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1 Introduction
Let us consider a convex domain Ω ⊂ ℝd, 1 ≤ d ≤ 3, with boundary Γ. We will assume that Ω is polygonal
if d = 2 or polyhedral if d = 3. Given T > 0, we denote I = (0, T), Q = Ω × I and Σ = Γ × I. In this paper, we
investigate the numerical approximation of

min
u∈Uad

J(u) := ∫
Q

(yu(x, t) − yd(x, t))2 dx dt + μ‖u‖L1(Q), (P)

where μ ≥ 0 and
Uad = {u ∈ L∞(Q) : umin ≤ u(x, t) ≤ umax for a.a. (x, t) ∈ Q}

with −∞ < umin < umax < +∞. For μ > 0, we will further suppose that umin < 0 < umax.
Above, yu denotes the state associated with the control u related by the following semilinear parabolic

state equation:
{{{{
{{{{
{

∂yu
∂t
+ Ayu + f (x, t, yu) = u in Q,

yu = 0 on Σ,
yu(0) = y0 in Ω.

(1.1)

Assumptions on the data A, f , y0 and the target state yd are specified in Section 2.
The obtention of error estimates for the numerical approximation of optimal control problems that do

not include a Tikhonov regularization term is a challenging problem. The only references we are aware of
are [12, 21, 23, 28] and [16]. In the first four ones, problems governed by elliptic equations are studied. In
[23], the equation is elliptic and linear, the variational discretization is used and the control is assumed to
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be of bang-bang type. In [21], the authors deal with a bilinear control problem governed by a semilinear
elliptic equation; a structural assumption on the adjoint state is done so that error estimates can be obtained
for bang-bang controls. In our paper [12], we deal with a control problem governed by a semilinear elliptic
equation; a sparsity promoting term is included in the objective functional, and error estimates are obtained
for the state even in the case of an optimal control with singular arcs. In [28], similar results are obtained
for a Dirichlet control problem governed by a linear elliptic equation. One of the main ingredients in the
obtention of error estimates for control problems governed by nonlinear equations is the use of appropriate
and realistic second-order sufficient conditions for strong local minima (see Definition 1). In [16], second-
order sufficient conditions for problems governed by a semilinear parabolic equation in which the controls
are only functions of time are obtained before getting the error estimates. For the work at hand, we will use
the second-order sufficient conditions obtained in [11].

This paper continues a series of previous works [11, 12, 14–16] where related problems are studied.
In [14, 15], the objective functional has a Tikhonov regularization term and includes a term promoting

directional sparsity. Specifically, the numerical approximation of problems with objective function

J(u) = 12 ∫
Q

(yu − yd)2 dx dt +
κ
2 ∫
Q

u2 dx dt + μ‖u‖L1(Ω;L2(I)), κ > 0,

is studied.
In [16], the Tikhonov regularization term is removed; no sparsity-promoting term is included yet in this

work, and error estimates rely on second-order sufficient optimality conditions formulated on the cone Dτ ̄u
(see Section 2 below for a definition of this cone). The numerical approximation of that problem is studied,
and error estimates are obtained.

In [11], it is shown that the smaller cone Cτ ̄u is enough to obtain second-order sufficient optimality con-
ditions in problems with no Tikhonov term. No numerical discretization is studied in [11].

The paper [12] deals with error estimates for a problem governed by a semilinear elliptic equation where
the Tikhonov regularization term is replaced by a non-differentiable sparsity-promoting term. The results of
this paper are obtained assuming a condition on the corresponding cone Cτ ̄u.

In the paper at hand, we discretize problem (P) and take advantage of the second-order conditions pro-
vided in [11] to obtain error estimates for the state variable assuming again only conditions on the smaller
cone Cτ ̄u. The novelty with respect to [14, 15] is that we are able to drop the Tikhonov term; with respect to
[16], it is that we include a sparsity-promoting term, the control variable depends on both time and space,
and we use a smaller cone; and with respect to [12], it is that we deal with a parabolic equation.

2 Results about the Continuous Problem
On the partial differential equation (1.1), we make the following assumptions.
(A1) A denotes the elliptic operator

Ay = −
d
∑
i,j=1

∂xj (ai,j(x)∂xi y),

where ai,j ∈ C0,1(Ω̄), and satisfies the following uniform ellipticity condition:

there exists λA > 0 such that λA|ξ |2 ≤
d
∑
i,j=1

ai,j(x)ξiξj for all ξ ∈ ℝd and a.a. x ∈ Ω.

(A2) We assume that f : Q ×ℝ→ ℝ is a Carathéodory function of class C2 with respect to the last variable
satisfying the following properties:

there exists Cf ∈ ℝ such that
∂f
∂y
(x, t, y) ≥ Cf for all y ∈ ℝ,

f ( ⋅ , ⋅ , 0) ∈ L∞(Q),
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for all M > 0, there exists Cf,M > 0 such that

∂j f
∂yj
(x, t, y)

≤ Cf,M for all |y| ≤ M and j = 1, 2,

for all ρ > 0 and all M > 0, there exists ε > 0

such that

∂2f
∂y2
(x, t, y1) −

∂2f
∂y2
(x, t, y2)


< ρ for all |y1|, |y2| ≤ M with |y1 − y2| < ε,

for almost all (x, t) ∈ Q.
(A3) For the initial state, we suppose that y0 ∈ Cα(Ω̄) ∩ H1

0(Ω), where Cα(Ω̄) denotes the space of α-Hölder
continuous functions in Ω̄ with α ∈ (0, 1].

(A4) yd ∈ L ̂p(0, T; L ̂q(Ω)) for some ̂p, ̂q ≥ 2 with 1
̂p +

d
2 ̂q < 1.

We denote H2,1(Q) = L2(0, T;H2(Ω) ∩ H1
0(Ω)) ∩ H1(0, T; L2(Ω)), and Cβ,β/2(Q̄) for 0 < β ≤ 1 is the space of

Hölder functions with exponent β in x and β/2 in t; see [27, pp. 7 and 8]. We have the following result
concerning the regularity of the state.

Theorem 2.1. Suppose assumptions (A1)–(A3) hold. Then, for every u ∈ Lr(0, T; Lp(Ω)) with 1
r +

d
2p < 1 and

r, p ≥ 2, there exists a unique solution yu of (1.1) in the spaceH2,1(Q) ∩ Cβ,β/2(Q̄) for some β ∈ (0, α]. Moreover,
the following estimate holds:

‖yu‖Cβ,β/2(Q̄) + ‖yu‖H2,1(Q) ≤ η(‖u‖Lr(0,T;Lp(Ω)) +M0)

for a monotone non-decreasing function η : [0,∞)→ [0,∞) with η(0) = 0 independent of u, and

M0 = ‖f ( ⋅ , ⋅ , 0)‖L∞(Q) + ‖y0‖Cα(Ω̄) + ‖y0‖H1
0(Ω).

Further, if uk ⇀ u weakly* in L∞(Q), then the strong convergence ‖yuk − yu‖C(Q̄) → 0 holds.

The existence of a unique solution of (1.1) in the space L2(0, T;H1
0(Ω)) ∩ L∞(Q) as well as the estimates in

L∞(0, T; L2(Ω)) and L2(0, T;H1
0(Ω))were proved in [8]. The H2,1(Q) regularity is a well-known consequence

of the convexity ofΩ, the Lipschitz regularity of the coefficients ai,j, and theH1
0(Ω) regularity of y0. The reader

is referred to [27, Chapter III, § 10] or [24] for the Hölder regularity. The convergence yuk → yu in C(Q̄) follows
easily from the estimates for yuk in H2,1(Q) ∩ Cβ,β/2(Q̄).

Notice that Theorem 2.1 implies that there exists M∞ > 0 such that

‖yu‖Cβ,β/2(Q̄) + ‖yu‖H2,1(Q) ≤ M∞ for all u ∈ Uad. (2.1)

We denote Y = H2,1(Q) ∩ Cβ,β/2(Q̄) and G : L∞(Q)→ Y as the mapping associating to each control the
corresponding state G(u) = yu.

Theorem 2.2. Themapping G is of class C2. Moreover, for every u, υ, υ1, υ2 ∈ L∞(Q), we have that zυ = G(u)υ
is the solution of

{{{{
{{{{
{

∂z
∂t
+ Az + ∂f

∂y
(x, t, yu)z = υ in Q,

z = 0 on Σ,
z(0) = 0 in Ω,

(2.2)

and zυ1 ,υ2 = G(u)(υ1, υ2) solves the equation

{{{{{
{{{{{
{

∂z
∂t
+ Az + ∂f

∂y
(x, t, yu)z = −

∂2f
∂y2
(x, t, yu)zυ1 zυ2 in Q,

z = 0 on Σ,
z(0) = 0 in Ω,

where zυi = G(u)υi, i = 1, 2. Moreover, zυ and zυ1 ,υ2 are continuous functions in Q̄.

The proof of this result can be obtained by using the implicit function theorem; see e.g. [18, Theorem 5.1].
For any u ∈ L∞(Q) and any υ ∈ L1(Q), we will denote zυ the solution of (2.2).
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Lemma 2.3. Let u ∈ Uad be arbitrary. Then there exists Cq,s > 0 independent of u such that

‖zυ‖Lq(Q) ≤ Cq,s‖υ‖Ls(Q) for all υ ∈ Ls(Q)

if q and s satisfy any of the following conditions:
(A) s = 1 and q < d+2d ,
(B) s > 1 + d2 and q = +∞,
(C) s ∈ (1, 2) and q < rd, where r2 = 2s

2−s and r3 =
5s

5−2s ,
(D) s = 2 and q < +∞ if d = 2 or s = 2 and q = 10 if d = 3.

Proof. (A) From [3, Theorem 6.3] or [7, Theorem 2.2], we know that, for υ ∈ L1(Q), zυ ∈ Lr(I;W1,p(Ω))
for all r, p ∈ [1, 2) such that 2

r +
d
p > d + 1 and ‖zυ‖Lr(I;W1,p(Ω)) ≤ C‖υ‖L1(Q). Using the Sobolev embedding

W1,p(Ω) → Lq(Ω) for p = qd
q+d and setting q = r, we obtain the condition

2
q
+
d
p
=
2
q
+
q + d
q
> d + 1,

which is equivalent to q < d+2d . This proves the estimate in case (A).
(B) In this case, the estimate can be deduced from [27, Theorem III.7.1].
(C) In this case, the estimate follows by the Riesz–Thorin interpolation theorem [1, Theorem 1.1.1]

between the corresponding estimates for cases (A) and (D). Indeed, for every s ∈ (1, 2), we have

1
s
=

2
s − 1
1 +

2 − 2
s

2 and 2
s
− 1 ∈ (0, 1).

Hence, the estimate follows for r given by the relation

1
r
=

2
s − 1
q
+
2 − 2

s
p

for all q < +∞ if d = 2 and q = 10 if d = 3. This implies that r < 2s
2−s if d = 2 and r <

5s
5−2s if d = 3.

(D) This result is proved in [20, Theorem 2.4].

Corollary 2.4. For all u, υ ∈ Uad and all q < d+2d , there exists a constant Cq,1 > 0 independent of u and υ such
that ‖yu − yυ‖Lq(Q) ≤ Cq,1‖u − υ‖L1(Q).

Proof. Denote ζ = yu − yυ. Subtracting the equations satisfied by u and υ and using themean value theorem,
we get

{{{{
{{{{
{

∂ζ
∂t
+ Aζ + ∂f

∂y
(x, t, yθ)ζ = u − υ in Q,

ζ = 0 on Σ,
ζ(0) = 0 in Ω,

where yθ = yu + θ(yu − yυ) and θ : Q → [0, 1] is a measurable function. Then the result follows from Lem-
ma 2.3 along with (A2) and (2.1).

Let us denote
F(u) = 12 ∫

Q

(yu − yd)2 dx dt and j(u) = ‖u‖L1(Q).

Before computing the derivatives of F, we define for every u ∈ Uad its related adjoint state φu as the unique
solution of

{{{{
{{{{
{

−
∂φ
∂t
+ A∗φ + ∂f

∂y
(x, t, yu)φ = yu − yd in Q,

φ = 0 on Σ,
φ( ⋅ , T) = 0 in Ω,

and where A∗ is the adjoint of A given by

A∗ψ = −
n
∑
i,j=1

∂xj (aj,i(x)∂xiψ).
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From Theorem 2.1, we have that, for every u ∈ Uad, φu ∈ H2,1(Q) ∩ Cβ,β/2(Q) for some β ∈ (0, 1] and there
exists a constant C independent of u such that

‖φu‖Cβ,β/2(Q̄) + ‖φu‖H2,1(Q) ≤ C for all u ∈ Uad. (2.3)

The next theorem follows from the chain rule, Theorem 2.2 and assumptions (A2) and (A4).

Theorem 2.5. The functional F : L∞(Q)→ ℝ is of class C2, and for every u, υ, υ1, υ2 ∈ L∞(Q),

F(u)υ = ∫
Q

φuυ dx dt, F(u)(υ1, υ2) = ∫
Q

(1 − φu
∂2f
∂y2
(x, t, yu))zυ1 zυ2 dx dt,

where zυi = G(u)υi, i = 1, 2.

From (A2), (2.1), Lemma 2.3 and (2.3), we infer that the forms F(u) and F(u) can be extended through the
same formulas to continuous linear and bilinear forms, respectively, in L2(Q). The following result is proved
in [19, Lemma 6] for the case θ ≡ 1. See [16, Lemma 3.5] for the adaptation of the proof for any measurable
function θ : Q → [0, 1].

Lemma 2.6. Suppose that ̄u and u belong to Uad and θ : Q → [0, 1] is a measurable function. Then, for every
γ > 0, there exists ε > 0 such that

(F
(uθ) − F( ̄u))υ2 ≤ γ‖zυ‖

2
L2(Q) for all υ ∈ L2(Q) if ‖yu − y ̄u‖L∞(Q) < ε, (2.4)

where uθ = ̄u + θ(u − ̄u) and zυ = G( ̄u)υ.

The functional j : L1(Q)→ ℝ is convex and Lipschitz. The directional derivative of j at u in the direction υ can
be computed as

j(u; υ) = ∫
u>0

υ dx dt + ∫
u=0

|υ|dx dt − ∫
u<0

υ dx dt.

In what follows, we will write J(u; υ) = F(u)υ + μj(u; υ). Moreover, denoting by ∂j(u) the subdifferen-
tial of j at u in the sense of convex analysis, we have that λ ∈ ∂j(u) if and only if λ(x, t) ∈ sign(u(x, t)) for
a.a. (x, t) ∈ Q, where sign(u) denotes the multi-valued function sign(u) = {1} if u > 0, sign(u) = {−1} if u < 0,
and sign(u) = [−1, 1] if u = 0.

Existence of a solution of (P) follows in a standard way using Theorem 2.1; see e.g. [10]. Since (P) is not
a convex problem, we consider local solutions as well. Let us state precisely the different concepts of local
solution.

Definition 1. We say that ̄u ∈ Uad is an Lr(Q)-weak local solution of (P), with r ∈ [1, +∞], if there exists some
ε > 0 such that

J( ̄u) ≤ J(u) for all u ∈ Uad with ‖ ̄u − u‖Lr(Q) ≤ ε.

An element ̄u ∈ Uad is said to be a strong local solution of (P) if there exists some ε > 0 such that

J( ̄u) ≤ J(u) for all u ∈ Uad with ‖y ̄u − yu‖L∞(Q) ≤ ε.
We say that ̄u ∈ Uad is a strict (weak or strong) local solution if the above inequalities are strict for u ̸= ̄u.

Next we state first-order optimality conditions; see [11, Theorem 2.9].

Theorem 2.7. Suppose ̄u is a local solution of (P) in any of the senses given in Definition 1. Then

J( ̄u; u − ̄u) ≥ 0 for all u ∈ Uad

holds. Moreover, there exist ̄y and φ̄ in Y and λ̄ ∈ ∂j( ̄u) such that

{{{{
{{{{
{

∂ ̄y
∂t
+ A ̄y + f (x, t, ̄y) = ̄u in Q,

̄y = 0 on Σ,
̄y( ⋅ , 0) = y0 in Ω,

(2.5a)
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{{{{
{{{{
{

−
∂φ̄
∂t
+ A∗φ̄ + ∂f

∂y
(x, t, ̄y)φ̄ = ̄y − yd in Q,

φ̄ = 0 on Σ,
φ̄( ⋅ , T) = 0 in Ω,

(2.5b)

∫
Q

(φ̄ + μλ̄)(u − ̄u)dx dt ≥ 0 for all u ∈ Uad. (2.5c)

Corollary 2.8. Under the assumptions of Theorem 2.7, the following properties are fulfilled:

if φ̄(x, t) > +μ, then ̄u(x, t) = umin,
if φ̄(x, t) < −μ, then ̄u(x, t) = umax.

In addition, if μ > 0, then the following properties:

if φ̄(x, t) = +μ, then ̄u(x, t) ≤ 0,
if φ̄(x, t) = −μ, then ̄u(x, t) ≥ 0,
if |φ̄(x, t)| < μ, then ̄u(x, t) = 0,

λ̄(x, t) = Proj[−1,+1](−
1
μ
φ̄(x, t)),

and λ̄ ∈ H1(Q) ∩ Cβ,β/2(Q̄) hold.

The reader is referred to [4] for the proof of the above result. In this reference, the result is proved for the
elliptic case, the changes for the parabolic case being obvious.

Given ̄u ∈ Uad satisfying (2.5a)–(2.5c), we say that υ ∈ L2(Q) satisfies the sign condition if

υ(x, t)
{
{
{

≥ 0 if ̄u(x, t) = umin,
≤ 0 if ̄u(x, t) = umax.

(2.6)

We also introduce the cone

C ̄u = {υ ∈ L2(Q) satisfying (2.6) and J( ̄u; υ) = 0}.

If μ = 0, we deduce from Corollary 2.8 that φ̄(x, t)υ(x, t) = |φ̄(x, t)υ(x, t)| for every υ ∈ L2(Q) satisfying
the sign condition (2.6). Consequently, the following identity holds:

C ̄u = {υ ∈ L2(Q) satisfying (2.6) and υ(x, t) = 0 if |φ̄(x, t)| > 0}.

For μ > 0, from Corollary 2.8, we also infer that

C ̄u =
{{{
{{{
{

υ ∈ L2(Q) satisfying (2.6) and υ(x, t)
{{{
{{{
{

≥ 0 if φ̄(x, t) = −μ and ̄u(x, t) = 0,
≤ 0 if φ̄(x, t) = +μ and ̄u(x, t) = 0,
= 0 if |φ̄(x, t)| − μ

 > 0.

}}}
}}}
}

We formulate the second-order necessary optimality conditions on the critical cone C ̄u.

Theorem 2.9. Suppose ̄u is a local solution of (P) in any of the senses given in Definition 1. Then we have
F( ̄u)υ2 ≥ 0 for all υ ∈ C ̄u.

The proof of this theorem is exactly as the one of [5, Theorem 3.7].
To formulate second-order sufficient conditions, we define the extended cone. For ς ≥ 0, we define

Cς ̄u = D
ς
̄u ∩ G

ς
̄u ,

where
Gς ̄u = {υ ∈ L

2(Q) satisfying (2.6) and J( ̄u; υ) ≤ ς‖zυ‖L1(Q)},
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and

if μ = 0, Dς ̄u = {υ ∈ L
2(Q) satisfying (2.6) and υ(x, t) = 0 if |φ̄(x, t)| > ς},

if μ > 0, Dς ̄u =
{{{
{{{
{

υ ∈ L2(Q) satisfying (2.6) and υ(x, t)
{{{
{{{
{

≥ 0 if φ̄(x, t) = −μ and ̄u(x, t) = 0,
≤ 0 if φ̄(x, t) = +μ and ̄u(x, t) = 0,
= 0 if |φ̄(x, t)| − μ

 > ς.

}}}
}}}
}

Notice that C ̄u = C0 ̄u ⊂ C
ς
̄u for all ς > 0. The following theoremon second-order sufficient optimality conditions

was proved in [11, Theorem 3.1].

Theorem 2.10. Let ̄u ∈ Uad satisfy the first-order optimality conditions (2.5a)–(2.5c). Suppose in addition that
there exist δ > 0 and ς > 0 such that

F( ̄u)υ2 ≥ δ‖zυ‖2L2(Q) for all υ ∈ Cς ̄u , (2.7)

where zυ = G( ̄u)υ. Then there exist ε > 0 and κ > 0 such that

J( ̄u) + κ2 ‖yu −
̄y‖2L2(Q) ≤ J(u) for all u ∈ Uad such that ‖yu − ̄y‖L∞(Q) < ε. (2.8)

Note that if ς < ς, then Cς ̄u ⊆ C
ς�̄�
u , and hence, without loss of generality, we can suppose that ς < μ in the

case μ > 0.
The purpose of this work is to obtain error estimates for the approximations described in Section 3, of

the state and control variables. As we will show later, the second-order sufficient optimality conditions are
enough todeduce someerror estimates for the approximationof the states.Nevertheless, to get error estimates
for the control, it is well known that an extra assumption is needed. To this end, we introduce the following
assumption:

there exist Λ > 0 and γ ∈ (0, 1] such that meas{(x, t) ∈ Q : |φ̄(x, t)| − μ
 ≤ ε} < Λε

γ . (H)

The second-order sufficient optimality condition combinedwith this assumption lead to a stronger inequality
than (2.8). We prove two lemmas to derive this new inequality.

Lemma 2.11. Let ̄u ∈ Uad satisfy the first-order condition (2.5a)–(2.5c)and the structural assumption (H). Then

F( ̄u)(u − ̄u) + μj(u) − μj( ̄u) ≥ ν‖u − ̄u‖1+1/γL1(Q) for all u ∈ Uad (2.9)

holds, where ν = 1
2 [2(umax − umin)]−1/γ.

Proof. The inequality F( ̄u)(u − ̄u) + μj( ̄u; u − ̄u) ≥ ν‖u − ̄u‖1+1/γL1(Q) was proved in [30, Lemma 6.3]. Then it is
enough to use that j(u) − j( ̄u) ≥ j( ̄u; u − ̄u) to obtain (2.9).

Lemma 2.12. Let ̄u ∈ Uad satisfy (2.5a)–(2.5c), and suppose that there exist ς > 0 and δ > 0 such that the
second-order condition (2.7) holds. Then there exists κ > 0 such that, for all ρ > 0, a number ερ > 0 can be
found such that

ρ[F( ̄u)(u − ̄u) + μj(u) − μj( ̄u)] + F(uθ)(u − ̄u)2 ≥
κ
2 ‖yu −

̄y‖2L2(Q)

for all measurable functions θ : Q → [0, 1] and all u ∈ Uad with ‖yu − ̄y‖L∞(Q) < ερ, and uθ = ̄u + θ(u − ̄u).
Proof. We split the proof in two steps.

Step 1. Consider a measurable function θ : Q → [0, 1]. Let us prove that there exists a constant C > 0 such
that, for all ρ > 0, a number ερ > 0 can be found so that

ρJ( ̄u; u − ̄u) + F(uθ)(u − ̄u)2 ≥ C‖zu− ̄u‖2L2(Q) (2.10)

for all u ∈ Uad satisfying ‖yu − ̄y‖L∞(Q) < ερ.
As in [11, Theorem 3.1], we distinguish three cases.
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Case 1: u − ̄u ∈ Cς ̄u. On one hand, since ̄u satisfies (2.5a)–(2.5c) and u ∈ Uad, we have that J( ̄u; u − ̄u) ≥ 0.
Given γ = δ2 , from Lemma 2.6, we deduce the existence of ε0 > 0 such that, if ‖yu − ̄y‖L∞(Q) < ε0, we have

|(F(uθ) − F( ̄u))υ2| ≤
δ
2 ‖zυ‖

2
L2(Q) for all υ ∈ L2(Q).

This inequality and the second-order condition (2.7) imply

F(uθ)υ2 ≥
δ
2 ‖zυ‖

2
L2(Q) for all υ ∈ L2(Q).

Therefore, (2.10) follows with C = δ2 .

Case 2: u − ̄u ∉ Gς
̄u. Arguing as in [11, (3.8)], we know that there exists ε1 > 0 such that, if ‖yu − ̄y‖L∞(Ω) < ε1,

we have
J( ̄u; u − ̄u) ≥ ς

2ε1
‖zu− ̄u‖2L2(Q).

Using [11, Remark 2.6], we have that there exists M > 0 such that

F(uθ)(u − ̄u)2 ≤ M‖zu− ̄u‖2L2(Q).

Selecting ε1 < ρς
2M+δ , (2.10) holds again with C =

δ
2 .

Case 3: u − ̄u ∉ Dς
̄u and u − ̄u ∈ Gς

̄u. Let us define ς∗ = ς/max{1, C1,1}, where C1,1 is defined in Lemma 2.3.
If u − ̄u ∉ Gς

∗̄
u , then Case 2 applies. Otherwise, we define

if μ = 0, W = {(x, t) ∈ Q : |φ̄(x, t)| > ς and u(x, t) − ̄u(x, t) ̸= 0},
if μ > 0, W = {(x, t) ∈ Q : φ̄(x, t) = −μ and ̄u(x, t) = 0 and u(x, t) < 0,

or φ̄(x, t) = +μ and ̄u(x, t) = 0 and u(x, t) > 0,
or |φ̄(x, t)| − μ

 > ς and u(x, t) ̸= ̄u(x, t)},

and denote V = Q \W. Define the functions υ = (u − ̄u)χV and w = (u − ̄u)χW . It is proved in [17, Proposi-
tion 3.6] that

J( ̄u; u − ̄u) ≥ ς‖w‖L1(Q) (2.11)

and also that υ ∈ Cς ̄u. Using now that u − ̄u = υ + w, (2.4) and (2.7), we deduce the existence of a constant
c > 0 such that

F(uθ)(u − ̄u)2 ≥
δ
8 ‖zu− ̄u‖

2
L2(Q) − c‖zw‖

2
L2(Q). (2.12)

In [13], it is proved that there exists ε > 0 such that, for all ε2 ∈ (0, ε),

if ‖yu − ̄y‖L∞(Q) < ε2, then ‖zw‖L∞(Q) < 2ε2.
This yields

‖zw‖2L2(Q) ≤ 2ε2‖zw‖L1(Q) ≤ 2ε2C1,1‖w‖L1(Q).

Using (2.11), (2.12) and this last inequality, we get, for ε2 < min{ε, ρς
2C1,1c },

ρJ( ̄u; u − ̄u) + F(uθ)(u − ̄u)2 ≥
δ
8 ‖zu− ̄u‖

2
L2(Q) − c‖zw‖

2
L2(Q) + ρς‖w‖L1(Q)

≥
δ
8 ‖zu− ̄u‖

2
L2(Q) + (

ρς
2ε2

C1,1 − c)‖zw‖2L2(Q) ≥
δ
8 ‖zu− ̄u‖

2
L2(Q).

Thus, taking ερ = min{ε0, ε1, ε2} and C = δ8 , (2.10) holds in all cases.

Step 2. Arguing as in [11, Lemma 2.4], we obtain the existence of ε3 > 0 such that

‖zu− ̄u‖L2(Q) ≥
1
2 ‖yu −

̄y‖L2(Q) if ‖yu − ̄y‖L∞(Q) < ε3.



E. Casas and M. Mateos, Unregularized Sparse Parabolic Control Problems | 885

Therefore, (2.10) implies that there exists some constant C > 0 such that

ρJ( ̄u; u − ̄u) + F(uθ)(u − ̄u)2 ≥ C‖yu − ̄y‖2L2(Q)
if ‖yu − ̄y‖L∞(Q) < ερ = min0≤i≤3 εi. Finally, using the convexity of j, we know that

F( ̄u)(u − ̄u) + μj(u) − μj( ̄u) ≥ J( ̄u; u − ̄u),

and the proof is complete.

Finally, we obtain sufficient conditions for a strong local solution that will allow us to obtain control error
estimates.

Theorem 2.13. Let ̄u ∈ Uad be a control satisfying the first-order optimality conditions (2.5a)–(2.5c) and the
structural assumption (H). Suppose further that the second-order condition (2.7) is fulfilled for some ς > 0
and δ > 0. Then there exists ε > 0 such that the following inequality holds:

J( ̄u) + ν2 ‖u −
̄u‖1+1/γL1(Q) +

κ
4 ‖yu −

̄y‖2L2(Q) ≤ J(u) for all u ∈ Uad such that ‖yu − ̄y‖L∞(Q) < ε,
where ν is the constant given in Lemma 2.11 and κ is the constant given in Lemma 2.12.

Proof. Performing a Taylor expansion and invoking Lemma 2.11, we infer

J(u) = F(u) + μj(u) = F( ̄u) + μj( ̄u) + F( ̄u)(u − ̄u) + μj(u) − μj( ̄u) + 12F
(uθ)(u − ̄u)2

= J( ̄u) + 12 [F
( ̄u)(u − ̄u) + μj(u) − μj( ̄u)] + 12 [F

( ̄u)(u − ̄u) + μj(u) − μj( ̄u) + F(uθ)(u − ̄u)2]

≥ J( ̄u) + ν2 ‖u −
̄u‖1+1/γL1(Q) +

1
2 [F
( ̄u)(u − ̄u) + μj(u) − μj( ̄u) + F(uθ)(u − ̄u)2].

The result now follows from Lemma 2.12, taking ρ = 1.

3 Numerical Approximation
Consider a regular family of triangulations {𝕂h}h>0 of Ω̄, cf. [2, Definition4.4.13, pp. 107, 108] or [22, p. 131],
and a set of points {tj}Nτj=0 ⊂ [0, T] with 0 = t0 < t1 < ⋅ ⋅ ⋅ < tNτ = T. We will denote by Nh and NI,h the number
of nodes and interior nodes of the triangulation 𝕂h, hK is the diameter of K for all K ∈ 𝕂h and h = max hk.
As usual, {ei}Nhi=1 denotes the nodal basis associated with the nodes {xi}

Nh
i=1 of the triangulation, and {ei}

NI,h
i=1 is

the nodal basis associated to the interior nodes. We also set Ij = (tj−1, tj), τj = tj − tj−1, and τ = max1≤j≤Nτ τj.
We denote χK and χj the characteristic functions of the element K and the interval Ij, respectively. We also
use the notation σ = (h, τ).

We further assume that τ ≤ T4 and there exist ν > 0 and ρ > 0 independent of h and τ, respectively, such
that

h ≤ νhK for all K ∈ 𝕂h and τ ≤ ρτj for all j = 1, . . . , Nτ .

Finally, following [29], we will also suppose that
(A5) τ|Cf | < 1 if Cf < 0, where Cf is given in (A2);
(A6) there exist C > 0 and θ > 0 independent of τ and h such that τ ≤ Chθ.
Notice that, in particular, the hypotheses on the temporalmesh in [29, Assumptions 3.1 and5.2] are satisfied.

3.1 Approximation of the State Equation

Now we define the finite-dimensional spaces

Yh = {yh ∈ C(Ω̄) : yh|K ∈ P1(K) for all K ∈ 𝕂h and yh = 0 on Γ},
Yσ = {yσ ∈ L2(I; Yh) : yσ|Ij ∈ Yh for all j = 1, . . . , Nτ}.
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The elements of Yσ can be written as

yσ =
Nτ
∑
j=1
yh,jχj =

Nτ
∑
j=1

NI,h
∑
i=1
yi,jeiχj ,

where yh,j ∈ Yh for j = 1, . . . , Nτ, yi,j ∈ ℝ for i = 1, . . . , NI,h, and j = 1, . . . , Nτ.
We denote by Ih : C0(Ω̄)→ Yh the usual continuous piecewise linear interpolation operator given by

Ihy = ∑
NI,h
j=1 y(xj)ej. For every w ∈ L1(I), we define

Pτw =
Nτ
∑
j=1

1
τj
∫
Ij

w dt χj .

Finally, we set Iσ = Pτ ∘ Ih = Ih ∘ Pτ.
For every u ∈ L2(Q), we define its associated discrete state as the unique element yσ(u) ∈ Yσ such that,

for j = 1, . . . , Nτ,

{{{{{{{
{{{{{{{
{

∫
Ω

(yh,j − yh,j−1)zh dx + τja(yh,j , zh)

+ ∫
Ij

∫
Ω

f (x, t, yh,j)zh dx dt = ∫
Ij

∫
Ω

uzh dx dt for all zh ∈ Yh ,

yh,0 = Phy0,

(3.1)

where Ph : L2(Ω)→ Yh denotes the L2 projection operator, and a : H1(Ω) × H1(Ω)→ ℝ is the bilinear form

a(y, z) = ∫
Ω

n
∑
i,k=1

aik∂xi y∂xk z dx for all y, z ∈ H1(Ω).

Notice that this can be seen as an implicit Euler scheme; see [29]. Existence and uniqueness of a solution
of (3.1) is deduced by a straightforward application of Brouwer’s fixed-point theorem alongwith the assump-
tion τ|Cf | < 1. The following result follows from [29, Theorem 5.4], [9, Theorem 3.1], and the fact that Uad is
bounded in L∞(Q).

Lemma 3.1. Consider u ∈ Uad. Under the assumptions (A1), (A2), and (A4), there exist h0 > 0, τ0 > 0, δ0 > 0,
C > 0, independent of u such that, for every τ < τ0 and h < h0,

‖yσ(u)‖L∞(Q) ≤ C, (3.2)
‖yu − yσ(u)‖L2(Q) ≤ C(h2 + τ), (3.3)
‖yu − yσ(u)‖L∞(Q) ≤ C|log h| log(Tτ )

2
(hβ + τβ/2). (3.4)

Proof. The stability estimate (3.2) is proved in [29, Theorem 5.4] and the error estimate (3.3) in [29, Corol-
lary 6.2]. To establish the third inequality, we use [29, Theorem 6.5] to deduce

‖yu − yσ(u)‖L∞(Q) ≤ C|log h|(log Tτ )
2
‖yu − ησ‖L∞(Q) for all ησ ∈ Yσ .

By choosing ησ = Iσyu and taking advantage of the Hölder regularity of yu, we obtain the claimed estimate.

3.2 Approximation of the Control Problem

We will consider piecewise constant approximations of the control as follows:

Uh = {uh ∈ L∞(Ω) : uh |K ∈ P0(K) for all K ∈ 𝕂h},

𝕌σ = {uσ =
Nτ
∑
j=1
uh,jχj : uh,j ∈ Uh for j = 1, . . . , Nτ},

𝕌σ,ad = {uσ ∈ 𝕌σ : umin ≤ uσ(x, t) ≤ umax for a.e. (x, t) ∈ Q}.
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Notice that𝕌σ,ad ⊂ Uad and every element uσ ∈ 𝕌σ can be written in the form

uσ =
Nτ
∑
j=1
uh,jχj =

Nτ
∑
j=1
∑
K∈𝕂h

uK,jχKχj .

We define Πh : L1(Ω)→ Uh by
Πhυ = ∑

K∈𝕂h

1
|K| ∫

K

υ dx χK .

We also define πσ = Pτ ∘ Πh = Πh ∘ Pτ.
The discrete problem reads

min
uσ∈𝕌σ,ad

Jσ(uσ), (Pσ)

where
Jσ(u) = Fσ(u) + μj(u) with Fσ(u) =

1
2 ∫
Q

(yσ(u) − yd)2 dx.

We observe that

j(uσ) =
Nτ
∑
j=1
∑
K∈𝕂h

τj|K||uK,j|.

In the next three lemmas, we collect and prove some properties that will be needed later.

Lemma 3.2. For every u ∈ L1(Q) and every σ, the inequality j(πσu) ≤ j(u) holds.

Proof. Notice that

πσu =
Nτ
∑
j=1
∑
K∈𝕂h

1
τj|K|
∫
Ij

∫
K

u dx dt χKχj =
Nτ
∑
j=1
∑
K∈𝕂h

uK,jχKχj .

Then we have

j(πσu) =
Nτ
∑
j=1
∑
K∈𝕂h

τj|K||uK,j| =
Nτ
∑
j=1
∑
K∈𝕂h


∫
Ij

∫
K

u dx dt

≤ ∫
Q

|u|dx dt = j(u).

Lemma 3.3. The following properties are fulfilled:

lim
σ→(0,0)
‖πσu − u‖L1(Q) = 0 and lim

σ→(0,0)
j(πσu) = j(u) for all u ∈ L1(Q), (3.5)

πσu
∗
⇀ u in L∞(Q) as σ → (0, 0) for all u ∈ L∞(Q), (3.6)

‖πσu − u‖H1(Q)∗ ≤ C(h + τ)‖u‖L2(Q) for all u ∈ L2(Q). (3.7)

Proof. To prove (3.5), we assume first that u ∈ C(Q̄). Then, for every ε > 0, there exists δ > 0 such that

|u(x2, t2) − u(x1, t1)| <
ε
|Q|

if |x2 − x1| + |t2 − t1| < δ.

Taking ̂σ = (ĥ, ̂τ) with ĥ + ̂τ ≤ δ, we infer, for σ = (h, τ) with |σ| ≤ | ̂σ|,

‖u − πσu‖L1(Q) =
Nτ
∑
j=1
∑
K∈𝕂h
∫
Ij

∫
K


u(x, t) − 1

τj|K|
∫
Ij

∫
K

u(ξ, s)dξ ds

dx dt ≤ ε.

This proves the first identity of (3.5) for continuous functions in Q̄. The proof for arbitrary elements of L1(Q)
follows from the density of C(Q̄) in L1(Q) and the stability property established in Lemma 3.2.

Using that |j(u) − j(πσu)| ≤ ‖u − πσu‖L1(Q), the second convergence of (3.5) is obtained. To prove (3.6), we
observe that ‖πσu‖L∞(Q) ≤ ‖u‖L∞(Q). Therefore, the existence of subsequences converging weakly∗ in L∞(Q)
follows. But (3.5) implies that all the subsequences must converge to u, and consequently, (3.6) is satisfied.
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The third statement followsbyduality.Using thewell-known inequality ‖πσυ − υ‖L2(Q) ≤ C(h + τ)‖υ‖H1(Q)
and denoting S = {υ ∈ H1(Q) : ‖υ‖H1(Q) = 1}, we have

‖u − πσu‖H1(Q)∗ = sup
υ∈S
⟨u − πσu, υ⟩H1(Q)∗ ,H1(Q)

= sup
υ∈S
∫
Q

(u − πσu)υ dx dt = sup
υ∈S
∫
Q

(u − πσu)(υ − πσυ)dx dt

= sup
υ∈S
∫
Q

u(υ − πσυ)dx dt ≤ sup
υ∈S
‖u‖L2(Q)‖υ − πσυ‖L2(Q)

≤ sup
υ∈S

C(h + τ)‖υ‖H1(Q)‖u‖L2(Q) = C(h + τ)‖u‖L2(Q).

Lemma 3.4. Let u be an element of Uad and let {uσ}σ be a sequence with each uσ ∈ 𝕌σ,ad such that uσ
∗
⇀ u

in L∞(Q). Then the following convergence properties are fulfilled:

lim
σ→(0,0)
‖yσ(uσ) − yu‖L∞(Q) = 0, (3.8)

lim
σ→(0,0)
‖yσ(πσu) − yσ(uσ)‖L∞(Q) = 0, (3.9)

lim
σ→(0,0)

Fσ(uσ) = F(u), (3.10)

j(u) ≤ lim inf
σ→(0,0)

j(uσ). (3.11)

Proof. By the triangle inequality, we can write

‖yσ(uσ) − yu‖L∞(Q) ≤ ‖yσ(uσ) − yuσ‖L∞(Q) + ‖yuσ − yu‖L∞(Q).
The first term converges to 0 thanks to the finite element error estimate (3.4). The convergence to 0 of the
second term can be deduced from Theorem 2.1 and the assumption uσ

∗
⇀ u.

For the second statement, we use

‖yσ(πσu) − yσ(uσ)‖L∞(Q) ≤ ‖yσ(πσu) − yπσu‖L∞(Q) + ‖yπσu − yu‖L∞(Q) + ‖yu − yσ(uσ)‖L∞(Q).
The first terms converge to 0 thanks to the finite element error estimate (3.4). The convergence to 0 of the
second term is consequence of Theorem2.1 and (3.6). The convergence to 0 of the last term follows from (3.8).

The convergence (3.10) is a straightforward consequence of (3.8). Finally, (3.11) follows from the con-
vexity of j.

3.3 First-Order Optimality Conditions and Sparsity Properties of the
Discrete Control Problem

For every u ∈ L2(Q), we define its associated discrete adjoint state φσ(u) ∈ Yσ such that, for j = Nτ , . . . , 1,

{{{{{{{{{
{{{{{{{{{
{

∫
Ω

(φh,j − φh,j+1)zh dx + τja(zh , φh,j) + ∫
Ij

∫
Ω

∂f
∂y
(x, t, yh,j(u))φh,jzh dx dt

= ∫
Ij

∫
Ω

(yh,j(u) − yd)zh dx dt for all zh ∈ Yh ,

φh,Nτ+1 = 0.

The next identity is well known:

Fσ(uσ)υσ = ∫
Q

φσ(uσ)υσ dx dt for all uσ , υσ ∈ 𝕌σ .
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Let us describe now the subdifferential of j in𝕌σ. Consider λσ = ∑Nτj=1∑K∈𝕂h λK,jχKχj ∈ 𝕌σ. We have that

λσ ∈ ∂j(uσ) ⇐⇒ λK,j ∈ sign(uK,j) for all K ∈ 𝕂h and all j = 1, . . . , Nτ . (3.12)

In the next lemma, we state the first-order necessary optimality conditions for problem (Pσ).

Lemma 3.5. Suppose that ̄uσ is a local solution of (Pσ). Then the following inequality holds:

Fσ( ̄uσ)(uσ − ̄uσ) + μ[j(uσ) − j( ̄uσ)] ≥ Jσ( ̄uσ; uσ − ̄uσ) ≥ 0 for all uσ ∈ 𝕌σ,ad. (3.13)

Further, there exists λ̄σ ∈ ∂jσ( ̄uσ) such that

∫
Q

(φ̄σ + μλ̄σ)(uσ − ̄uσ)dx dt ≥ 0 for all uσ ∈ 𝕌σ,ad, (3.14)

where φ̄σ = φσ( ̄uσ).

The proof of this result is the same as the corresponding one for the continuous problem and can be found,
e.g., in [11, Theorem 2.9]. The first inequality in (3.13) follows from the convexity of j.

Let us denote ϕ̄σ = πσφ̄σ = ∑Nτj=1∑K∈𝕂h ϕ̄K,jχKχj. From (3.12) and (3.14), we have that

(ϕ̄K,j + μλ̄K,j)(s − ̄uK,j) ≥ 0 for all s ∈ [umin, umax].

Using these inequalities, we obtain the sparsity properties of the discrete solution. The proof is as the corre-
sponding one for the continuous problem, which can be found in [4].

Corollary 3.6. Let ̄uσ and λ̄σ as in Lemma 3.5; then we have, for every j = 1, . . . , Nτ and K ∈ 𝕂h,

if ϕ̄K,j > +μ, then ̄uK,j = umin,
if ϕ̄K,j < −μ, then ̄uK,j = umax.

In addition, if μ > 0, then the following properties hold:

if |ϕ̄K,j| < μ, then ̄uK,j = 0, λ̄K,j = Proj[−1,+1](−
1
μ
ϕ̄K,j).

4 Convergence and Error Estimates
Theorem 4.1. The following statements hold.
(A) Let { ̄uσ}σ be a sequence of global solutions of (Pσ). Then every weak-* limit ̄u of a subsequence of { ̄uσ}σ is

a global solution of (P).
(B) Let ̄u be a strict strong local solution of (P) in the sense of Definition 1. Then there exists a sequence { ̄uσ}σ

of local minimizers of (Pσ) such that ̄uσ
∗
⇀ ̄u in L∞(Q). Moreover, there exists σ0 such that

Jσ( ̄uσ) ≤ Jσ(πσ ̄u) for all |σ| ≤ |σ0|. (4.1)

Proof. (A) Take any u ∈ Uad, and consider πσu ∈ 𝕌σ,ad. Using (3.11) and (3.10), the optimality of ̄uσ, and
(3.10) and (3.5), we get

J( ̄u) ≤ lim inf
σ→(0,0)

Jσ( ̄uσ) ≤ lim sup
σ→(0,0)

Jσ( ̄uσ) ≤ lim sup
σ→(0,0)

Jσ(πσu) = J(u),

which proves the first statement.
(B) Since ̄u is a strict local solution of (P), there exists ε > 0 such that

J( ̄u) < J(u) for all u ∈ Uad with ‖yu − ̄y‖L∞(Q) < ε, u ̸= ̄u, (4.2)
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where ̄y = y ̄u. Consider the auxiliary problems

min
uσ∈Vσ,ad,ε

Jσ(uσ), (Pσ,ε)

where
Vσ,ad,ε = {uσ ∈ 𝕌σ,ad : ‖yσ(uσ) − ̄y‖L∞(Q) ≤ ε}.

From (3.6) and (3.8), we deduce the existence of σ0 such that πσ ̄u ∈ Vσ,ad,ε for |σ| < |σ0|. Therefore, Vσ,ad,ε
is a nonempty compact set for every |σ| < |σ0|. Since Jσ is a continuous function, (Pσ,ε) has a solution ̄uσ and
(4.1) holds.

Since { ̄uσ}σ is bounded in L∞(Q), we can extract a subsequence, still indexed by σ, such that ̄uσ
∗
⇀ u∗.

Since𝕌σ,ad ⊂ Uad and Uad is weakly* closed in L∞(Q), we have that u∗ ∈ Uad.
Using that ̄uσ ∈ Vσ,ad,ε and (3.9), we obtain

‖yu∗ − ̄y‖L∞(Q) ≤ ‖yu∗ − ̄yσ‖L∞(Q) + ‖ ̄yσ − ̄y‖L∞(Q) ≤ ‖yu∗ − ̄yσ‖L∞(Q) + ε → ε,

and hence ‖yu∗ − ̄y‖L∞(Q) ≤ ε. Using (3.11) and (3.10), the local optimality of ̄uσ, and (3.10) and (3.5), we get

J(u∗) ≤ lim inf
σ→(0,0)

Jσ( ̄uσ) ≤ lim sup
σ→(0,0)

Jσ( ̄uσ) ≤ lim sup
σ→(0,0)

Jσ(πσ ̄u) = J( ̄u).

From (4.2), we deduce that u∗ = ̄u, and the second statement is proved.

4.1 State Error Estimates

In the next result, we obtain error estimates for the optimal state when the solution satisfies a second-order
sufficient optimality condition.

Theorem 4.2. Let ̄u be a local solution of (P) satisfying the second-order condition (2.7), and let { ̄uσ} be
a sequence of local solutions of (Pσ) such that ̄uσ

∗
⇀ ̄u in L∞(Q) and (4.1) holds. Then there exists a constant

C > 0 independent of σ such that
‖ ̄yσ − ̄y‖L2(Q) ≤ C√h + τ,

where ̄y = y ̄u and ̄yσ = yσ( ̄uσ).

Remark 1. From Theorems 2.10 and 4.1 (B), we deduce the existence of a sequence { ̄uσ} satisfying the
assumptions of Theorem 4.2. If every (Pσ) has only a local solution in a neighborhood of ̄u for |σ| ≤ |σ0|,
then these solutions satisfy (4.1). Although existence of an infinite number of solutions of (Pσ) in every
neighborhood of ̄u cannot be discarded, it is a rather pathological case.

Proof of Theorem 4.2. By the triangle inequality, we have that

‖ ̄yσ − ̄y‖L2(Q) ≤ ‖ ̄yσ − y ̄uσ‖L2(Q) + ‖ ̄y ̄uσ − ̄y‖L2(Q).

Since { ̄uσ}σ is bounded in L∞(Q), then we can apply (3.3) to the first term to have

‖ ̄yσ − y ̄uσ‖L2(Q) ≤ C(h2 + τ). (4.3)

For the second term, we first notice that the weak-* convergence of ̄uσ to ̄u and the last statement of Theo-
rem 2.1 imply that ‖ ̄y ̄uσ − ̄y‖L∞(Q) → 0. Therefore, for |σ| small enough, ‖ ̄y ̄uσ − ̄y‖L∞(Q) < ε, where ε is the one
given in Theorem 2.10. Using (2.8), we have that

κ
2 ‖
̄y ̄uσ − ̄y‖2L2(Q) ≤ J( ̄uσ) − J( ̄u).

From Lemma 3.2, we deduce that

J( ̄uσ) − J( ̄u) = (J( ̄uσ) − Jσ( ̄uσ)) + (Jσ( ̄uσ) − Jσ(πσ ̄u)) + (Jσ(πσ ̄u) − J(πσ ̄u)) + (J(πσ ̄u) − J( ̄u))
≤ (F( ̄uσ) − Fσ( ̄uσ)) + (Jσ( ̄uσ) − Jσ(πσ ̄u)) + (Fσ(πσ ̄u) − F(πσ ̄u)) + (F(πσ ̄u) − F( ̄u))
= I + II + III + IV.
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From assumption (4.1), we infer that II = Jσ( ̄uσ) − Jσ(πσ ̄u) ≤ 0. Using the L∞(Q) bounds (2.1) and (3.2), and
the finite element error estimate (3.3), we get

F( ̄uσ) − Fσ( ̄uσ) =
1
2 ∫
Q

((y ̄uσ − yd)2 − ( ̄yσ − yd)2)dx dt

=
1
2 ∫
Q

(y ̄uσ − ̄yσ)(y ̄uσ + ̄yσ + 2yd)dx dt ≤ C‖y ̄uσ − ̄yσ‖L2(Q) ≤ C(h2 + τ).

Analogously, we obtain Fσ(πσ ̄u) − F(πσ ̄u) ≤ C‖yσ(πσ ̄u) − yπσ ̄u‖L2(Q) ≤ C(h2 + τ). To estimate the last term, we
use themean value theorem to deduce the existence of uθ = ̄u + θ(πσ ̄u − ̄u), where θ is ameasurable function
such that 0 ≤ θ(x, t) ≤ 1 for a.e. (x, t) ∈ Q, Theorem 2.5, the regularity of the adjoint state, (2.3), and (3.7) to
obtain

F(πσ ̄u) − F( ̄u) = F(uθ)(πσ ̄u − ̄u) = ∫
Q

φuθ (πσ ̄u − ̄u)dx dt ≤ ‖φuθ‖H1(Q)‖πσ ̄u − ̄u‖H1(Q)∗ ≤ C(τ + h).
Gathering all the estimates, we obtain the desired result.

4.2 Bang-Off-Bang Controls and Control Error Estimates

The goal of this section is to obtain error estimates for ‖ ̄u − ̄uσ‖L1(Q). We recall that β ∈ (0, 1] is the exponent
introduced in Theorem 2.1 and γ ∈ (0, 1] is given in the structural assumption (H).

Lemma 4.3. Let ̄u ∈ Uad satisfy the first-order conditions (2.5a)–(2.5c) and the structural assumption (H).
Then, for all s ≥ 1, there exists C > 0 independent of σ, s, and γ such that

‖ ̄u − πσ ̄u‖Ls(Q) ≤ C(hβ + τβ/2)γ/s , (4.4)
|F( ̄u)(πσ ̄u − ̄u) + μj(πσ ̄u) − μj( ̄u)| ≤ C(hβ + τβ/2)1+γ . (4.5)

Proof. Wewill write the proof for the case μ > 0. For μ = 0, the proof follows the same sketch, but in a slightly
simplified way; see [12, Lemma 7].

Denote 𝕀τ = {Ij , j = 1, . . . , Nτ}, and consider an element K ∈ 𝕂h and an interval I ∈ 𝕀τ where |φ̄(x, t)| − μ
changes sign, i.e.,

there exist (x−, t−), (xo , to), (x+, t+) ∈ K × I such that
{{{
{{{
{

|φ̄(x−, t−)| − μ < 0,
|φ̄(xo , to)| − μ = 0,
|φ̄(x+, t+)| − μ > 0.

(4.6)

Denote 𝕊σ = {(K, I) ∈ 𝕂h × 𝕀τ : satisfying (4.6)}. If (x, t) ∈ K × I, with (K, I) ∈ 𝕊σ, then

|φ̄(x, t)| − μ
 =
|φ̄(x, t)| − μ − (|φ̄(x

o , to)| − μ) =
|φ̄(x, t)| − |φ̄(x

o , to)| ≤ M(h
β + τβ/2), (4.7)

where M = max{1, ‖φ̄‖Cβ,β/2(Q̄)}. Denote S = ⋃{K × I : (K, I) ∈ 𝕊σ}. We have proved that

S ⊂ {(x, t) ∈ Q : |φ̄(x, t)| − μ
 ≤ M(h

β + τβ/2)}.

By the structural assumption (H), we have that meas S ≤ ΛMγ(hβ + τβ/2)γ ≤ ΛM(hβ + τβ/2)γ .
Now consider a pair (K, I) ∈ (𝕂h × 𝕀τ) \ 𝕊σ. From Corollary 2.8, we have that ̄u(x, t) is constant in K × I,

so πσ ̄u ≡ ̄u in K × I. This implies that

‖ ̄u − πσ ̄u‖Ls(Q) = ‖ ̄u − πσ ̄u‖Ls(S) ≤ (umax − umin)(ΛM)1/s(hβ + τβ/2)γ/s ,

and (4.4) follows for C = (umax − umin)max{ΛM, 1}.
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To prove the last statement, we use that, for h, τ small enough so that

2M(hβ + τβ/2) < μ2 ,

we have that, for every (x, t) ∈ S, |φ̄(x, t)| > μ2 . Since φ̄ ∈ C(Q̄), we have that either φ̄ >
μ
2 or φ̄ < −

μ
2 on every

set K × I such that (K, I) ∈ 𝕊σ. From Corollary 2.8, we deduce that, in the first case, ̄u ≤ 0 and, in the second
case, ̄u ≥ 0. This property is shared by πσ ̄u. Using these properties on the signs in S, the fact that ̄u = πσ ̄u in
Q \ S, (4.7), and (4.4), we infer

|F( ̄u)(πσ ̄u − ̄u) + μj(πσ ̄u) − μj( ̄u)|

=

∫
Q

φ̄(πσ ̄u − ̄u)dx dt + μ∫
Q

|πσ ̄u|dx dt − μ∫
Q

| ̄u|dx dt


=

∫
S

φ̄(πσ ̄u − ̄u)dx dt + μ∫
S

|πσ ̄u|dx dt − μ∫
S

| ̄u|dx dt


=

∫

S∩{φ̄>0}

φ̄(πσ ̄u − ̄u)dx dt − μ ∫
S∩{φ̄>0}

πσ ̄u dx dt + μ ∫
S∩{φ̄>0}

̄u dx dt

+ ∫
S∩{φ̄<0}

φ̄(πσ ̄u − ̄u)dx dt + μ ∫
S∩{φ̄<0}

πσ ̄u dx dt − μ ∫
S∩{φ̄<0}

̄u dx dt


=

∫

S∩{φ̄>0}

(φ̄ − μ)(πσ ̄u − ̄u)dx dt + ∫
S∩{φ̄<0}

(|φ̄| − μ)( ̄u − πσ ̄u)dx dt


≤ ‖|φ̄| − μ‖L∞(S)‖ ̄u − πσ ̄u‖L1(S) ≤ M(hβ + τβ/2)C(hβ + τβ/2)γ .
Thus, (4.5) is satisfied.

Lemma 4.4. For every u ∈ Uad, there exists a constant C > 0, independent of u, such that

‖φu − φσ(u)‖L∞(Q) ≤ C|log h| log(Tτ )
2
(hβ + τβ/2).

Proof. By the triangle inequality, we have that

‖φu − φσ(u)‖L∞(Q) ≤ ‖φu − φσ‖L∞(Q) + ‖φσ − φσ(u)‖L∞(Q), (4.8)

where φσ ∈ Cβ,β/2(Q̄) is the solution of

{{{{
{{{{
{

−
∂φσ

∂t
+ A∗φσ + ∂f

∂y
(x, t, yσ(u))φσ = yσ(u) − yd in Q,

φσ = 0 on Σ,
φσ( ⋅ , T) = 0 in Ω.

(4.9)

For later use, we notice that assumption (A2), estimate (3.2), and Lemma 2.3 imply that there exists C∗ > 0
independent of u and σ such that ‖φσ‖L∞(Q) ≤ C∗. Let us denote ξ σ = φu − φσ. We have that

{{{{{
{{{{{
{

−
∂ξ σ

∂t
+ A∗ξ σ + ∂f

∂y
(x, t, yu)ξ σ = (

∂f
∂y
(x, t, yσ(u)) −

∂f
∂y
(x, t, yu))φσ + yu − yσ(u) in Q,

ξ σ = 0 on Σ,

ξ σ( ⋅ , T) = 0 in Ω.

By themean value theorem, we know that there exists ameasurable function θ : Q → [0, 1] such that, denot-
ing yσ,θ = yσ(u) + θ(yu − yσ(u)), we have that

{{{{{
{{{{{
{

−
∂ξ σ

∂t
+ A∗ξ σ + ∂f

∂y
(x, t, yu)ξ σ = (

∂f 2

∂y2
(x, t, yσ,θ)φσ + 1)(yu − yσ(u)) in Q,

ξ σ = 0 on Σ,

ξ σ( ⋅ , T) = 0 in Ω.
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From (2.1) and (3.2), we know that there exists a constant M∞ > 0 such that ‖yσ,θ‖L∞(Q) ≤ M∞. Using
Lemma 2.3, assumption (A2), the estimate ‖φσ‖L∞(Q) ≤ C∗, and the finite element error estimate (3.4), we
have

‖φu − φσ‖L∞(Q) ≤ C‖yu − yσ(u)‖L∞(Q) ≤ C|log h| log(Tτ )
2
(hβ + τβ/2).

To estimate the second term in the right-hand side of (4.8), we have that, from [29, Theorem 6.5],

‖φσ − φσ(u)‖L∞(Q) ≤ C|log h|(log Tτ )
2
‖φσ − ησ‖L∞(Q) for all ησ ∈ Yσ .

By choosing ησ = Iσφσ and taking advantage of the Hölder regularity of φσ, we obtain the claimed estimate.

Theorem 4.5. Let ̄u be a local solution of (P) satisfying the structural assumption (H) and the second-order
condition (2.7). Let { ̄uσ}σ be a sequence of local solutions of (Pσ) such that (4.1) holds and ̄uσ

∗
⇀ ̄u in L∞(Q).

Then there exists σ0 such that the following holds.
If γ < 1 or d > 1, there exists a constant Cs > 0 independent of σ such that, for all |σ| < |σ0|,

‖ ̄uσ − ̄u‖L1(Q) ≤ Cs(hβ + τβ/2)
γ2
s ,

‖ ̄yσ − ̄y‖L2(Q) ≤ Cs(hβ + τβ/2)
γ(γ+1)
2s

for s = 1 if d = 1, for all s > 1 if d = 2, and all s > 5
4 if d = 3.

If d = 1 and γ = 1, there exists a constant C > 0 independent of σ such that

‖ ̄uσ − ̄u‖L1(Q) + ‖ ̄yσ − ̄y‖L2(Q) ≤ C|log h| log(
T
τ )

2
(hβ + τβ/2) for all |σ| < |σ0|. (4.10)

Proof. First, we use the enhanced first-order optimality condition in Lemma 2.11 and the first-order optimal-
ity condition for the discrete problem (3.13) to obtain

ν
2 ‖
̄uσ − ̄u‖

1+1/γ
L1(Q) +

1
2 [F
( ̄u)( ̄uσ − ̄u) + μj( ̄uσ) − μj( ̄u)]

≤ F( ̄u)( ̄uσ − ̄u) + μj( ̄uσ) − μj( ̄u)
≤ [F( ̄u)( ̄uσ − ̄u) + μj( ̄uσ) − μj( ̄u)] + [Fσ( ̄uσ)(πσ ̄u − ̄uσ) + μj(πσ ̄u) − μj( ̄uσ)]
≤ [F( ̄u) − Fσ( ̄uσ)]( ̄uσ − πσ ̄u) + [F( ̄u)(πσ ̄u − ̄u) + μj(πσ ̄u) − μj( ̄u)].

Using this and the second estimate in Lemma 4.3, we have that
ν
2 ‖
̄uσ − ̄u‖

1+1/γ
L1(Q) +

1
2 [F
( ̄u)( ̄uσ − ̄u) + μj( ̄uσ) − μj( ̄u)]

≤ [F( ̄u) − Fσ( ̄uσ)]( ̄uσ − πσ ̄u) + C(hβ + τβ/2)1+γ

= [F( ̄u) − F( ̄uσ)]( ̄uσ − πσ ̄u) + [F( ̄uσ) − Fσ( ̄uσ)]( ̄uσ − πσ ̄u) + C(hβ + τβ/2)1+γ

= I + II + C(hβ + τβ/2)1+γ . (4.11)

Let us estimate I:

I = [F( ̄u) − F( ̄uσ)]( ̄uσ − ̄u) + [F( ̄u) − F( ̄uσ)]( ̄u − πσ ̄u)

= −F(uθ)( ̄uσ − ̄u)2 + ∫
Q

(φ̄ − φ ̄uσ )( ̄u − πσ ̄u)dx dt.

If d = 1, we deduce from Corollary 2.4 and Lemma 2.3 that

‖φ̄ − φ ̄uσ‖L∞(Q) ≤ C∞,2‖ ̄y − y ̄uσ‖L2(Q) ≤ C∞,2C2,1‖ ̄u − ̄uσ‖L1(Q).
Using (4.4) and Young’s inequality, we infer the existence of C > 0 such that

∫
Q

(φ̄ − φ ̄uσ )( ̄u − πσ ̄u)dx dt ≤ ‖φ̄ − φ ̄uσ‖L∞(Q)‖ ̄u − πσ ̄u‖L1(Q)
≤ C‖ ̄u − ̄uσ‖L1(Q)C(hβ + τβ/2)γ

≤
ν
8 ‖
̄u − ̄uσ‖

1+1/γ
L1(Q) + C(h

β + τβ/2)γ(γ+1).
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If d = 2 or d = 3, we proceed as follows. Using Corollary 2.4, the same technique as in the proof of Lemma4.4,
and Lemma 2.3, we obtain

‖φ̄ − φ ̄uσ‖Lr(Q) ≤ Cr,q‖ ̄y − y ̄uσ‖Lq(Q) ≤ Cr,qCq,1‖ ̄u − ̄uσ‖L1(Q)

for all q < d+2d and for all r < rd, where rd = q
2−q if d = 2 and rd =

5q
5−2q if d = 3; see Lemma 2.3. We observe

that rd → +∞ if d = 2 and rd ↗ 5 if d = 3 as q ↗ d+2
d . Therefore, taking s = r

r−1 , using (4.4) and Young’s
inequality, we have, for all s > 1 if d = 2 and s > 5

4 if d = 3,

∫
Q

(φ̄ − φ ̄uσ )( ̄u − πσ ̄u)dx dt ≤ ‖φ̄ − φ ̄uσ‖Lr(Q)‖ ̄u − πσ ̄u‖Ls(Q)
≤ Cr,qCq,1‖ ̄u − ̄uσ‖L1(Q)C(hβ + τβ/2)γ/s

≤
ν
8 ‖
̄u − ̄uσ‖

1+1/γ
L1(Q) + Cs(h

β + τβ/2)γ(γ+1)/s ,

where Cs depends on s. We have proved the following inequality for I:

I ≤ −F(uθ)( ̄uσ − ̄u)2 +
ν
8 ‖
̄u − ̄uσ‖

1+1/γ
L1(Q) + Cs(h

β + τβ/2)γ(γ+1)/s (4.12)

for s = 1 if d = 1, for all s > 1 if d = 2, and all s > 5
4 if d = 3. To estimate II, we use Lemma 4.4, (4.4), and

Young’s inequality as follows:

II = [F( ̄uσ) − Fσ( ̄uσ)]( ̄uσ − πσ ̄u) = ∫
Q

(φ ̄uσ − φ̄σ)( ̄uσ − πσ ̄u)dx dt

≤ C|log h| log(Tτ )
2
(hβ + τβ/2)(‖ ̄uσ − ̄u‖L1(Q) + ‖ ̄u − πσ ̄u‖L1(Q))

≤ C(|log h| log(Tτ )
2
(hβ + τβ/2))

γ+1
+
ν
8 ‖
̄uσ − ̄u‖

1+1/γ
L1(Q) + C|log h| log(

T
τ )

2
(hβ + τβ/2)γ+1. (4.13)

Gathering estimates (4.11), (4.12), (4.13), and taking into account only the lowest-order terms, we have that

ν
4 ‖
̄uσ − ̄u‖

1+1/γ
L1(Q) +

1
2 [F
( ̄u)( ̄uσ − ̄u) + μj( ̄uσ) − μj( ̄u)] + F(uθ)( ̄uσ − ̄u)2

≤ Cs(hβ + τβ/2)γ(γ+1)/s + C(|log h| log(
T
τ )

2
(hβ + τβ/2))γ+1

for s = 1 if d = 1, for all s > 1 if d = 2, and all s > 5
4 if d = 3.

Now we use Lemma 2.12 for ρ = 1
2 . The weak-* convergence of ̄uσ to ̄u implies the strong convergence in

L∞(Q) of y ̄uσ to ̄y, so there exists σ0 such that ‖y ̄uσ − ̄y‖L∞(Q) < ερ for |σ| < |σ0|. Hence, the above inequality
yields

ν
4 ‖
̄uσ − ̄u‖

1+1/γ
L1(Q) +

κ
2 ‖y ̄uσ −

̄y‖2L2(Q)

≤ Cs(hβ + τβ/2)γ(γ+1)/s + C(|log h| log(
T
τ )

2
(hβ + τβ/2))

γ+1
for all |σ| < |σ0|.

Finally, combining this estimate and (4.3), the result follows.

5 Numerical Example
Wemodify slightly the example presented in [6, Remark 2.11]. As in that reference, we define Ω = (0, 1) ⊂ ℝ,
T = 1, μ = 4 × 10−3, umin = −10, umax = 20, y0 ≡ 0, and

yd(x, t) = exp(20[(x − 0.2)2 + (t − 0.2)2]) + exp(20[(x − 0.7)2 + (t − 0.9)2]).

We further take the nonlinearity f (x, t, y) = |y|y3.
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Figure 1: The optimal control exhibits a typical bang-off-bang behavior. Black dots have been marked in the few space-time
patches where the numerical approximation exhibits a singular behavior.

Figure 2: Optimal state and adjoint state.

To discretize the problem, we use meshes uniform in both time and space of size σi,j = (hi , τj), where
hi = 2−i and τj = 2−j. The problem is solved via a Tikhonov regularization approach: for a decreasing
sequence of values of κ > 0, we look for a solution of

min
uσ∈𝕌σ,ad

Jσ,κ(uσ) = Jσ(uσ) +
κ
2 ∫
Q

u2σ dx dt.

Each of these problems is solved using a semismooth Newton method, globalized with the help of a merit
function (see [26]), taking as initial guess an approximation of the solution for the previous value of κ. We
stop when we find the same solution for three consecutive values of κ. Since we do not have the reference
solution, we compare with the solution for σI,I for a big enough index I.

For the final solution, I = 9, κ ≈ 3.5 × 10−8, and approximately 99.9% of the components of ̄uσI,I belong
to {umin, 0, umax}; see Figure 1. In Figure 2, the optimal state and adjoint state are shown.

Three tests are carried out. In the first test, we take hi = τi, i = 5, 6, 7; in the second one, we take a fixed
fine discretization in time given by τI , I = 9, and solve for hi, i = 5, 6, 7; finally, we fix the discretization
parameter in space to hI , I = 9, and solve for τi, i = 5, 6, 7. For the first test, we measure the experimental
order of convergence (EOC) between two consecutive simultaneous refinement levels by setting

EOCy,i = log2(
ey,i−1
ey,i
), EOCu,i = log2(

eu,i−1
eu,i
),
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hi = τi ‖ ̄y − ̄yσi,i ‖L2(Q) EOCy,i ‖ ̄u − ̄uσi,i ‖L1(Q) EOCu,i

2−5 2.52E−2 — 4.93E−1 —
2−6 1.25E−2 1.0 2.40E−1 1.0
2−7 5.85E−3 1.1 1.19E−1 1.0

1.1 1.0

Table 1: Experimental order of convergence. Simultaneous refinement.

hi ‖ ̄y − ̄yσi,I ‖L2(Q) EOCy,i ‖ ̄u − ̄uσi,I ‖L1(Q) EOCu,i

2−5 3.30E−3 — 3.29E−1 —
2−6 1.39E−3 1.2 1.90E−1 0.8
2−7 5.86E−4 1.2 8.30E−2 1.2

1.2 1.0

Table 2: Experimental order of convergence. Refinement in space for τI = 2−9.

τi ‖ ̄y − ̄yσI,i ‖L2(Q) EOCy,i ‖ ̄u − ̄uσI,i ‖L1(Q) EOCu,i

2−5 2.49E−2 — 3.50E−1 —
2−6 1.25E−2 1.0 1.64E−1 1.1
2−7 5.82E−3 1.1 7.46E−2 1.1

1.0 1.1

Table 3: Experimental order of convergence. Refinement in time for hI = 2−9.

where
ey,i = ‖ ̄y − ̄yσi,i‖L2(Q) ≈ ‖ ̄yσI,I − ̄yσi,i‖L2(Q), eu,i = ‖ ̄u − ̄uσi,i‖L1(Q) ≈ ‖ ̄uσI,I − ̄uσi,i‖L1(Q).

Analogous notation is used for the refinements in space and in time, respectively.
Weobtain the results summarized inTable 1 for simultaneous refinement, Table 2 for refinement in space,

and Table 3 for refinement in time. The observed experimental order of convergence is O(h + τ). Since the
problem is set in dimension d = 1 and numerically it seems that assumption (H) holds for γ = 1, the order
of convergence expected from estimate (4.10) should be, nevertheless, at most close to O(h + τ1/2). In this
example, the observed order of convergence in τ can be explained using the same technique of proof and
taking into account the regularity of the optimal solution. Let us see how.

Using Theorem2.1 and assumption (A2), we have that, for all u ∈ Uad, ∂tyu + Ayu ∈ L∞(Q). Since y0 = 0,
using maximal parabolic regularity, see e.g. [25, Theorem 5.3], we have that

yu ∈ W1,p(0, T, Lp(Ω)) ∩ Lp(0, T;W2,p(Ω)) for all p < +∞.

Since the embedding W1,p(Q) → C1−2/p(Q̄) holds, then yu ∈ Cβ(Q̄) for all β < 1. Using the same argument
and observing that yd ∈ L∞(Q), we also deduce that φu ∈ Cβ(Q̄) for all β < 1. Having this regularity for the
state and the adjoint state, the proof of estimate (4.10) can be rewritten to obtain

‖ ̄uσ − ̄u‖L1(Q) + ‖ ̄yσ − ̄y‖L2(Q) ≤ Cβ|log h| log(
T
τ )

2
(h + τ)β for all |σ| < |σ0|.

To obtain this estimate, we notice that the term hβ + τβ/2 in estimate (4.10) comes from Lemma 4.3 and the
finite element error estimate in the L∞(Q) norm for the state variable, estimate (3.4), and the adjoint state,
Lemma 4.4.

In Lemma 4.3, the factor hβ + τβ/2 appears in estimate (4.7). Using the Cβ(Q̄)-regularity of the optimal
adjoint state, this estimate can be replaced by

|φ̄(x, t)| − μ
 =
|φ̄(x, t)| − μ − (|φ̄(x

o , to)| − μ) =
|φ̄(x, t)| − |φ̄(x

o , to)| ≤ Mβ(h + τ)β ,

where Mβ = max{1, ‖φ̄‖Cβ(Q̄)}.
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In Lemma 4.4 and estimate (3.4), the term hβ + τβ/2 corresponds, respectively, to the approximation
errors ‖yu − Iσyu‖L∞(Q) and ‖φσ − Iσφσ‖L∞(Q), where φσ is the solution of equation (4.9). Taking into account
the Cβ(Q̄)-regularity of both yu and φσ, we have that

‖yu − Iσyu‖L∞(Q) + ‖φσ − Iσφσ‖L∞(Q) ≤ Cβ(h + τ)β .
So, in this setting, the proof of Theorem 4.5 can be repeated verbatim replacing in all places hβ + τβ/2 by
(h + τ)β, and the result follows.

Funding: The authors were supported by MCIN/AEI/10.13039/501100011033 under research project
PID2020-114837GB-I00.
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