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Abstract—During the last years, there has been a growing 

interest in systems related to the location of objects into three-

dimensional environments and virtual reality applications. These 

systems, based on high-performance video-processing, have a big 

computational load, specially on image analysis phases. This 

work presents the process of HW-SW co-design and 

implementation of a positioning system. A methodology was 

applied in which the requirements and initial functionality was 

captured in UML-MARTE. After a high-level profiling of the 

system, an acceleration of most time-demanding stages is 

achieved by combining the hardware and software capabilities of 

Zynq platform targeting a low power embedded system. The 

performance obtained through hardware acceleration of critical 

parts of the application leads to a significant improvement in the 

throughput of the whole system. On the other hand, the 

presented work can also be seen as a proof of concept of the 

followed methodology. 
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I. INTRODUCTION 

In recent years, systems and products related to location of 
objects in three-dimensional environments and 
virtual/recreated reality technology are being increasingly 
deployed in a large number of sectors, such as robotics, 
medicine, gaming, among many others [1][2]. To obtain the 
position of the user or individual, those systems are based on 
the use of many different elements such as cameras, optical 
sensors, accelerometers, gyroscopes, GPS or other devices. 
The positioning system implemented (see [3] for details) on 
this document is able to locate an individual in any type of 
environment or light conditions. It is based on image 
processing of the region of interest where the individual is 
located using algorithms to detect reference LED markers. 
When only a reference marker is visualized, the use of stereo 
cameras and epipolar geometry is necessary. Otherwise, 
through triangulation by knowing the actual distance between 
markers and a single camera, it is possible to achieve the 
parameters to establish the real 3D coordinates of the target on 
the environment.  

Model-driven development (MDD) [4], based on 
UML/MARTE [5] has been proposed to capture the 
functionality and requirements of the system. Video 
processing is one of the areas where high-level modelling and 
analysis may have a wider impact. From the system model, 

where all the high-level specifications, HW and SW resources 
and functional allocation into the platform resources are 
described, thanks to a software synthesis tool, it is possible to 
run the executable binary files of the whole system on the 
target platform. 

This document goes beyond the software synthesis from 
UML/MARTE by carrying out a detailed profiling analysis 
with the evaluation in seconds or data/seconds of each system 
stage. The methodology presented takes advantage of the 
programmable logic in the SoC of the target Zynq [6] platform 
to design hardware modules in order to accelerate those stages 
with highest computational load. 

This paper is organized as follows: Section II provides an 

overview of UML/MARTE high-level design and SW 

synthesis methodology. Section III presents the HW-SW 

partition based on the timing analysis of the algorithm. In 

Sections IV and V the HW synthesis workflow and the 

integration of the generated IP cores are described. The main 

results of the work are presented in Section VI. Section VII 

will wrap up the final conclusions. 

II. DESIGN METHODOLOGY  

The COMPLEX methodology for UML/MARTE 
modeling and design space exploration, exposed in [7][8]  is 
applied. It follows a Model Driven Engineering (MDE), 
component-based, software-centric approach. The 
methodology supports the separation of concerns paradigm, 
keeping the functional and non-functional aspects well-
differentiated. It can completely describe the system, enabling 
automatic generation of the input code. More concretely, the 
part of UML/MARTE based on graphical descriptions is used 
to capture all the required information of the system 
functionality, the HW/SW platform and the selected 
architectural mapping or resource allocation, all in a single-
source.  

A detailed explanation of the UML/MARTE model of the 

system goes beyond the scope of this essay. However, the 

Application View is presented for the dataflow of the 

positioning system in order to have a raw view (see Fig. 1). 

The Application View includes the description of the 

application components, the relationship among them, and 

their interconnection through ports by the set of 

required/provided services defined by the corresponding 
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functionalities descriptions. The positioning system presented 

in this paper is divided into six components: 

 

  InputData: is in charge of getting the view angle from a 
gyroscope and images from a stereo camera. 

  MarkerDetection: obtains the image coordinates of the 
reference markers. 

  MovementType: recognizes the type of movement 
performed by the user. 

  Geometry: estimates the user position by applying the 
positioning algorithms (such as epipolar geometry and 
triangulation). 

  PossiblePosition: compares different distance values 
calculated in the last stage for each type of movement and 
selects the correct ones. 

 UserPosition: obtains the target object or individual 

position in the 3D environment. 

  

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. UML Application View. 

Once the complete UML/MARTE model has been 
developed and all the functionalities are defined, simulation 
and synthesis are the next steps. It is possible to easily create 
an executable model of the system in the host PC using 
eSSYN tool [9]. Only when the PC binaries work properly in 
the PC workstation, the process is repeated with eSYYN tool 
to generate the selected platform binaries, in order to verify its 
correctness in the final execution platform. 

The system design flow includes the profiling of the timing 
performance for each component. A first approximation to the 
model and a time analysis is done, showing that InputData and 
MarkerDetection use more than 95% of the whole processing 
time with low frame rate achievements. The following 
sections explain how to improve these results with a better 
utilization of the final platform resources. The InputData 
module has a high dependency on the HW resources of the 
final platform and, therefore, with few possibilities of 
improvement via HW-SW codesign decisions. The focus will 
be on the MarkerDetection part of the system. 

III. HW-SW PARTITION 

The first approach to perform a hardware acceleration of a 
system is to carry out a detailed timing analysis of the 
algorithm execution. This profiling can reveal whether or not 
it is worth the effort to design hardware modules – which 
usually imply a larger amount of time than software 

development. If acceleration of the algorithm is required, a 
complete profiling will provide information about the parts 
that take most computing time. 

There is a first version of the algorithm for marker 
detection written in C++ (and based on the OpenCV library) 
and tested on a host PC. Although execution is fast enough on 
an Intel processor, the final architecture is a Zynq SoC that 
will make possible to run the algorithm on a low power 
embedded system. Therefore, profiling is performed running 
the algorithm on the ARM Cortex A9 of the Zynq. Execution 
over this platform turned out to be too slow to be used on a 
fast response system. When processing VGA images 
(640x480), a frame rate of 11 fps (frames per second) is 
achieved. If Full HD images (1920x1080) are processed, the 
throughput goes down to only 1 fps, which is definitely 
unsatisfactory. The higher the resolution of the images, the 
sharper is the detection of markers– so processing high 
definition images can be useful. 

The profiling of the software revealed that two OpenCV 
functions take most of execution time: cv::medianBlur and 
cv::inRange, as shown in Fig. 2. Note that percentages are 
similar for different resolutions, while execution time varies 
widely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Execution time of algorithm showing percentage of most time 

demanding functions, for VGA and FHD images. 

The functionality of the two functions is studied and it is 
stated that a hardware synthesis is feasible. Moreover, these 
two functions are used one followed by the other, so that the 
output data of the first one are the input data of the second 
one. This makes that data transfer between software and 
hardware has to take place only once to execute the two 
functions. Taking all into account, a HW synthesis of 
OpenCV’s inRange and medianBlur functions is suitable to 
perform a good hardware acceleration of the algorithm. 

 

 



IV. HW SYNTHESIS 

 
Due to the fact that Zynq SoC includes both an ARM 

based Processing System and Programmable Logic, the 
objective is to take advantage of the FPGA logic fabric to 
design some hardware IPs that implement the functionality 
chosen in the previous section. 

To design the hardware IPs cores, Xilinx Vivado HLS 
(High-Level Synthesis) is used. This tool is capable of 
converting C-based designs (C/C++) into RTL design files 
(VHDL/Verilog). However, to obtain a high performance 
solution, some modifications must be done. An overview of 
the followed design flow can be seen in Fig. 3. 

Although the HLS tool provides a video library that 
includes some video processing functions with equivalent 
behavior to corresponding OpenCV functions, the ones 
desired are not available [10]. 

The first step is to understand how the required OpenCV 
functions work and derive a C++ version. Then, they are 
tested to check they provide the same result as the originals. 
InRange checks if 3-channel pixel values lie within a range of 
values and outputs one channel images. MedianBlur is a 2D 
median filter applied to images for smoothing, using a certain 
NxN size window [11][12]. In this case of study it works over 
one channel images. It has the higher computational load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Design flow for required hardware IP cores using High Level 

Synthesis. 

A. Designing the IP core for inRange function 

The input and output interfaces for the IPs are AXI Stream. 
That means that pixels are received and transmitted serialized, 
one by one. The IP for inRange function receives one pixel 
and outputs one pixel – there is no need for storing other 
pixels to compute. Input pixel (x,y) is enough to generate 
immediately output pixel (x,y). A pseudocode for inRange is 
shown below: 

for each row{ 

for each column{ 

Read input pixel 

Check RGB values 

Write output pixel 

} 

} 
Being things that simple, the HLS synthesis results are 

good enough for ordinary C++ code input. However, the 
throughput of the IP can be improved by adding a pipeline 
directive to the inner loop with an initialization interval of 1 
(II=1). Then, an output pixel is produced every clock cycle. 
The estimated timing performance results, based on HLS 
synthesis tool reports (not integrated in the final HW-SW 
system), for both solutions are shown in Table I. 

B. Designing the IP core for medianBlur function 

Applying a median filter is a very frequent technique in 
image and video processing. This kind of filtering provides an 
excellent reduction of noise while preserving the edges in the 
image. A pseudocode for medianBlur is shown below: 

Read all input pixels 

for each row{ 

for each column{ 

 Load 3x3 window pixels 

 Calculate median value of window 

Write output pixel 

} 

} 

 
Unfortunately, a 2D median filter needs several pixels in 

order to produce an output pixel – in this case, a 3x3 window 
centered around the considered position in the input image. 
That is, when a pixel is received, previous and following 
pixels are needed. The first procedure may consist on reading 
all input pixels and store the full image into a local buffer. 
Then, C++ code for median filtering can be applied. When a 
pixel is being considered and surrounding pixels are needed, 
they are available to the hardware to compute. This way, a 
hardware synthesis can be done quickly from ordinary 
software-like C++ code. However, this can be a pretty bad 
input for HLS to synthetize high speed hardware. The 
throughput of the generated IP is lower than 0.5 fps, as shown 
in Table II. 

The reason for the low overall system performance is the 
absence of appropriate memory buffer architecture. The HLS 
tool does not automatically manage or create memory buffers. 
The designer must explicitly describe these structures in the 
code so that they are generated into the RTL. To improve the 
design, double buffer architecture is used, as recommended in 
[13]. The first memory where input pixels are stored is a three-
line buffer which acts as a shift register. When a pixel is 
received, it is loaded into the corresponding position of the 
third line buffer. Simultaneously, pixels previously stored are 
moved to the same position on the line buffer above. 
Secondly, a window buffer capable of storing 3x3 elements 
from the three buffered lines is implemented. The algorithm 
computation – calculation of the median value – is applied on 

 



the elements of the window buffer. Line and window buffers 
are exposed in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Line and window buffers computing with a 3x3 pixels window for 

high speed video processing. 

Regarding the computation kernel of the algorithm, it is 
based on calculating the median value of the window pixels 
for each position on the image. The output pixel in the same 
position is the result of the calculation. The median value can 
be obtained by ranking the elements of the window and taking 
the one on the middle position. Sorting arrays is one of the 
most critical computations on embedded systems. The non-
parallel bubble sort algorithm used in the software version is 
one of the simplest methods. Nevertheless, performance can 
be highly improved on FPGAs by describing a sorting 
network. These structures take advantage of parallel execution 
of several comparisons on hardware. Networks are built with 
two-input comparators and registers. Comparators can swap 
the input values if necessary and have a latency of one clock 
cycle. Registers are needed to delay elements that do not need 
to be compared at a certain stage or to add pipeline. To sort 
the values in window array, an odd-even sorting network is 
used. A simplified schematic of the sorting network is shown 
in Fig. 5. 

Synthetizing the buffered C++ modified user code does not 
provide a high performance by itself, but he code is prepared 
to benefit from some HLS directives. The inner loop is fully 
pipelined with II=1 (including the buffer management and the 
sorting network to apply the computation kernel to each 
pixel).  

Therefore, the sorting network has a latency of 9 cycles. 
After that, a sorted array is produced every cycle. One output 
pixel is produced at any clock cycle, too. Respecting the 
memory structures, the 3-line buffer is partitioned into 3 
separate line arrays, so that each line is mapped into a 
different dual-port block RAM. Elements from the three lines 
can be accessed at a single cycle. Also, the window buffer is 

fully partitioned so that HLS maps it into 9 registers. Memory 
mapping of buffers is also indicated in Fig. 4. Combining the 
code modifications with the synthesis directives, the 
throughput of the IP reaches more than 74 fps. All estimated 
timing performance figures are shown in Table II. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Odd-even sorting network for 9-element arrays. Vertical 

interconnections represent comparators. 

TABLE I.  INRANGE PERFORMANCE ESTIMATES 

inRange HW (1920x1080) 

HLS Input Clock period Clock cycles IP throughput  

Ordinary 
C++ Code 

3.37 ns 4149362 71.51 fps 

Ordinary 
C++ Code & 

Synthesis 
directives 

3.89 ns 2077922 123.71 fps 

TABLE II.  MEDIANBLUR PERFORMANCE ESTIMATES 

medianBlur HW (1920x1080) 

HLS Input Clock period Clock cycles IP throughput  

Ordinary 
C++ Code 

4.31 ns 553656603 0.42 fps 

Modified 
C++ Code 

4.26 ns 442318177 0.53 fps 

Modified 
C++ Code & 

Synthesis 
directives 

6.39 ns 2091737 74.82 fps 

V. INTEGRATION 

 
The application will be running over Linux on an ARM-

based Zynq SoC. Some functionality remains in software, 
such as the video capture using OpenCV library, part of the 

 

 



processing (including OpenCV library functions) and 
presentation of results (coordinates of markers). Some other 
functionality is accelerated through the generated IP cores for 
inRange and medianBlur. 

The complete system is built and implemented using 
Vivado IP Integrator. In order to access image data captured 
by software, the hardware IPs are connected to an AXI 
VDMA (Video Direct Memory Access) IP. Using DMA 
allows to read from and write to the main system memory 
(512 MB DDR3 RAM) without using the CPU. All hardware 
peripherals are memory-mapped – the registers and memories 
of the hardware devices are mapped to address values, along 
with physical RAM. Therefore, it’s possible to configure and 
control the hardware from Linux. The bus interface for user 
IPs is given by HLS and the bus interface for the AXI VDMA 
can be found in the IP product guide by Xilinx. 

One of the issues that arise when using an operating 
system and an MMU (Memory Management Unit) is the 
separation between virtual memory addresses and physical 
addresses. The instruction mmap() allows the user to get a 
virtual address from a physical address. On the other hand, it 
is not possible for the user to obtain the physical address 
corresponding to a virtual address given by the operating 
system. The DMA needs to be configured with the physical 
addresses of RAM where data must be read (Read Channel) or 
written (Write Channel). Using mmap(), virtual addresses can 
be obtained. However, OpenCV image declarations return 
image buffer virtual addresses that the user cannot choose. So 
to make data transfer possible, there is a need for matching 
virtual addresses that OpenCV library functions allocate and 
virtual addresses corresponding to the physical memory that 
the DMA accesses. The solution adopted is shown in Fig. 6 
and explained below. 

 

Fig. 6. Matching virtual addresses given by OpenCV for Mat images and 

virtual addresses mapped from memory used by the VDMA. 

It is observed that OpenCV’s function Videocapture() reads 

the pointer to the user data of the previously captured image to 

allocate the same memory buffer when used in a loop. Thus, 

when the first frame of video is captured from the camera, the 

pointer to the data of the image given by OpenCV is replaced 

with the value of the virtual address where the DMA Read 

Channel has been configured to take the data and maintained 

by Videocapture() function during following frames. 

Regarding to the hardware output image, the pointer to the 

data of the image given by OpenCV is replaced by the value 

of the virtual address where the DMA Write Channel leaves 

the processed data. 
It is also important to consider how OpenCV stores image 

data in memory. For color images (three 8-bit channels), 
pixels are stored in memory in form B-G-R; B-G-R; etc. For 
black and white images (one 8-bit channel) pixels are stored in 
form BW; BW; etc. That is, memory bytes are used 
continuously. Since the AXI VDMA takes 32-bit words from 
memory and designed HW IPs interfaces work with one pixel 
(either color or black and white) per 32-bit word, two – input 
and output – interface adaptation modules are needed. A 
simplified model of the final hardware system is shown in Fig. 
7.  

 
Fig. 7. Simplified model of the complete hardware acceleration system, the 

processing system and the DDR3 memory. 

The adaptation IPs are generated with HLS and are pipelined 

with the rest of the system – operation of the modules is 

explained in Fig. 8. 

VI. RESULTS 

 
In this section, the performance of the application running 

on the target platform is shown. The FPGA clock period for 
all hardware IPs is set to 10 ns (100 MHz). 

When processing VGA images (640x480), the algorithm 
execution in software (complete C++ code on the ARM 
processor) has a throughput of 11 fps (frames per second).  



When using the hardware system designed (hardware 
acceleration), a frame rate of 58 fps is achieved. 

 
Fig. 8. Functionality of the interface adaptation IPs: from continuous bytes 

software storage to one 32-bit word per pixel and vice versa. 

With FHD images (1920x1080), the software version of 
the algorithm can only process 1 fps. When using hardware 
acceleration, a frame rate of 8 fps is reached. Fig. 9 shows the 
execution time of the algorithm for FHD images, both in 
software and using hardware. 

 

 

Fig. 9. Execution time of algorithm for FHD images, comparing software 

and hardware performance. 

 

This approach may also be easily scaled to 4K 
(3840x2160) videos. Higher resolutions lead to an increased 
benefit from dedicated hardware and a higher bottleneck on 

the CPU. Therefore, combining HW and SW with increased 
resolutions such as 4K makes the use of a better 
microprocessor advisable. Re-generating the designed 
hardware for these resolutions from HLS is straightforward. 

VII. CONCLUSIONS 

 
This paper exposes a HW-SW Codesign proof of concept 

exercise. The initial system requirements and structural 
specifications were defined using the COMPLEX 
UML/MARTE methodology.  Then, based on a profiling 
analysis over a preliminary all-SW version, some bottlenecks 
were detected. Most time demanding parts were derived to 
HW. An optimum automatic synthesis from C++ requires a 
deep understanding of the HLS process and the performance 
and connection characteristics of the target Platform. C++ was 
transformed in order to admit synthesis directives and with the 
aim of maximizing the data rate between SW and HW. Final 
results demonstrate a good speed-up of the positioning system. 
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