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ARTICLE INFO ABSTRACT

Keywords: In conjunction with tides, storm surge is one major driver of coastal flooding associated with storm events.
Data-driven models Because local inundation is strongly modulated by the local shape of the coastline and the bathymetric slope,
Storm surge accurate storm surge predictions using traditional numerical models require the use of very fine grids and are

Atmospheric predictor
Rapid reconstructions
New Zealand
Coastline

hence resource intensive. Therefore, the performance of a live prediction system based on such methods will
likely be subject to a trade-off between prediction accuracy, prediction speed and cost.

This study explores the use of data driven methods as an alternative to numerical models to reconstruct the
daily storm surge maximum levels along the entire coast of New Zealand. Firstly, several atmospheric predictors
are utilized that incorporate different variables, time lags and spatial domains, using 3 statistical models, in
a selected number of locations in New Zealand, to find the combination that optimizes the reconstruction.
Finally, the storm surge daily maxima are reconstructed with the different statistical models along the entire
coast, using the best performing predictor.

Results show very good performance for the best atmospheric predictor and statistical model, providing
average values of 0.88 for the Pearson correlation coefficient and 4.3 cm for the root mean squared error metric
(RMSE) (the average value for the RMSE in the 99% percentile is 8.2 cm). For the Kling-Gupta Efficiency (KGE;
incorporating 3 sub-metrics: correlation, bias term and variability term), which is the metric used to rank the
models, the average value is 0.82.

Our results highlight the suitability of data driven models to simulate storm surge maximum levels, and
prove the methodology is appropriate for finding a well performing atmospheric predictor that is able for
reconstruct these values. Moreover, this methodology can be also applied to new variables, regions and
problems, as there are no physical restrictions on the used predictors nor predictands.

1. Introduction climate change, the threat posed by coastal flooding is likely to become
greater.

Flooding associated with storm surges is one of the most common Storm surge is the rise of water level generated by wind and
natural hazards for coastal areas worldwide (Bell et al., 2000), and
with over 15,000 km of coastline and around 150,000 people living
in low-lying coastal areas, coastal inundation is also a major hazard

atmospheric pressure changes associated with tropical or extra-tropical

(mid-latitude) storms, over and above the astronomical tide (AT), and

to New Zealand (NZ). The cost to defend the associated buildings, the long-term signals such as the monthly mean sea level which con-
infrastructure and assets is of the order of $10 billion (Ministry for tains the seasonal and inter-annual variability (Cid et al., 2017). Storm
the Environment (NZ), 2017, Preparing for Coastal Change, Publication surge is one of the most critical components of coastal flooding and its

number: ME 1335, 36pp.). With global sea level rise and the increase

. - . . magnitude has a large spatial variability (Bell and Goring, 1996).
in the intensity and frequency of extreme weather events expected with
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The present work is focused on understanding storm surge behavior
in the two main islands of New Zealand: the North Island (or Te Ika-a-
Maui), and the South Island (or Te Waipounamu), where AT accounts
for 96% of the coastal energy, while the over-elevation associated with
barometric pressure and wind effects, the effect of waves (Stephens
etal., 2011), and the longer-term seasonal and inter-annual fluctuations
account for the remaining 4% (Bell et al., 2000; Goring and Bell, 1996).
Although storm surge around New Zealand, reaching just 0.8 m maxima
above mean sea level (Heath, 1979), is much lower than storm surge
experienced in equatorial regions and high latitudes, it can still cause
coastal flooding and exacerbate coastal erosion (Bell et al., 2000). For
example, a flooding event that occurred in 1995 in the Thames Region,
when peak storm surge overlapped with high AT, caused damage
worth around 3-4 million dollars. In addition, during the spring and
summer of 2017 and 2018, several large storms including ex-tropical
cyclones Fehi, Gita, and Hola struck NZ, most of them coinciding with
high perigean-spring tides, causing flooding to homes and damaging
infrastructure. Other notable historical coastal flooding events in NZ
occurred in January 2011, during cyclone Gisele in 1968 (de Lange
and Gibb, 2000), May 1938 in the Hauraki Plains (Stephens et al.,
2020) and during the great cyclone of 1936 (Brenstrum, 2000), but
the spatial effects of these historical storms are not well recorded since
not many sea-level gauges were in operation at those times (Stephens
et al., 2019a).

Sea level forecasts usually use computationally expensive numerical
models, which require running a model given the predicted atmo-
spheric conditions every time a prediction is to be made, leading
to substantial computational efforts (Wang et al., 2009; Siek, 2019;
WMO, 2011). Nevertheless, this dynamical approach is very precise
and several studies have benefited from it. Muis et al. (2016) created
the Global Tide and Surge Reanalysis (GTSR), reconstructing storm
surge levels worldwide based on hydrodynamic modeling by using the
Delft3D Flexible Mesh Suite with D-Flow. Vousdoukas et al. (2016) used
a similar model, this time forcing the hydrodynamic model with wind
and pressure fields from climate models, to study the effect of climate
change on extreme storm surge levels along the European coastline.
These dynamical approaches produce more homogeneous storm surge
historical records, as most of the exploratory data analysis is usually
done with tidal gauges, sparse in space and time (Cagigal et al., 2020;
Arns et al., 2020; Williams et al., 2016).

Conversely, a number of studies have benefited from the speed
of data driven approaches to reconstruct storm surge levels with a
reliability similar to that of numerical models, but at a fraction of their
computational effort. Using this approach, statistical models can be
trained with both observational and numerical model data to produce
faster storm surge forecasts. In the field of statistical models, Salmun
et al. (2009) and Dangendorf et al. (2014) applied multiple linear
regression to model the relationship between surge (as predictand), and
wind and sea level pressure (as predictors). Cid et al. (2017) utilized
the same linear model with local atmospheric predictors to provide
a global storm surge database. Based on this methodology, Cid et al.
(2018) reconstructed daily maximum storm surges for the Southeast
Asia region, and Cagigal et al. (2020) produced a 0.25° resolution
hindcast of storm surge in New Zealand, utilizing this knowledge to
obtain storm surge projections until 2,100 with different global climate
models. Rueda et al. (2019) used a similar approach to reconstruct both
waves and surges in New Zealand (using spatially larger predictors),
obtaining values of 0.86 and 0.83 for the Pearson correlation coefficient
in the Kapiti and Green islands tidal gauges, respectively.

All these studies used linear techniques to reconstruct the storm
surge levels, while other studies such as Bruneau et al. (2020) used
neural networks for the same purpose, using pre-defined predictors.
They obtained promising results for the non-tidal residual (this is the
sea level that remains when the astronomical tide is subtracted from
the total water level) at a large number of locations over the world,
capturing the non-linear relationships between the predictor and the
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predictand. Very recent studies compare the predictive capabilities of
several data driven methods, testing a few atmospheric predictors. For
example, Tadesse et al. (2020) showed how slightly different predictors
can reconstruct the storm surge around the world, giving a set of
potential statistical models. Moreover, Tiggeloven et al. (2021) also
evaluated predictor capabilities using neural networks (LSTM, CONV
and ConvLSTM) as the main models, obtaining better results as the
predictor becomes larger in space and includes more variables such
as the wind, or non linear components of the input variables (u?,
v?...). In Tiggeloven et al. (2021), probabilistic predictions are obtained,
which is a crucial feature of data driven models, and an approach that
is impossible with traditional numerical models.

In this work we focus on finding the combination of atmospheric
variables that can best represent the behavior of the storm surge over
New Zealand, because although some of the previously mentioned
studies try to carry out this process by varying some of the parameters
taken into account in this work (Tiggeloven et al.,, 2021 evaluates
different variables with local domains, and Tadesse et al., 2020 also
utilizes different variables according to expert knowledge), none of
these studies explore the total number of possible combinations within
their search space, thus lacking all the necessary results to carry out a
certain conclusion. In addition, 3 different statistical models are used in
this study to give robustness to the results obtained, and to understand
not only which variables can most affect the storm surge, but also the
differences in its reconstruction that each of the models can provide.
Another important novelty of this methodology is the utilization of
the atmospheric conditions from 0 to 72 h before the storm surge
maximum, defined here as time lag. Tadesse et al. (2020) also used lags
that covered the previous 30 h to the observed storm surge maxima, but
just some specified statistical models and predictors were tried under
this approach, finding the usage of this time lag really improved the
performance of the models.

Therefore, this study tests 36 different atmospheric predictors, un-
derstanding predictor as the combination of different atmospheric vari-
ables that can be used to reconstruct the storm surge signal. The
variables used are known to influence the storm surge, and are the
sea-level-pressure fields, the sea-level-pressure fields gradients and the
u and v components of the wind, projected to each studied location,
to simulate the wind component that contributes to the wind set-
up. The spatial and temporal scales used for the predictors are also
varied, to understand the effect of different spatial domains and pre-
vious atmospheric conditions. To this end, both local and regional
predictors are tried, and we test predictors including different time
lags (atmospheric conditions existing the previous days to the recon-
struction), which is also a crucial novelty of this study. Additionally,
3 different statistical models, including multi-linear regression, k-NN
regression and gradient boosting regression, are tested, assuring the
predictor works for different models. To summarize, in this work we
propose a robust methodology that explains why the differences in the
results based on different predictors and models might appear, setting
a comprehensive framework to find the best performing predictor of
daily storm surge maxima and be able of efficiently reconstruct storm
surge maximum levels around the islands of New Zealand. Model
performance is evaluated with the Kling—Gupta Efficiency (Gupta et al.,
2009), as it incorporates 3 sub-metrics: correlation, bias term and
variability term, each characterizing an important aspect of the pre-
diction performance. This detailed predictor analysis is performed in
29 different locations around New Zealand, where nearby observational
data are also available. Once the best performing atmospheric predictor
is identified (defined as the atmospheric predictor that best reconstructs
the storm surge signal), the reconstruction is extended to the whole of
the New Zealand coastline and the results for the 3 statistical models
are contrasted.

This article is structured in 6 sections. In Section 2, the databases
used are described, then, in Section 3, the methodology is explained in
detail. In Section 4, results for all the predictors, models and locations
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are shown. In Section 5, the main points are summarized in the discus-
sion, where we also address future tasks. Finally, the conclusions are
presented in Section 6. The Appendix contains a detailed description
for all the statistical models used and the validation metrics for both
the numerical model and the best performing predictor and statistical
model.

2. Databases description

Model predictor data are sourced from a global atmospheric re-
analysis. Predictands (storm surge signal) are obtained from a high
resolution regional hydrodynamic hindcast for New Zealand waters
(Moana v2 hindcast model). In addition, observations acquired from
29 tidal gauges spread around the coast of New Zealand (see Fig. 2)
are used to validate the sea level data from the hindcast. In Fig. 1, the
spatial domains of both hindcasts can be seen, where variables are also
shown.

2.1. Atmospheric data

For the atmospheric data, we use a global reanalysis developed
by NCEP (National Centers for Environmental Prediction) in the con-
figuration of CFSR (Climate Forecast System Reanalysis). In order to
cover the period of the hydrodynamic data, we use both CFSR (Saha
et al., 2010), which extends from 1979 to 2011, and CFSRv2, (Saha
et al., 2011), which extends from 2011 to present. We utilize sea-level-
pressure (SLP), sea-level-pressure gradients (SLPG) and winds as the
main predictors affecting the storm surge. SLP data are used at their
native resolution which is 0.4° in both CFSR and CFSRv2. The merid-
ional and zonal components of the wind, whose original resolution is
0.3° in CFSR and 0.2° in CFSRv2, were interpolated linearly over the
same grid as the SLP. All the atmospheric variables used are resampled
to daily values calculating the mean.

These wind components are not directly used, they are projected to
the location where the reconstruction is made. As illustrated in Fig. 1,
the wind vectors are projected over the line that joins each point in
the atmospheric gridded domain to the location where the storm surge
is predicted. Then, if the wind blows to the desired location at time
t, this wind will contribute positively to the storm surge signal (red
arrows). On the other hand, winds blowing in the direction opposite
to the desired location will contribute negatively to the storm surge
(blue arrows). Finally, land location is also taken into account, so winds
blowing directly towards a certain location but from land side are
discarded.

2.2. Storm surge data

The storm surge datasets are separated into hindcast and obser-
vational data. The hindcast is used here to fit the statistical models
due to its spatial and temporal extent, as we want to reconstruct
the storm surge maximum levels all over the New Zealand coastline.
The observational data, which correspond to tidal gauges, are used to
validate this hindcast.

The processing of the total sea level series for both the hindcast
and the tidal gauges data was done using the open-source toolbox
Toto (https://github.com/calypso-science/Toto). The linear trend was
first removed from the time series applying a linear regression to the
sea level signal, which is the sea-level-rise in the historical period of
the hindcast. Tidal analysis was then carried out using the algorithms
implemented in the Python version of the UTide software (Codiga,
2011) and the astronomical tide estimates were used to fill any missing
gaps in the tidal gauge data. The monthly mean sea level variation
was then removed from the time series using a 30 day rolling mean
window. Finally, the storm surge signal was extracted using a Lanczos
lowpass filter (Thomson and Emery, 2014), with a cut-off period of
30 h. Considering that the inertial period around New Zealand latitudes
varies from 16 h to 22 h approximately, the 30 h cut-off period allowed
for both tidal and inertial oscillations to be removed from the total
water level, isolating the storm surge signal.
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2.2.1. Moana v2 hindcast

The numerical model storm surge data along the New Zealand
coast are obtained by postprocessing of the sea surface height fields
from version 2 of the Moana Backbone Model (Azevedo Correia de
Souza et al., 2022) (data are open access and samples are available
here (Azevedo Correia de Souza, 2022), while the full dataset can be
downloaded from the project webpage at https://www.moanaproject.
org/). The Moana Backbone Model is a 25-year (1993-2017) regional
hydrodynamic hindcast model of New Zealand waters released in 2020
by the New Zealand MetService. The hindcast was produced using
the Regional Ocean Modeling System (ROMS), version 3.9, which is a
free-surface, terrain-following, hydrostatic numerical model that solves
the 3D Reynolds-averaged Navier-Stokes equations using Boussinesq
approximation (Haidvogel et al., 2008). The hindcast horizontal res-
olution is 5 km over the whole domain with 50 levels in the vertical.
ROMS was forced with atmospheric conditions from the Climate Fore-
cast System Reanalysis (CFSR) versions 1, (Saha et al., 2010), and
2, (Saha et al., 2011) (reason why we use the same global reanalysis
as the predictors to our models). The open boundaries were forced
with currents, sea level, temperature and salinity, from the Copernicus
Global Ocean Physics Reanalysis (GLORYS) version 12v1 and spectral
tidal forcing from the OSU Tidal Inversion software (OTIS) version 7.1.

2.2.2. Observational data

We gathered data from 29 tidal gauges located around NZ as shown
in Fig. 2 and those were used to validate the numerical model. We
also used the location of the tidal gauges to select the closest hindcast
nodes for which the initial predictor experiments were performed. This
was motivated by the fact that the different sub-shores where these
tidal gauges are located exhibit different storm surge behaviors. The
complexity and varying orientation of New Zealand’s coastline mean
that there can be strong local differences in storm surge signals, and
the tidal gauges are well spread around NZ. Comparisons exhibit a very
good correlation between the outputs of the numerical model and the
tidal gauges, and thus this storm surge hindcast can be used to calibrate
the statistical models (metrics such as the RMSE and the Pearson or
Spearman correlations can be found, for all the validated locations, in
Table Al).

3. Methodology

The methodology is divided into two steps. We first find the optimal
atmospheric predictor (defined as the atmospheric predictor that best
reconstructs the storm surge signal), and then use this predictor to
reconstruct the historical storm surge maximum levels along the entire
coast of New Zealand (see Fig. 3).

3.1. Find optimal atmospheric predictor

We first identify the optimal atmospheric predictor from a total of
more than 3,000 experiments, which include any possible combination
of atmospheric predictor, location and statistical model. Specifically,
with 36 atmospheric predictors (Table 1), 29 locations to study (Fig. 2)
and 3 statistical models to evaluate (multi-linear, k-NN and gradient
boosting regression), this makes a total of 3,132 experiments.

The same workflow is followed by all linear methods as depicted
on Fig. 4 and involves: (1) predictor building, (2) a dimensionality
reduction step using Principal Components Analysis (PCA) (Gutiérrez
et al., 2004; Wilks, 2005), (3) fitting the statistical models against
the PCA-projected predictor and (4) model evaluation. The four steps
are explained in detail below as they summarize the way the optimal
atmospheric predictor is found.
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Fig. 2. Location of tidal gauges along the NZ coast and their closest numerical model nodes (left) and storm surge validation of Moana (numerical data) vs tidal gauges (observational

data) at three locations (right). Hindcast is represented in black in the time series plots.

3.1.1. Predictor building

The search for the optimal atmospheric predictor is one of the main
goals of this work, and hence is why all relevant combinations have
been considered. This combinatorial cloud covers all the possible cases
summarized in Table 1. The sea-level-pressure fields are always used,
and then the gradients and the projected winds are added in turn. For
all these variables, past time frames can be used (defined as “time
lag” approach in this study), so the information from times preceding
the reconstruction are used. Finally, regarding the spatial extent of the
predictor, 3 different regions are tested, two local squared regions of 3
-3° and 5 -5° centered in the location of interest and a bigger region that
encompass the whole area of New Zealand (blue square in Fig. 1). The
selection of these custom regions was primarily influenced by recent
studies such us Cid et al. (2017) and Tiggeloven et al. (2021), where
local predictors were used, and Rueda et al. (2019), where regional
predictors were studied. Here, we want to study if the storm surge is
generated by local atmospheric conditions or atmospheric conditions

with higher structure, given different sizes previously tested in recent
studies. Discussion 5.1 explains why a regional predictor with temporal
lag provides the best results.

3.1.2. Principal components analysis

After the initial predictor matrix is assembled by concatenating
the raw predictor data from the atmospheric reanalysis and in order
to reduce the number of features fed to the statistical models, a di-
mensionality reduction step is applied to the predictor matrix. We use
PCA (Gutiérrez et al., 2004; Hastie et al., 2001), and retain the leading
components ensuring that 98% of the variance is explained.

The predictor is projected in a new space, where the first coordi-
nates in this new space explain the highest percentage of the variance
in the data. This data transformation is just an orthogonal linear trans-
formation that converts the data to a new coordinate system such that
the greatest variance by some scalar projection of the data is captured
by the first coordinate (called the first principal component, PC,), the
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Fig. 3. A diagram of the analysis workflow with two steps: (1) Find optimal atmospheric predictor (the columns correspond to different models, and the colored numbers as rows
represent the locations where the experiments were tested, see Fig. 2). (2) Reconstruct the historical storm surge maximum levels along the entire coast of New Zealand.

Table 1

Variables and parameters used to construct the predictors are shown. Notice the SLP fields are always used, but all the other

features might change.

Data sources

Time lags Regions

sea-level- gradient fields
pressure fields calculated from the
(SLP) SLP variations

projected winds
(calculated from ul0
and v10)

whether to add
previous time steps
to reconstruct

spatial region to
consider around the
location of interest

predictor might use:

SLP
SLP + gradients
SLP + projected winds
SLP + gradients + projected winds

1 (just time t) local - 3° x 3°

2 (t and t-1) local - 5° x §°

3 (t, t-1 and t-2) Regional

(160,185,-52,-30)

second greatest variance on the second coordinate, PC,, and so on...

where the new weights that will transform the original atmospheric

predictor into the new basis are represented in the equation below:
T T

W= wX' Xw wX Xw} )

— w), = arg max
wl'w o { wl'w

where XT'X is the covariance matrix of the original atmospheric data
(bold variables imply they are matrices). The relationship between the
original and the projected data can be written as: X(x, ;) = EOF(x) X
PC,(t;) + EOF,(x) X PC,(1;) + -+ + EOF,(x) x PC,(t;), where the PCs
represent the contribution of each EOF in time, and the EOFs represent
the oscillation modes that can be added together to reconstruct the
original timeseries. With this PCA, the data is reprojected in a easily
reducible new space, where the first variables in this new space have
two principal characteristics: they represent the higher percentage of
the variance in the original data (1) and they have physical meaning
(2) (Camus et al., 2014).

3.1.3. Statistical models

In this study, we use the 70% of the data for training, and the
remaining 30% are used to validate the models. The training data use
the first 17 years of the numerical model, and the remaining 8 years
are used to validate. Here, we are considering that the general behavior
of the atmosphere does not change between the training and testing

periods that we are using. Different training and validations periods,
even shuffling the data, were tested. Best performance of the statistical
models, in terms of KGE metric, was obtained using at least 70% of
data for training.

We use linear regression, k-NN regression and gradient boosting
regression algorithms to obtain the best possible atmospheric predictor
from all the candidates. A brief explanation of these models is given
below, while a more detailed one can be found in Appendix.

1. Linear regression: The method fits the hyperplane (a hyper-
dimensional plane with dimensions equal to the number of PCs
used, N) to the data so the squared errors between the predicted
and the real values are minimized. The optimal linear regression
parameters are given by f = (X" X)"'X"y.

2. k-NN regression: Given a dataset, each time a new prediction
is made, the model predicts the mean of the target values of the
k-nearest neighbors based on the Euclidean distance (Altman,
1992). In this study, we experiment with number of neighbors
varying from 1 to 31 in steps of 3, so 11 k-NN models are
calibrated for each combination of predictor and location.

3. Gradient boosting regression: The method combines the abil-
ity of weak decision trees to obtain robust predictions of a target
variable, optimizing the tree’s individual ability by minimizing
a loss function, calculating its gradient at each step (Friedman,
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Statistical models:

- Linear regression
- KNN regression
- Decision trees:

(Gradient boosting
regression)

—°

Fig. 4. Steps for finding the optimal atmospheric predictor. (1) Predictor building, (2) Principal Components Analysis, (3) Statistical models and (4) Model evaluation.

2000). In this case, we change both the maximum depth of the
tree, testing 3, 9 and 15 final nodes, and the minimum percent-
age of the data available at each split, testing 3, 9 and 15%
(trying to see how overfitting might affect the results). Then, 9
gradient boosting models are trained for each combination of
predictor and location.

3.1.4. Model evaluation

After running more than 3,000 experiments, we select the Kling—
Gupta Efficiency statistic (dimensionless) (Gupta et al., 2009) as the
single metric to evaluate all the results, which is defined as:

KGE=1-V(r—12+( - D>+~ 1) @

I 090D sy = 2« and § = £xc being r
\/Zf:] (x;=%)? \/221 ;=7 Oobs Hobs
the Pearson correlation coefficient between reconstructed and observed
storm surge data (dimensionless), y the variability ratio (dimension-
less), p the bias ratio (dimensionless), ¢ the standard deviation, u the
mean, and the indices rec and obs represent reconstructed and observed
storm surge values, respectively. KGE, r, f and y have their optimum
at unity (1), and KGE values bigger than —0.41 ensure the models are
performing better than the mean flow prediction (Knoben et al., 2019).
KGE is particularly applicable here as it accounts for three differ-
ent important aspects of the reconstructed time series by including a
correlation, a bias and a variability term, and thus providing infor-
mation on how well the storm surge time-series are reproduced. For
a full discussion of the KGE-statistic and its advantages over the Nash—
Sutcliffe efficiency see Nash and Sutcliffe (1970) (or with the mean
squared error see Gupta et al. (2009)), as these are the most commonly
used metrics for evaluating hydrological model performance, where the
behavior of the models at the extremes is very important too.

where r =

3.2. Reconstruction of the storm surge along the New Zealand coastline

Finally, using the best atmospheric predictor identified in the first
part of the study, the storm surge is reconstructed over the whole
coastal domain of the hindcast data, for the 3 statistical models. The
procedure involves training separate models for each of the coastal
points following the workflow depicted in Fig. 4, using only the best
atmospheric predictor. In this part, we use again the 70% of the data
to train the models (which correspond to almost 17 years of data), and
the remaining 30% are used to validate results.

4. Results

Results are analyzed in two different sections. The results of the
experiments aimed at identifying the best predictor are first analyzed,
using Figs. 5 and 6, and then, the results of their extension to the whole
coast, with the optimal atmospheric predictor, are presented in Fig. 7.

4.1. Find optimal atmospheric predictor: Experiments results

The results of the experiments run for the different models and
predictors at all selected locations are presented, where we can observe
the relationship between the input data and the best performing model.
Moreover, the relationships between the different variables used and
the reconstructed surge levels, as well as the effect of the temporal
(time lag) and spatial domains, are shown here, to asses the optimal
atmospheric predictor.

4.1.1. Overview of the experiments

In this section we will describe all the features and variables affect-
ing model performance (winds, time lag, spatial domain...), with the
aim of highlighting differences between the models.

The main difference we observe in Fig. 5 is that predictors using the
projected winds are outperformed by those using the SLPG, providing
inferior KGE values for almost all the scenarios, and for the 3 statistical
models (here we compare the region in the middle of the plots, so Gra-
dients=False and Winds=True, with Gradients=True and Winds=False).
Note that some combinations are missing in Fig. 5 (shown as gray), and
these correspond to the combination of wind and regional predictors;
because we are considering the winds are only relevant in the local
scale (WMO, 2011). All these scenarios were outperformed by the
gradients, which appear more smooth, possibly having more direct
information in the storm surge behavior. When both the SLPG and the
projected winds are used, model performance also worsens, compared
to just utilizing the SLPG reconstructions.

Also in Fig. 5, the results for the time lag parameter suggest it is
best to utilize at least the 2 previous days to the moment of the recon-
struction, as results show adding time lags improve the performance of
the statistical models in more than 95% of the experiments tried. The
regional domain gives the best results using the linear regression model,
obtaining the best possible results in all locations. This results for the
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Fig. 5. Models performance in terms of the Kling-Gupta Efficiency (KGE) and Pearson correlation coefficient (only for multi-linear regression) for all the available predictors
(x-axis) and in all studied locations (y-axis, colored numbers correspond to the nodes in the numerical model data where the experiments have been tested, see Fig. 2), for the
three statistical models (multi-linear, k-NN and gradient boosting regression). The up triangles appearing in each row represent the best 2 performing predictors.

time lag parameter confirm results in previous studies that suggest the
storm surge is a long wave that depends on the atmospheric situation
over a large spatial domain (Bell and Goring, 1996), but also in the way
these atmospheric conditions develop through time.

Models performance is shown in Fig. 6, where multi-linear re-
gression provides a better reconstruction as more data are provided
as input, achieving the best results when regional predictors and 3
time lags are used, and the reconstruction worsens as we decrease
the amount of information fed into the model. Conversely, k-NN and
gradient boosting regressions, even though it is clear that they also
require sufficient information to behave well, perform worse in sit-
uations where the regional predictor is used, but work better when
local features influencing the storm surge are utilized (outperforming
multi-linear regression in these cases).

Now, we focus on the influence of the hyperparameters of the k-
NN and gradient boosting regressors on model performance, shown
in Fig. 7. For the gradient boosting model, we tried different tree
maximum depths and minimum number of data points per final leaf
on the decision trees, and experiments show an optimal convergence
at depth~9 and when at least 3% of the data remain at each final
leaf. When the tree is pruned more and leaves start acquiring fewer
data points, the model might start overfitting. In the case of k-NN, the
most informative parameter is the number of neighbors used, which
can also help understanding the results presented above. The selection
of this hyperparameter is not straightforward and can also lead to
overfitting, which is known as the bias-variance trade-off. On the one
hand, when the number of neighbors is very low, or even 1, the bias
in the reconstructed data is minimal but the overall variance in the
data is large. On the other hand, if the model is trained with a large
number of neighbors, the bias in the results will become also higher,

but the variance will be reduced, and so the capacity to predict extreme
events, which in this case can be flooding cases.

4.1.2. Best performing predictor selection

The results presented in the previous section do not give us an
overall best predictor as predictor performance is highly influenced by
the model and the data that is fed into it.

Nevertheless, the best predictor that has been chosen to carry out
the reconstruction of the historical storm surge daily maxima along the
New Zealand coastline is that associated with the best results provided
by the multi-linear regression approach. Indeed as shown in Fig. 6,
multi-linear regression consistently outperforms the 2 other models
and almost always does so using a predictor that includes SLP and
SLP gradients, a time lag of 3 days (the day and two days before the
reconstruction) and the regional domain. In the two locations where
this predictor does not lead to the best results, the best results are
obtained when the gradients are not used, but again using multi-linear
regression. However, the difference in model performance is below 0.02
for both the KGE and the Pearson correlation metrics.

In Fig. 8, the daily maximum storm surge time series comparison
between numerical model data and multi-linear regression model re-
constructions for 5 different locations and 2 different storms are shown.
The validation metrics are excellent for this statistical model, which is
the best performing model in all the cases. The validation metrics for
all the locations studied in the experiments (see Fig. 2) are shown in
Table A2, complementing the information in this figure.

Both the time series and the scatter plots show promising results in
all locations, here we are showing examples of both the best (200, 393
and 1146) and worst (480 and 803) reconstructed locations, from the
locations we used in the experiments. Metrics for the mean values show
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Fig. 6. (top) KGE values for the best statistical model, for all atmospheric predictors. (down) Best statistical model, for all the atmospheric predictors. Triangles show the winning

predictor for each locations. Stars show the winning location for each predictor.

Pearson correlation coefficients above 0.85, and KGE values above
0.73. For the extreme metrics, that can be found in Table A2, the RMSE
calculated for the 99% percentile show values always below 10 cm,
reaching almost 4 cm errors in the best reconstructed locations.

4.2. Reconstruct the storm surge along the New Zealand coastline: Final
results

Once the best predictor has been identified, for which the SLP and
the gradients, time lapse of 3 and the regional predictor are used, this
predictor is used in all the models to reconstruct the historical storm
surge daily maximum values in the entire coast of New Zealand. Results
for the KGE metric are shown in Fig. 7.

In agreement with the results presented in the earlier sections,
performance is not uniform over the coastline, the regions which are
more exposed to storms coming from the south of Tasmania are more
predictable in terms of the storm surge maxima and present better
results, while regions which are hidden from this dominant storms are
more difficult to predict.

The better performance of the multi-linear regression technique
was explained before in the experiments results, and we can conclude
that highly informative atmospheric predictors work better with multi-
linear regression, except from the utilization of the projected winds.
However, we can see how k-NN and gradient boosting underperform,
although gradient boosting provides similar results to its principal
competitor, the multi-linear regression. In the case of k-NN, where the
best results are obtained with a very low number of neighbors, results
are always below the other statistical methods, and although extremes
are well predicted given this low number of closest neighbors, the
overall performance is very poor.

Fig. 7 shows the value of the hyperparameters that provide the best
performance of the statistical models. For the k-NN case, a very low
number of neighbors is usually chosen as best by the KGE metric (which
is very influenced by the extremes reconstruction), and for the gradient

boosting regression, the KDE (Kernel density estimation) has its high at
a maximum depth of 15, which represents the more complex tree.

5. Discussion and future work

We have studied the relationships between several combinations
of atmospheric predictor, statistical model and location to reconstruct
storm surge along the New Zealand coastline. If we call each combi-
nation an experiment, we have evaluated a total of more than 3,000
experiments (many more if we count the repeated experiments depend-
ing on the different hyperparameters used in the models), in order to
reach the conclusions outlined below.

In addition, the behavior of all the statistical models was evaluated
and the best predictor was used to determine the predictability of the
maximum value of storm surge, resolved by location, in the two islands
of New Zealand, the North Island (or Te Ika-a-Maui), and the South
Island (or Te Waipounamu). Thus, given this best predictor, multi-
linear regression is the model that achieves the highest values for our
metric of choice, which is the Kling-Gupta Efficiency statistic.

The following are the main conclusions drawn from this study:

5.1. Predictors

» The main feature observed in relation to the atmospheric pre-
dictor is the systematically positive impact of the SLP gradients
on the reconstruction performance. On the contrary, in the case
of the local predictors, the projected wind always degrade the
performance of all models. This drop in performance might be
related to the fact that first PCs representing the 98% of the
variance are not that informative in the latter case, adding noise
to the reconstructions. To validate the usage of the projected
winds, we tested some experiments, using just the wind speed,
calculated from the meridional and zonal components, leading to
similar results. Besides, wind speed PCs were very similar to the
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Fig. 7. Storm surge spatial reconstruction along the New Zealand coastline. Model performance expressed as Kling-Gupta Efficiency (KGE) using k-NN regression (a), gradient
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the k-NN regression; (e) the leaves for the gradient boosting. Best statistical model for each hindcast node (f).

PCs calculated from the SLP gradients, then suggesting the direct
comparison of these used variables affecting models performance.
It has been also demonstrated here that the storm surge can
be influenced by the atmospheric conditions existing at least
two days before the time of analysis, then assuring the storm
surge is not just affected by the atmospheric conditions in the
exact moment of the reconstruction, but from previous ones too.
The storm surge is a long wave with periods ranging from 2
to several days (WMO, 2011), then affected by the atmospheric
conditions existing no just in the exact moment of the analysis. In
New Zealand, this is also true, and has been analyzed in several
studies (Stephens and Bell, 0000; Bell and Goring, 1996).

In this way, the predictors that have generally achieved better
results are the regional ones, which might have atmospheric infor-
mation that is moving towards the predicted location. Moreover,
storm surge is a long wave, and it depends on the atmospheric
situation over a large spatial domain (Bell and Goring, 1996),
and this regional predictor covers a big area that might see the
complete storm behavior (Stephens et al., 2019b).

5.2. Statistical models

Each statistical model behaves differently. Multi-linear regression
performs best with the regional predictors when the 2 other models
give the best results for when using local predictors. When using
local predictor multi-linear regression is almost always outperformed
by either gradient boosting or k-NN. The reason for this behavior
might be the large number of principal components that are retained
with the daily and regional predictors, see Wilks (2005) for a detailed
explanation on how a larger number of independent variables might
affect the dependent variable reconstruction. In the case of gradient
boosting regression, for example, the selection process to bifurcate the
tree becomes very costly and imprecise, and the feature engineering
step becomes very important here (Hastie et al., 2001; Friedman, 2000).
This is not the case of smaller (local of 3.3 or 5.5 degrees) predictors,
in which the local atmospheric behaviors are more represented in the
first PCs, then being the use of these techniques very suitable.

5.3. Location

The spatial pattern of performance observed is clear for all models:
the areas more exposed to storms coming from the south-west present

more predictable surges, while those areas more sheltered from the
same storms are harder to predict. This is because in the latter case the
storm has already interacted with the land by the time it reaches these
locations and the surge has interacted with the coastline so it is much
more complex to predict. This task is even more challenging in areas
with high variations of storm surge, as is generally the South Island
(Te Waipounamu). Secondly, the worst reconstructions correspond to
large embayment areas (Tasman, Golden Bay and the Firth of Thames),
where non-linear phenomenal might contribute to the total surge.
Finally, the north area of the North island is more affected by meso-
scale eddies whose signal was in the same frequency range as the storm
surge and might have an impact on the results.

In this study, we propose the utilization of linear models (or di-
versions of linear models) to predict the storm surge daily maximum
levels in New Zealand, to build an understanding on the atmospheric
conditions affecting the storm surge behavior, so the insight gained in
this study can be used to mitigate future sources of uncertainty. We
use hindcast data, so we first validated the effect of the resolution of
this hindcast against tidal gauges located in bays, inlets, etc. around
the country, and results are shown in Fig. 2 and Table Al. Therefore,
we assume that the model resolution is enough for the purpose of the
study, as these results present Pearson correlation coefficient values
being often close to 0.9. Once Moana hindcast is validated, we consider
Moana hindcast as quasi-observations to calibrate our statistical models
to estimate the storm surge along the New Zealand coastline. Moana’s
inaccuracies do not affect our results, the errors of our results are due to
limitations of the statistical models we propose to reconstruct the storm
surge. It is true that if the numerical model resolution was improved,
the reference data quality would be higher, however, it would not
change the way the methodology is used, as our study simply finds the
optimal atmospheric predictor, based on the atmospheric data used as
inputs and the storm surge data as outputs and given a fixed resolution.

Future work will include the training of new statistical models that
are able to exploit the non-linear relationships between the predictor
and the predictand. For example, Bruneau et al. (2020), Tiggeloven
et al. (2021) demonstrated that neural networks are useful to pre-
dict storm surge and total water levels worldwide, which are to our
knowledge the only other studies that have looked at either daily or
hourly surge predictions using neural networks at the global scale.
Other studies such as Adeli et al. (2022), Bai and Xu (2022) also
studied the usage of CNN and LSTM (convolutional and long-short
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term memory neural networks) to predict storm surge levels, but the
problem was slightly different, as they used the parameterized track to
train the models, not the spatial atmospheric conditions. This approach
is particularly suited to areas that are primarily influenced by TCs,
but less in the case of New Zealand. However, using data driven
techniques instead of hydrodynamic models lacks the understanding
of the underlying physical processes of surges, then leading to several
challenges. In order to solve this problem, physics-informed machine
learning techniques show up as a future work that can be used to
improve the predictive ability for generalizable NN models (Willard
et al., 2020; Kashinath et al., 2021b,a). An example of this methods
is the sparse identification of nonlinear dynamical systems (Brunton
et al.,, 2016b,a), where data can be used to extract the underlying
functions that govern the behavior of the predictands, being the final
relationships comparable to empirical equations, as storm surge can
be quickly inferred from atmospheric data (WMO, 2011). Also in this
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sense, different meta-models can offer very interesting solutions, as
we can run several case studies that clearly represent the overall
storm surge behavior, and then use these cases to reconstruct the total
performance of the surges in the desired area (Camus et al., 2013,
2011).

The filtered storm surge signal is reconstructed in this work (we
apply a Lanczos filter to remove the high frequency oscillations from
the non-tidal residual), using atmospheric variables that we know
directly influence this variable and were used in several studies (Cid
et al., 2017; Cagigal et al., 2020; Tiggeloven et al., 2021). Nevertheless,
on the forecasting of a flooding event, we might be interested not only
on the storm surge, but in the non-tidal residual as a whole, since Arns
et al. (2020) have found that the linear summation of astronomical tide
and storm surge might produce overestimation of the total water level.
This non-tidal residuals have information that might be predictable,
probably adding more informative variables to the predictor set, or
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even using the information in the actual series. Bruneau et al. (2020)
reconstructed the non-tidal residuals adding waves and precipitation to
the predictor variables, and they found decent results worldwide, but
difference is not made to distinguish how well models are capturing
the actual high frequency residuals in all the locations studied. Few
previous works also studied the skew surge, which is the absolute
difference between the max recorded sea level and the predicted tidal
high water within a tidal cycle (Williams et al., 2016), which might
be enough if just the maximum total water level within a tidal cycle
is required. Alternatives to solve this problem include the prediction
of the tide-surge residuals individually, as a good estimation of the
contribution of this part to the full signal has been found to be very
important worldwide (Stephens and Bell, 0000 studied this in New
Zealand).

Finally, our models can be also trained to reconstruct not just
the current maximum surge levels, but future times, then producing
reliable forecasts for the sea level in the future days, or even hours if
the resolution in both predictors and predictands is changed (Dullaart
et al., 2020). In Pathak et al. (2022), the hourly atmospheric conditions
are statistically forecasted for the following days, obtaining excellent
results that outperform numerical models in seconds. Besides, more
accurate atmospheric products from local sources such as remote sens-
ing products, even though spatial and temporal data coverage may be
limited, might be used to address this problem.

6. Conclusions

A novel methodology is proposed in this article that reconstructs
the storm surge maximum levels over the entire coast of New Zealand.
First, several atmospheric predictors are utilized that use different
variables, various time lags and different spatial domains, given 3
statistical models (multi-linear regression, k-NN regression and gradient
boosting regression), to find the best possible combination. Following
this, the storm surge daily maxima is reconstructed with the different
statistical models along the entire coast, based on the best performing
predictor. In this way, we have demonstrated that careful selection of
the combination of atmospheric predictors and statistical model, can
lead to large improvements in the ability to predict storm surges. For
the multi-linear regression, that is the best performing method, the
conclusion is that the more data is used, except from the projected
winds, the better this model works. For the other two methods, the
increase of the spatial domain of the data might wrongly affect the
performance of some of the models. In all the scenarios, using at least
two previous day to the reconstruction improve model performance.

Finally, and given a regional predictor with three days historical
memory, the storm surge time series in New Zealand have been re-
constructed daily using multi-linear regression. Results show very good
performance, with average values of 0.88 for the Pearson correlation
coefficient and 4.3 cm for the root mean squared error metric (RMSE)
(the average value for the RMSE in the 99% percentile is 8.2 cm).
For the KGE statistic, which is the metric used to rank the models,
the average value is 0.82. Our results highlight the suitability of data
driven models to simulate storm surge maximum levels, and prove the
methodology is appropriate for finding a well performing atmospheric
predictor that is capable of reconstructing these values, given different
data driven methods.
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