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A B S T R A C T   

Climate change-induced sea level rise and increasing storm severity are significant stressors that threaten the 
livability of coastal areas worldwide. This research presents a site-specific metamodel based on SWASH 
(Simulating WAves till SHore) numerical model simulations that aim at simplifying in a fast and efficient manner 
the prediction of hydrodynamic variables along cross-shore profiles. To accomplish this, a large synthetic 
database of offshore wave and sea level conditions is created and downscaled using numerical modeling together 
with sampling, selection, and interpolation techniques. All these mathematical methods permit to replace the 
computationally intensive cost of classical dynamical downscaling. In addition, the metamodel uses dimen
sionality reduction techniques that allow to account for a comprehensive analysis of the primary patterns gov
erning the coastal hydrodynamic behavior. The proposed tool has been numerically validated in three different 
idealized coral reef profiles, showing good skill at reproducing the spatial evolution of wave setup, wave heights 
associated with different frequency bands, and wave runup. The flexibility and robustness of the method make it 
very convenient for being used in coastal risk assessments, early warning systems, or climate change projections.   

1. Introduction 

Coastal flooding results from the combination of multivariate at
mospheric and oceanographic dynamics that interact with the coastal 
topography. As sea level and storm frequency and intensity are expected 
to rise along numerous coastlines throughout the world (Oppenheimer 
et al., 2022), coastal flooding will also increase both in frequency and 
severity (Vitousek et al., 2017). In this context, it is crucial to effectively 
predict coastal flooding and provide the necessary tools to assist adap
tation strategies to coastal communities and policymakers. These pre
dictive tools should be able to forecast the local waves and water levels 
and their nearshore transformation to the shoreline. Commonly, 
phase-resolving numerical wave models have been employed for simu
lating the complex nearshore hydrodynamics of specific storm events 
(Wandres et al., 2020). Although they accurately reproduce the main 
physical processes, these models are computationally costly, posing a 
limitation on the ability to forecast conditions with limited resources. 
Alternatively, hybrid models have emerged to complement 
process-based wave numerical models by incorporating statistical 
methods that minimize the computational effort. Recent works make use 
of hybrid methods for downscaling tropical cyclone-induced waves (van 
Vloten et al., 2022), ocean regular wave climate to coastal areas (Camus 

et al., 2011a; Gouldby et al., 2014; Ricondo et al., 2023), or transferring 
wave and water levels from nearshore to the flooding extent (Gainza 
et al., 2018; Rueda et al., 2019). 

Due to the ecological importance, inherent vulnerability, and urgent 
response needed in coral reef-lined coasts (Winter et al., 2020), there 
have been several efforts to parameterize combinations of fringing coral 
reef profiles (e.g., beach slope, reef flat width, and fore reef slope) and 
hydrodynamic conditions (e.g., water depth, wave height, and wave 
period) to forecast wave-induced flooding. Callaghan et al. (2018) used 
a Bayesian belief network to link reef, wave, and wind parameters with 
the beach toe significant wave height. Yao et al. (2021) employed the 
multi-layer perception neural network to predict tsunami-like solitary 
wave run-up over fringing reefs. Amores et al. (2022) developed a 
model-based parameterization for wave setup, Pearson et al. (2017) 
developed BEWARE, a model based on Bayesian neural networks to 
forecast the top 2% wave runup based on an extensive synthetic data
base, and Rueda et al. (2019) latter used the same synthetic database as 
BEWARE to develop a hybrid method, named HyCReWW, based on 
Radial Basis Functions (RBFs). However, the complex hydrodynamics 
occurring in coral reefs and the highly diverse characteristics of coastal 
profiles in terms of shape, slope, and roughness still present a challenge 
when forecasting wave transformation without generating an extensive 
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database of hydrodynamic combinations or simplifying the morphology. 
In this respect, Scott et al. (2020) make use of clustering techniques to 
simplify the singularity of global reef profiles. Even so, these approaches 
require some simplification of reef morphology and focus on wave runup 
or wave setup as flooding proxies. 

Here, we present a novel one-dimensional hydrodynamic hybrid 
model that aims to extend previous efforts on estimating surf-zone hy
drodynamics on specific coastal morphologies. The hybrid model 

presented, HySwash, is built on combining sampling, clustering, and 
interpolation techniques with a high-fidelity hydrodynamic model. The 
statistical techniques aim at overcoming the computational burden of 
dynamical downscaling by minimizing the number of needed numerical 
simulations. We present its application to 3 different coral reef sche
matic profiles and explore its capability in estimating several surf-zone 
quantities. 

The paper is organized as follows. Section 2 presents the HySwash 
methods into four subsections “Beach morphology and hydrodynamic 
forcing”, “Numerical Modeling”, “Reconstruction”, and “Numerical 
Validation”. Section 3 presents the results of the hydrodynamic recon
struction and replicability of the metamodel to different profile settings, 
and conclusions are covered in Section 4. 

2. HySwash method 

The HySwash methodology workflow is illustrated in Fig. 1, and the 
methods are detailed in the following sub-sections. Firstly, a synthetic 
database of nearshore wave conditions is created using the Latin Hy
percube Sampling (LHS) technique, and further selection of a smaller 
number of representative forcing conditions is achieved with the 
Maximum Dissimilarity Algorithm (MDA, Camus et al., 2011b) (Section 
2.1). These cases are dynamically downscaled using SWASH (Simulating 
WAves till SHore) (version 8.01) (Zijlema et al., 2011) (Section 2.2). The 
output variables are subjected to Principal Component Analysis (PCA) to 
reduce their dimensionality while preserving the spatial structure; and 
finally, Radial Basis Functions are used to create an interpolation 
function from new unmodeled nearshore conditions to the prediction of 
surf-zone hydrodynamics (Section 2.3). The method is numerically 
validated using a k-fold cross-validation in Section 2.4. 

2.1. Beach morphology and hydrodynamic forcing 

The proposed metamodel is a wave-induced flooding predictive tool 
valid for any coastal morphology (i.e., sandy, or reef-fronted coastlines). 
Due to the inherent vulnerability of reef ecosystems and their urgent 
need to improve the understanding of their hydrodynamic processes, we 
present the application of HySwash to reef morphologies. In contrast to 
typical sandy beaches, wave processes in coral reefs present a strongly 
non-linear behavior of impinging waves (Lee and Black, 1979). Wave 
breaking is the dominant mechanism driving flow over the reef flat 
(Lowe et al., 2009) while it accounts for the majority of energy dissi
pation at the reef crest (Brander et al., 2004; A. C. Péquignet et al., 
2011). As waves enter the shallower water in the reef flat, wave atten
uation caused by bottom friction becomes increasingly important. Wave 
transformation from the reef crest to the shoreline is characterized by 
the evolution of the frequency spectra from high-frequency dominance 
to low-frequency dominance. In order to study the wave transformation 

Fig. 1. Sketch of the methodology.  

Fig. 2. Hydrodynamic forcing and reef morphology. A) MDA-design cases (violet data points) distributed over the LHS-synthetic dataset (light blue data points). A 
random subset case is highlighted in red (Hs = 5.8 m, Tp = 12 s, WL = − 0.9 m), and the corresponding SWASH modeled output is shown in (B). B) Reef profile 
morphology along with the computed SWASH outputs (Ru, η, Hm0,SS,Hm0,IG and Hm0,VLF) of the individual case highlighted in (A). 
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processes of a reef profile but keep it general enough, we have defined an 
idealized horizontal reef top profile that follows the simplest geomor
phological characteristics of reef profiles measured on several Pacific 
atolls and fringing reefs (Gourlay, 1996; Quataert et al., 2015). The 
proposed reef is presented in Fig. 2B. The idealized reef profile is 
characterized by a constant fore reef slope of 1/20, horizontal reef flat 
width of 200 m, and beach slope of 1/10. The reef flat is 2.5 m below the 
mean sea level, and the beach crest elevation was fixed at 30 m to avoid 
wave overtopping and focus the analysis on the run-up excursion over 
the beach slope. In order to place the wavemaker boundary away from 
the area of interest, a 500 m long flat region at 15 m depth has been 
included before the fore reef. 

Waves and tidal oscillations are the most relevant predictive offshore 
hydrodynamic variables for flooding. These variables include short-term 
(i.e., local wind waves, distant-source swells) and long-term (i.e., tides, 
surges, mean sea level, increasing sea level) processes. Based on previ
ous hydrodynamic modeling studies (Pearson et al., 2017), the meta
model parameters that define the offshore wave and water level 
conditions are the significant wave height (Hs), wave steepness (Hs/ L0), 
and offshore water level (WL). We produce physically plausible com
binations of wave heights and periods when sampling the wave steep
ness instead of wave periods. We define the wave sea-states at the 
beginning of the profile as single-peaked unidirectional TMA spectrum, 
which is a generalized version of the JONSWAP (Joint North Sea Wave 
Project) offshore spectra valid for arbitrary-depth waters. Bouws et al. 
(1985) initially proposed the TMA spectrum to modify the spectral 
shape as water depth reduces from deep to shallow waters, limiting the 
energy of the low-frequency waves. The expression for the TMA spec
trum can be obtained by multiplying the JONSWAP spectrum by a 
function of wave frequency and water depth. Therefore, considering the 
initial depth of 15 m, we transform the JONSWAP spectrum to a TMA 
spectrum and finally rescaled it to maintain the energy. 

To generate a comprehensive range of forcing conditions and 
extreme events that have never been measured but are likely to happen, 
we use the LHS technique (McKay et al., 1979). This sampling method 
can generate near-random samples from a multivariate space. The LHS 
first requires choosing the number of sample points (N) to obtain. Every 
dimension is then divided into N equal-probability intervals. The indi
vidual samples are randomly generated and placed only once in each 
axis-aligned hyperplane. This corresponds to one sample in each row 
and column for a two-dimensional LHS. In comparison to random 
sampling, the LHS tends to require significantly smaller sample sizes and 
yields samples that accurately reflect the underlying distribution. We set 
the LHS to create N combinations of the primary offshore parameters 
V = {Hs, Hs /L0, WL}. In order to evenly cover the multidimensional 
space, we set N = 10,000. The parameter ranges are established based on 
existing field measurements (Quataert et al., 2015). Table 1 summarizes 
the hydrodynamic offshore parameters and their range of values. The Hs 
range from 0.5 to 6 m, Hs/L0 is bounded by a minimum steepness value 
of 0.005 and a maximum of 0.05, and WL ranges from − 1 to 3 m. As the 
further use of PCA requires a shared spatial domain, the range of WL is 
desired to ensure that the reef flat remains submerged during low tide 
and does not dry out. 

After populating the multidimensional parameter space with N 
combinations, we use the MDA to select a minimum number of repre
sentative conditions needed to train the metamodel (M cases). The MDA 
algorithm was first proposed by Camus et al. (2011b) for the study of 
multivariate wave climate and widely used in a variety of metamodels 

afterwards (Camus et al., 2011a; Gainza et al., 2018; Gouldby et al., 
2014; Ricondo et al., 2023; van Vloten et al., 2022). The algorithm is 
implemented on the normalized input data vectors (V′) as: 

V′ =
V − min (V)

max(V) − min (V)
(1) 

The seed to the algorithm is the dataset case with the greatest 
Euclidean distance to the rest M-1 vectors. Iteratively, the following 
subset cases are selected from the input dataset as the most dissimilar 
point to the pre-selected MDA-increasing cases. When the number of 
cases in the subset reaches the desired M value, the algorithm finishes. 
This number of cases will be dependent on the reef morphology, hy
drodynamic forcing, and variables to estimate and must be determined 
for each specific location. Thus, the number of cases is determined by 
fitting the metamodel with increasing M values and evaluating its per
formance by the root-mean-square error (RMSE) using the k-fold algo
rithm (details in Section 3). The initial LHS samples (N = 10,000) and 
the selected MDA subset for M = 1000, are presented in Fig. 2A. Note 
that to make the figure easier to interpret, the peak period is represented 
instead of the wave steepness. 

2.2. Numerical modeling 

The wave transformation along the coral reef was simulated using 
one-dimensional SWASH simulations. SWASH is a non-hydrostatic, 
phase-resolving wave model capable of simulating waves from deep 
waters to the shoreline, modeling wave breaking, bottom friction, wave- 
induced setup and runup, and the generation and propagation of infra
gravity waves. The accuracy of the model is comparable to that of lower- 
order Boussinesq models and has been widely used for modeling wave 
dynamics and inundation on sandy beaches and coral reefs (Liu et al., 
2021; Rijnsdorp et al., 2012; Zijlema, 2012; Zijlema et al., 2011). 

From the selection of M offshore wave parameters, a sequence of 
hourly-varying irregular unidirectional water elevation is created to 
feed SWASH simulations. In non-hydrostatic mode, SWASH was run 
along the cross-shore transects with constant horizontal resolution 
determined through a number of points per wavelength. In order to 
accurately resolve the wave transformation in the shallowest area, 60 
nodes were chosen to define the wavelengths at 1 m depth. The duration 
of the simulation was set to 4 h with 15 additional minutes of spin-up. 
One hour may be enough for obtaining stable statistics, but extending 
it to 4 h, as in Pearson et al. (2017), increases the number of spectral 
components and enables a reduction in uncertainty related to the initial 
random phases. The bottom friction is included in the simulation with a 
constant Manning coefficient of 0.002. Note that the calibration of this 
parameter is not the purpose of this work. The entire set of sea states has 
been modeled with two vertical layers of equal thickness. However, 
introducing more vertical layers in the numerical setup should be 
considered for real case applications to coral reefs to better resolve the 
linear frequency dispersion (Fiedler et al., 2019; Henderson et al., 2022; 
Ruju et al., 2019). 

The primary SWASH output variables stored are the water level time 
series along the profile and vertical water elevation on the beach. From 
these variables, several magnitudes have been computed as indicative of 
relevant hydrodynamic processes on the reef. The mean wave setup (η) 
is calculated by averaging the water level and subtracting the offshore 
water level. From the water level time series, the individual wave 
heights are obtained by zero-up-crossing, obtaining the root-mean- 
square wave height (Hrms) as a measure of average wave conditions. 
Since low frequency waves play an important role in flooding of reef- 
lined coast induced by resonance modes (Gawehn et al., 2016), we 
include frequency band components as predicted variables. To compute 
them, the power spectra water level signal is divided into its sea-swell 
(SS), infragravity (IG), and very low frequency (VLF) components by 
bandpass filtering. This allows for the identification of the significant 

Table 1 
Hydrodynamic parameters and their range of values.  

Parameter Symbol Units Ranges 

Offshore water level WL m (-1, 3) 
Offshore significant wave heigh Hs m (0.5, 6) 
Offshore wave steepness Hs/L0 – (0.005, 0.05)  
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wave height at sea-swell frequencies (0.04–1 Hz) (Hm0,SS), significant 
wave height at infragravity frequencies (0.004–0.04 Hz) (Hm0,IG), and 
significant wave height at very low frequencies (0.001–0.004 Hz) 

(Hm0,VLF). Finally, the vertical runup has been calculated as the value 
only exceeded by 2% of the waves (R2%). Table 2 summarizes the 
non-hydrostatic output quantities obtained from the water level and 
run-up signal processing. 

2.3. Reconstruction 

From the M-selected forcing inputs and their M-transformed SWASH- 
1D outputs, it is possible to approximate the underlying spatial rela
tionship between input and output with an interpolation surface. This 
interpolation surface enables the estimation of output variables for 
unmodeled input cases. We use RBF interpolation, as it is especially 
suitable when dealing with highly dimensional and irregularly distrib
uted data (Alfeld, 1989). This interpolation technique has been previ
ously used in several metamodels with accurate interpolation skills 
(Camus et al., 2011a; Gouldby et al., 2014; Ricondo et al., 2023). For a 
new vector of input parameters V, the RBF interpolation returns a uni
variate metamodel output y(V). This is the case of the R2% or any other 
SWASH output evaluated at a certain location in the profile. When 
attempting to reconstruct the evolution of spatial fields of wave height 
or setup, we would need to fit as many RBFs as target locations in the 
profile. As this involves a significant increase in the computational time 
and possible inconsistencies between adjacent points, we make use of 
the PCA technique before the RBF interpolation as it reduces the 
dimensionality of the dataset and preserves the spatial patterns. PCA has 
been widely used in many fields, such as climatology to identify domi
nant variability patterns (Camus et al., 2013; Robinet et al., 2020). By 
projecting the original data onto a new space, PCA captures the 
maximum variance in the sample data. This new space is formed by the 
eigenvectors (empirical orthogonal functions, EOFs) and the trans
formed components of the original data over the EOFs (PCs). The EOFs 

Table 2 
Summary of non-hydrostatic output parameters.  

Parameter Symbol Units 

Mean wave setup η m 
Root-mean-square wave height Hrms m 
Significant sea/swell wave height (0.04–1 Hz) Hm0,SS m 
Significant infragravity wave height (0.004–0.04 Hz) Hm0,IG m 
Significant very low frequency wave height (0.001–0.004 Hz) Hm0,VLF m 
Runup on beach slope (2% exceedance value) R2% m  

Fig. 3. K-fold cross validation on the R2% as a function of the number of cases 
that set up the metamodel. The point is the mean RMSE value, and the error 
bars are the standard deviation of the k-folds. 

Fig. 4. The first three components of the PCA (99.8% variance explained) applied to Hrms. The left side panel presents the cross-shore reef morphology; mean Hrms 

and EOFs. The right panel displays the corresponding PCs. The amplitudes of the PCs are firstly projected on a 3D scatter of the 750 parameters of the forcing 
variables and subsequently in 2D scatters. The PC cases scattered in red positively amplify the corresponding EOF, while the blue points amplify it negatively. The 
EOFs are colored in red (positive values) and blue (negative values), following their magnitudes to facilitate their interpretation. 
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capture the major oscillation patterns, while the PCs represent their 
variability along the M cases. As the EOFs are rated in increasing order of 
explained variance, the dimensionality reduction is given by selecting 
the number of EOFs that define a desired percentage of explained 
variance. Here, we have decided to keep the principal modes that 
explain the 99.8% of variance. The number of more relevant principal 
components will depend on the complexity of the patterns explored. 
After applying the PCA to the SWASH output quantity y(x;Hs,Tp,WL) of 
dimensions P x M, where P is the number of spatial locations (x) along 
the profile, the originally modeled output corresponding to each case 
can be obtained as a linear combination of EOFs and PCs following: 

y
(
x;Hs,Tp,WL

)
= y(x) +

∑M

n=1
EOFn(x) • PCn

(
Hs,Tp,WL

)
(2)  

where y(x) is the mean of the output variable along the M cases. As the 
interpolated metamodel output must be univariate, we use RBF inter
polation to reconstruct the reduced set of principal components (PCs), 
one by one. The general RBF interpolation surface is of the form: 

RBF(V)= p(V) +
∑M

i=1
aiΦ(‖V − Vi‖) (3)  

where p(V) is a linear polynomial with coefficients b = {b0,b1,...,bm}, m 
is the dimension of the input forcing parameters (in this case 3), ‖ • ‖ is 
the Euclidean norm, and Φ is Gaussian functions with a user-specified 
parameter (ε) that modifies the shape of the distributions. Here, we 
adopt the algorithm proposed by Rippa (1999) to obtain the optimal ε 
parameter. The coefficients ai and bi need to be found for C principal 
components that explain the defined variance (PC1, PC2…PCC). There
fore, the estimated spatial field of the response function is: 

y
(
x;Hs,Tp,WL

)
≈ y(x)+EOF1(x)•PC1

(
Hs, Tp,WL

)
+⋯

+ EOFC(x)•PCC
(
Hs,Tp,WL

)
(4) 

Once the coefficients are obtained, the multidimensional RBF inter
polation allows the replacement of the SWASH model to obtain the 
principal components of the different output quantities along the 
domain for unmodeled forcing conditions. 

2.4. Numerical validation 

Finally, we evaluate the performance of the mathematical model on a 
k-fold cross validation (k = 5). The M subset cases are divided into k 
folds. Iteratively, the model is trained on the k-1 folds and tested on the 
remaining one. To determine the minimum number of cases needed to 
set up the metamodel, the k-fold validation was firstly used on the R2%. 
The k iterations are repeated over an increasing number of M cases, from 
a minimum value of 50 to a maximum of 1000. This has required having 
the first 1000 MDA cases numerically simulated. The RMSE is obtained 
from each k iteration, and the M value as a performance metric. This 
yields a mean RMSE and standard deviation for each M case. Fig. 3 
displays the RMSE of the R2% reconstruction as a function of M. The 
metamodel accuracy with higher M cases is observed by decreasing 
mean RMSE and associated uncertainty. At this point, a decision on the 
M value that allows to obtain the required level of accuracy on the 
variable needs to be made. As the mean and standard deviation get 
minimal at M = 750 (RMSE R2% = 0.12 m), we decided to set the 
metamodel with the first 750 MDA cases. The remaining hydrodynamic 
variables have also been subject to the k-fold, and the results indicate 
that, for the same number of cases, they are significantly more 
straightforward to predict than the R2%. Thus, M = 750 is optimum for 
applying the hybrid method to every output magnitude. 

Fig. 5. The first 3 components of the PCA (99.8% variance explained) applied to η. The left side panel presents the cross-shore reef morphology, the average η and 
EOFs, and the right panel the PCs. The color rules are analogous to those in Fig. 4. 
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3. Results 

Once the optimal number of cases (M) to minimize the error is 
determined, the metamodel will be fully trained. This training involves 
performing the M-SWASH simulations, conducting PCA and RBF fitting, 
and evaluating the agreement with the k-fold cross validation. Each 
simulation took 9 min to run in an Ubuntu (x86-64) PC, using up to eight 
3 GHz Intel i7-9700 processors and 32 GB of RAM, and the final fitting of 
the RBF surfaces was 5 min. Once this is accomplished, the response to 
un-modeled forcing conditions from regional/global wave models can 
be obtained in seconds. The efficiency of this metamodel allows to 
reproduce different time scales that range from downscaling large 
hindcast records, forecasting short-term conditions, or predicting 
flooding driven by long-term sea level rise projections in a timely 
manner. 

3.1. Hydrodynamics exploration through PCA 

Before the RBF interpolation, the PCA is used to reduce the dimen
sionality of the spatial outputs (η; Hrms,Hm0,SS,Hm0,IG,Hm0,VLF) as detailed 
in Section 2.3 as opposed to the R2%, where the reconstruction is made 
directly using RBF interpolation. Following Equation (1), after applying 
the PCA to the M vectors of a certain metric to convert them to the PCA 
space, it is possible to revert to the original space by adding to the mean 
of the variable every EOF component multiplied by its corresponding PC 
amplitude. Note that the PCA results will be specific to the topo- 
bathymetry of the study case. The interpretability of the resulting 
EOFs and PCs is a second concern in the hybrid model development. 
However, there is a greater possibility that the resulting EOFs will have a 

physical interpretation when the physical relationship between vari
ables is linear, and the input data have been properly preprocessed and 
normalized. The principal components resulting from the PCA applied 
on the η and Hrms are depicted respectively in Figs. 4 and 5. For both η 
and Hrms, only three principal components can explain 99.8% of the 
variance, with the first one explaining more than 96%. The PC values 
associated with the 750 MDA cases and to every EOF for Hrms, are rep
resented in 3D scatters in Fig. 4. This representation aids the visualiza
tion of how well PCA can identify the main oscillation modes as a 
function of the tridimensional combination of forcing parameters. As 
can be seen in the average Hrms pattern of Fig. 4, the mean spatial model 
remains constant before the fore reef slope. As waves move through the 
fore reef slope, waves shoal up before abruptly decreasing as they break 
at the crest. Incident high frequency waves may be fully dissipated by 
breaking or reflected on the reef edge, while a reduced energy per
centage is transferred towards the reef flat. The first oscillation mode 
(EOF1) can be associated with the time-varying breakpoint mechanism 
located at the reef crest. Looking at the PC amplitudes of this first mode, 
higher Hs and Tp correspond to positive PC1 values that amplify this 
primary pattern of strong dissipation caused by depth-limited breaking 
at the reef crest. Since this principal component accounts for 96.6% of 
the variance, the majority of the modeled cases are highly influenced by 
this pattern. The combined effect of Hs and WL is explained by the 
second principal component (EOF2), explaining the 2.9% of the vari
ance. This second mode responds to waves that shoal up over the reef 
flat when large WL (red PC2) or break on the fore reef if shallow water 
depth. After shoaling or breaking, wave energy over the reef flat remains 
constant. The third principal component explains very little variance 
(0.4 %) and presents a strong shoaling effect from the fore slope toe to 

Fig. 6. Comparison of modeled (solid line) versus reconstructed (dashed line) Hrms (pink axis on the right) and ηsetup (blue axis on the left) for the first 49 cases of the 
MDA. The background color indicates the WL, the edgecolor the Tp and the point the Hs. 
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the reef crest before breaking for long period high energetic wave con
ditions and low tide or directly breaking with no shoaling for low energy 
waves and high tide. 

Wave force acting in a shoreward direction applies a force on the 
water column that produces water level variations to compensate for the 
radiation stress gradients. Breaking waves produce an increase in the 
mean surface water level, and shoaling waves decrease. Therefore, from 
the PCA applied to the η, similar patterns to those described for the Hrms 
(Fig. 4) can be appreciated. The EOF1 presents a similar pattern to the 
average η, explaining 97.8% of the variance. This evolution remains 
relatively constant across the reef flat, with a larger increase towards the 
shore. The variability of PC1 among the 750 cases reflects that wave 
setup over the reef increases with increasing Hs and Tp. Wave setup is 

also larger during low water levels than during high water levels. The 
second and third oscillation modes have much smaller oscillations in 
magnitude. The second principal component is modulated by Hs and 
WL. When the water depth at the reef flat is low (WL < 1), and the 
incident wave height is large (Hrms > 4), the mode represents no gradual 
shoaling process, and breaking occurs directly. As WL increases, the 
shoaling effect becomes increasingly relevant up to a Hrms local maxima 
(minimum η), after which waves break. Finally, the third oscillation 
mode primarily responds to the wave steepness and WL. The mode is 
amplified for the highest-steepness incident waves (large wave heights 
with short periods) and lower water levels, evidencing a breaking 
mechanism at X = 700 and wave setup over the reef flat. Conversely, 
gentle-steepness waves do not break, and the shoaling produces a 

Fig. 7. Comparison of modeled versus reconstructed Hm0,SS, Hm0,IG and Hm0,VLF of the first 49 cases of the MDA. The upper panels plot the modeled (black dashed line) 
versus reconstructed (colored solid line) Hm0 of each frequency band. The lower panels represent the relative contribution of each frequency band to the total energy 
measured as Hm0

2. 
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decrease in wave setup on the reef flat. 

3.2. Nearshore hydrodynamics reconstruction 

In this section, the metamodel performance reconstructing the pre- 
defined output variables on the idealized reef profile proposed (RP1, 
see Fig. 2) is discussed. Fig. 6 presents the modeled versus reconstructed 
Hrms and η for the first 49 MDA cases, which are the most dissimilar. The 

larger η differences in these first cases are located in the reef flat and 
correspond to cases of low offshore water depth combined with high Hs 
and Tp. For these cases, the reconstructed η is slightly underestimated. 
Overall, the agreement between modeled and reconstructed Hrms and η 
values is quite positive for the entire cross-shore profile. 

In addition, the ability of HySwash to estimate the spectral trans
formation of waves along the profile is explored by its capability to 
reconstruct the Hm0,SS, Hm0,IG and Hm0,VLF spatial evolution. Fig. 7 

Fig. 8. Scatter validation of the output magnitudes η, Hrms,Hm0,SS,Hm0,IG,Hm0,VLF , R2% in meters. Except for R2%, the magnitudes are evaluated at the reef crest (X =
750 m). 

Fig. 9. Comparison of modeled versus reconstructed η, Hrms, Hm0,IG and Hm0,VLF in meters for the mid reef flat (X = 850 m) and inner reef flat (X = 950 m).  

A. Ricondo et al.                                                                                                                                                                                                                                



Ocean Engineering 291 (2024) 116419

9

presents the comparison between the modeled and reconstructed Hm0 
frequency bands for the first 49 MDA cases. The total energy is measured 
by Hm0

2, and energy corresponding to each frequency component is 
defined by (Hm0,SS/Hm0)

2, (Hm0,IG/Hm0)
2, and (Hm0,VLF/Hm0)

2. Moving 
towards the surf zone, the energy pattern shows that the sea-swell en
ergy band diminishes, and the lower frequency harmonic components 
emerge. While at the fore reef, SS energy dominates over the Hm0,IG and 
Hm0,VLF , it gradually increases by the mid to the inner reef flat. At the 
inner reef, the contribution to the overall sea state by the SS waves is 
small compared to the IG and VLF waves. This behavior of the modeled 
spectral transformation agrees with previous studies and observations 
on reef environments (e.g. Battjes et al., 2004; Péquignet et al., 2014; 
Young, 1989). From the comparison of modeled versus reconstructed 
Hm0 and energy evolution, it can be noted that the metamodel does good 
work in reconstructing the energy transfer from high to low frequency 
components. This is particularly relevant since IG and VLF oscillations 
are crucial in the sediment transport and thus in shaping the 

morphological features of the coral reefs (Masselink et al., 2019; Pom
eroy et al., 2015). These low-frequency modes have also been observed 
to control extreme flooding events in low-lying atolls (Ford et al., 2012; 
Merrifield et al., 2014). 

To quantify the level of agreement, the RMSE and scatter index (SI) 
error statistics are displayed in Fig. 8 for different cross-shore locations 
(for η, Hrms,Hm0,SS,Hm0,IG,Hm0,VLF, R2% at the reef crest) and Fig. 9 (for η; 
Hrms,Hm0,IG,Hm0,VLF at the mid reef and inner reef flat). The overall 
performance is very positive, with RMSE below 0.11 m. The best per
formance achieved in the reconstruction is for the η (RMSE = 0.01 m and 
SI = 0.06), while the error rate is higher for increasing non-linear var
iables. Equally, the error is higher when higher non-linear wave dy
namic interactions occur along the profile. This can be seen as RMSE is 
higher for the mid reef flat than for the inner reef (Fig. 9) and for the reef 
crest than for the mid reef. In overall, the comparison indicates good 
predictive skill for every output quantity defined. 

3.3. Metamodel sensitivity to coastal morphology 

Reef and sandy profiles are very variable, and their morphology 
largely influences the wave breaking and transformation processes (Yao 
et al., 2019). The reef morphology described in Fig. 2 is characteristic of 
fringing reef profiles that present a relatively narrow reef flat (<300 m). 
In order to assess the predictive capabilities of HySwash for different 
coastal morphologies, two more idealized reef profiles have been 
defined (see Fig. 10). The detailed geometry of the three idealized reef 

Fig. 10. Reef profiles definitions (RP2 in (A) and RP3 in (B)) and first two principal components on Hm0,IG.  

Table 3 
Detailed geometry of the three idealized reef profiles.  

Reef 
Profile 

Fore Reef 
Slope 

Offshore Reef Flat 
Width 

Onshore Reef Flat 
Width 

Beach 
Slope 

RP1 1/20 200 – 1/10 
RP2 1/20 600 – 1/10 
RP3 1/20 100 200 1/10  
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Fig. 11. Comparison of modeled versus reconstructed Hm0,SS, Hm0,IG and Hm0,VLF for RP2(A) and RP3(B).  
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profiles is presented in Table 3. The first proposed reef profile (RP2) has 
a reef length of 600 m, longer than PR1 while maintaining the same fore 
reef and beach. The second reef profile (RP3) presents double reef flats 
with an offshore reef measuring 100 m and a nearshore reef of 200 m. 

For example, Fig. 10 displays the first two principal components 
resulting from the PCA on the Hm0,IG. The PCA domain covers the cross- 
shore profile from X = 150 m to the inner reef flat, with the first prin
cipal component explaining more than 93% of the variance in both 
cases. As IG energy release is mainly driven by the breaking point 
mechanism (Pomeroy et al., 2012), the mean Hm0,IG reveals that the 
short-period waves in RP2 first break at the reef crest generating a local 
maximum of 1 m on average. The mean Hm0,IG evolution pattern and first 
oscillation mode (EOF1) of both profiles properly illustrate the short 
wave breaking and IG release points. For the RP3, the first two break
points are located at both reef crests, with a higher peak at the nearshore 
reef crest as it is at a shallower depth. As higher wave energy reaches the 
reef and propagates across it in RP3, the innermost wave breaking point 
is located further away from the coast than in RP2, with a maximum 
Hm0,IG released of 1 m on average. PC1 is very similar for RP2 and RP3, 
showing that incident Hs and Tp control the IG energy along the reef in 
that greater offshore wave power led to larger low-frequency waves over 
the reef flat. The tidal dependency appreciated for η and Hrms in Fig. 4 
(EOF1) and Fig. 5 (EOF2), is not as well recognized here. Common to 
both profiles (RP2 and RP3), the second principal component (EOF2) 
exhibits a progressive decay all along the reef profile. The corresponding 
PC values indicate that this pattern is frequency dependent, with the 
highest positive amplitudes given by Tp higher than 20 s. We may link 
this principal component with the second IG generation mechanism, the 
bound long waves. For Tp ranging from 6 to 20 s, energy transfer to the 
IG band gradually increases as waves move to nearshore depths. This 
can be seen in the blue PC2 values that reverse the EOF2 pattern. Tp 

higher than 20 s or lower than 6 s responds to a decreasing evolution of 
the IG energy. This may be related to the breaking of individual waves 
within the large period wave groups (Tp >20 s) for an initial depth of 15 
m and the numerical dispersion of waves linked to the short-period wave 
groups (Tp < 6 s). 

The PCA has been presented on the Hm0,IG and results from the k-fold 
reconstruction of the low-frequency components for RP2 and RP3 are 
presented in Fig. 11 for the first 16 MDA cases of both HySwash setups. 
Noticeably, the VLF energy is higher in PR2 than in PR3. Narrow steep 
fore reef slopes are particularly prone to flooding caused by resonant 
modes or VLF energy amplification (Cheriton et al., 2016). An overall 
summary of the performance of HySwash on the three reef profiles 
defined is provided In Table 4. Compared to the RP1, fewer SWASH 
simulations are required to achieve a similar order of accuracy in the 
prediction of R2% for the RP2 (M = 600), and even less for profile 3 (M =
500). Further work could be done to determine which coastal mor
phologies are most vulnerable to flooding or how spectral trans
formation is driven across the profile using the PCA technique. Although 
we have defined different reef morphologies by varying the reef flat 
characteristics, the fore reef and beach slope are essential in modeling 
reef hydrodynamics and subsequent flooding. 

4. Conclusions 

A fast and efficient hybrid method is proposed to estimate surf-zone 
hydrodynamics given the offshore wave and sea-level conditions and the 
cross-shore profile morphology. The hybrid model, named HySwash, is 
built on the use of the SWASH 1-D numerical model and statistical 
techniques (LHS, MDA, PCA, RBF) that permit to reduce the number of 
scenarios to simulate. The LHS technique allows to create a synthetic 
database of forcing variables that account for mean and extreme con
ditions. This is especially important since it enables the training of the 
metamodel to cover potential future events that may still need to be 
measured. In addition, by combining PCA and RBF techniques, we can 
leverage the strengths of both statistical methods to achieve efficient and 
accurate reconstructions in high-dimensional datasets. On this basis, it 
has been proven that HySwash can estimate the wave runup, wave 
setup, or wave height evolution along the profile for a far lower 
computational cost than the commonly used dynamic downscaling. In 
addition, the PCA offers a powerful tool to investigate complex dy
namics and identify the primary variables influencing its oscillations. 

In the current research, only numerical validation of the metamodel 
has been carried out through the k-fold cross validation. Note that for 
real case applications, instrumental validation will be needed to cali
brate and validate the numerical model. The metamodel has been 
proven to accurately reproduce key reef hydrodynamics on three 
different reef profile morphologies covering the range of possible 
offshore conditions. Despite being a location-specific metamodel, its 
capacity to reconstruct hydrodynamic variables in seconds, numerically 
simulating a reduced set of synthetic forcing conditions, makes it a 
powerful tool. 

The methodology developed in this study will contribute to a better 
understanding of the physical processes governing surf-zone hydrody
namics. HySwash can be integrated as a fast and efficient tool to inform 
early warning systems or to assess the potential impacts of climate 
change, coastal development (e.g., beach stability, design of coastal 
structures), and other coastal activities. 
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Table 4 
Summary of HySwash M design cases and error metrics for the three profiles 
defined measured at the reef crest (X = 750 m).   

M R2% RMSE (m) 

η Hrms Hm0,SS Hm0,IG Hm0,VLF 

RP1 (200 m reef flat) 750 0.11 0.01 0.05 0.07 0.07 0.01 
RP2 (600 m reef flat) 600 0.10 0.01 0.04 0.05 0.06 0.02 
RP3 (double reef 

flat) 
500 0.14 0.02 0.07 0.11 0.07 0.01  
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