection written in C++ (and based on the OpenCV library)
and tested on a host PC. Although execution is fast enough on
an Intel processor, the final architecture is a Zynq SoC that
will make possible to run the algorithm on a low power
embedded system. Therefore, profiling is performed running
the algorithm on the ARM Cortex A9 of the Zynq. Execution
over this platform turned out to be too slow to be used on a
fast response system. When processing VGA images
(640x480), a frame rate of 11 fps (frames per second) is
achieved. If Full HD images (1920x1080) are processed, the
throughput goes down to only 1 fps, which is definitely
unsatisfactory. The higher the resolution of the images, the
sharper is the detection of markers– so processing high
definition images can be useful.

The profiling of the software revealed that two OpenCV
functions take most of execution time: cv::medianBlur and
cv::inRange, as shown in Fig. 2. Note that percentages are
similar for different resolutions, while execution time varies
widely.

Fig. 2. Execution time of algorithm showing percentage of most time

demanding functions, for VGA and FHD images.

The functionality of the two functions is studied and it is
stated that a hardware synthesis is feasible. Moreover, these
two functions are used one followed by the other, so that the
output data of the first one are the input data of the second
one. This makes that data transfer between software and
hardware has to take place only once to execute the two
functions. Taking all into account, a HW synthesis of
OpenCV’s inRange and medianBlur functions is suitable to
perform a good hardware acceleration of the algorithm.

IV. HW SYNTHESIS

Due to the fact that Zynq SoC includes both an ARM

based Processing System and Programmable Logic, the
objective is to take advantage of the FPGA logic fabric to
design some hardware IPs that implement the functionality
chosen in the previous section.

To design the hardware IPs cores, Xilinx Vivado HLS
(High-Level Synthesis) is used. This tool is capable of
converting C-based designs (C/C++) into RTL design files
(VHDL/Verilog). However, to obtain a high performance
solution, some modifications must be done. An overview of
the followed design flow can be seen in Fig. 3.

Although the HLS tool provides a video library that
includes some video processing functions with equivalent
behavior to corresponding OpenCV functions, the ones
desired are not available [10].

The first step is to understand how the required OpenCV
functions work and derive a C++ version. Then, they are
tested to check they provide the same result as the originals.
InRange checks if 3-channel pixel values lie within a range of
values and outputs one channel images. MedianBlur is a 2D
median filter applied to images for smoothing, using a certain
NxN size window [11][12]. In this case of study it works over
one channel images. It has the higher computational load.

Fig. 3. Design flow for required hardware IP cores using High Level

Synthesis.

A. Designing the IP core for inRange function

The input and output interfaces for the IPs are AXI Stream.
That means that pixels are received and transmitted serialized,
one by one. The IP for inRange function receives one pixel
and outputs one pixel – there is no need for storing other
pixels to compute. Input pixel (x,y) is enough to generate
immediately output pixel (x,y). A pseudocode for inRange is
shown below:

for each row{

for each column{

Read input pixel

Check RGB values

Write output pixel

}

}
Being things that simple, the HLS synthesis results are

good enough for ordinary C++ code input. However, the
throughput of the IP can be improved by adding a pipeline
directive to the inner loop with an initialization interval of 1
(II=1). Then, an output pixel is produced every clock cycle.
The estimated timing performance results, based on HLS
synthesis tool reports (not integrated in the final HW-SW
system), for both solutions are shown in Table I.

B. Designing the IP core for medianBlur function

Applying a median filter is a very frequent technique in
image and video processing. This kind of filtering provides an
excellent reduction of noise while preserving the edges in the
image. A pseudocode for medianBlur is shown below:

Read all input pixels

for each row{

for each column{

 Load 3x3 window pixels

 Calculate median value of window

Write output pixel

}

}

Unfortunately, a 2D median filter needs several pixels in

order to produce an output pixel – in this case, a 3x3 window
centered around the considered position in the input image.
That is, when a pixel is received, previous and following
pixels are needed. The first procedure may consist on reading
all input pixels and store the full image into a local buffer.
Then, C++ code for median filtering can be applied. When a
pixel is being considered and surrounding pixels are needed,
they are available to the hardware to compute. This way, a
hardware synthesis can be done quickly from ordinary
software-like C++ code. However, this can be a pretty bad
input for HLS to synthetize high speed hardware. The
throughput of the generated IP is lower than 0.5 fps, as shown
in Table II.

The reason for the low overall system performance is the
absence of appropriate memory buffer architecture. The HLS
tool does not automatically manage or create memory buffers.
The designer must explicitly describe these structures in the
code so that they are generated into the RTL. To improve the
design, double buffer architecture is used, as recommended in
[13]. The first memory where input pixels are stored is a three-
line buffer which acts as a shift register. When a pixel is
received, it is loaded into the corresponding position of the
third line buffer. Simultaneously, pixels previously stored are
moved to the same position on the line buffer above.
Secondly, a window buffer capable of storing 3x3 elements
from the three buffered lines is implemented. The algorithm
computation – calculation of the median value – is applied on

the elements of the window buffer. Line and window buffers
are exposed in Fig. 4.

Fig. 4. Line and window buffers computing with a 3x3 pixels window for

high speed video processing.

Regarding the computation kernel of the algorithm, it is
based on calculating the median value of the window pixels
for each position on the image. The output pixel in the same
position is the result of the calculation. The median value can
be obtained by ranking the elements of the window and taking
the one on the middle position. Sorting arrays is one of the
most critical computations on embedded systems. The non-
parallel bubble sort algorithm used in the software version is
one of the simplest methods. Nevertheless, performance can
be highly improved on FPGAs by describing a sorting
network. These structures take advantage of parallel execution
of several comparisons on hardware. Networks are built with
two-input comparators and registers. Comparators can swap
the input values if necessary and have a latency of one clock
cycle. Registers are needed to delay elements that do not need
to be compared at a certain stage or to add pipeline. To sort
the values in window array, an odd-even sorting network is
used. A simplified schematic of the sorting network is shown
in Fig. 5.

Synthetizing the buffered C++ modified user code does not
provide a high performance by itself, but he code is prepared
to benefit from some HLS directives. The inner loop is fully
pipelined with II=1 (including the buffer management and the
sorting network to apply the computation kernel to each
pixel).

Therefore, the sorting network has a latency of 9 cycles.
After that, a sorted array is produced every cycle. One output
pixel is produced at any clock cycle, too. Respecting the
memory structures, the 3-line buffer is partitioned into 3
separate line arrays, so that each line is mapped into a
different dual-port block RAM. Elements from the three lines
can be accessed at a single cycle. Also, the window buffer is

fully partitioned so that HLS maps it into 9 registers. Memory
mapping of buffers is also indicated in Fig. 4. Combining the
code modifications with the synthesis directives, the
throughput of the IP reaches more than 74 fps. All estimated
timing performance figures are shown in Table II.

Fig. 5. Odd-even sorting network for 9-element arrays. Vertical

interconnections represent comparators.

TABLE I. INRANGE PERFORMANCE ESTIMATES

inRange HW (1920x1080)

HLS Input Clock period Clock cycles IP throughput

Ordinary
C++ Code

3.37 ns 4149362 71.51 fps

Ordinary
C++ Code &

Synthesis
directives

3.89 ns 2077922 123.71 fps

TABLE II. MEDIANBLUR PERFORMANCE ESTIMATES

medianBlur HW (1920x1080)

HLS Input Clock period Clock cycles IP throughput

Ordinary
C++ Code

4.31 ns 553656603 0.42 fps

Modified
C++ Code

4.26 ns 442318177 0.53 fps

Modified
C++ Code &

Synthesis
directives

6.39 ns 2091737 74.82 fps

V. INTEGRATION

The application will be running over Linux on an ARM-

based Zynq SoC. Some functionality remains in software,
such as the video capture using OpenCV library, part of the

processing (including OpenCV library functions) and
presentation of results (coordinates of markers). Some other
functionality is accelerated through the generated IP cores for
inRange and medianBlur.

The complete system is built and implemented using
Vivado IP Integrator. In order to access image data captured
by software, the hardware IPs are connected to an AXI
VDMA (Video Direct Memory Access) IP. Using DMA
allows to read from and write to the main system memory
(512 MB DDR3 RAM) without using the CPU. All hardware
peripherals are memory-mapped – the registers and memories
of the hardware devices are mapped to address values, along
with physical RAM. Therefore, it’s possible to configure and
control the hardware from Linux. The bus interface for user
IPs is given by HLS and the bus interface for the AXI VDMA
can be found in the IP product guide by Xilinx.

One of the issues that arise when using an operating
system and an MMU (Memory Management Unit) is the
separation between virtual memory addresses and physical
addresses. The instruction mmap() allows the user to get a
virtual address from a physical address. On the other hand, it
is not possible for the user to obtain the physical address
corresponding to a virtual address given by the operating
system. The DMA needs to be configured with the physical
addresses of RAM where data must be read (Read Channel) or
written (Write Channel). Using mmap(), virtual addresses can
be obtained. However, OpenCV image declarations return
image buffer virtual addresses that the user cannot choose. So
to make data transfer possible, there is a need for matching
virtual addresses that OpenCV library functions allocate and
virtual addresses corresponding to the physical memory that
the DMA accesses. The solution adopted is shown in Fig. 6
and explained below.

Fig. 6. Matching virtual addresses given by OpenCV for Mat images and

virtual addresses mapped from memory used by the VDMA.

It is observed that OpenCV’s function Videocapture() reads

the pointer to the user data of the previously captured image to

allocate the same memory buffer when used in a loop. Thus,

when the first frame of video is captured from the camera, the

pointer to the data of the image given by OpenCV is replaced

with the value of the virtual address where the DMA Read

Channel has been configured to take the data and maintained

by Videocapture() function during following frames.

Regarding to the hardware output image, the pointer to the

data of the image given by OpenCV is replaced by the value

of the virtual address where the DMA Write Channel leaves

the processed data.
It is also important to consider how OpenCV stores image

data in memory. For color images (three 8-bit channels),
pixels are stored in memory in form B-G-R; B-G-R; etc. For
black and white images (one 8-bit channel) pixels are stored in
form BW; BW; etc. That is, memory bytes are used
continuously. Since the AXI VDMA takes 32-bit words from
memory and designed HW IPs interfaces work with one pixel
(either color or black and white) per 32-bit word, two – input
and output – interface adaptation modules are needed. A
simplified model of the final hardware system is shown in Fig.
7.

Fig. 7. Simplified model of the complete hardware acceleration system, the

processing system and the DDR3 memory.

The adaptation IPs are generated with HLS and are pipelined

with the rest of the system – operation of the modules is

explained in Fig. 8.

VI. RESULTS

In this section, the performance of the application running

on the target platform is shown. The FPGA clock period for
all hardware IPs is set to 10 ns (100 MHz).

When processing VGA images (640x480), the algorithm
execution in software (complete C++ code on the ARM
processor) has a throughput of 11 fps (frames per second).

When using the hardware system designed (hardware
acceleration), a frame rate of 58 fps is achieved.

Fig. 8. Functionality of the interface adaptation IPs: from continuous bytes

software storage to one 32-bit word per pixel and vice versa.

With FHD images (1920x1080), the software version of
the algorithm can only process 1 fps. When using hardware
acceleration, a frame rate of 8 fps is reached. Fig. 9 shows the
execution time of the algorithm for FHD images, both in
software and using hardware.

Fig. 9. Execution time of algorithm for FHD images, comparing software

and hardware performance.

This approach may also be easily scaled to 4K
(3840x2160) videos. Higher resolutions lead to an increased
benefit from dedicated hardware and a higher bottleneck on

the CPU. Therefore, combining HW and SW with increased
resolutions such as 4K makes the use of a better
microprocessor advisable. Re-generating the designed
hardware for these resolutions from HLS is straightforward.

VII. CONCLUSIONS

This paper exposes a HW-SW Codesign proof of concept

exercise. The initial system requirements and structural
specifications were defined using the COMPLEX
UML/MARTE methodology. Then, based on a profiling
analysis over a preliminary all-SW version, some bottlenecks
were detected. Most time demanding parts were derived to
HW. An optimum automatic synthesis from C++ requires a
deep understanding of the HLS process and the performance
and connection characteristics of the target Platform. C++ was
transformed in order to admit synthesis directives and with the
aim of maximizing the data rate between SW and HW. Final
results demonstrate a good speed-up of the positioning system.

REFERENCES

[1] Nakano, Y. Izutsu, K., Tajistu, K., Kai, K., Tatsumi, T. (2012) Kinect

Positioning System (KPS) and its potential applications. International
Conference on Indoor Positioning and Indoor Navigation.

[2] Mossel, A., Kaufmann, H. (2013). Wide area optical tracking in
unconstrained indoor environments. IEEE 23rd International Conference
on Artificial Reality and Telexistence.

[3] Villar, E., Martínez, P., Alcalá, F., Sánchez, P., & Fernández, V. (2014).
Método y sistema de localización espacial mediante marcadores
luminosos para cualquier ambiente. P.N.ES-2543038-B2.

[4] Schmidt, D. C. (2006). Model-driven Engineering. IEEE Computer,
V.39, N.2, pp. 25-31.

[5] OMG, UML Profile for MARTE: Modelling and Analysis of Real-Time
Embedded Systems, Version 1.1, Dec., 2012. Available from:
<http://www.omgmarte.org>.

[6] http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[7] The COMPLEX project (247999), Codesign and power management in
platform-based design space exploration, Last visited, 2013. Available
from: <http://complex.offis.de>.

[8] Herrera, F., Posadas, H., Peñil, P., Villar, E., Ferrero, F., Valencia, R., &
Palermo, G. The complex methodology for UML/MARTE Modeling and
design-space exploration of embedded systems. Journal of Systems
Architecture, V.60, N.1, elsevier, pp.55-78.

[9] Peñil, P. (2014) UML-Marte Methodology for Heterogenius System
design. Microelectronics Engineering Group, TEISA Dpt., University of
Cantabria.

[10] http://www.wiki.xilinx.com/HLS+Video+Library

[11] http://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html

[12] http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html

[13] Fernando Martinez Vallina, Implementing Memory Structures for Video
Processing in the Vivado HLS Tool, XAPP793

