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Abstract: In this work, the application of the Average Strain Energy Density (ASED) criterion for
the estimation of failure loads in materials with nonlinear behavior containing U-shaped notches is
presented. The ASED criterion was originally defined to predict failure in the presence of notches
in materials with linear-elastic behavior. However, most structural materials (e.g., ferritic-pearlitic
steels) can develop non-linear behavior (e.g., elastoplastic). In this sense, this work proposes to extend
the use of the ASED criterion to materials that exhibit plasticity by a thorough calibration of their
characteristic parameters, and the subsequent extrapolation of the liner-elastic formulation of the
ASED criterion to non-linear situations. To validate this methodology, a wide range of structural
steels (S275JR, S355J2, S460M, and S690Q) were used operating in the ductile-to-brittle transition
range, with six different notch radii (0 mm, 0.15 mm, 0.25 mm, 0.50 mm, 1.0 mm, and 2.0 mm). The
results obtained demonstrate that the proposed calibration of the ASED criterion allows for accurate
predictions of failure loads. Therefore, it is shown that, for the notch radii analyzed in this work
and for testing temperatures within the material ductile-to-brittle transition range, it is possible to
extrapolate the ASED criterion to obtain estimates of failure loads in materials with U-shaped notches
that exhibit ductile behavior.

Keywords: fracture; U-notch; average strain energy density; structural steel

1. Introduction

Structural steels are widely used in engineering structures, particularly in the con-
struction industry. Brittle fracture is a major concern in practical situations, such as the
cleavage fracture of reactor pressure vessels in nuclear power plants [1]. Structural steels
can experience cleavage fracture at low temperatures, either in the brittle regime (lower
shelf, LS) or in the Ductile-to-Brittle Transition Range (DBTR). Although steels are typically
designed to operate in the ductile regime (upper shelf, US), unexpected low temperatures
or material embrittlement can force them to operate in the DBTR or LS. In both cases, the
fracture toughness of the material and the load-bearing capacity of the structural compo-
nent can be significantly reduced. Therefore, studying steels operating at low temperatures
is crucial for ensuring structural integrity.

On the other hand, notches (i.e., defects with finite tip radius), such as slots, holes,
corners, cut-outs, etc., are sometimes introduced in components as structural details or
to join them together. Components with notches have been found to have a higher load-
bearing capacity compared to those with cracks [2–4] since notches tend to develop more
relaxed stress fields around the tip. Traditionally, notches have been evaluated using a
sharp crack methodology based on fracture mechanics [5], which is conservative and does
not account for the unique properties of notched components.

In recent years, alternative methodologies have been developed to provide more
accurate predictions of fracture loads and reduce conservatism. The scientific community
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has developed theories and tools to better understand and analyze the fracture behavior
of notched components. For example, the Theory of Critical Distances (TCD) [2] and
the Average Strain Energy Density (ASED) criterion [6–10] are two widely used linear
elastic formulations that have been successfully applied to different materials and loading
conditions. The TCD has also been calibrated for more ductile situations, while the accuracy
of the linear-elastic formulation of the ASED criterion decreases in such cases since their
characteristic parameters are constant. In literature, some exercises have been made in
order to applicate the ASED approach to materials that have shown non-linear behavior.
These approaches integrate the conventional brittle ASED criteria with innovative ideas,
including the equivalent material concept (EMC) [11,12], the fictitious material concept
(FMC) [13], or the virtual isotropic material concept (VIMC) [14]. However, all of these
approaches require additional steps for predicting the fracture load, which the calibration
proposed in this work aims to eliminate.

Other criteria, such as the Global Criterion [15], Process Zone Models [16], Statistical
Models [17], Mechanistic Models [18], and Damage Models [19,20] can also be considered
for studying the notch effect.

This research proposes a calibration of the ASED criterion allowing its extrapolation
to non-linear elastic conditions that considers more realistic material behavior while main-
taining simplicity. Non-linear elastic behavior can occur in many practical situations and
calibrating the ASED criterion for such conditions would enhance its accuracy and applica-
bility. This is the case, for example, of structural steels operating within their corresponding
ductile-to-brittle transition range, on which the final cleavage (brittle) fracture may be pre-
ceded by certain ductile (non-linear) tearing. With all this, Section 2 provides the theoretical
framework of the research with a description of the ASED criterion. Section 3 presents
the materials and methods used for the prediction of critical loads. Section 4 provides the
predictions of the critical loads obtained through the proposed calibration, together with
the corresponding discussion. Finally, Section 5 presents the main conclusions.

2. The Average Strain Energy Density Criterion

The Average Strain Energy Density (ASED) criterion has been widely used to predict
fracture in various materials since its introduction in the 1970s by Sih [21] and its further
development carried out by Lazzarin and Zambardi [6,22–24]. The criterion states that the
fracture occurs when the mean value of strain energy density (W) within a control volume
equals the critical ASED value (Wc), as expressed in Equation (1).

W = Wc (1)

For brittle materials, the critical ASED value can be obtained using Equation (2), which
relates it to the material’s ultimate tensile strength (σu) and Young’s modulus (E), as it
corresponds to the area below the curve of a tensile test.

Wc =
σ2

u
2E

(2)

Equations (3) and (4) define the radius of the control volume (Rc) (see Figure 1) under
plane strain and plane stress conditions, respectively [25]. In the case of U-shaped notches,
the center of the control volume is located at a distance of rc = ρ/2 with respect to the notch
tip, i.e., it corresponds to the origin of the local coordinate system [22]. The choice between
these conditions depends on the material’s fracture resistance, when Kmat is lower than
Equation (5) [2], plane stress domains, while plane strain condition is reached when Kmat is
higher than the value defined by Equation (6). For situations where fracture resistance falls
between the values defined by these equations, an interpolation of Equations (3) and (4) is
required to obtain Rc.

Rc =
(1 + υ)(5− 8υ)

4π

(
Kmat

σu

)2
(3)
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Rc =
(5− 3υ)

4π

(
Kmat

σu

)2
(4)

Kmat = σy

(
B

2.5

)1/2
(5)

Kmat = σy(πB)1/2 (6)
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Figure 1. Characteristic lengths and the control volume of ASED for U-notches under loading mode I.

σy represents the material yield strength, υ is the material Poisson’s ratio, Kmat is the
material fracture toughness (obtained through cracked specimens), and B is the speci-
men thickness.

Considering the polar coordinates represented in Figure 1 and their three-dimensional
extension to cylindrical coordinates (r, θ, z), the strain energy at a certain point for an
isotropic material obeying a linear elastic law is [22]:

W(r, θ, z) =
1

2E

{
σ2

θθ + σ2
rr + σ2

zz + 2τ2
rθ − 2υ

(
σθθσrr + σθθσzz + σrrσzz − τ2

rθ

)}
(7)

The average strain energy density over the control area (Ω) depicted in Figure 1 and
can be expressed as [22]:

W =

∫
Ω WdΩ

Ω
=

1
Ω

∫ θ

−θ
dθ
∫ R2

R1(θ)
W(r, θ)rdr (8)

Now following the development of Lazzarin and Berto [22] for blunt V-notches, and
considering the mathematical development of Equation (8) the mean value of the ASED
within the control volume can be calculated using Equation (9), which depends on the
functions F, H and the maximum elastic stress at the notch tip (σmax) [6]. In turn, the
function F(2α) depends on the opening angle (2α) and the function H(2α, Rc/ρ) depends on
the opening angle (2α) and the ratio between Rc and the notch radius (Rc/ρ). At the same
time, H is a function of υ and their values were originally tabulated by an element finite
analysis. Table 1 provides the tabulated values of H for the U-notch geometry while F takes
a value of 0.785 for this notch shape.

W = F(2α)H
(

2α,
Rc

ρ

)
σ2

max
E

(9)
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Table 1. Values of H for U-shaped notches (2α = 0), data from [6].

Rc/ρ υ = 0.25 υ = 0.30 υ = 0.35 υ = 0.40

0.01 0.5813 0.5638 0.5432 0.5194
0.05 0.5258 0.5086 0.4884 0.4652
0.1 0.4687 0.4518 0.4322 0.4099
0.3 0.3216 0.3069 0.2902 0.2713
0.5 0.2401 0.2276 0.2135 0.1976
1 0.1399 0.1314 0.1217 0.1110

3. Materials and Methods

The present work presents a methodology for predicting the critical load values
of U-notched specimens through a calibrated version of the ASED. This methodology
was applied to four different types of ferritic-pearlitic steels: S275JR, S355J2, S460M, and
S690Q. These four types of materials are commonly used in structural applications and are
characterized by different mechanical properties and chemical compositions, which are
summarized in Tables 2 and 3, respectively [3,4,26,27]. Ferritic steels typically comprise
carbon, low-alloy, and higher alloy grades, with common microstructures including bainite,
tempered bainite, tempered martensite, ferrite, and pearlite. The four types of materials
used in this study were characterized as follows:

• Steel S275JR: 84 compact tension (CT) specimens with a thickness of 25 mm were
tested, as shown in Figure 2a, covering six different notch radii (0 mm, 0.15 mm,
0.25 mm, 0.50 mm, 1.0 mm, and 2.0 mm) and five different temperatures within the
ductile-to-brittle transition range (DBTR) of −10 ◦C, −30 ◦C, and −50 ◦C and two
temperatures in the lower shelf (LS) of −90 ◦C and −120 ◦C. A complete description
of the experimental procedure can be found in [26];

• Steel S355J2: 84 CT specimens with a thickness of 25 mm were tested (see Figure 2a),
covering six different notch radii and three different temperatures within the DBTR of
−100 ◦C, −120 ◦C, and −150 ◦C. The experimental procedure is described in [26];

• Steel S460M: 84 single-edge notched bend (SENB) specimens with a thickness of
15 mm were tested, schematic in Figure 2b, covering the same six notch radii and
three different temperatures within the DBTR of −100 ◦C, −120 ◦C, and −140 ◦C. The
experimental procedure is described in [27];

• Steel S690Q: 84 SENB specimens with a thickness of 15 mm were tested (check
Figure 2b), covering the same six notch radii and testing temperatures as steel S460M,
all of them within its DBTR. The experimental procedure is also described in [27].

Table 2. Mechanical properties used for ASED analysis for the different structural steels and tempera-
tures studied.

Material Temperature (◦C) E (GPa) σy (MPa) σu (MPa) Kmat (MPa·
√

m)

S275JR [26]

−10 207 338 536 123
−30 208 345 549 101
−50 209 349 558 81
−90 211 381 597 63
−120 213 398 614 49

S355J2 [26]
−100 212 426 647 158
−120 212 460 672 147
−150 215 527 758 61

S460M [27]
−100 212 605 727 77
−120 213 647 758 77
−140 214 702 795 52

S690Q [27]
−100 212 907 1015 104
−120 213 949 1060 98
−140 214 1004 1111 69
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Figure 2. Schematic showing the geometry of the specimens (dimensions in mm): (a) CT specimen
and (b) SENB specimen. ρ varying from 0 mm (cracked specimens) up to 2.0 mm.

Table 3. Chemical composition of structural steels (wt.%).

Material C Si P S Cr Mn Ni Cu Mo V Nb Al Ti

S275JR 0.180 0.260 0.012 0.009 0.018 1.180 0.085 0.060 0.120 0.020 - 0.034 0.022
S355J2 0.200 0.320 0.012 0.008 0.050 1.390 0.090 0.060 0.120 0.020 - 0.014 0.022
S460M 0.120 0.450 0.012 0.001 0.062 1.490 0.016 0.011 - 0.066 0.036 0.048 0.003
S690Q 0.150 0.400 0.006 0.001 0.020 1.420 0.160 0.010 - 0.058 0.029 0.056 0.003

Here, it is important to notice that the specimens with crack-like defect, i.e., 0 mm of
notch radius, are used only to obtain the material fracture toughness (Kmat). This property is
necessary for the initial calculation of the Rc parameter by following the ASED methodology
presented above.

In addition, some examples of the obtained load–displacement curves are plotted in
Figure 3, showing the behavior of the six notch radii (0, 0.15, 0.25, 0.5, 1, and 2 mm) for the
case of the steel S460M (tested at −140 ◦C) and S690Q (tested at −100 ◦C). It is clear how
even these medium (S460M) and high (S690Q) strength structural steels tested at such low
temperatures develop a non-linear behavior due to the notch effect. The same effect is also
observed in the S275JR and S355J2 steels.
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3.1. Direct Application of the ASED Criterion

Once the basic mechanical properties were determined from the tensile and fracture
results of each material, the rupture loads were predicted by applying the ASED criterion
according to its original formulation, assuming a linear elastic behavior of the material.
The procedure followed was as follows: based on the failure criterion established by the
ASED and using Equations (1), (2) and (9), the maximum stress at the notch tip can be
simply derived from the tabulated values of the H function and the mechanical properties
of the material:

σmax =

√√√√ Wc·E
0.785·H

(
2α, Rc

ρ

) (10)
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It is important to note that the H values presented in Table 1 were tabulated for a certain
range of Rc/ρ (from 0.01 to 1). However, there are materials where the Rc/ρ ratio can reach
much higher values. For example, the S275JR steel exceeded the value of 100 at −10 ◦C.
Therefore, for each analyzed material, the tabulated H values should be extrapolated for
each Poisson’s ratio value. In this study, the fitting shown in Equation (11) proposed in [28]
was used.

H =
a

Rc
ρ + b

(11)

where the values of a and b are the parameters needed to fit the curve. In the case of the
materials studied in this work, the curve was fitted using the least-squares method for
a Poisson’s ratio of 0.3, resulting in fitting parameters of 0.1896 and 0.3258 for a and b,
respectively, as shown in Figure 4.
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Next, considering that σmax (in mode I) is reached at the tip of the notch (r = 0), and
applying the Creager–Paris stress distribution for U-notch [29], the stress intensity factor
(KI) can be directly derived from the following equation:

σ(r = 0) = σmax =
2KI√

πρ
(12)

Finally, one of the analytical solutions of KI for common specimens that can be found
in the literature can be used to derive the predicted critical load values following the ASED
criterion (PASED). In this study, Equation (13) for CT fracture specimens and Equation (14)
for SENB specimens were used [5]:

KI =

(
PSED

B
√

W

) (2 + a
W
)[

0.886 + 4.64
( a

W
)
− 13.32

( a
W
)2

+ 14.72
( a

W
)3 − 5.6

( a
W
)4
]

(
1− a

W
)

3/2

 (13)

KI =

(
PSED·S
BW3/2

)
3
( a

W

)
1/2

1.99−
( a

W
) (

1− a
W
)(

2.15− 3.93
( a

W
)
+ 2.7

( a
W
)2
)

2
(
1 + 2 a

W
)(

1− a
W
)

3/2

 (14)
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where a is the length of the defect, B is the thickness of the specimen, W is the width of the
specimen and S is the distance between specimen supports.

3.2. Proposed Calibration of the ASED Criterion

As previously mentioned, the ASED criterion is a local criterion based on elastic-linear
principles. In materials that develop plasticity, using the area under the curve of a perfectly
elastic-linear material (Wc) as the critical fracture value may lead to over-conservative
predictions. Various attempts have been made to extend the applicability of the ASED
criterion to materials with nonlinear behavior by combining it with other tools, such as
the Equivalent Material Concept (EMC) [30] or the Fictitious Material Concept (FMC) [31].
However, they increase the number of steps of the analyses and have been validated to a
limited number of materials.

In this sense, a novel calibration of the characteristic parameters (Wc and Rc) of the
ASED is proposed, somewhat similar to that used in the Point Method (PM) of the Theory of
Critical Distances (TDC) [2]. In order to calibrate the parameters Wc and Rc, a deformation
energy density (W) profile can be obtained as a function of the distance (R) to the notch
tip. Thus, by obtaining two W profiles for two different notch radii, the cut-off point
between the two curves will correspond to the calibrated values of Wcalibrated and Rcalibrated,
as shown in Figure 5. Once the calibrated parameters are defined, fracture load predictions
(PASED) for any other notch radius can be easily derived using the conventional ASED
procedure described in Section 3.1. Therefore, with just a small experimental campaign
using specimens with two different notch radii, it would be possible to predict fracture loads
for notches of different radii. This proposal is actually an extrapolation of the linear-elastic
ASED criterion to non-linear situations through the calibration of the ASED parameters
and their subsequent application to statically equivalent linear-elastic loading conditions.
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Figure 5. Example of calibration procedure of ASED parameters using a blunt and a sharp U-
notch radius.

4. Results and Discussion

In order to compare the quality of the calibration proposed, fracture load predictions
have been obtained by applying directly the conventional ASED (i.e., the linear-elastic
approach). A comparison between fracture load predictions obtained using the ASED
criterion and actual experimental data is shown in Figure 6. It can be observed that
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the fracture load estimations using the ASED criterion are considerably lower than the
actual experimental fracture loads. The ASED criterion exhibits a clear over-conservatism,
resulting in poor predictive accuracy. This discrepancy may be attributed to the utilization
of the linear elastic region of the tensile test and the exclusion of a significant portion of the
stress-strain curve from consideration. Consequently, the estimated critical values of the
strain energy density do not accurately represent a material that experiences substantial
plastic deformations prior to failure.
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Figure 6. The ratio of fracture load predictions (PASED) using conventional ASED criterion and
experimental fracture load (PEXP).

Considering the low prediction accuracy shown by the linear-elastic approach of the
ASED criterion, the need to develop an alternative method capable of providing more
realistic estimates in clearly nonlinear situations becomes apparent. In this sense, the results
of the calibration of the ASED parameters proposed in Section 3.2 are shown below.

As the first approach, the calibration was conducted using experimental data from
specimens with the smallest and largest notch radii, i.e., 0.15 mm and 2 mm, for all the
materials studied. The W curve was calculated as a function of R based on the experimental
fracture loads. To achieve this, KI was calculated using Equation (13) or (14), as appropriate,
and σmax was obtained using the Creager–Paris Equation (12). Finally, W was calculated
using Equation (9). By employing these calculations, W curves were obtained for the
two notch radii utilized, as shown in Figure 5. Table 4 summarizes the calibration parame-
ters for all the possible combinations, it is evident that the Wcalibrated value deviates from
the critical value Wc proposed in the original procedure, being on average over 10 times
larger than the original Wc.

In Figure 7, the fracture load estimations obtained using the calibrated ASED are
presented. It is evident that employing the calibrated ASED values significantly improves
the accuracy of the load predictions in comparison to the linear-elastic ASED, with all
estimations falling within a margin of error of ±20%. The maximum error observed is 19%
for S355J2 at a temperature of −150 ◦C and a notch radius of 0.50 mm, while the average
error across all predictions is below 6%. This demonstrates the capability of accurately
predicting fracture loads with the utilization of this calibration approach by using the notch
radius of 0.15 mm and 2 mm. At the same time, Figure 8 shows the values of Wcalibrated
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(Figure 8a) and Rcalibrated (Figure 8b) for the four steels at the different temperatures studied.
Although no tendency among the ASED parameters and the temperature was found, they
all had the same magnitude order.

Table 4. ASED calibrated parameters per material and temperature analyzed, together with the
linear-elastic formulation of Wc.

Material Temperature (◦C) Wc
(MPa) WCALIBRATED (MPa) RCALIBRATED (mm)

S275JR

−10 0.69 6.52 1.722
−30 0.72 9.19 1.151
−50 0.74 11.47 0.857
−90 0.85 11.31 0.695
−120 0.88 10.80 0.548

S355J2
−100 0.99 14.88 0.899
−120 1.06 14.89 0.931
−150 1.34 20.50 0.356

S460M
−100 1.25 11.31 0.617
−120 1.35 9.42 0.863
−140 1.47 3.64 2.73

S690Q
−100 2.43 6.15 2.376
−120 2.64 8.07 1.646
−140 2.88 17.18 0.537
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Hereinafter, the calibration procedure has been validated by employing all pos-
sible combinations of notch radii to obtain the calibrated ASED parameters, such as
0.15–0.50 mm, 0.15–1 mm, and so on. An example of the calibration carried out for S275JR
at−10 ◦C is presented in Figure 9, and the same process was performed for all the materials
and temperatures analyzed. It is noteworthy that for the example shown in Figure 9, all ten
possible calibrated parameters were obtained; however, this was not feasible for all mate-
rials. This limitation arises from the fact that sometimes the profile curves of two closely
notch radii are so similar that they intersect outside the specimen’s remaining ligament,
which is physically impossible. To provide context, when the calibration was conducted
with notch radii of 0.15 and 0.25 mm, six out of the fourteen possible combinations did not
intersect, and for notch radii of 1 and 2 mm, three out of fourteen times the intersection did
not occur. For the remaining cases, either all the curves intersected or only one was missing.
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Figure 9. Calibration procedure of S275JR at −10 ◦C using all possible combinations of notch radius.

Figure 10 presents the average ratio between the predicted and experimental loads
for all combinations of notch radii used in the calibration process. The average value
was calculated based on the remaining three notches that were not used for calibration.
Overall, the predictions were found to be generally accurate regardless of the combination
of notch radii used for calibration, with most of the errors falling within the band of ±20%.
However, some considerations need to be taken into account. Calibrations with close-notch
radii are sometimes not possible, as explained previously, and may result in larger errors.
The maximum average error observed was 35% when calibrating with a notch radius of
0.15 and 0.25 mm, which is still lower than the maximum error of 54% obtained using
conventional ASED. On average, the least accurate predictions were obtained with a notch
radius of 0.15–0.25 mm, 0.25–0.50 mm, and 1–2 mm, with an average error of approximately
10%, which is again significantly lower than the 33% error obtained with conventional
ASED. In general, it can be said that this calibration is limited to predicting critical loads
for a notch radius twice larger than those used in the calibration. On the other hand, the
predictions with the lowest error (4.6%) are obtained when the calibration is carried out
with 0.25–1 mm radii, which makes sense because these radii are the nearest with respect
to the predicted ones (i.e., 0.15, 0.5 and 2 mm).
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Figure 10. Comparison of the ratio of prediction by using the different combinations of notch radii
for the calibration.

As a general conclusion, to avoid complications with the calibration procedure and
obtain the most accurate predictions, it is recommendable to use two extreme notch radii,
i.e., a sharp notch and a blunt notch, taking into account which another notch radius needs
to be predicted.

5. Conclusions

In this research, the possibility of extrapolating the ASED criterion for fracture load
calculations in notched materials with significant plasticity is evaluated. Four types of
structural steels (S275JR, S355J2, S460M, and S690Q) are analyzed at various temperatures,
with six different notch radii (0, 0.15, 0.25, 0.50, 1.0, and 2.0 mm).

As observed, the original linear-elastic ASED criterion provides poor predictions of
fracture loads. Therefore, instead of predicting load values directly using the characteristic
parameters Wc and Rc of the ASED and assuming an elastic-linear behavior, these param-
eters (Wcalibrated and Rcalibrated) are calibrated using two different notch radii. The results
demonstrate that with a simple calibration of the ASED criterion, accurate predictions of
fracture loads are achieved for materials that clearly exhibit non-linear behavior prior to fail-
ure. An initial analysis is performed using the extreme notch radii of 0.15 mm and 2.0 mm,
yielding highly accurate results with an average error of less than 6%. Furthermore, the
consistency of the calibration is verified when using different combinations of notch radii.
It is observed that in general, any combination of notch radii can be used for calibration of
the ASED criterion. However, it is recommended to avoid using very close-notch radii, as
they result in the worst predictions, and the profiles may not intersect within the remaining
ligament of the specimen. Finally, in order to obtain accurate predictions, fracture load
estimations should be limited to specimens or components with notch radii not larger than
twice the bigger radius used in the calibration.

With all this, for the notch radii analyzed in this work, the calibrated version of the
ASED approach can be used as a simple tool to predict the critical load of structural steels
operating under the ductile-to-brittle transition region, where the main micromechanism
is cleavage fracture but a significant amount of non-linear processes may precede the
cleavage onset (that increase with the notch radius), such as ductile crack growth. Further
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validation is required to demonstrate the applicability of the approach to other conditions
(e.g., different materials, notch radii, or ductility level, among others).
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