
Facultad de Ciencias

Permutation Polynomials and
Applications

Polinomios Permutacionales y Aplicaciones

Trabajo Fin de Máster para acceder al

Máster en Matemáticas y Computación

Autora: Andrea Altemir Castán

Tutor: Jaime Gutierrez Gutierrez

Septiembre - 2023





Resumen
El objetivo de este Trabajo Fin de Máster es el estudio de los polinomios permu-

tacionales y localmente permutacionales en varias variables definidos sobre cuerpos
finitos. En la primera parte de esta memoria se introduce el concepto de polinomios
permutacionales en una variable, así como una serie de resultados básicos. El segundo
capítulo extiende este concepto a varias variables además de presentar los polinomios
localmente permutacionales, proporcionando propiedades, caracterizaciones y cons-
trucciones. El tercer capítulo se centra en polinomios localmente permutacionales en
dos variables, exhibiendo una familia de estos denominada e-Klenian polynomials, y
estudiando la relación entre polinomios localmente permutacionales bivariados y cua-
drados latinos. Además, se trata el tema de la ortogonalidad, hablando de Sistemas
Ortogonales de Polinomios y de Cuadrados Latinos Mutuamente Ortogonales (MOLS,
por sus siglas en inglés). Por último, se incluye en esta memoria un capítulo dedicado
a dos de las aplicaciones más notables de los cuadrados latinos en los ámbitos de la
Teoría de Códigos y Criptografía.

Ciertos resultados y herramientas para la manipulación de estos polinomios han
sido implementados en el sistema de computación simbólica SageMath.

Abstract
The goal of this dissertation is the study of permutation and local permutation

polynomials in several variables defined over finite fields. In the first part of this work
the concept of permutation polynomials in one variable is introduced alongside a series
of basic results. The second chapter extends this concept to several variables, pro-
viding properties, characterizations and constructions. The focus of the third chapter
is local permutation polynomials in two variables, presenting a family of such poly-
nomials denoted e-Klenian polynomials, and studying the relation between bivariate
local permutation polynomials and Latin squares. Also, the topic of orthogonality is
discussed, talking about Orthogonal Polynomial Systems and Mutually Orthogonal
Latin Squares (MOLS). Finally, this report includes a chapter dedicated to two of
the most notable applications of Latin squares in the areas of Coding Theory and
Cryptography.

Some results and tools to manipulate these polynomials have been implemented
in the symbolic computation system SageMath.
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Introduction

Let Fq be the finite field with q = pr elements, where p, r ∈ N, p prime. A polynomial
f ∈ Fq[x] is called a Permutation Polynomial (PP) of Fq if the induced mapping
x → f(x) is a permutation of Fq. The study of permutation polynomials over finite
fields has a long history. There are numerous books and survey papers on the subject,
see for instance [5], [16], [11] to mention a few of them.

As for their applications, permutations of finite fields have become of considerable
interest in the construction of cryptographic protocols, where bijective functions can
be used to encrypt and decrypt messages. Of course, in order to be useful in a
cryptography system, these functions must have several additional properties, see
[22]. PPs are also useful in multiple combinatorial applications, see [14].

The generalisation of permutation polynomials to n ≥ 2 variables was first defined
in [23]. A polynomial f ∈ Fq[x1, . . . , xn] is a Permutation Polynomial if the equation
f(x1, . . . , xn) = a has qn−1 solutions in Fn

q for each a ∈ Fq. Note how, if n = 1, f is a
univariate permutation polynomial as in the previous definition.

A closely related concept is the following: a polynomial f ∈ Fq[x1, . . . , xn] is
called a Local Permutation Polynomial (LPP) if for each i ∈ {1, . . . , n}, the poly-
nomial f(a1, . . . , ai−1, xi, ai+1, . . . , an) is a permutation polynomial in Fq[xi], for all
choices of (a1, . . . , ai−1, ai+1, . . . , an) ∈ Fn−1

q . Any local permutation polynomial is a
permutation polynomial, but the opposite is not true in general.

Contrary to the many papers and results on permutation polynomials in one vari-
able, there are few for permutation and local permutation polynomials in several
variables.
A classification of permutation polynomials in Fq[x1, . . . , xn] of degree at most two is
given in [23], see also [16] for several properties and results and the particular case
n = 1. The author of [20] and [21] gives necessary and sufficient conditions for poly-
nomials in two and three variables to be local permutations polynomials over a prime
field Fp. These conditions are expressed in terms of the coefficients of the polynomial.
A result about degree bounds for n local permutation polynomials defining a permu-
tation of Fn

q is presented in [1].
A significant part of the results displayed this dissertation are part of the recent papers
[9] and [10].
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2 CONTENTS

An important concept strongly related to Local Permutation Polynomials is Latin
Squares, namely t × t matrices with entries from a set T of size t such that each
element of T occurs exactly once in every row and every column of the matrix.

All Latin squares such that T = Fq can be represented by a bivariate local per-
mutation polynomial f(x, y) ∈ Fq[x, y] (see Lemma 3.20), and the relevance of this
representation for the study of Latin squares, as well as Latin cubes, are described in
[20] and [21].

Latin squares occur in many structures such as group multiplication tables and
Cayley tables. To be precise, Latin squares are referred to as the multiplication tables
of an algebraic structure called a quasigroup.

Two Latin squares L1 and L2 of order t are orthogonal if, when superimposed, each
position has a different pair of ordered entries, and a set of Mutually Orthogonal
Latin Squares (MOLS) is a set of Latin squares that are pairwise orthogonal. The
construction of sets of MOLS is a notoriously difficult combinatorial problem and it is
one of the most studied research topics in design theory [19]. This interest is also due
to the numerous applications that MOLS have in other fields such as Cryptography
[26], Coding Theory and many others, see [13, 17, 27].

We focus on Latin squares of order pr, where p is prime and r ≥ 0.

The remainder of the dissertation is structured as follows.

We start by presenting in Chapter 1 some general properties and preliminary
results on permutation polynomials in one variable for later use.

Then, in Chapter 2 we introduce the concepts of permutation and local permu-
tation polynomials in several variables, discussing their fundamental properties and
matters regarding the maximum degree these polynomials can have.

Due to the one to one map between Latin squares and bivariate local permutation
polynomials, Chapter 3 is dedicated to the study of polynomials in Fq[x, y]. Besides
delving into said relation, we provide a family of LPPs in two variables, known as
e-Klenian polynomials, and discuss the concept of orthogonality for both polynomials
and Latin squares. Also, we show general constructions of sets of MOLS, one of them
based on e-Klenian polynomials.

In Chapter 4 we present a couple notable applications of Latin squares, or equiva-
lently bivariate local permutation polynomials, to Coding Theory in the construction
of Maximum Distance Separable (MDS) codes and to Cryptography for the design of
secret sharing schemes.

We conclude with Appendix A illustrating the more relevant functions of the
PermutationPolynomials SageMath package for manipulating permutation and
local permutation polynomials, and with Appendix B displaying examples of these
polynomials.

https://www.sagemath.org/


CHAPTER 1

Permutation Polynomials in One
Variable

The purpose of this introductory chapter is to provide a basis to build upon for the
rest of the Thesis. We will study polynomials in one variable over finite fields, focusing
on a special family called permutation polynomials.

1.1. Univariate Polynomials over Finite Fields

Let us start by establishing relevant notation. Let p ∈ N be a prime number.

• We denote by Fp
∼= Zp the field of p elements.

• Fp[x] is the polynomial ring in the variable x.

• Let f ∈ Fp[x] be a polynomial. We denote the degree of f as deg(f).

Let f ∈ Fp[x] be an irreducible polynomial of degree r and (f) the principal ideal
generated by f . We construct the quotient ring Fp[x]/(f), obtaining a finite field of
q = pr elements and characteristic p, denoted by Fq.

F∗
q is the multiplicative group of nonzero elements of Fq. It is a cyclic group, and

a generator α is called a primitive element of Fq.

Proposition 1.1. Let c ∈ Fq, where q = pr, r, p ∈ N, p prime. Then, cq = c and

xq − x =
∏
c∈Fq

(x− c).

Proof. The identity cq = c is trivial for c = 0. Now, let c be a nonzero element of Fq,
that is, c ∈ F∗

q . Since F∗
q is a cyclic group of order q− 1 under multiplication, we have

cq−1 = 1, which implies cq = c ∀c ∈ F∗
q , proving the identity.

Now let us prove the second claim. We have just shown that the q elements of Fq

satisfy cq − c = 0, therefore all of them are roots of the polynomial xq − x, and since

3



4 Permutation Polynomials in One Variable

there are at most q roots (because it is of degree q), these are the only ones. So, we
can write

xq − x =
∏
c∈Fq

(x− c).

When working with functions over Fq, it suffices to consider polynomials of degree
at most q − 1 thanks to the Lagrange Interpolation Theorem.

Theorem 1.2 (Lagrange’s Interpolation). For any arbitrary function ϕ : Fq → Fq

there exists a unique polynomial f ∈ Fq[x] with deg(f) < q and f(c) = ϕ(c) ∀c ∈ Fq.

Proof. To prove the theorem, we are going to show that the polynomial

f(x) =
∑
a∈Fq

ϕ(a)(1− (x− a)q−1)

has the desired properties.

First, we need to check that f(c) = ϕ(c) ∀c ∈ Fq. Evaluating f(c), we obtain

f(c) =
∑
a∈Fq

ϕ(a)(1− (c− a)q−1).

Since F∗
q is a cyclic group of order q − 1,

(c− a)q−1 =

{
0 if c− a = 0

1 otherwise.

This implies that 1− (c−a)q−1 is equal to 1 if and only if a = c, and it is 0 otherwise.
Therefore,

f(c) =
∑
a∈Fq

ϕ(a)(1− (c− a)q−1) = ϕ(c) · 1 +
∑

a∈Fq ,a ̸=c

ϕ(a) · 0 = ϕ(c),

which is what we wanted.

Also, f is a polynomial of degree at most q − 1 by construction, so deg(f) < q.

Finally, suppose that there is another polynomial g ∈ Fq[x] such that deg(g) <
q and g(c) = ϕ(c) ∀c ∈ Fq. We know that f(c) = g(c) ∀c ∈ Fq, which implies
f(c)− g(c) = 0 ∀c ∈ Fq. This means the polynomial f(x)− g(x) has q distinct roots,
which is impossible since its degree is at most q − 1:

deg(f − g) ≤ max(deg(f), deg(g)) < q.

We have arrived at a contradiction, thus proving the uniqueness of f and completing
the proof.
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1.2. Permutation Polynomials

In this section we will gather some basic results concerning a particular type of poly-
nomials over finite fields, known as permutation polynomials, that we will introduce
alongside several examples.

These polynomials were first studied by Charles Hermite (1822-1901), who formu-
lated a criterion to identify them, which will also be presented.

Definition 1.3. Let f ∈ Fq[x]. f is a permutation polynomial (PP) of Fq if the
associated function f : c → f(c) from Fq into Fq is a permutation of Fq.

There are multiple characterizations of permutation polynomials. Some of the
most basic and elementary ones are described in this next lemma.

Lemma 1.4. The polynomial f ∈ Fq[x] is a permutation polynomial of Fq if and only
if at least one of the following conditions holds:

(i). the function f : c → f(c) is surjective;

(ii). the function f : c → f(c) is injective;

(iii). f(x) = a has a solution in Fq for each a ∈ Fq;

(iv). f(x) = a has a unique solution in Fq for each a ∈ Fq.

Proof. (i) and (ii) A permutation of a finite set of elements defines a bijective func-
tion from the set to itself. Considering this and the fact that surjective and injective
functions from one finite set to another with the same cardinality are bijective, we get
the equivalences with conditions (i) and (ii).

(i) ⇐⇒ (iii) The function f : c → f(c) is surjective, which means that ∀a ∈ Fq

∃c ∈ Fq such that f(c) = a. In other words, f(x) = a has a solution in Fq for each
a ∈ Fq. This reasoning also works in the opposite direction, giving us the equivalence.

(iii) ⇐⇒ (iv) The left direction of the equivalence is trivial, thus we only need
to prove the right direction. We know that f(x) = a has a solution in Fq for each
a ∈ Fq. The uniqueness of this solution comes from the fact that f is injective, since
(iii) ⇐⇒ (ii).

We shall now establish a useful and more sophisticated criterion for permutation
polynomials. Before doing so, we will need the following two lemmata.

Lemma 1.5. For f, g ∈ Fq[x], we have f(c) = g(c) for all c ∈ Fq if and only if
f(x) ≡ g(x) mod (xq − x).

Proof. By the division algorithm we can write f(x)− g(x) = h(x)(xq −x)+ r(x) with
h, r ∈ Fq[x] and deg(r) < q. Since cq− c = 0 for all c ∈ Fq, f(c) = g(c) for all c ∈ Fq if
and only if r(c) = 0 for all c ∈ Fq, or in other words, f(x) ≡ g(x) mod (xq − x).



6 Permutation Polynomials in One Variable

Lemma 1.6. Let a0, a1, . . . , aq−1 be elements of Fq. Then the following two conditions
are equivalent:

(i). a0, a1, . . . , aq−1 are distinct;

(ii).
∑q−1

i=0 a
t
i =

{
0 for t = 0, 1, . . . , q − 2,

−1 for t = q − 1.

Proof. For fixed i with 0 ≤ i ≤ q − 1, consider the polynomial

gi(x) = 1−
q−1∑
j=0

aq−1−j
i xj .

Let us calculate gi(b) for b ∈ Fq, which we will do by checking the value of the sum.

If b = ai,

q−1∑
j=0

aq−1−j
i aji =

q−1∑
j=0

aq−1
i =

{∑q−1
j=0 0 = 0 if ai = 0,∑q−1
j=0 1 = q ≡ 0 otherwise.

Therefore, gi(ai) = 1− 0 = 0.

If b ̸= ai, we will be using the equality

(1.1) an − bn = (a− b)
n−1∑
j=0

an−1−jxj =⇒
n−1∑
j=0

an−1−jxj = (an − bn)(a− b)−1

considering a ̸= b, which is our case. Applied to our sum,

q−1∑
j=0

aq−1−j
i bj = (aqi − bq)(ai − b)−1 = (ai − b)(ai − b)−1 = 1.

Therefore, gi(b) = 1− 0 = 1 for all b ∈ Fq, b ̸= ai.

Now consider the polynomial

g(x) =

q−1∑
i=0

gi(x) =

q−1∑
i=0

1−
q−1∑
j=0

aq−1−j
i xj

 = q −
q−1∑
i=0

q−1∑
j=0

aq−1−j
i xj =

= −
q−1∑
j=0

(
q−1∑
i=0

aq−1−j
i

)
xj .

Since gi(x) = 1 if and only if x = ai and zero otherwise for i = 0, . . . , q − 1, g maps
each element of Fq into 1 if and only if {a0, . . . , aq−1} = Fq, or equivalently, if and
only if all ai are distinct, which is condition (i).

Since deg(g) < q, by Lemma 1.5 g maps each element of Fq into 1 if and only if
g(x) = 1. This happens if and only if the independent term of g,

∑q−1
i=0 a

q−1
i , equals

−1 and the other coefficients,
∑q−1

i=0 a
q−1−j
i with j = 1, . . . , q−1, are equal to 0, which

is condition (ii).
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Now, we are prepared to prove the mentioned criterion.

Theorem 1.7 (Hermite’s Criterion). Let Fq be of characteristic p. Then f ∈ Fq[x] is
a permutation polynomial of Fq if and only if the following two conditions hold:

(i). f has exactly one root in Fq;

(ii). for each integer t with 1 ≤ t ≤ q − 2 and t ̸≡ 0 mod p, the reduction of (f(x))t

mod (xq − x) has degree ≤ q − 2.

Proof. =⇒ Let f be a permutation polynomial of Fq. (i) is true for f since, by
Lemma 1.4, f(x) = 0 has a unique solution. To see (ii), we find the unique polynomial
with degree < q that represents (f(x))t using the Lagrange Interpolation formula from
Theorem 1.2,

∑
a∈Fq

(f(a))t(1− (x− a)q−1) =

q−1∑
j=0

b
(t)
j xj ,where b

(t)
q−1 = −

∑
a∈Fq

(f(a))t.

As this polynomial is of degree < q, it is the reduction of (f(x))t mod (xq − x) by
Lemma 1.5. Also, since f is a permutation polynomial, all f(a) with a ∈ Fq are
distinct, so according to Lemma 1.6, b(t)q−1 = 0 for t = 0, 1, . . . , q−2, hence (ii) follows.

⇐= Let (i) and (ii) be satisfied. Since f has exactly one root in Fq by (i), only
one of the summands of the sum

∑
a∈Fq

f(a)q−1 is equal to 0, while the others are
equal to 1. Therefore,

∑
a∈Fq

f(a)q−1 = q − 1 ≡ −1. On the other hand, (ii) implies∑
a∈Fq

(f(a))t = 0 for 1 ≤ t ≤ q − 2, t ̸≡ 0 mod p using the representation given
above. Thanks to ∑

a∈Fq

(f(a))tp
j
=

∑
a∈Fq

(f(a))t

pj

we get
∑

a∈Fq
(f(a))t = 0 for the remaining 1 ≤ t ≤ q − 2, and this identity holds

trivially for t = 0. Lemma 1.6 implies that all f(a) with a ∈ Fq are distinct, therefore
f is a permutation polynomial of Fq.

Corollary 1.8. If d > 1 is a divisor of q−1, then there is no permutation polynomial
of Fq of degree d.

Proof. Let f ∈ Fq[x] be a permutation polynomial such that deg(f) = d. Then,
deg(f (q−1)/d) = q − 1, contradicting condition (ii) of Hermite’s Criterion 1.7.

Thanks to the next result, we have a way of producing permutation polynomials
from others.

Theorem 1.9. Let f ∈ Fq[x] be a permutation polynomial. Then, f1(x) = af(x+b)+c
for all a ̸= 0, b, c ∈ Fq is a permutation polynomial.
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Proof. We want to prove that the equation f1(x) = d has a unique solution for all
d ∈ Fq. Notice that

f1(x) = af(x+ b) + c = d ⇐⇒ f(x+ b) = a−1(d− c).

Since f is a permutation polynomial, f(x) = a−1(d−c) has a unique solution x0 ∈ Fq.
Hence, x0 − b is the only solution to the equation f1(x) = d.

Definition 1.10. Using the notation from the previous theorem, we say that f1 is in
normalized form if a, b, c are chosen so that f1 is monic, f1(0) = 0 and (provided
the characteristic p does not divide the degree n) the coefficient of xn−1 is 0.

Via the next theorem and lemmata, different examples of permutation polynomials
will be shown.

Theorem 1.11.

(i). Every linear polynomial over Fq is a permutation polynomial of Fq.

(ii). xn is a permutation polynomial of Fq if and only if gcd(n, q − 1) = 1.

Proof. (i) A linear polynomial f(x) = ax + b, with a, b ∈ Fq, a ̸= 0 represents an
injective function, hence it is a permutation polynomial of Fq by Lemma 1.4.

(ii) By Lemma 1.4, xn is a permutation polynomial of Fq if and only if the
function c ∈ Fq → cn is surjective, which happens if and only if gcd(n, q− 1) = 1.

Lemma 1.12. The polynomial

f(x) = x+

q−2∑
k=0

xk

permutes 1 and 0, and leaves fixed any other element in Fq, considering 00 = 1. In
general, for any distinct a, b ∈ Fq,

fa,b;q(x) = a+ (b− a)

(
x− a

b− a
+

q−2∑
k=0

(
x− a

b− a

)k
)

is a permutation polynomial representing the transposition (a, b).

Proof. It suffices to prove that fa,b;q is a permutation polynomial representing the
transposition (a, b).

First, it is easy to check that

fa,b;q(a) = a+ (b− a)

(
a− a

b− a
+

q−2∑
k=0

(
a− a

b− a

)k
)

= a+ (b− a) · (0 + 1) = b,

fa,b;q(b) = a+ (b− a)

(
b− a

b− a
+

q−2∑
k=0

(
b− a

b− a

)k
)

= a+ (b− a)

(
1 +

q−2∑
k=0

1k

)
=

= a+ (b− a)(1 + q − 1) = a+ (b− a) · q ≡ a.
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Now we just need to see if fa,b;q fixes all other c ∈ Fq.

We know c−a
b−a ̸= 0, then

(
c−a
b−a

)q−1
= 1. Using equation (1.1), possible since

c−a
b−a ̸= 1, we see that

q−2∑
k=0

(
c− a

b− a

)k

=

(
1q−1 −

(
c− a

b− a

)q−1
)(

1− c− a

b− a

)−1

= (1−1)

(
1− c− a

b− a

)−1

= 0.

Therefore,

fa,b;q(c) = a+(b−a)

(
c− a

b− a
+

q−2∑
k=0

(
c− a

b− a

)k
)

= a+(b−a)

(
c− a

b− a
+ 0

)
= a+c−a = c.

We have shown that fa,b;q fixes all other c ∈ Fq, completing the proof.

Lemma 1.13. If α is a primitive element in F∗
q, then the polynomial

gq(x) = (αx− 1)q−1 − xq−1 + αx

is a permutation polynomial representing the cycle (0, 1, α, . . . , αq−2) of length q.

Proof. Since α is a primitive element of Fq, all nonzero elements of Fq can be written
as αr, r ∈ N.

To prove that gq represents the cycle (0, 1, α, . . . , αq−2), we need only check

• gq(0) = 1;

• gq(α
r) = αr+1, r = 0, . . . , q − 3;

• gq(α
q−2) = 0.

Indeed,

gq(0) = (α · 0− 1)q−1 − 0q−1 + α · 0 = (−1)q−1 = 1

gq(α
q−2) = (αq−1 − 1)q−1 − (αq−2)q−1 + αq−1 = (1− 1)q−1 − 1 + 1 = 0

gq(α
r) = (αr+1 − 1)q−1 − (αr)q−1 + αr+1 = 1− 1 + αr+1 = αr+1,

considering in the last calculations that αr+1 ̸= 1 when r = 0, . . . , q − 3.

Let Fq be of characteristic p. More examples of permutation polynomials are:

• The p-polynomial

L(x) =
m∑
i=0

aix
pi ∈ Fq[x]

is a permutation polynomial of Fq if and only if L(x) only has the root 0 in Fq.
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• Let r ∈ N with gcd(r, q − 1) = 1 and let s be a divisor of q − 1. Let g ∈ Fq[x]
be such that g(xs) has no nonzero root in Fq. Then f(x) = xr(g(xs))(q−1)/s is
a permutation polynomial of Fq.

• If 0 ̸= a ∈ Fq, then the Dickson polynomial

gk(x, a) =

⌊ k
2
⌋∑

j=0

k

k − j

(
k − j

k

)
(−a)jxk−2j

permutes Fq if and only if gcd(k, q2 − 1) = 1.

If we work over the complex numbers, then these polynomials are closely related
to the Chebyshev polynomials of the first kind:

Tk(x) = cos(k arccosx), then gk(2x, 1) = 2Tk(x).

• If m divides q − 1, then x(q+m−1)/m + ax is a permutation polynomial of Fq.

The proofs to all of these claims and many other results, such as a table classifing
normalized polynomials, can be found in Chapter 7 of the celebrated book [16].

The study of permutation polynomials is a very active research area.

A notable general question is finding non trivial bound for Nd = Nd(q), that
is, the number of permutation polynomials of certain degree d. We have seen that
N1 = q(q− 1), as all linear polynomials are PPs, and Nd = 0 if d is a divisor of q− 1,
consequence of Corollary 1.8.



CHAPTER 2

Permutation Polynomials in
Several Variables

Instead of working with polynomials in one variable as in the previous chapter, we
are now considering polynomials over finite fields in an arbitrary finite number of
variables.

We are going to study the natural generalisation of the concept of Permutation
Polynomials to several variables as well as a special type of PP, the so called Local Per-
mutation Polynomials, discussing their fundamental properties and matters regarding
the maximum degree these polynomials can have.

2.1. Multivariate Polynomials over Finite Fields

First, we introduce the requierd notation for manipulating polynomials in several
variables.

Let p ∈ N be a prime number, n, r ∈ N, q = pr a power of a prime.

• Fn
q denotes the cartesian product of n copies of Fq.

• x̄ = (x1, . . . , xn), x̄i = (x1, . . . , xi−1, xi+1, . . . , xn).

• we will be working in the ring of polynomials in n variables over Fq, denoted
Fq[x1, . . . , xn] = Fq[x̄].

• Let f ∈ Fq[x1, . . . , xn] be a polynomial. We denote by deg(f) the total degree
of f and by degxi

(f) the degree of f as a polynomial in the variable xi, that is,
as a polynomial in R[xi], where R = Fq[x̄i].

Similar to the univariate case, thanks to the Lagrange Interpolation Theorem 2.2
we can identify all functions Fn

q → Fq with polynomials of Fq[x1, . . . , xn] of degree < q
in each variable.

To prove this, we need the following technical result.

11
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Lemma 2.1. Let f ∈ Fq[x1, . . . , xn]. If f is of degree < q in each indeterminate and
satisfies f(c1, . . . , cn) = 0 for all (c1, . . . , cn) ∈ Fn

q , then f is the zero polynomial.

Proof. This is a proof by induction on n.

The case n = 1 is shown as a part of the proof of the Lagrange Interpolation
Theorem 1.2, and is also a consequence of Lemma 1.5.

Now, let n ≥ 2 and suppose the statement is true for polynomials in n−1 variables.
Let f ∈ Fq[x1, . . . , xn] be a polynomial of the indicated type.

If f is nonzero, we can write

f(x1, . . . , xn) = h0(x2, . . . , xn) +
t∑

i=1

hi(x2, . . . , xn) · xi1,

where 0 ≤ t < q, each hi ∈ Fq[x2, . . . , xn] is such that degxj
(hi) < q, j = 2, . . . , n and

ht ̸= 0. By induction hypothesis, ht ̸= 0 implies the existence of (a2, . . . , an) ∈ Fn−1
q

such that ht(a2, . . . , an) ̸= 0.

We know that f(c, a2, . . . , an) = 0 for all c ∈ Fq, but then

f(x1, a2, . . . , an) = h0(a2, . . . , an) +

t−1∑
i=1

hi(a2, . . . , an) · xi1 + ht(a2, . . . , an)︸ ︷︷ ︸
̸=0

· xt1

is a polynomial in Fq[x1] of degree t < q with q distinct roots, which is a contradiction.

Hence, f = 0.

Theorem 2.2 (Lagrange’s Interpolation in several variables). For any arbitrary func-
tion τ : Fn

q → Fq there exists a unique polynomial g of degree < q in each variable
with g(c1, . . . , cn) = τ(c1, . . . , cn) for all (c1, . . . , cn) ∈ Fn

q .

Proof. To prove the theorem, we are going to check that the polynomial

g(x1, . . . , xn) =
∑

(a1,...,an)∈Fn
q

τ(a1, . . . , an)(1− (x1 − a1)
q−1) . . . (1− (xn − an)

q−1)

has the desired properties.

First, we need to check that g(c̄) = τ(c̄) for all c̄ ∈ Fn
q . Evaluating g(c̄), we obtain

g(c̄) =
∑
ā∈Fn

q

τ(ā)(1− (c1 − a1)
q−1) . . . (1− (cn − an)

q−1).

If c̄ ̸= ā, ∃i ∈ {1, . . . , n} such that ci ̸= ai. Then, 1 − (ci − ai)
q−1 = 1 − 1 = 0,

eliminating the summand associated to ā. By this line of reasoning, the only summand
that remains is the one associated with c̄, and thus

g(c̄) =
∑
ā∈Fn

q

τ(ā)(1− (c1 − a1)
q−1) . . . (1− (cn − an)

q−1) =

= τ(c̄)(1− (c1 − c1)
q−1) . . . (1− (cn − cn)

q−1) = τ(c̄),
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which is what we wanted.

Also, the degree in each variable is at most q− 1 by construction, so degxi
(g) < q

for i = 1, . . . , n.

Finally, suppose that there is another polynomial f ∈ Fq[x1, . . . , xn] such that
degxi

(g) < q for i = 1, . . . , n and f(c̄) = τ(c̄) for all c̄ ∈ Fn
q . Then, the polynomial

f − g is such that (f − g)(c̄) = 0 for all c̄ ∈ Fn
q , and for each i = 1, . . . , n,

degxi
(f − g) ≤ max(degxi

(f),degxi
(g)) < q.

By Lemma 2.1, f − g = 0, hence f = g, proving the uniqueness of f and completing
the proof.

Throughout this dissertation, we identify all functions Fn
q → Fq with such poly-

nomials and every polynomial will be of degree < q in each variable, unless otherwise
specified.

2.2. Permutation and Local Permutation Polynomials

Now we are going to introduce the main concepts of this chapter: Permutation and
Local Permutation Polynomials.

Definition 2.3. A polynomial f ∈ Fq[x1, . . . , xn] is called a permutation poly-
nomial (or PP) in n variables over Fq if the equation f(x1, . . . , xn) = a has qn−1

solutions in Fn
q for each a ∈ Fq.

This is a generalisation of the concept of a permutation polynomial to several
variables in the sense that, when n = 1, we recover the permutation polynomials
studied in Chapter 1.

In the case n > 1 we cannot use the interpretation that a permutation polynomial
f(x1, . . . , xn) over Fq induces a permutation of Fn

q , because the associated mapping is
not a mapping from Fn

q into itself, but Fq.

Definition 2.4. A polynomial f ∈ Fq[x1, . . . , xn] is called a local permutation
polynomial (or LPP) if for each i ∈ {1, . . . , n}, f(a1, . . . , ai−1, xi, ai+1, . . . , an) is a
permutation polynomial in Fq[xi], for all choices of āi ∈ Fn−1

q .

Clearly if n = 1 both concepts are the same, that is, we are talking about univariate
permutation polynomials. The situation changes if the number of variables is greater
than one.

Proposition 2.5. Let f ∈ Fq[x1, . . . , xn] be a local permutation polynomial over Fq.
Then, f is a permutation polynomial over Fq.

Proof. We need to check that for every a ∈ Fq, the equation f(x1, . . . , xn) = a has qn−1

solutions in Fn
q . Since f is an LPP, f(b1, . . . , bn−1, xn) = a has a unique solution, bn, for

each (b1, . . . , bn−1) ∈ Fn−1
q , and there are qn−1 choices for (b1, . . . , bn−1). Therefore,

there are qn−1 solutions in Fn
q to the equation f(x1, . . . , xn) = a, that is, f is a

permutation polynomial.
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We have shown that all local permutation polynomials are permutation polyno-
mials, but the opposite is not true in general, as illustrated in the next example.

Example 2.6. Let us consider the polynomial f(x̄) = xq−1
1 + x2 ∈ Fq[x1, . . . , xn].

(i). f is a permutation polynomial because for each a ∈ Fq, the equation f(x̄) = a
has qn−1 solutions: since x3, . . . , xn don’t appear in the polynomial, all values for
these variables can be a part of the solution, giving us qn−2 possible combinations;
then, we can choose any value out of the q for x1 and x2 is determined by
x2 = a− xq−1

1 , making the total number of solutions q · qn−2 = qn−1.

(ii). For a fixed (a2, . . . , an) ∈ Fn−1
q , the only two possible values that

f(x1, a2, . . . , an) = xq−1
1 + a2

can take are a2 (if x1 = 0) and 1 + a2 (otherwise), and therefore it isn’t a
permutation polynomial in Fq[x1]. Thus, f isn’t a local permutation polynomial.

The above counterexample suggests a couple properties of local permutation poly-
nomials which are not shared with permutation polynomials.

Proposition 2.7. Let f ∈ Fq[x1, . . . , xn] be a local permutation polynomial. Then,
degxi

(f) > 0 for all i = 1, . . . , n.

Proof. Suppose that ∃i ∈ {1, . . . , n} such that degxi
(f) = 0. Then, the polynomial

f(a1, . . . , ai−1, xi, ai+1, . . . , an) is a constant, and therefore cannot be a permutation
polynomial in Fq[xi]. This contradicts that f is an LPP.

Proposition 2.8. Let f ∈ Fq[x1, . . . , xn], n ≥ 2. f is a local permutation polynomial
if and only if for any c ∈ Fq and any i ∈ {1, . . . , n}, f(x1, . . . , xi−1, c, xi+1, . . . , xn) =
f |xi=c is a local permutation polynomial in Fq[x̄i].

Proof. If n = 2, for c ∈ Fq f(c, x2) and f(x1, c) are permutation polynomials (and
therefore LPPs) by definition.

If n > 2, since f is a local permutation polynomial, for each j ∈ {1, . . . , n}, j ̸= i
and for all choices of (ak)k∈I ∈ Fn−2

q , where I = {1, . . . , n} \ {i, j}, f |xi=c;xk=ak,k∈I is
a permutation polynomial in Fq[xj ], hence f |xi=c is an LPP.

Conversely, suppose f isn’t an LPP. Then, there must exist i ∈ {1, . . . , n} and
āi ∈ Fn−1

q such that f(a1, . . . , ai−1, xi, ai+1, . . . , an) isn’t a permutation polynomial in
Fq[xi], and thus f(a1, x2, . . . , xn) isn’t an LPP in Fq[x̄1].

We know how to check if a polynomial is a PP (respectively LPP), but how can
we find these polynomials? In the following part of this section, we will delve into the
study of several results that will allow us to produce PPs and LPPs from others.

This first one uses polynomial composition to obtain new (local) permutation
polynomials.
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Theorem 2.9. Let f ∈ Fq[x1, . . . , xn] be a non constant polynomial.

(i). Let g(z) ∈ Fq[z] be a permutation polynomial. Then, f is a (local) permutation
polynomial if and only if g(f(x1, . . . , xn)) is a (local) permutation polynomial.

(ii). Let h1(x1), . . . , hn(xn) be permutation polynomials. Then, f is a (local) permu-
tation polynomial if and only if f(h1(x1), . . . , hn(xn)) is a (local) permutation
polynomial.

Proof. (i) g is a permutation polynomial, therefore the equation g(z) = a has a
unique solution for each a ∈ Fq, we will call it ca. If f is a permutation polynomial,
there are qn−1 solutions to f(x̄) = ca, thus there are qn−1 solutions to the equation
g(f(x̄)) = a for each a ∈ Fq. That is, g(f(x̄)) is a permutation polynomial.

Now, let us suppose that f is a local permutation polynomial. This implies
that the equation f(a1, . . . , ai−1, xi, ai+1, . . . , an) = ca has a unique solution for all
i ∈ {1, . . . , n} and for all choices of āi ∈ Fn−1

q . Then, that is the only solution to the
equation g(f(a1, . . . , ai−1, xi, ai+1, . . . , an)) = a, and consequently g(f(x̄)) is an LPP.

Conversely, let g(f(x̄)) be a (local) permutation polynomial. Since g is a PP, g−1

exists and is a PP as well. Then, g−1(g(f(x̄))) = f(x̄) falls into the previous case and
thus is a (local) permutation polynomial.

(ii) For i = 1, . . . , n, hi is a permutation polynomial. Therefore, if we define the
function h(x1, . . . , xn) := (h1(x1), . . . , hn(xn)), h is a bijective function. This implies
that its inverse, h−1, exists. Also, if seen as functions, h−1

i exists and is a permutation
polynomial for i = 1, . . . , n.

Suppose that f is a permutation polynomial, we want to count the number of
solutions to the equation f(h(x̄)) = a for each a ∈ Fq. f(x̄) = a has qn−1 solutions,
each of those of the form (c1, . . . , cn). Then, h−1(c1, . . . , cn) are the qn−1 solutions of
the main equation, and consequently f(h(x̄)) is a permutation polynomial.

Now, let us assume that f is an LPP, we want to see that, for each b ∈ Fq,
f(h(a1, . . . , ai−1, xi, ai+1, . . . , an)) = b has a unique solution for each i ∈ {1, . . . , n}
and for all choices of āi ∈ Fn−1

q . We know that

f(h(a1, . . . , ai−1, h
−1
i (xi), ai+1, . . . , an)) =

= f(h1(a1), . . . , hi−1(ai−1), xi, hi+1(ai+1), . . . , hn(an)) = b

has a unique solution, c. Then, h−1
i (c) is the only solution to the main equation,

making f(h(x̄)) an LPP.

Conversely, let f(h1(x1), . . . , hn(xn)) be a (local) permutation polynomial. Then,
f(h1(h

−1
1 (x1)), . . . , hn(h

−1
n (xn))) = f(x1, . . . , xn) falls into the previous case and thus

is a (local) permutation polynomial.

The next result is Theorem 7.42 from [16]. In particular, it shows that we can
produce a PP by summing a PP and another polynomial in different variables.
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Theorem 2.10. Suppose f ∈ Fq[x1, . . . , xn] is of the form

f(x1, . . . , xn) = g(x1, . . . , xm) + h(xm, . . . , xn), 1 ≤ m < n.

If at least one of g and h is a permutation polynomial over Fq, then f is a permutation
polynomial over Fq. If q is prime, then the converse holds as well.

For LPPs we have the following version of this theorem.

Theorem 2.11. Suppose f ∈ Fq[x1, . . . , xn] is of the form

f(x1, . . . , xn) = g(x1, . . . , xm) + h(xm+1, . . . , xn), 1 ≤ m < n.

Then f is an LPP if and only if g and h are local permutation polynomials.

Proof. Let us fix i ∈ {1, . . . , n}. Suppose that 1 ≤ i ≤ m. Then, when we evaluate

f(a1, . . . , ai−1, xi, ai+1, . . . , an) = g(a1, . . . , ai−1, xi, ai+1, . . . , am) + h(am+1, . . . , an),

with āi ∈ Fn−1
q , h becomes a constant. f(a1, . . . , ai−1, xi, ai+1, . . . , an) is a permuta-

tion polynomial if and only if g(a1, . . . , ai−1, xi, ai+1, . . . , am) is a permutation poly-
nomial by Theorem 2.9 - (i), taking g(z) = z + h(am+1, . . . , an).

Using the same argument for m < i ≤ n, we get that f(a1, . . . , ai−1, xi, ai+1, . . . , an)
is a PP if and only if h(am+1, . . . , ai−1, xi, ai+1, . . . , an) is a PP.

Combining everything, we see that f(a1, . . . , ai−1, xi, ai+1, . . . , an) is a PP for
any i ∈ {1, . . . , n} and all choices of āi ∈ Fn−1

q (that is, f is an LPP) if and only
if g(a1, . . . , ai−1, xi, ai+1, . . . , an) is a PP for any i ∈ {1, . . . ,m} and all choices of
(a1, . . . , ai−1, ai+1, . . . , am) ∈ Fm−1

q and h(am+1, . . . , ai−1, xi, ai+1, . . . , an) is a PP for
any i ∈ {m+ 1, . . . , n} and all choices of (am+1, . . . , ai−1, ai+1, . . . , an) ∈ Fm−n

q (that
is, g and h are LPPs).

We conclude this section discussing the number of permutation polynomials and
local permutation polynomials in Fq[x1, . . . , xn]. In the case of permutation polyno-
mials there is a satisfying answer, given by the following theorem.

Theorem 2.12. The number of permutation polynomials in Fq[x1, . . . , xn] is

Nn(q) =
(qn)!

((qn−1)!)q
.

Proof. Let f ∈ Fq[x1, . . . , xn] be a permutation polynomial, and Fq = {c0, . . . , cq−1}.
Then, for each ci ∈ Fq, i = 0, . . . , q − 1, we define the set

Ai = {(a1, . . . , an) ∈ Fn
q : f(a1, . . . , an) = ci}.

It is clear to see that {Ai : i = 0, . . . , q − 1} is a partition of Fn
q , and since f is a

permutation polynomial, |Ai| = qn−1 for i = 0, . . . , q − 1.

To count the number of permutation polynomials, it suffices to count the number
of partitions with these characteristics.
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To build such a partition, we first need to choose qn−1 elements out of the qn that
Fn
q has, these will form A0. Then, to construct A1 we again pick qn−1 elements out of

the qn − qn−1 remaining. We keep doing this until there are only qn−1 elements left,
which will form Aq−1. The number of ways of doing this is

(
qn

qn−1

)(
qn − qn−1

qn−1

)
. . .

(
qn − (q − 2)qn−1

qn−1

)(
qn−1

qn−1

)
=

q−1∏
k=0

(
qn − k · qn−1

qn−1

)

If we work out this expression, we get

q−1∏
k=0

(
qn − k · qn−1

qn−1

)
=

q−1∏
k=0

(qn − k · qn−1)!

(qn−1)!(qn − (k + 1) · qn−1)!
=

=
1

((qn−1)!)q

q−1∏
k=0

(qn − k · qn−1)!

(qn − (k + 1) · qn−1)!
=

=
1

((qn−1)!)q
· (qn − 0 · qn−1)!

(qn − (q − 1 + 1) · qn−1)!
=

(qn)!

((qn−1)!)q
.

Remark: Actually, to count the number of partitions of Fn
q with sets of cardinality

qn−1 we would have to divide this number by q!, since it doesn’t matter the order in
which we build the sets. But, in this case, each Ai is associated with ci, and changing
the order of the sets would result in a different polynomial.

Hence, the number of permutation polynomials in Fq[x1, . . . , xn] is

Nn(q) =
(qn)!

((qn−1)!)q
.

The situation changes dramatically for local permutation polynomials, as there
isn’t a concrete formula for this: the number of LPPs in Fq[x1, . . . , xn] has to be
calculated independently for every choice of q, n. We will make a couple of remarks
on this open problem in Subsection 3.4.2.

However, it is easy to count the number of linear LPPs in Fq[x1, . . . , xn]. A linear
polynomial f ∈ Fq[x1, . . . , xn] is of the form

f(x1, . . . , xn) = a0 +
n∑

i=1

aixi, ai ∈ Fq, i = 0, . . . , n.

By Theorem 2.7, all variables must appear in an LPP, so ai ̸= 0 for i = 1, . . . , n. That
leaves q−1 possibilities for each ai, i = 1, . . . , n and q for a0. All of these polynomials
are LPPs by Theorems 2.11 and 1.11, giving us a total of q(q − 1)n linear LPPs in
Fq[x1, . . . , xn].
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2.3. Permutation and Local Permutation Polynomials of
Maximum Degree

As part of our study of the different properties permutation and local permutation
polynomials have, we will dedicate this section to finding non trivial bounds on their
degree and determining whether or not those bounds are sharp.

There is a natural bound to the degree of all polynomials in Fq[x1, . . . , xn].

Theorem 2.13. Let f ∈ Fq[x1, . . . , xn] be a non constant polynomial. Then, f is of
degree at most n(q − 1).

Proof. All polynomials we consider have degree < q in each variable thanks to the
Lagrange Interpolation Theorem 2.2. This implies that the monomial of greatest
degree that can appear in f is xq−1

1 . . . xq−1
n =

∏n
i=1 x

q−1
i , and therefore establishing

a bound of n(q − 1) to its degree.

For permutation polynomials, this bound is slightly smaller, as we will show in
the next proposition.

Proposition 2.14. Any permutation polynomial f ∈ Fq[x1, . . . , xn] has degree at most
n(q − 1)− 1.

Proof. By the Lagrange Interpolation Theorem 2.2, we have

f(x1, . . . , xn) =
∑

(c1,...,cn)∈Fn
q

f(c1, . . . , cn)(1− (x1 − c1)
q−1) . . . (1− (xn − cn)

q−1).

The coefficient of the monomial xq−1
1 . . . xq−1

n =
∏n

i=1 x
q−1
i in the above polynomial

identity is ∑
(c1,...,cn)∈Fn

q

(−1)nf(c1, . . . , cn).

Since f is a permutation polynomial, for any a ∈ Fq the cardinality of the set

Ca = {(c1, . . . , cn) ∈ Fn
q : f(c1, . . . , cn) = a}

is qn−1. Moreover, the set ∆ = {Ca : a ∈ Fq} forms a partition of Fn
q . Therefore, the

coefficient previously mentioned is∑
(c1,...,cn)∈Fn

q

(−1)nf(c1, . . . , cn) = (−1)n
∑
a∈Fq

qn−1 · a = 0.

Hence, f has degree at most n(q − 1)− 1.

In the case of local permutation polynomials, we can refine that bound even more.

Theorem 2.15. Let f ∈ Fq[x1, . . . , xn] be a non constant polynomial. If f is an LPP,
then f is linear if q = 2 and q = 3, and has degree at most n(q − 2) otherwise.
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Proof. q = 2 This will be a proof by induction on n.

For n = 1, we are looking at polynomials in F2[x]. There are only two polynomials
to consider, x and x+ 1, since they are the only ones with degree < 2. Both of these
are, in fact, linear, and PPs (which is the same as LPP for n = 1) by Theorem 1.11.

Now, suppose the claim is true for n and lwe shall prove it for n + 1. Let f ∈
F2[x1, . . . , xn, y] be an LPP. Since degy(f) < 2, we can write it as

f(x1, . . . , xn, y) = g(x1, . . . , xn) · y + h(x1, . . . , xn), g, h ∈ F2[x1, . . . , xn].

Our goal is to show that g(x̄) = 1.

Substituting y with 0 or 1, we obtain two LPPs in F2[x1, . . . , xn] by Proposition
2.8. By induction hypothesis, f(x̄, 0) and f(x̄, 1) are linear.

• f(x̄, 0) = h(x̄) is an LPP and linear, therefore degxi
(h) ≤ 1 for i = 1, . . . , n.

• f(x̄, 1) = g(x̄) + h(x̄) is linear. Knowing that h is also linear, this implies that
g is linear, and therefore degxi

(h) ≤ 1 for i = 1, . . . , n.

Since h(x̄) is an LPP, degxi
(h) ≥ 1 for i = 1, . . . , n by Proposition 2.7, hence

degxi
(h) = 1 for i = 1, . . . , n. If there exists i ∈ {1, . . . , n} such that degxi

(g) = 1,
that variable would disappear in g(x̄) + h(x̄), contradicting Proposition 2.7 as
it is an LPP. Thus, degxi

(g) = 0 for all i = 1, . . . , n, that is, g is a constant.

If g(x̄) = 0, that would mean that y doesn’t appear in f , again contradicting
Proposition 2.7. Hence, g(x̄) = 1.

Combining everything together, we get that f is of the form

f(x1, . . . , xn) = y + h(x1, . . . , xn)

where h is a linear polynomial. Then, f is a linear polynomial.

q = 3 This will be a proof by induction on n.

For n = 1, we are looking at polynomials in F3[x]. The only polynomials we
have to consider are those of degree < 3, that is, ax2 + bx + c, a, b, c ∈ F3. Thanks
to Theorem 1.11, we know that all linear polynomials (a = 0,b ∈ F∗

3) are PPs. By
Corollary 1.8, there is no PP of degree 2 (a ̸= 0), and constants (a, b = 0) aren’t
PPs since they arent injective functions. Thus, all the PPs in F3[x] are the linear
polynomials.

Now, suppose the claim is true for n and we shall prove it for n+ 1.

Let h ∈ F3[x1, . . . , xn, y] be an LPP. Since degy(h) < 3, we can write it as

h(x1, . . . , xn, y) = f2(x1, . . . , xn) · y2 + f1(x1, . . . , xn) · y + f0(x1, . . . , xn),

where fi ∈ F2[x1, . . . , xn], i = 0, 1, 2. Our goal is to show that f2(x̄) = 0 and f1(x̄) is
a nonzero constant.

Substituting y with 0, 1 or 2, we obtain three LPPs in F3[x1, . . . , xn] by Proposition
2.8. By induction hypothesis, h(x̄, 0), h(x̄, 1) and h(x̄, 2) are linear.
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• h(x̄, 0) = f0(x̄) is an LPP and linear, therefore degxi
(h) ≤ 1 for i = 1, . . . , n, or

in other words, all variables xi appear on f0.

• h(x̄, 1) = f2(x̄) + f1(x̄) + f0(x̄) is an LPP and linear.

• h(x̄, 2) = f2(x̄) + 2f1(x̄) + f0(x̄) is an LPP and linear.

Since f0, h(x̄, 1) and h(x̄, 2) are linear polynomials, 2f0(x̄) + h(x̄, 1) = f2(x̄) + f1(x̄)
and 2f0(x̄) + h(x̄, 2) = f2(x̄) + 2f1(x̄) are linear as well. But at the same time, this
implies that

(f2(x̄) + 2f1(x̄))− (f2(x̄) + f1(x̄)) = f1(x̄)

is also linear, and
(f2(x̄) + f1(x̄))− f1(x̄) = f2(x̄)

is linear too. To summarise, fi is a linear polynomial for i = 0, 1, 2.

f2 is a linear polynomial. If f2(x̄) ̸= 0, there exists ā ∈ Fn
q such that f2(ā) ̸= 0.

As h is an LPP, h(ā, y) is a PP in F3[y], but

h(ā, y) = f2(ā)︸ ︷︷ ︸
̸=0

· y2 + f1(ā) · y + f0(ā),

which isn’t a linear polynomial, and thus contradicting the induction hypothesis.
Therefore, f2(x̄) = 0.

We also know that f0 and f1 are linear, and all variables appear on f0. So, we can
write

f1(x̄) = a0+
n∑

i=1

aixi, f0(x̄) = b0+
n∑

i=1

bixi; ai, bi ∈ F3, i = 0, . . . , n, bi ̸= 0 if i ̸= 0.

This leaves us with

h(x̄, 1) = f1(x̄) + f0(x̄) = (a0 + b0) +
n∑

i=1

(ai + bi)xi,

h(x̄, 2) = 2f1(x̄) + f0(x̄) = (2a0 + b0) +
n∑

i=1

(2ai + bi)xi.

Both of these polynomials are LPPs, and therefore all variables appear in them, that
is, ai + bi and 2ai + bi are nonzero for i = 1, . . . , n. Let i ∈ {1, . . . , n}. bi cannot be
zero. Then,

• If bi = 1, ai + bi = ai + 1 and 2ai + bi = 2ai + 1. Necessarily ai = 0 for these to
be nonzero.

• If bi = 2, ai + bi = ai + 2 and 2ai + bi = 2ai + 2. Necessarily ai = 0 for these to
be nonzero.
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Hence, ai = 0 for i = 1, . . . , n, which implies f1(x̄) = a0, that is, f1 is a constant.
If f1(x̄) = 0, that would mean that y doesn’t appear in h, contradicting Proposition
2.7. Therefore, f1(x̄) = 1.

Combining everything together, we get that h is of the form

h(x1, . . . , xn) = y + f0(x1, . . . , xn)

where f0 is a linear polynomial. Then, h is a linear polynomial.

q > 3 We know that degxi
< q i = 1, . . . , n. Here we will show that degxi

(f) <
q−1 for i = 1, . . . , n. It suffices to prove it for i = 1, as the other cases are analogous.

Since degx1
(f) < q, we can write

f = Mq−1x
q−1
1 +Mq−2x

q−2
1 + · · ·+M1x1 +M0, Mi ∈ Fq[x2, . . . , xn].

Suppose that Mq−1 is a nonzero polynomial. Then, there exists (a2, . . . , an) ∈ Fn−1
q

such that Mq−1(a2, . . . , an) ̸= 0. As f is an LPP, f(x1, a2, . . . , an) is a PP in Fq[x1],
but it is of degree q − 1, contradicting Corollary 1.8. Hence, Mq−1(x2, . . . , xn) = 0
and degx1

(f) < q − 1.

The same reasoning can be applied for the other variables, so degxi
(f) < q− 1 for

i = 1, . . . , n. This implies that the monomial of greatest degree that can appear in f
is
∏n

i=1 x
q−2
i , and therefore establishing a bound of n(q − 2) to its degree.

Remark: This part of the proof works for q > 2, but, as we have seen, the bound
obtained can be refined.

Once these bounds have been established, we wonder whether or not there are
polynomials that actually reach them. To study this, we can rely on the results
proven in the previous sections for providing useful examples of PPs and LPPs and
tools to construct them from others.

This question has a fulfilling resolution in the case of permutation polynomials.

Theorem 2.16. There exists a permutation polynomial f ∈ Fq[x1, . . . , xn] of maxi-
mum degree n(q − 1)− 1.

Proof. Let q = pr. Consider the polynomial

g(x) = x+

q−2∑
k=0

xk ∈ Fq[x],

which is a PP that represents the permutation (0, 1) as seen in Lemma 1.12. We will
construct the polynomial

hn(x1, . . . , xn) = xq−1
1 . . . xq−1

n−1(g(xn)− xn) + xn.

This polynomial has degree n(q − 1)− 1, since

hn(x̄) = xq−1
1 . . . xq−1

n−1

(
xn +

q−2∑
k=0

xkn − xn

)
+xn = xq−1

1 . . . xq−1
n−1 ·x

q−2
n + smaller

degree terms.
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Let a ∈ Fq. For any choice of (c1, . . . , cn−1) ∈ Fn−1
q , we are going to show that

there exists a unique cn ∈ Fq such that h(c1, . . . , cn) = a. We have

hn(c1, . . . , cn−1, xn) = cq−1
1 . . . cq−1

n−1(g(xn)− xn) + xn.

There are two possibilities:

• If ci ̸= 0 for all i = 1, . . . , n−1, hn(c1, . . . , cn−1, xn) = (g(xn)−xn)+xn = g(xn),
which is a univariate permutation polynomial.

• If there exists i ∈ {1, . . . , n} such that ci = 0, then hn(c1, . . . , cn−1, xn) = xn,
which is a univariate permutation polynomial, since it is linear.

We have shown that hn(c1, . . . , cn−1, xn) is a permutation polynomial in Fq[xn] for
all choices of (c1, . . . , cn−1) ∈ Fn−1

q , therefore for each a ∈ Fq there exists a unique
cn ∈ Fq such that hn(c1, . . . , cn−1, cn) = a. This implies that there are qn−1 solutions
of hn(x̄) = a for each a ∈ Fq, or in other words, hn is a PP in Fq[x1, . . . , xn].

Now we will study local permutation polynomials of maximum degree in Fq[x1, . . . , xn],
separating the case where Fq is a field of characteristic 2 and 3 from the rest.

Let us start by analysing the latter case. To get to the final result, we first need
to prove a series of preliminary statements.

Theorem 2.17. Let p ≥ 5 be a prime number and n < p−1 a positive integer. There
exists a local permutation polynomial in Fq[x1, . . . , xn] defined over Fq, of maximum
degree for every q = pr, r ≥ 1.

Proof. According to Theorem 1.11, xi is a permutation polynomial for all i = 1, . . . , n.
Therefore, S(x̄) = x1 + · · ·+ xn is a PP by Theorem 2.11. We will again consider the
polynomial

g(x) = x+

q−2∑
k=0

xk ∈ Fq[x],

which is a PP that represents the permutation (0, 1) as seen in Lemma 1.12. Then,
we can construct the polynomial

f(x1, . . . , xn) = g
(
S(xq−2

1 , . . . , xq−2
n )

)
= xq−2

1 + · · ·+ xq−2
n +

q−2∑
k=0

(xq−2
1 + · · ·+ xq−2

n )k.

Since gcd(q−2, q−1) = 1, hi(xi) = xq−2
i is a PP for all i = 1, . . . , n by Theorem 1.11.

Then, S(xq−2
1 , . . . , xq−2

n ) and consequentely f are LPPs by Theorem 2.9.

Remember that degxi
(f) ≤ q − 2. Thus, f is of degree n(q − 2) if and only if f

has the monomial xq−2
1 . . . xq−2

n with nonzero coefficient, which happens if and only if

g(S(x̄)) = S(x̄) +

q−2∑
k=0

(S(x̄))k
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has the monomial x1 . . . xn with nonzero coefficient, since if k ∈ {0, . . . , q − 2},
xk(q−2) = xq−2 in Fq if and only if k = 1.

Now, for any 0 ≤ k ≤ q− 2, the monomials of Sk are of the form xi11 . . . xinn , where
i1 + · · · + in = k. Then, the only one of these where x1 . . . xn appears is Sn, with
coefficient n!. Therefore,

f = n!xq−2
1 . . . xq−2

n + terms in less variables,

so f is an LPP with degree n(q − 2).

Lemma 2.18. If there is an LPP f ∈ Fq[x1, . . . , xn] of maximum degree, then there
is an LPP of maximum degree for any m ≤ n.

Proof. It suffices to prove that there is an LPP of maximum degree in Fq[x1, . . . , xn−1].

Let f ∈ Fq[x1, . . . , xn] be an LPP of maximum degree. Then, f is of the form

f(x1, . . . , xn) = axq−2
1 . . . xq−2

n + P

for some a ∈ Fq and P of smaller degree. By Proposition 2.8, f(x1, . . . , xn−1, α) =

aαq−2xq−2
1 . . . xq−2

n−1 + P |xn=α is an LPP in Fq[x1, . . . , xn−1] for any α ∈ Fq.

So, we choose an α ∈ F∗
q . Then, we have the maximum degree LPP we were

looking for unless deg(f(x1, . . . , xn−1, α)) < (n − 1)(q − 2). That can only happen
if P |xn=α has the monomial −aαq−2xq−2

1 . . . xq−2
n−1. But then, f(x1, . . . , xn−1, β) is an

LPP that has the monomial (aβq−2 − aαq−2)xq−2
1 . . . xq−2

n ̸= 0, with β ∈ Fq.

This way, we have found an LPP of maximum degree in Fq[x1, . . . , xn−1].

Theorem 2.19. Let n = st with s < p, gcd(s, q − 1) = 1. Suppose there is an LPP
over Fq[x1, . . . , xt] of maximum degree defined over Fp. Then, there is an LPP over
Fq[x1, . . . , xn] of maximum degree defined over Fp.

Proof. Let Ft ∈ Fq[x1, . . . , xt] be an LPP of maximum degree. Then,

Ft = axq−2
1 . . . xq−2

t + Pt,

where a ∈ Fq, deg(Pt) < t(q − 2) and degxi
(Pt) ≤ q − 2 for i = 1, . . . , t. Consider the

polynomials S(y1, . . . , ys) = y1 + · · ·+ ys and h(z) = zs, which are LPPs. We define
the polynomial

F =
(
Ft(x1, . . . , xt) + Ft(xt+1, . . . , x2t) + · · ·+ Ft(x(s−1)t+1, . . . , xst)

)s
=

= h(S(Ft(x1, . . . , xt), . . . , Ft(x(s−1)t+1, . . . , xst))),

an LPP by Theorem 2.9. Then,

F =
(
axq−2

1 . . . xq−2
t + · · ·+ axq−2

(s−1)t+1 . . . x
q−2
st + P

)s
,

where deg(P ) < t(q − 2) and degxi
(P ) ≤ q − 2 for i = 1, . . . , t. Hence,

F (x1, . . . , xn) = css!xq−2
1 . . . xq−2

n +G(x1, . . . , xn),

where deg(G) < n(q − 2) and degxi
(P ) ≤ q − 2 for i = 1, . . . , t.

Thus, F is an LPP of maximum degree in Fq[x1, . . . , xn].
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With all of these results proven, we can finally show what we were aiming for.

Corollary 2.20. Let n, p ∈ N, with p ≥ 5 a prime number and q = pr. If there exists
1 < b < p− 1 such that gcd(b, q− 1) = 1, then there is a local permutation polynomial
over Fq[x1, . . . , xn] of maximum degree, n(q − 2).

Proof. By Theorem 2.17 there exists an LPP of maximum degree in Fq[x1, . . . , xb]
defined over Fq. Let k ∈ N be such that n ≤ bk. Considering s = b, we can apply
recursively Theorem 2.19 to get an LPP in Fq[x1, . . . , xbk ]. Then, by Lemma 2.18,
there is an LPP of maximum degree in n variables over Fq.

Observe that such b doesn’t always exist. For example, if p = 5 and q = 52 = 25,
the only choices for b are 2 and 3, but both divide q − 1 = 24. However, there are
infinitely many q for which Corollary 2.20 applies if we restrict our search to b’s such
that gcd(b, p− 1) = 1.

Lemma 2.21. For any prime number p and integer gcd(b, p − 1) = 1 there exist
infinitely many r ≥ 1 such that gcd(b, pr − 1) = 1.

Proof. Let b be an integer. If p | b, we can write b = pal for p ̸ | l, which implies
gcd(b, pr − 1) = gcd(l, pr − 1). Thus, we can suppose that p ̸ | b, that is, gcd(p, b) = 1.

Now, we define rm = mφ(b) for any m ∈ N. By the Fermat–Euler Theorem we
have prm ≡ (pφ(b))m ≡ 1m ≡ 1 mod b and hence

prm+1 − 1 ≡ prm+1 − prm + prm − 1 ≡ (prm+1 − prm) + (1− 1) ≡ prm(p− 1) mod b.

It is known that gcd(α, β) = gcd(α, β mod α) for α, β ∈ Z. Therefore,

gcd(b, prm+1 − 1) = gcd(b, prm(p− 1)) = gcd(b, p− 1) = 1.

There is an infinite number of these rm, thus completing the proof.

Now we will briefly discuss the case where Fq is a field of characteristic p = 2 or
p = 3, q = pr, r ∈ N.

When r = 1 (q = 2, 3) all LPPs are linear, as seen in Theorem 2.15, which there are
q(q−1)n of in Fq[x1, . . . , xn]. For example, the polynomial S(x1, . . . , xn) = x1+· · ·+xn
which appears in the proof of Theorem 2.17 is a linear LPP.

When r > 1, in [9] and [10] there are results showing LPPs of maximum degree in
two and three variables over Fq.

In fact, in [10] there is a general proof of existence of local permutation polynomials
of maximum degree in Fq[x1, . . . , xn] for any q > 3 and any n ∈ N.



CHAPTER 3

Bivariate Local Permutation
Polynomials

In this chapter we will focus on local permutation polynomials in Fq[x, y]. We will pro-
vide a family of bivariate LPPs, the so called e-Klenian polynomials, based on a class
of symmetric subgroups without fixed points. Because of their relation with LPPs,
we will also talk about Latin squares and their generalisation to higher dimensions,
Latin hypercubes, as well as study the concept of orthogonality for both polynomials
and Latin squares.

3.1. Permutation Polynomial Tuples

Here we are going to show an alternative representation of bivariate local permutation
polynomials: q-tuples of permutations of Fq, thus translating their study to discussing
these tuples.

Let Σq be the permutation group with q elements and Fq = {c0, . . . , cq−1} the field
with q = pr elements.

Lemma 3.1. There is a bijective map between the set of local permutation polyno-
mials f ∈ Fq[x, y] and the set of q-tuples β

f
= (β0, . . . , βq−1) such that βi ∈ Σq

(i = 0, . . . , q − 1) and for i ̸= j, β−1
i βj has no fixed points.

Proof. First we will show how to associate a q-tuple of permutations to a given LPP.

Let f ∈ Fq[x, y] be a local permutation polynomial. We remember the sets we
defined for each i = 0, . . . , q − 1 in the proof of Theorem 2.12,

Ai = {(a, b) ∈ F2
q : f(a, b) = ci}.

Since f is an LPP, it is also a PP, and thus {Ai : i = 0, . . . , q− 1} is a partition of F2
q

and |Ai| = q.

If we take into account that f is an LPP, we notice that f(a, y) is a permutation
polynomial in Fq[y] for all a ∈ Fq. This means that for each i = 0, . . . , q − 1, the

25
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equation f(a, y) = ci has a unique solution bi ∈ Fq. Therefore, for each i = 0, . . . , q−1
we can define a permutation βi ∈ Σq such that βi(a) = bi for each a ∈ Fq. Then,

Ai = {(a, βi(a)) : a ∈ Fq}.

Since Ai ∩ Aj = ∅ when i ̸= j, βi(a) ̸= βj(a) for all a ∈ Fq. In other words, the
permutation β−1

i βj has no fixed points when i ̸= j.

Hence, we have associated the LPP f with the q-tuple β
f
= (β0, . . . , βq−1).

Conversely, let β = (β0, . . . , βq−1) be a q-tuple such that βi ∈ Σq (i = 0, . . . , q−1)

and for i ̸= j, β−1
i βj has no fixed points. Then, for each i = 0, . . . , q − 1 we can

construct the set
Ai = {(a, βi(a)) : a ∈ Fq}.

Note that Ai ∩ Aj = ∅ when i ̸= j because β−1
i βj has no fixed points, and |Ai| = q

for i = 0, . . . , q − 1.

Then, thanks to the Lagrange Interpolation Theorem 2.2 we can define a polyno-
mial fβ such that

fβ(a, βi(a)) = ci, a ∈ Fq, i = 0, . . . , q − 1.

As the Ai are disjoint, fβ is well defined. Also, |Ai| = q, making fβ a permutation
polynomial. All that is left to check is if fβ is an LPP.

Let a ∈ Fq. The equation fβ(a, y) = ci has a unique solution, βi(a), for each
ci ∈ Fq. On the other hand, fβ(x, a) = ci also has a unique solution, β−1

i (a), for each
ci ∈ Fq. Thus, fβ is an LPP.

Hence, we have associated the q-tuple β with the LPP fβ .

We denote by β
f

the q-tuple associated with the LPP f .

This relation leads us to the next definition.

Definition 3.2. We say that (β0, . . . , βq−1) ∈ Σq
q is a permutation polynomial

tuple is it satisfies that β−1
i βj has no fixed points for i, j = 0, . . . , q − 1, i ̸= j.

Similar to the remark made at the end of the proof of Theorem 2.12, we note that
changing the order of the Ai’s would result in a different permutation polynomial.
In particular, if f is the (local) permutation polynomial associated to the Ai’s and
σ ∈ Σq, if we define the polynomial h as

h(a, b) = ci, (a, b) ∈ Aσ(i), i = 0, . . . , q − 1,

then h is a (local) permutation polynomial and h(x, y) = g(f(x, y)), where g(z) ∈ Fq[z]
is the permutation polynomial associated to the permutation σ.
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If f is an LPP associated with the q-tuple of permutations β
f
= (β0, . . . , βq−1),

the polynomial h that results from this permutation is the LPP associated with the
q-tuple β

h
= (βσ(0), . . . , βσ(q−1)).

Using this method, we can obtain up to q! permutation polynomials from one
permutation polynomial tuple.

However, there are many other LPPs we can construct, as shown in the next result.

Proposition 3.3. Let Ω = (β0, . . . , βq−1) ∈ Σq
q be a permutation polynomial tuple.

Let σ, δ ∈ Σq. Then, σΩδ = (σβ0δ, . . . , σβq−1δ) ∈ Σq
q is also a permutation polynomial

tuple.

Proof. Suppose that σΩδ isn’t a permutation polynomial tuple. Then, there exist
i, j ∈ {0, . . . , q−1}, i ̸= j, and a c ∈ Fq such that c is a fixed point of (σβiδ)−1(σβjδ),
that is, (σβiδ)−1(σβjδ)(c) = c. But (σβiδ)

−1(σβjδ) = δ−1β−1
i βjδ, and thus

δ−1β−1
i βjδ(c) = c =⇒ β−1

i βj(δ(c)) = δ(c).

δ(c) is a fixed point of β−1
i βj and i ̸= j, which is a contradiction with the fact that Ω

is a permutation polynomial tuple.

Hence, σΩδ is a permutation polynomial tuple.

This proposition motivates the following concept.

Definition 3.4. Two permutation polynomial tuples Ω and Γ are similar if there
exist σ, δ ∈ Σq such that σΩδ = Γ.

Analogously, we say that two local permutation polynomials f and g are similar
if the corresponding permutation polynomial tuples β

f
and β

g
are similar.

Proposition 3.5. The relation described in Definition 3.4 is an equivalence relation
defined in the set of local permutation polynomials.

Proof. Let f, g, h ∈ Fq[x, y] be local permutation polynomials.

• Reflexivity: f is similar to f .

id−1β
f
id = β

f
, where id ∈ Σq is the identity.

• Symmetry: f is similar to g if and only if g is similar to f .

Let σ, δ ∈ Σq. Then, σβ
f
δ = β

g
⇐⇒ β

f
= σ−1β

g
δ−1.

• Transitivity: If f is similar to g and g is similar to h, then f is similar to h.

Let σ, δ, σ̂, δ̂ ∈ Σq. Then,{
σβ

f
δ = β

g

σ̂β
g
δ̂ = β

h

=⇒ (σ̂σ)β
f
(δδ̂) = β

h
.
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Every class of permutation polynomial tuples has a representative containing the
identity: the permutation polynomial tuple β

f
= (β0, . . . , βq−1) is similar to

β−1
i β

f
= (β−1

i β0, . . . , β
−1
i βi−1, id, β

−1
i βi+1, . . . , β

−1
i βq−1), i = 0, . . . , q − 1.

Note that β−1
i βj ̸= id when i ̸= j, as they don’t have fixed points by definition.

If needed, we will use one of these representatives.

3.2. e-Klenian Polynomials

In this section we will present a new class of bivariate local permutation polynomials,
e-Klenian polynomials, based on a particular family of permutation polynomial tuples.

Definition 3.6. Let f ∈ Fq[x1, . . . , xn] be a local permutation polynomial and β
f
=

(β0, . . . , βq−1). f is a permutation group polynomial if {β0, . . . , βq−1} is a sub-
group of Σq. We denote this subgroup by Gβ

f
.

Proposition 3.7. Let G = {β0, . . . , βq−1} be a subgroup of Σq. The elements of G
can form a permutation polynomial tuple if and only if none of them have fixed points,
apart from the identity.

Proof. =⇒ G = {β0, . . . , βq−1} is a subgroup of Σq, therefore id ∈ G. Without loss
of generality, we can suppose that β0 = id.

(β0, . . . , βq−1) form a permutation polynomial tuple, thus β−1
i βj have no fixed

points when i ̸= j. In particular, β−1
0 βj = id−1βj = βj has no fixed points for j ̸= 0.

⇐= Since G is a subgroup of Σq, β−1
i βj = βk ∈ G for some k. If i ̸= j, βk ̸= id

and thus has no fixed points. Hence β−1
i βj has no fixed points when i ̸= j.

Therefore, the elements of G can form a permutation polynomial tuple.

Proposition 3.8. Let C ∈ Σq be a cycle of maximum length q. Then, the cycle
subgroup ⟨C⟩ generated by C is a group without fixed points.

Proof. As C is a cycle of length q, ⟨C⟩ = {Cs : s = 1, . . . , q} has q distinct elements
and we can write C = (a0, . . . , aq−1), where ai ∈ Fq for i = 0, . . . , q − 1. For each
c ∈ Fq there exists i ∈ {0, . . . , q − 1} such that c = ai, and

Cs(c) = Cs(ai) = ai+s mod q, s = 1, . . . , q.

Cq = id, and for s ̸= q we see that Cs has no fixed points, as i ̸≡ i+ s mod q.

Combining these last two propositions, we gather that the elements of ⟨C⟩ can
form a permutation polynomial tuple when C is a cycle of maximum length q. This
is gives us yet another easy way to find local permutation polynomials in Fq[x, y].

However, these aren’t the only subgroups without fixed points. We will now work
to describe a family of such subgroups.

We denote by |C| the length of a cycle C ∈ Σq.
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Lemma 3.9. Let q = pr, G ⊂ Σq be a nontrivial subgroup without fixed points, and
α ∈ G. Then, there exists 0 < e ≤ r such that for t = pe and k = pr−e we have
α = C1 . . . Ck where |Ci| = t for all i = 1, . . . , k.

Proof. If α = id, then e = 0 (t = 1, k = pr).

Let α ̸= id. Suppose that α = C1 . . . Ck is the representation of α as a product of
disjoint cycles.

If |C1| = t1 < t2 = |C2|, then

αt1 = (C1 . . . Ck)
t1 = Ct1

1︸︷︷︸
=id

Ct1
2︸︷︷︸

̸=id

. . . Ct1
k .

αt1 is an element of G that isn’t the identity since Ct1
2 ̸= id, but fixes all the elements

in C1. This contradicts that G is a subgroup without fixed points, which implies that
|C1| ≥ |C2|.

Using the same reasoning for every possible pairing results in |C1| = |C2| = · · · =
|Ck| = t, that is, all the cycles have the same length t, and therefore α is of order t.

By the Lagrange Theorem from Group Theory, we know that the order of α has
to divide |Σq| = q = pr. Thus, t = pe for some 0 ≤ e ≤ r. Since α isn’t the identity,
0 < e ≤ r.

Also, α ∈ G. G is a group without fixed points, hence α has no fixed points. This
means that each element of Fq appears in exactly one of the Ci, i = 1, . . . , k, as they
are disjoint. Then,

pr = q =

k∑
i=1

|Ci| =
k∑

i=1

t = k · t =⇒ k =
pr

t
=

pr

pe
= pr−e.

As stated earlier, we want to find new subgroups without fixed points. By Lemma
3.9, the permutations in these subgroups will be products of cycles of the same length.

Lemma 3.10. Let q = pr, Fq = {c0, . . . , cq−1}. Let 1 ≤ e ≤ r, l = pe, t = q
l . We

define the permutations α = C0,α . . . Ct−1,α and β = C0,β . . . Cl−1,β, where

Ci,α = (cil, c1+il, . . . , c(l−1)+il) = {cj+il : j = 0, . . . , l − 1}, i = 0, . . . , t− 1,

Cj,β = (cj , cj+l, . . . , cj+(t−1)l) = {cj+il : j = 0, . . . , l − 1}, i = 0, . . . , l − 1.

Then for any 0 ≤ a ≤ l − 1 and 0 ≤ b ≤ t − 1, βbαa has no fixed points and
αaβb = βbαa.

Proof. We write the elements of Fq as cj+il for some 0 ≤ j ≤ l − 1 and 0 ≤ i ≤ t− 1.

In order to see the action of βbαa, we will first study Ca
i,α and Cb

j,β for each
i = 0, . . . , t− 1, j = 0, . . . , l − 1.
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Fixed i ∈ {0, . . . , t−1}, the cycle Ci,α leaves fixed all cJ+Il ∈ Fq where I ̸= i, thus
Ca
i,α does too. If I = i,

Ca
i,α(cJ+il) = c(J+a mod l)+il.

Therefore,
αa(cj+il) = Ca

i,α(cj+il) = c(j+a mod l)+il.

Fixed j ∈ {0, . . . , l − 1}, the cycle Cj,β leaves fixed all cJ+Il ∈ Fq where J ̸= j, thus
Cb
j,β does too. If J = j,

Cb
j,β(cj+Il) = cj+(I+b mod t)l.

Therefore,
βb(cj+il) = Cb

j,β(cj+il) = cj+(i+b mod t)l.

Then,
βbαa(cj+il) = βb(c(j+a mod l)+il) = c(j+a mod l)+(i+b mod t)l.

If βbαa had a fixed point cj+il,

βbαa(cj+il) = c(j+a mod l)+(i+b mod t)l =⇒

{
j ≡ j + a mod l =⇒ a ≡ 0 mod l

i ≡ i+ b mod t =⇒ b ≡ 0 mod t

Since 0 ≤ a ≤ l − 1 and 0 ≤ b ≤ t − 1, this implies that a = b = 0. In other words,
βbαa is the identity.

Hence, βbαa has no fixed points unless it is the identity.

Moreover,

αaβb(cj+il) = αa(cj+(i+b mod t)l) = c(j+a mod l)+(i+b mod t)l = βbαa(cj+il),

proving the commutativity.

An alternative way of defining the permutations α, β is the following.

With the above notations and definitions, we define

Cα =


C0,α

C1,α
...

Ct−1,α

 =


c0 c1 . . . cl−1

cl cl+1 . . . c2l−1
...

...
. . .

...
c(t−1)l c(t−1)l+1 . . . cq−1

 ,

Cβ =


C0,β

C1,β
...

l−1,β

 =


c0 cl . . . c(t−1)l

c1 cl+1 . . . c(t−1)l+1
...

...
. . .

...
cl−1 c2l−1 . . . cq−1

 .

Cα is a t× l matrix whose rows are Ci,α, i = 0, . . . , t− 1. Cβ is an l× t matrix whose
rows are Ci,β , i = 0, . . . , l − 1. Notice how Cβ is the transpose matrix of Cα.
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Corollary 3.11. Let α, β be as in the previous Lemma 3.10. Then, the set defined by

G = {αiβj : 0 ≤ i ≤ l − 1, 0 ≤ j ≤ t− 1}

is a subgroup of Σq without fixed points and order |G| = q.

Proof. First we will show that G is a subgroup of Σq. It suffices to prove that, for any
αiβj , αkβm ∈ G, (αiβj)−1(αkβm) ∈ G.

(αiβj)−1(αkβm) = β−jα−iαkβm = β−jα(k−i mod l)βm = α(k−i mod l)β−jβm =

= α(k−i mod l)β(m−j mod t) ∈ G,

using in these calculations the commutativity of α and β proven in Lemma 3.10.

In Lemma 3.10 we have already shown that G has no fixed points.

The only thing left to see is that |G| = q. First, we need to prove that the αiβj

are distinct. Suppose that αiβj = αkβm. Then,

α0β0 = id = (αkβm)−1αiβj = α(k−i mod l)β(m−j mod t)

Then, {
0 ≡ k − i mod l =⇒ i ≡ k mod l

0 ≡ m− j mod t =⇒ j ≡ m mod t

Since 0 ≤ i, k ≤ l − 1, 0 ≤ j,m ≤ t− 1, this implies that i = k and j = m. Hence, all
αiβj are distinct.

As all αiβj are distinct, there are l · t = q elements in G, thus |G| = q.

The above result suggests the following definition.

Definition 3.12. We will call e-Klenian subgroup to any group of the form given
in Corollary 3.11. Also, we say that a polynomial f ∈ Fq[x, y] is an e-Klenian
polynomial if f is a permutation group polynomial and the associated group Gβ

f
is

an e-Klenian group.

As stated earlier, this is just a family of subgroups of Σq without fixed points, not
all subgroups with these characteristics are e-Klenian, and therefore not all permuta-
tion group polynomials are e-Klenian polynomials.

One might ask how many e-Klenian polynomials are there. No significant results
can be found in the literature for e ≥ 1. However, for e = 0 this has a simple answer.

Proposition 3.13. The number of 0-Klenian polynomials in Fq[x, y] is

q!(q − 1)!

φ(q)
=

pr!(pr − 1)!

pr−1(p− 1)
.
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Proof. 0-Klenian subgroups are those of the form

G = {βj : 0 ≤ j ≤ q − 1} = ⟨β⟩,

where β = C0,β is a cycle of length q.

The number of cycles of maximal length in Σq is (q − 1)!, and a subgroup gener-
ated by a cycle of length q contains exactly φ(q) generators, βi where gcd(i, q) = 1.
Therefore, the number of 0-Klenian groups of Σq is

(q − 1)!

φ(q)
.

Now, the number of permutation group polynomials that we can construct from a
given set of permutations is q!, as seen in the previous section. Hence, the number of
0-Klenian polynomials is

q! · (q − 1)!

φ(q)
=

pr!(pr − 1)!

pr−1(p− 1)
.

The case e = 0 is of special relevance, as it is the only case appearing when we
restrict to prime fields Fp.

In Appendix B.2 we describe all e-Klenian polynomials in Fq[x, y] for q = 2, 3, 4.

3.3. Orthogonal Polynomial Systems

For a brief moment we are going to go back to Fq[x1, . . . , xn] to explore a new concept
closely related to permutation polynomials.

Up until now we have only worked with permutation polynomials on their own,
functions from Fn

q to Fq. The next definition, however, enables us to consider functions
from Fn

q into Fm
q .

Definition 3.14. A system of polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn], 1 ≤ m ≤ n,
is said to be orthogonal in Fq if the system of equations

f1(x1, . . . , xn) = a, . . . , fm(x1, . . . , xn) = am

has qn−m solutions in Fn
q for each (a1, . . . , am) ∈ Fm

q .

In the special case m = n this means that the orthogonal system f1, . . . , fn induces
a permutation of Fn

q .

We could as well say that f is a permutation polynomial if and only if f alone
forms an orthogonal system.

Proposition 3.15. Every nonempty subsystem of an orthogonal system of polynomials
is again orthogonal.
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Proof. Let f1, . . . , fm+1 ∈ Fq[x1, . . . , xn] be an orthogonal system. To prove the propo-
sition, it suffices to show that f1, . . . , fm are an orthogonal system.

Let (a1, . . . , am) ∈ Fm
q . We want to count the number of solutions of the system

f1(x1, . . . , xn) = a1, . . . , fm(x1, . . . , xn) = am,

that is, |S| where
S = {ȳ ∈ Fn

q : fi(ȳ) = ai, i = 1, . . . ,m}.

Let Fq = {c0, . . . , cq−1}. Since f1, . . . , fm+1 form an orthogonal system,

f1(x1, . . . , xn) = a1, . . . , fm(x1, . . . , xn) = am, fm+1(x1, . . . , xn) = cj

has qn−(m+1) solutions for any choice of cj ∈ Fq. For each j ∈ {0, . . . , q− 1} we define
the set

Aj = {ȳ ∈ Fn
q : fm+1(ȳ) = cj , fi(ȳ) = ai, i = 1, . . . ,m}.

Notice that |Aj | = qn−(m+1) for j = 0, . . . , q − 1 and ∪q−1
j=0Aj = S. Also, Aj ∩Ak = ∅

if j ̸= k. Then,

|S| =

∣∣∣∣∣∣
q−1⋃
j=0

Aj

∣∣∣∣∣∣ =
q−1∑
j=0

|Aj | =
q−1∑
j=0

qn−(m+1) = q · qn−(m+1)qn−m.

Hence, f1, . . . , fm form an orthogonal system.

Corollary 3.16. Every polynomial ocurring in an orthogonal system is a permutation
polynomial.

Proof. Let f1, . . . , fm ∈ Fq[x1, . . . , xn] be an orthogonal system of polynomials. Then,
each polynonial fi forms a subsystem, and thus is ortogonal by Proposition 3.15.
Hence, fi is a permutation polynomial for i = 1, . . . ,m.

Given an orthogonal system where n = m, we can construct new ones using the
following proposition.

Proposition 3.17. If f1, . . . , fn ∈ Fq[x1, . . . , xn] form an orthogonal system, then the
polynomials

gi(x1, . . . , xn) =
n∑

j=1

bijfi(x1, . . . , xn), i = 1, . . . , n

where bij ∈ Fq for i, j ∈ {1, . . . , n} and det((bij)
n
i,j=1) ̸= 0 also form an orthogonal

system.

Proof. Let (a1, . . . , an) ∈ Fn
q . We have the system of equations

b1,1f1(x̄) + b1,2f2(x̄)+ · · ·+ b1,nfn(x̄) = a1,

b2,1f1(x̄) + b2,2f2(x̄)+ · · ·+ b2,nfn(x̄) = a2,

...
bn,1f1(x̄) + bn,2f2(x̄)+ · · ·+ bn,nfn(x̄) = an.
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The matrix B = (bij)
n
i,j=1 is invertible by hypothesis. Then, if we write the system in

matrix form,
b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n
...

...
. . .

...
bn,1 bn,2 . . . bn,n


︸ ︷︷ ︸

=B


f1(x̄)
f2(x̄)

...
fn(x̄)

 =


a1
a2
...
an

 ⇐⇒


f1(x̄)
f2(x̄)

...
fn(x̄)

 = B−1


a1
a2
...
an

 .

The system on the right has a unique solution since the fi form an orthogonal system.
Hence, the system on the left has a unique solution as well, and thus the gi form an
orthogonal system.

However, to apply this result we need an orthogonal system to begin with, which
isn’t trivial to obtain. Here’s an example of a family of orthogonal systems where
m = n, provided by univariate permutation polynomials.

Proposition 3.18. Let fi(z), hj(z) ∈ Fq[z] be permutation polynomials for i, j =
1, . . . , n. Then, the polynomials

gi(x1, . . . , xn) = fi

 n∑
j=1

bijhj(xj)

 , i = 1, . . . , n

where bij ∈ Fq for i, j ∈ {1, . . . , n} and det((bij)
n
i,j=1) ̸= 0 also form an orthogonal

system.

Proof. Let (a1, . . . , an) ∈ Fn
q . We have the system of equations

f1(b1,1h1(x1) + b1,2h2(x2)+ · · ·+ b1,nhn(xn)) = a1,

f2(b2,1h1(x1) + b2,2h2(x2)+ · · ·+ b2,nhn(xn)) = a2,

...
fn(bn,1h1(x1) + bn,2h2(x2)+ · · ·+ bn,nhn(xn)) = an.

All fi are permutation polynomials in one variable and hence invertible functions.
Then, this system is equivalent to

b1,1h1(x1) + b1,2h2(x2)+ · · ·+ b1,nhn(xn) = f−1
1 (a1),

b2,1h1(x1) + b2,2h2(x2)+ · · ·+ b2,nhn(xn) = f−1
2 (a2),

...

bn,1h1(x1) + bn,2h2(x2)+ · · ·+ bn,nhn(xn) = f−1
n (an).
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The matrix B = (bij)
n
i,j=1 is invertible by hypothesis. Then, if we write the system in

matrix form,
b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n
...

...
. . .

...
bn,1 bn,2 . . . bn,n


︸ ︷︷ ︸

=B


h1(x1)
h2(x2)

...
hn(xn)

 =


f−1
1 (a1)

f−2
2 (a2)

...
f−1
n (an)

⇐⇒


h1(x1)
h2(x2)

...
hn(xn)

 = B−1


f−1
1 (a1)

f−2
2 (a2)

...
f−1
n (an)

 .

Each equation determines one variable. Since the hi are permutation polynomials,
there is a unique solution for each xi, and therefore the system on the right has a
unique solution in Fn

q . Hence, the original has a unique solution as well, and thus the
gi form an orthogonal system.

Due to the nature of this chapter, the orthogonal systems we will be working with
consist of one or two polynomials in Fq[x, y].

We already knew how to construct PPs (orthogonal systems with one polynomial)
from others thanks to the results seen in Section 2.2, and now using Proposition 3.17
we can do the same thing for orthogonal systems with two polynomials, covering every
possible case. Also, an example of a family of orthogonal systems consisting of two
polynomials is given by Proposition 3.18.

3.4. Latin Squares

Latin squares occur in many structures such as group multiplication tables and Cayley
tables. To be precise Latin squares are referred to as the multiplication tables of an
algebraic structure called a quasigroup.

Definition 3.19. A Latin square of order q is a q × q matrix L with entries from
a set T of size q such that each element of T occurs exactly once in every row and
every column of L.

We will work with Latin squares of order a prime power q = pr with entries from
Fq.

In the following lemma we show the relation between Latin squares and bivariate
local permutation polynomials.

Lemma 3.20. There is a bijective map between Latin squares of order q and local
permutation polynomials of Fq.

Proof. Given a Latin square L over Fq = {c0, . . . , cq−1} with entries aij ∈ Fq, thanks
to the Lagrange Interpolation Theorem 2.2 we can construct a polynomial f ∈ Fq[x, y]
such that

f(ci, cj) = aij , 0 ≤ i, j ≤ q − 1

and degx(f) < q, degy(f) < q. All that’s left to see is if f is an LPP.
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Let a, b ∈ Fq, we want to count the number of solutions of the equation f(a, y) = b.
There exists i ∈ {0, . . . , q − 1} such that a = ci. Each element of Fq appears exactly
once in every row, hence there exists a unique j ∈ {0, . . . , q − 1} such that b = aij ,
and thus cj is the only solution to the equation.

The same reasoning can be applied to find that the equation f(x, a) = b has a
unique solution, making f an LPP.

Conversely, let f ∈ Fq[x, y] be an LPP. We can construct the matrix

L = (aij)
q−1
i,j=0 = (f(ci, cj))

q−1
i,j=0.

All that remains to see is if L is a Latin square.

The q elements on row i form the set Li = {f(ci, cj) : j = 0, . . . , q−1} = {f(ci, a) :
a ∈ Fq}. This is the image of the function f(ci, x), which represents a permutation
since f is an LPP. This means that Li = Fq, and thus each element of Fq must appear
exactly once per row.

The same argument can be applied to the columns of L, and hence it is Latin
square.

If we take the concept of orthogonal polynomial systems over to Latin squares, we
get the following definition.

Definition 3.21. Let L1, L2 be Latin squares of order q. We say that L1 and L2 are
orthogonal Latin squares if

(L1(i1, j1), L2(i1, j1)) ̸= (L1(i2, j2), L2(i2, j2))

for all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ N2.

Equivalently, two Latin squares of the same order are said to be orthogonal if,
when superimposed, each position has a different pair of ordered entries.

Corollary 3.22. Two Latin squares L1 and L2 are orthogonal if and only if their
associated local permutation polynomials form an orthogonal system.

Proof. Let fi be the LPP associated with Li, i = 1, 2. Then,

(L1(i1, j1), L2(i1, j1)) ̸= (L1(i2, j2), L2(i2, j2))

⇕
(f1(ci1 , cj1), f2(ci1 , cj1)) ̸= (f1(ci2 , cj2), f2(ci2 , cj2)).

Therefore, (L1(i1, j1), L2(i1, j1)) ̸= (L1(i2, j2), L2(i2, j2)) for all distinct pairs of coor-
dinates (i1, j1), (i2, j2) ∈ N2 if and only if all q2 pairs (f1(a, b), f2(a, b)) are distinct,
or equivalently, if the system

f1(x, y) = a1, f2(x, y) = a2

has a unique solution for each (a1, a2) ∈ F2
q .
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Now, we want to construct families of orthogonal Latin squares. This problem is
equivalent to constructing families of orthogonal systems consisting of two polynomials
in Fq[x, y], which brings us to the next definition.

Definition 3.23. Given a permutation polynomial f ∈ Fq[x, y], we say that g is a
companion of f if (f, g) : F2

q → F2
q defines a permutation, that is, f, g form an

orthogonal system.

By Corollary 3.16, any companion must be a permutation polynomial.

One may wonder how many companions a permutation polynomial has. The
following result answers that question.

Theorem 3.24. A permutation polynomial f has exactly (q!)q companions.

Proof. Let Fq = {c0, . . . , cq−1}. In the proof of Theorem 2.12 we defined a partition
of F2

q given by

Ai = {(a, b) ∈ F2
q : f(a, b) = ci}, i = 0, . . . , q − 1,

which is such that |Ai| = q because f is a permutation polynomial.

If we order the q elements of each Ai, we can express every (a, b) ∈ F2
q as

(a, b) = (aij , bij), where i ∈ {0, . . . , q − 1} indicates the Ai the pair belongs to and
j ∈ {0, . . . , q − 1} indicates the position of the pair in the order we have established.

Now, consider a q-tuple (σ0, . . . , σq−1) ∈ Σq
q. Thanks to the Lagrange Interpolation

Theorem 2.2 we can define a polynomial g such that

g(aij , bij) = σi(cj), i, j ∈ {0, . . . , q − 1}.

We are going to show that g is a companion of f .

Let (ci, ck) ∈ F2
q . Then, consider the system

f(x, y) = ci

g(x, y) = ck

The first equation tells us that all solutions (a, b) are in Ai. Then, restricting to that
set, we want to find j ∈ {0, . . . , q − 1} such that

ck = g(aij , bij) = σi(cj) =⇒ cj = σ−1
i (ck).

Therefore, for each (ci, ck) ∈ F2
q the system has a unique solution: the pair (aij , bij) ∈

F2
q such that (aij , bij) ∈ Ai and cj = σ−1

i (ck). Thus, f and g are companions.

Each selection of a q-tuple of σi gives us a different g. We have q! ways of choosing
each σi, so f has at least (q!)q companions.

Finally, we will show that every companion of f can be obtained by the previously
explained process.
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If g is a companion of f , g(Ai) = Fq, since there has to be a solution to the system

f(x, y) = ci

g(x, y) = a

for every a ∈ Fq. |Ai| = q = |Fq|, so this implies that g(a, b) is different for each
(a, b) ∈ Ai. Also, we can then define for each i = 0, . . . , q − 1 the bijection

hi : Fq −→ Ai

cj −→ (aij , bij)

which reflect the ordering on Ai.

Then, there is a q-tuple of permutations σi = g ◦ hi associated to g.

Since all companions of f can be obtained this way, f has exactly (q!)q companions.

Given a permutation polynomial f , Theorem 3.24 not only lets us count its com-
panions, but tells us how to construct them.

When we restrict this to local permutation polynomials (that is, Latin squares),
it isn’t as straightforward: not all LPPs have LPPs as companions.

Example 3.25. When q = 2, we are working with polynomials in F2[x, y]. The only
LPPs are f(x, y) = x + y and g(x, y) = x + y + 1, which don’t form an orthogonal
system, as the system

x+ y = 0

x+ y + 1 = 0

has no solution in F2
2. Hence, nor f nor g have a companion that is an LPP.

However, LPPs that have LPPs as companions do exist. We will see an example
of this in the next theorem.

Theorem 3.26. For q ≥ 3, every linear LPP has at least one companion which is
also a linear LPPs.

Proof. Let f(x, y) = ax + by + c be an LPP (a, b ̸= 0). Now, consider the LPP
g = ux+ vy + w, where u, v, w ∈ Fq are such that u, v ̸= 0 and av − bu ̸= 0.

Now, let (a1, a2) ∈ F2
q . Then, we have the system

ax+ by + c = a1
ux+ vy + w = a2

⇐⇒ ax+ by = a1 − c
ux+ vy = a2 − w

If we write it in matrix form,(
a b
u v

)
︸ ︷︷ ︸

=A

(
x
y

)
=

(
a1 − c
a2 − w

)
⇐⇒

(
x
y

)
= A−1

(
a1 − c
a2 − w

)
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Remember that A−1 exists because det(A) = av − bu ̸= 0. Therefore, the system has
a unique solution.

This means that f and g form an orthogonal system, and hence they are compan-
ions.

Finally, we will see what happens when we consider e-Klenian polynomials.

Theorem 3.27. Let 2 ̸ | q. Let f ∈ Fq[x, y] be an e-Klenian polynomial. Then, f has
a companion which is an LPP.

Proof. Let f(x, y) be an e-Klenian polynomial and for each m = 0, . . . , q − 1 written
as m = a+ bl where 0 ≤ a ≤ l − 1 and 0 ≤ b ≤ t− 1, consider the set

Am = {(cj , αaβb(cj)) : j = 0, . . . , q − 1}.

f is the LPP associated to this partition.

We will see that the polynomial g associated with the partition

Bm = {(ck, αa+iβb+j(ck) : k = i+ jl, 0 ≤ i ≤ l− 1, 0 ≤ j ≤ t− 1}, m = 0, . . . , q − 1

is an LPP which is companion of f .

First we will show that g is an LPP. We start by proving that for any ck, cm ∈ Fq,
there exists a unique y ∈ Fq such that g(ck, y) = cm. As in the definitions before, let
k = u + lv, with 0 ≤ u ≤ l − 1, 0 ≤ v ≤ t − 1, and m = a + bl, with 0 ≤ a ≤ l − 1,
0 ≤ b ≤ t− 1. We want (ck, y) ∈ Bm, and thus the only possible value for y is

y = αa+uβb+v(ck) = c(a+2u mod l)+(b+2v mod t)l.

Now, we want to prove that g is also a permutation polynomial in the first variable,
or in other words, that given ck, cm ∈ Fq as before, there exists a unique x such that
g(x, ck) = cm. In particular, we need to find i, j such that ck = αa+iβb+j(ci+jl), and
in this case x = ci+jl is a solution, since by definition (x, ck) ∈ Bm. Then,

ck = cu+lv = αa+iβb+j(ci+jl) = c(a+2i mod l)+(b+2j mod t)l.

This implies that{
u ≡ a+ 2i mod l =⇒ i ≡ 2−1(u− a) mod l,

v ≡ b+ 2j mod t =⇒ j ≡ 2−1(v − b) mod t.

These i, j are unique since 0 ≤ i ≤ l − 1, 0 ≤ j ≤ t − 1, and thus x = ci+jl is the
unique solution we were looking for.

Finally, we need to check that f, g form an orthogonal system. Let cm, ck ∈ Fq as
before. We want to see that

f(x, y) = cm = ca+bl

g(x, y) = ck = cu+vl
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has exactly one solution. This happens if and only if there exist unique 0 ≤ i ≤ l− 1,
0 ≤ j ≤ t− 1 such that

(ci+jl, α
aβb(ci+jl)) = (ci+jl, α

u+iβv+j(ci+jl)).

Remember that each element of {αiβj : 0 ≤ i ≤ l− 1, 0 ≤ j ≤ t− 1} is distint, so this
can happen if and only if{

a ≡ u+ i mod l =⇒ i ≡ a− u mod l,

b ≡ v + j mod t =⇒ j ≡ b− v mod t.

These i, j are unique since 0 ≤ i ≤ l − 1, 0 ≤ j ≤ t − 1, and thus the system has a
unique solution.

Hence, f and g are companions.

3.4.1. Mutually Orthogonal Latin Squares

We can generalise the concept of orthogonality in Latin squares to more than two.

Definition 3.28. A set of Latin squares, all of the same order, such that all pairs of
Latin squares are orthogonal is called a set of Mutually Orthogonal Latin Squares
(MOLS).

The following are well known results regarding MOLS, proven in [14].

Theorem 3.29. Let N(n) be the size of the largest collection of MOLS of order n.
Then, we have

(i). N(n) ≤ n− 1.

(ii). If q is a power of a prime, then N(q) = q − 1.

Definition 3.30. A set of t > 1 MOLS of order n is called a complete set if t = N(n).

Using Propositions 3.17 and 3.18 we can find examples of complete sets of MOLS.

Theorem 3.31. With the above notations and definitions:

• If f(x, y) is a local permutation polynomial and g(x, y) is any LPP companion
of f(x, y), then the set {f(x, y) + ag(x, y) : a ∈ F∗

q} is a complete set of MOLS.

• If f(x), h(y) are permutation polynomials, then the set {f(x) + ah(y) : a ∈ F∗
q}

is a complete set of MOLS.

In the next chapter we will explore some applications that these sets of Latin
squares have in cryptography.
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3.4.2. Hypercubes

The concept of Latin squares as well as their relation with LPPs can be generalised
to higher dimensions.

Definition 3.32.

(i). Let n, q ∈ N and T a set of q elements (symbols). A n-dimensional hypercube
H of order q is a q × · · · × q array with qn symbols based on the q elements of
T . Such a hypercube is of type j, 0 ≤ j ≤ n − 1, if whenever any j of the
coordinates are fixed each of the q elements of T appears qn−j−1 in that subarray.

If H is of type n − 1 it is called a Latin hypercube. If n = 2, H is a Latin
square.

(ii). Let q = pr and F = Fq. Let f ∈ Fq[x1, . . . , xn] and 0 ≤ j ≤ n − 1. f is a j-
permutation polynomial (or j-PP) if for all choices of j variables xi1 , . . . , xij
and for all choices of points (a1, . . . , aj) ∈ Fj

q, the equation

f |xik
=ak,k=1,...,j = a

has qn−j−1 solutions in Fn−j
q for each a ∈ Fq.

• f is an (n− 1)-PP ⇐⇒ f is a local permutation polynomial,
• f is a 0-PP ⇐⇒ f is a permutation polynomial.

Remark: Any hypercube H of type j si also of type k and any j-PP is also a
k-PP, for k = 0, . . . , j − 1.

Theorem 3.33.

(i). There is a bijective map between n-dimensional hypercubes H of order a prime
power p and polynomials f ∈ Fq[x1, . . . , xn] such that degxi

(f) < q.

(ii). There is a bijective map between n-dimensional hypercubes H of type j and order
a prime power p and j-PPs f ∈ Fq[x1, . . . , xn] such that degxi

(f) < q.

Proof. Given an n-dimensional hypercube H, we can identify the symbols with the
elements of Fq = {c0, . . . , cq−1}. Then, thanks to the Lagrange Interpolation Theorem
2.2 we can construct a polynomial f ∈ Fq[x1, . . . , xn] such that

f(ci1 , . . . , cin) = H(i1, . . . , in), 0 ≤ ij ≤ q − 1,

and degxi
(f) < q for each i = 1, . . . , n.

If H is a hypercube of type j, it is easy to see that f is a j-PP.

Conversely, given the polynomial f we can construct an n-dimensional hypercube
H as follows: given any cell indexed by (i1, . . . , in) ∈ {0, . . . , q − 1}n,

H(i1, . . . , in) = f(ci1 , . . . , cin).

If f is a j-PP, it is easy to see that H is a hypercube of type j.
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In particular, this relation, together with the fact that an (n− 1)-PP is the same
thing as an LPP, is what allows us to count the number of LPPs in Fq[x1, . . . , xn].

Latin hypercubes is a much more explored topic, and thus we can find documen-
tation dedicated to counting Latin hypercubes for small values of q and n, see [18].

For instance, for q = 2, 3, 4, 5, we have:

• Fq[x1, x2] : 2, 12, 576, 161280;

• Fq[x1, x2, x3] : 2, 24, 55296, 2782803520;

• Fq[x1, x2, x3, x4] : 2, 48, 36972288, 52260618977280.



CHAPTER 4

Applications of Latin Squares

In this chapter we illustrate two important applications of the bivariate local per-
mutation polynomials: in Coding Theory, to construct Maximum Distance Separable
(MDS) codes, and in Cryptography, to design secret sharing schemes.

4.1. Coding Theory

Coding Theory is the study of methods of accurately transferring data across noisy
channels and recovering corrupted messages. We will begin this section by introducing
definitions and basic results regarding this area.

Definition 4.1. Let A be a finite set called alphabet.

• A word is a finite list of elements of A. The number of elements in this list is
the length of the word. We denote by An the set of words over A of length n,
and by A∗ the set of all words over A.

• A code C is a subset of A. If |A| = q, C is a q-ary code.

• If all words in C have the same length n, C is a block code of length n.

Usually, A = Fq for some q power of a prime p. In this case, a block code C ⊂ Fn
q

is linear if it is a linear subspace of Fn
q .

Definition 4.2. Let A be an alphabet, x, y ∈ An. We define the Hamming distance
d(x, y) as

d(x, y) = number of coordinates in which x and y differ.

Proposition 4.3. The Hamming distance is a metric on An.

Definition 4.4. Let C be a q-ary code of length n.

• We define the distance of C, denoted by d(C), as

d(C) = min{d(x, y) : x, y ∈ C, x ̸= y},

where d(· , ·) is the Hamming distance.

43
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• If d(C) = d and |C| = M , we say that C is a (n,M, d)q-code.

• Aq(n, d) denotes the largest value of M for which exists an (n,M, d)q-code.

Calculating Aq(n, d) is a very difficult problem, and in fact there is no known
formula for this value. However, several bounds have been proven, among which we
find the Singleton bound.

Theorem 4.5 (Singleton bound). For all q, n, d ∈ N,

Aq(n, d) ≤ qn−d+1.

Definition 4.6. A Maximum Distance Separable (MDS) code is a (n,M, d)q-
code C such that M = qn−d+1.

These are part of a family of codes known as error-correcting codes, which can
detect and correct a certain number of errors that may occur during the transmission
of a message.

There is a rather interesting connection between MDS codes and sets of MOLS.

By Definition 4.6, if d = n−1, all (n, q2, n−1)q-codes are MDS codes. In Chapter
13 of [14], we find the following Theorem.

Theorem 4.7. There exists a (n, q2, n−1)q-code if and only if there exist n−2 MOLS
of order q.

The proof consists in showing a way that we can construct an (n, q2, n− 1)q-code
from a family of n− 2 MOLS of order q and viceversa.

We will show this process through an example.

Example 4.8. Consider the following pair of MOLS of order 3:

L1 =

0 1 2
1 2 0
2 0 1

 , L2 =

0 1 2
2 0 1
1 2 0


From these MOLS of order 3, we can construct the code

C = {(i, j, L1(i, j), L2(i, j)) : 0 ≤ i, j ≤ 2}.

We just need to show that C is, in fact, a (4, 9, 3)3-code.

• C ⊂ F4
3, so C is a ternary (3-ary) block code of length 4.

• It is trivial that |C| = 9.

• d(C) ̸= 4 since there are three words with the symbol 0 in the first coordinate.

The first two coordinates of each word in C are different, so d(C) ≥ 2. If
d(C) = 2, that would mean that there exist x, y ∈ C, where

x = (i1, j1, L1(i1, j1), L2(i1, j1)), y = (i2, j2, L1(i2, j2), L2(i2, j2)),

such that x and y differ in exactly two coordinates. There are two possibilities:
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– i1 ̸= i2 and j1 ̸= j2.
This would imply that

(L1(i1, j1), L2(i1, j1)) = (L1(i2, j2), L2(i2, j2)),

contradicting the fact that L1 and L2 are orthogonal.

– i1 = i2 or j1 = j2, but not both at the same time.
Without loss of generality, let us suppose that i1 = i2 = i.
Since d(C) = 2, either

L1(i, j1) = L1(i, j2) or L2(i, j1) = L2(i, j2).

Then, one of the Latin squares would have a repeated symbol in row i (be-
cause j1 ̸= j2), which is a contradiction.

Thus, d(C) ̸= 2, and hence d(C) = 3.

4.2. Cryptography

Cryptography is the study of how to design secure systems of communication, known
as cryptosystems. The necessary components to set up a cryptosystem are:

• an encryption key KE and a decryption key KD. We will only be considering
symmetric cryptosystems, where KE = KD = K;

• a message M ;

• an encrypting scheme EK to encrypt or encipher the message M to form a
ciphertext C;

• a decrypting scheme DK to decrypt or decipher received ciphertexts.

Given a message M , EK and DK are transformations such that

DK(EK(M)) = M.

They are also dependent on the key K, which must be kept secret by the users of the
system.

A Latin square is a good candidate to be the key in a cryptosystem due to the huge
number of Latin squares for a large order and the computationally difficult problems
related to them. In this section we will explore how Latin squares can be used to
build cryptosystems.

Additionally, in Section 14.4 of [14], versions of classic cryptosystems using Latin
squares, such as RSA or Diffie-Hellman key exchange, are shown.
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4.2.1. Encryption

We will first present a simple encryption method based upon the theory of sets of
MOLS.

Our starting point will be a set {L1, . . . , Lk} of MOLS of order n, and suppose
that T = {1, . . . , n}.

The key K in this cryptosystem will be a pair of Latin squares from the set, Lc

and Ld such that c ̸= d. Thus, there is a total of
(
k
2

)
possible keys.

The messages we can transmit using this cryptosystem are those of the form (i, j) ∈
{1, . . . , n}2, giving us a total of n2 possible messages. Any of these pairs can be
interpreted as a position in a matrix, or in this case, a Latin square. The way this
message is encrypted is by transmitting the pair of elements (α, β) that occur in
position (i, j) in Lc and Ld, that is,

EK((i, j)) = (Lc(i, j), Ld(i, j)) = (α, β).

Note that EK is injective, as Lc and Ld are orthogonal. Since EK is a function from
{1, . . . , n}2 to itself, this implies that EK is bijective, and hence DK exists and is
bijective as well.

To decrypt the ciphertext, the receiver just has to look for the unique coordinate
in which the pair (α, β) occurs, and thus deciphering the message.

DK((α, β)) = (i, j) such that L1(i, j) = α, L2(i, j) = β.

4.2.2. Secret Sharing Schemes

For the proper functioning of a cryptosystem, it is of vital importance to keep the key
secret from outsiders. A way we can ensure this is by using a secret sharing scheme.

Definition 4.9. A (t, k)-secret sharing scheme is a system where k pieces of infor-
mation called shares or shadows of a key K are distributed so that each participant
has a share such that

(i). the key K can be reconstructed from knowledge of any t or more shares;

(ii). the key K cannot be reconstructed from knowledge of fewer than t shares.

The goal of this part of the dissertation is to show examples of secret sharing
schemes where the secret in question is a Latin square.

First, we need to define a couple new concepts.

Definition 4.10. A partial Latin square of order n is an n × n matrix L with
entries from a set T of size n such that no element of T occurs twice in any row or
column.
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The difference between a Latin square and a partial Latin square is that the latter
can have empty cells, but both conform with the Latin property of the array. Notice
how all Latin squares are partial Latin squares, but the converse isn’t usually true.

Some partial Latin squares can be extended to Latin squares by filling the empty
cells. In fact, it was conjectured in [8] and later proven in [25] that any partial Latin
square of order n with at most n − 1 cells filled can be completed to a Latin square
of order n. However, this isn’t always possible.

Example 4.11. The partial Latin square of order 31 ∗ 3
∗ 2 ∗
∗ ∗ ∗


cannot be completed to a Latin square.

Given a Latin square, there is a very special family of partial Latin squares asso-
ciated to it: its critical sets.

Definition 4.12. Let L be a Latin square of order n. A critical set C of L is a set

C = {(i, j; k) : i, j, k ∈ {1, . . . , n}}

with the following two properties:

(i). L is the only Latin square of order n which has symbol k in cell (i, j) for each
(i, j; k) ∈ C; and

(ii). no proper subset of C has property (i).

Basically, a critical set C of a Latin square L is a partial Latin square which can
only be extended to L, and if we remove any entry from C, the unique completion
property does not hold anymore.

Note how a Latin square can have many different critical sets of various sizes.

Definition 4.13. Let C be a critical set of a Latin square L. C is called minimal if
its cardinality is the smallest possible for L.

Even though we know we can complete a Latin square from one of its critical sets,
to do so might be a very time-consumming process. As a matter of fact, deciding
whether a partial Latin square can be completed or not is an NP-complete problem,
as shown in [4]. This concern leads us to the next definition.

Definition 4.14. Let L be a Latin square of order n and C one of its critical sets.
Let |C| be the size of C, that is, the number of non empty cells in C. C is called a
strong critical set if there exists a sequence of partial Latin squares {P0, . . . , Pm}
such that

• C = P0 ⊂ P1 ⊂ · · · ⊂ Pm = L, where m = n2 − |C|;
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• for any ℓ, 0 ≤ ℓ < m− 1, Pℓ ∪ {(iℓ, jℓ; kℓ)} = Pℓ+1 and Pℓ ∪ {(iℓ, jℓ; k)} is not a
partial Latin square if k ̸= kℓ.

Completing a strong critical set to a Latin square is a much easier job, since
everytime we get a new partial square Pℓ, 0 ≤ ℓ < m − 1, there always exists a
position (iℓ, jℓ) in Pℓ that can only be filled by a particular kℓ because all other
elements of {1, . . . , n} \ {kℓ} already appear either on row iℓ or in column jℓ.

Example 4.15. Here we will show an example of a critical set that isn’t strong. Let
C,L be the following partial Latin square and Latin square of order 6.

C =



∗ 2 3 4 ∗ ∗
3 ∗ ∗ ∗ ∗ 4
∗ ∗ ∗ 5 ∗ ∗
∗ 4 6 ∗ ∗ 1
∗ 6 ∗ ∗ 2 ∗
6 ∗ ∗ ∗ 1 ∗

 , L =



1 2 3 4 6 5
3 1 2 6 5 4
2 3 1 5 4 6
5 4 6 2 3 1
4 6 5 1 2 3
6 5 4 3 1 2

 .

It is easy to check that C is a critical set of L, but when trying to complete it there
are at least two choices for each of its empty squares, meaning that it isn’t strong.

Now, we will illustrate some examples of secret sharing schemes involving Latin
squares. In all of these, the very secret we want to keep is a particular Latin square
L of order n, which can be used as a key in a cryptosytem as shown in 4.2.1.

The first scheme is fairly simple. Let C1, . . . , Cm be critical sets of L. We define
the set S as the union of these Ci, i = 1, . . . ,m. Then, we can distribute a share in
S to each participant of the scheme. Whenever a group of participants joins together
to form one of the critical sets Ci, they can reconstruct the Latin square L, and thus
recovering the secret.

Example 4.16. Let L be the following Latin square of order 3, and S a union of
critical sets of L.

L =

1 2 3
2 3 1
3 1 2

 , S = {(1, 1; 1), (2, 2; 3), (3, 3; 2)}.

Any subset of S with two elements is a critical set of L, and thus we have a (2, 3)-secret
sharing scheme.

If we choose carefully the critical sets that form S, we can construct secret sharing
schemes with special properties.

We might want a system where some participants’ shares carry more weight than
others, that is, a multilevel scheme. In a multilevel scheme, a share from a partici-
pant in a higher rank equates to multiple shares from lower ranked participants.
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To get this using this system, we can give the elements of a critical set C1 to the
people from higher ranks, and choose the other critical sets in a way that at least one
element of C1 is in them.

Example 4.17. Let L be the Latin square of order 3 from Example 4.16. The following
are all critical sets of L:

C1 = {(3, 2; 1), (2, 1; 2)},
C2 = {(3, 2; 1), (1, 1; 1), (1, 2; 2)},
C3 = {(2, 1; 2), (1, 1; 1), (1, 2; 2)}.

Then,
S = {(3, 2; 1), (2, 1; 2), (1, 1; 1), (1, 2; 2)}.

The high rank participants would be given the shares from C1, while the lower level
participants would receive the remaining shares in S. This way, the high rank partic-
ipants can recover L if they join their shares, but the low rank participants need at
least one high ranked person to uncover the secret.

Finally, we will present a variation of a multilevel system through an example.

Example 4.18. Imagine a company with three departments, each of which use a
secret sharing scheme to keep a common key, L, secret. The president of the company
would need to be part of all three schemes, while the rest of the employees are only
participants in the scheme of their respective department. For the sake of commodity,
the president wants to have the same share in all three schemes.

A possible way to set this system up is the following. The secret will be the Latin
square L, where

L =


1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

 .

This Latin square has 41 minimal critical sets, three of which are

C1 = {(1, 1; 1), (2, 5; 3), (3, 5; 4), (4, 2; 3), (4, 3; 5), (5, 1; 5), (5, 3; 2)},
C2 = {(1, 1; 1), (1, 5; 5), (3, 2; 5), (3, 5; 4), (4, 2; 3), (5, 3; 2), (5, 4; 3)},
C3 = {(1, 1; 1), (1, 5; 5), (3, 4; 2), (4, 2; 3), (4, 5; 2), (5, 2; 4), (5, 4; 3)}.

The only common element to all three critical sets is (1, 1; 1), which would be the
president’s share. The rest of the shares would be distributed in a way such that when
all employees from a department join together their shares with the president, they
form one of the three critical sets.

Also, note how S \ {(1, 1; 1)} isn’t a critical set of L, there are 5 completions of
S \ {(1, 1; 1)} to a Latin square. Therefore L can’t be recovered if the president isn’t
there, even if all departments pool together their shares.
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However, if using this type of model to build a secret sharing scheme, precaution is
needed when selecting the critical sets that form S, because otherwise it can happen
that subsets of S we haven’t accounted for form critical sets, giving an unauthorized
group of people the chance to obtain the secret key. Note how in Example 4.18 we
had to verify this situation wasn’t possible.

Another problem with this system and its variations is that even though a group
of people whose shares don’t form a critical set can’t recover the Latin square L we
are hiding, they do have partial information if they pool all of their shares: a partial
Latin square of L. It can happen that, by trial and error, this unauthorized group
finds L. As mentioned in Example 4.18, if all employees join together, they reduced
the number of possible keys from 161.280, which is the number of Latin squares of
order 5, to 5.

To solve this issue, we will introduce one last secret sharing scheme.

This will be a (t, t)-secret sharing scheme. As before, the secret will be a Latin
square L of order n. Let C be a critical set of L with m elements. Each participant
will receive a m-tuple Pℓ, where

Pℓ ∈ {(i, j; k) : i, j, k ∈ {0, . . . , n− 1}}m, ℓ = 1, . . . , t.

The first t− 1 tuples will be randomly generated, and the last one will be calculated
in such a way that, when summing all the tuples mod n, the resulting tuple will be
formed by the elements in C.

Using this system, the only way L can be recovered is if all participants pool their
shares. If one person is missing, the rest of the group has as much information about
L as a complete outsider.

Let us show an example of this system. Notice how we have shifted from consid-
ering (i, j; k) ∈ {1, . . . , n}3 to (i, j; k) ∈ {0, . . . , n− 1}3, so modular arithmetic could
be applied.

Example 4.19. Let C = {(0, 0; 0), (1, 1; 1)} be a critical set of the Latin square

L =

0 2 1
2 1 0
1 0 2

 .

Suppose that t = 3. Then, we need pairs (2-tuples) P1, P2 and P3. P1 and P2 will be
randomly generated. For example,

P1 = ((0, 1; 2), (2, 0; 0)), P2 = ((1, 2; 1), (0, 2; 1)).

Now, we calculate P3. All calculations are done mod 3.

P3 = C − (P1 + P2) = ((0, 0; 0), (1, 1; 1))− ((0, 1; 2), (2, 0; 0))− ((1, 2; 1), (0, 2; 1)) =

= ((0− 0− 1, 0− 1− 2; 0− 2− 1), (1− 2− 0, 1− 0− 2; 1− 0− 1)) =

= ((2, 0; 0), (2, 2; 0)).

This way, P1 + P2 + P3 is a tuple with the elements of C, and thus the participants
can recover L when they pool all their shares together.
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APPENDIX A

SageMath Package

In this appendix we present the SageMath package PermutationPolynomials. The
keys for its access are

• IP address : 193.146.75.191:8080

• Login: PermutationPolynomial

• Password: AMAC

This package, still in development, is designed for manipulating Permutation and
Local Permutation Polynomials, so the main objects that PermutationPolynomi-
als deals with are multivariate polynomials in Fq[x1, . . . , xn] over any finite field Fq.
Also, there are functions for the concrete case n = 2, that is, Fq[x, y], as we have seen
more results regarding it in Chapter 3.

One can define Fq as follows.

1 if is_prime(q):
2 K=GF(q)
3 else:
4 K.<u>=FiniteField(q)

Now, we show two ways of defining Fq[x1, . . . , xn]. If we want to give a particular
name to each of the variables, we can do it like so.

1 S.<x,y>=PolynomialRing(K)

Otherwise, the next command can be used and the variables will be x0, x1, . . . , xn. It
is especially useful when n ≥ 4.

1 S=PolynomialRing(K,'x',n)
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The package contains about 30 functions. Now, we are going to illustrate a couple
of such functions.

The first one is an implementation of Theorem 3.27, where the argument is a cycle
of maximum length that generates a 0-Klenian subgroup.

1 def e_Klenian_OS(cycle,Kx):
2 '''
3 This function computes a companion polynomial of a 0-Klenian polynomial
4 associated to the subgroup generated by the input cycle.
5 Input: - A cycle of maximum length q;
6 - The polynomial ring Kx.
7 Output: A companion polynomial of a 0-Klenian polynomial associated to the
8 subgroup generated by the input cycle.
9 '''

10 K=Kx.base_ring()
11 q=K.cardinality()
12

13 D={i:cycle[i] for i in range(q)}
14 A=cycle_set(cycle,K)
15 B=[[] for j in range(q)]
16 for j in range(q):
17 for i in range(q):
18 B[j].append((D[i], A[(j+i+1)%q][i][1]))
19 return interpol(B,Kx)

e_Klenian_OS calls two other functions:

• cycle_set, for computing the partition

Ai = {(a, βi(a)) : a ∈ Fq}, i = 1, . . . , q

where β is the input cycle.

• interpol, for computing the corresponding associated polynomial, that is, the
implementation of the Lagrange Interpolation Theorem 2.2. This function works
in Fq[x1, . . . , xn].

1 def cycle_set(C,K):
2 '''
3 This function computes the following partition given a cycle permutation C.
4 Input: - A list [a,b,c,..,x] of elements of the field K representing a cycle
5 permutation, that is, C: a-->b-->c------...>x---a;
6 - A field K.
7 Output: The partition {A_i:i=1,...,q}, where
8 A_i=[(c_j, C^i(c_j)), c_j in K={c_1,...,c_q}], and |A_i|=q.
9 That is, a list of q sublists of tuples in K^2 with q elements.

https://www.sagemath.org/
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10 '''
11 q=K.cardinality()
12

13 A=[[] for i in range(q)]
14 for i in range(q):
15 for j in range(q):
16 A[i].append((K(C[j]), K(C[(j+i+1)%q])))
17 return A

1 def interpol(points,Kx):
2 '''
3 This function computes the Lagrange Interpolation polynomial.
4 Input: - A list of q sublists, where the i-th list contains the points
5 (a_1,...,a_n) such that f(a_1,...,a_n)=c_i, K={c_0,...,c_{q-1}}.
6 - A polynomial ring Kx.
7 Output: The Lagrange Interpolation polynomial that interpolates the list.
8 If len(points)!=q**n, the function returns 0.
9 '''

10 gens=Kx.gens()
11 K=Kx.base_ring()
12 q=K.cardinality()
13 n=len(gens)
14

15 f=0
16 S=set()
17 listK=list(K)
18 for i in range(len(points)):
19 S = S.union(set(points[i]))
20 if len(S)==q**n:
21 for i in range(q):
22 list_i=points[i]
23 for point in list_i:
24 if n==1:
25 point=[point]
26 f+=listK[i]*prod([1-(gens[j]-K(point[j]))**(q-1) for j in range(n)])
27 return f

Also, to check if the polynomial obtained with e_Klenian_OS is in fact a companion
of the polynomial defined by the input cycle, we may use the function is_OP, that
determines whether or not two given bivariate polynomials form an orthogonal system.

1 def is_OP(f,g):
2 '''
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3 This function determines whether or not two given bivariate polynomials form an
4 orthogonal system.
5 Input: Two bivariate polynomials f,g.
6 Output: Boolean True/False.
7 '''
8 Kx=f.parent()
9 K=Kx.base_ring()

10 q=K.cardinality()
11 A=cartesian_product([K,K])
12

13 C=set()
14 for a in A:
15 C.add((f(a[0],a[1]),g(a[0],a[1])))
16 if len(C)==q**2:
17 return True
18 return False

These last two functions compute the bivariate LPP associated to a Latin square
with entries in Fq and viceversa.

1 def LPPoly(H,Kx):
2 '''
3 This function computes the bivariate LPP associated to a given Latin square.
4 Input: - A Latin square H with entries in F_q (matrix or list of sublists);
5 - The polynomial ring Kx=F_q[x,y].
6 Output: The associated bivariate LPP
7 '''
8 K=Kx.base_ring()
9 q=K.cardinality()

10 u=K.primitive_element()
11

12 L={k:[] for k in K}
13 listK=list(K)
14 for i in range(q):
15 for j in range(q):
16 L[K(H[i][j])].append((listK[i],listK[j]))
17 return(interpol(list(L[i] for i in K),Kx))
18

19 def Latin_square(f):
20 '''
21 This function computes the Latin square associated to a given bivariate LPP.
22 Input: A bivariate polynomial f.
23 Output: The Latin square associated to f if f is an LPP, a zero matrix otherwise.
24 '''
25 Kx=f.parent()
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26 K=Kx.base_ring()
27 q=K.cardinality()
28

29 if is_LPP(f):
30 return matrix(K,[[f(i,j) for j in list(K)] for i in list(K)])
31 else:
32 return zero_matrix(q,q)

Latin_square calls the function is_LPP, that determines whether or not a given
bivariate polynomial is an LPP.

1 def is_LPP(f):
2 '''
3 This function determines whether or not a given bivariate polynomial is an LPP
4 Input: A bivariate polynomial f.
5 Output: Boolean True/False.
6 '''
7 Kx=f.parent()
8 K=Kx.base_ring()
9 q=K.cardinality()

10

11 for i in K:
12 image1 = []
13 image2 = []
14 for j in K:
15 temp1 = f(i,j)
16 temp2 = f(j,i)
17 if temp1 in image1 or temp2 in image2:
18 return False
19 else:
20 image1.append(temp1)
21 image2.append(temp2)
22 return True





APPENDIX B

Examples

B.1. The Package PermutationPolynomials

We will be using the SageMath package PermutationPolynomials introduced in
Appendix A to produce examples of Local Permutation Polynomials. In particular,
we will showcase examples of usage of the functions we commented on.

We begin by defining

F9 = {ui : i = 1, . . . , 8} ∪ {0}, where u2 + 2u+ 2 = 0

and F9[x, y].

1 q=9
2 if is_prime(q):
3 K=GF(q)
4 else:
5 K.<u>=FiniteField(q)
6

7 S.<x,y>=PolynomialRing(K)

Now, we will find the e-Klenian polynomial f associated to the cycle

cc = (u, 0, u2, u3, u6, u8, u7, u5, u4)

using the functions cycle_set and interpol, as well as a companion polynomial g of
f with e_Klenian_OS.

1 cc=[u,0,u**2,u**3,u**6,u**8,u**7,u**5,u**4]
2 f=interpol(cycle_set(cc,K),S)
3 g=e_Klenian_OS(cc,S)

This results in the following polynomials:

59
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f = (u+ 1)x7y7+2ux7y6+(2u+ 1)x6y6+(u+ 2)x5y7+(u+ 1)x7y4+(2u+ 1)x6y5−
x5y6+(u+ 1)x4y7−x7y3+(u+ 1)x5y5+ux4y6+x3y7+(u+ 1)x7y2+x6y3+ux5y4+
2ux4y5 + x3y6 + (2u+ 1)x2y7 + (2u+ 2)x7y + (u+ 2)x5y3 + x4y4 + (u+ 2)x3y5 +
(2u+ 2)xy7 + ux7 + (u+ 2)x6y+ x5y2 +2ux4y3 +2ux3y4 − x2y5 + y7 + (u+ 2)x6 +
(u+ 1)x5y + (2u+ 2)x3y3 + (u+ 2)x2y4 + (u+ 2)xy5 + (2u+ 2) y6 + (2u+ 2)x5 −
x4y + x3y2 + (2u+ 2)x2y3 + xy4 + y5 + ux4 + (2u+ 1)x3y + (u+ 2)x2y2 + 2uy4 +
ux3 + (u+ 1)x2y + xy2 − y3 + x2 + xy + uy2 − x+ 1,

g = (u+ 2)x7y7 + (u+ 1)x7y6 + (2u+ 2)x6y7 + ux7y5 + 2ux6y6 + 2ux5y7 +
2ux7y4 − x6y5 + 2ux5y6 + 2ux4y7 − x7y3 + (u+ 1)x6y4 + ux5y5 + x4y6 + ux3y7 +
x7y2+(2u+ 1)x6y3+2ux5y4+(2u+ 2)x4y5+(2u+ 2)x3y6+(2u+ 1)x2y7+ux7y+
(u+ 2)x6y2 + ux4y4 + (2u+ 1)x3y5 + (2u+ 1)x2y6 + (2u+ 2)xy7 + (u+ 2)x7 +
(2u+ 1)x6y−x5y2+(u+ 2)x4y3+(2u+ 2)x3y4−x2y5+(2u+ 1) y7+2ux6+ux5y+
2ux4y2−x3y3+(2u+ 2)x2y4+xy5+(u+ 1) y6+(2u+ 2)x5+(u+ 1)x3y2−x2y3+
(2u+ 2)xy4+ y5−x4+(2u+ 1)x2y2+(2u+ 2)xy3− y4+(u+ 2)x3+(u+ 1)x2y+
2uxy2 + (u+ 2)xy + (2u+ 2) y2 + (2u+ 1)x+ 2u+ 2.

Now, using the function is_OP we check that f and g are, in fact, companions,
since they form an orthogonal system, as well as show they are LPPs with is_LPP.

1 is_OP(f,g), is_LPP(f), is_LPP(g)

All of these return True.

We may also compute the Latin squares associated to f and g, since they are both
LPPs, using Latin_square.

1 Lf=Latin_square(f)
2 Lg=Latin_square(g)

This results in the following matrices:

Lf =



1 u+ 2 0 u 2u+ 2 2u u+ 1 2 2u+ 1
0 1 u u+ 1 u+ 2 2u+ 2 2u+ 1 2u 2

u+ 2 2u+ 2 1 0 2u 2 u 2u+ 1 u+ 1
2u+ 2 2u u+ 2 1 2 2u+ 1 0 u+ 1 u

u 0 u+ 1 2u+ 1 1 u+ 2 2 2u+ 2 2u
u+ 1 u 2u+ 1 2 0 1 2u u+ 2 2u+ 2

2u 2 2u+ 2 u+ 2 2u+ 1 u+ 1 1 u 0
2u+ 1 u+ 1 2 2u u 0 2u+ 2 1 u+ 2

2 2u+ 1 2u 2u+ 2 u+ 1 u u+ 2 0 1
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Lg =



2u+ 2 2u u+ 2 1 2 2u+ 1 0 u+ 1 u
1 u+ 2 0 u 2u+ 2 2u u+ 1 2 2u+ 1
2 2u+ 1 2u 2u+ 2 u+ 1 u u+ 2 0 1

u+ 1 u 2u+ 1 2 0 1 2u u+ 2 2u+ 2
u 0 u+ 1 2u+ 1 1 u+ 2 2 2u+ 2 2u

2u+ 1 u+ 1 2 2u u 0 2u+ 2 1 u+ 2
0 1 u u+ 1 u+ 2 2u+ 2 2u+ 1 2u 2

2u 2 2u+ 2 u+ 2 2u+ 1 u+ 1 1 u 0
u+ 2 2u+ 2 1 0 2u 2 u 2u+ 1 u+ 1


Finally, to check the proper functioning of LPPoly and Latin_square, we may

carry out the following verification, which returns True in both cases.

1 LPPoly(Lf,S)==f, LPPoly(Lg,S)==g

B.2. e-Klenian Polynomials in F2, F3 and F4

To better understand the concept of e-Klenian polynomials, we are going to describe
them in Fq[x, y] for q = 2, 3, 4. Actually, all local permutation polynomials in these
rings are equivalent to e-Klenian polynomials, which isn’t true when q ≤ 5, see [9].

B.2.1. The Finite Field F2

As 2 is prime, there are only 0-Klenian polynomials over F2 = {0, 1}. By Proposition
3.13, there are 2!(2−1)!

φ(2) = 2 of them, and there is only (2−1)!
φ(2) = 1 0-Klenian group.

The 0-Klenian group we are looking for is ⟨β⟩ = {id, β} where β = (0, 1), the only
cycle of length 2. Thus, we get two 0-Klenian polynomials, f and g, where β

f
= (id, β)

and β
g
= (β, id).

These are actually the only two local permutation polynomials in F2[x, y],

f(x, y) = x+ y, g(x, y) = x+ y + 1.

We know these are the only ones because, as LPPs, they have to be linear by Theorem
2.15 and both x and y have to appear in them by Proposition 2.7.

B.2.2. The Finite Field F3

Similar to the case q = 2, as 3 is prime, there are only 0-Klenian polynomials over
F3 = {0, 1, 2}. By Proposition 3.13, there are 3!(3−1)!

φ(3) = 6 of them, and there is only
(3−1)!
φ(3) = 1 0-Klenian group.
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The 0-Klenian group we are looking for is ⟨β⟩ = {id, β, β2} where β = (0, 1, 2).
Thus, we get 6 0-Klenian polynomials depending on how we order these 3 permuta-
tions.

The LPPs in F3[x, y] are linear by 2.15, and all linear polynomials are LPPs.
Therefore, they are

ax+ by + c, a, b ∈ F∗
3, c ∈ F3.

This results in a total of 2 · 2 · 3 = 12 local permutation polynomials in F3[x, y], 6 of
those being 0-Klenian polynomials.

B.2.3. The Finite Field F4

We will use the following description for F4:

F4 = {0, u, u2, u3} = {0, u, u+ 1, 1}, where u2 + u+ 1 = 0.

Since q = 4 = 22, e can be 0 or 1.

With e = 0, there are (4−1)!
φ(4) = 3 0-Klenian groups:

• K1 = ⟨β1⟩, where β1 = (0, u, u2, u3).

• K2 = ⟨β2⟩, where β2 = (0, u2, u, u3).

• K3 = ⟨β3⟩, where β3 = (0, u2, u3, u).

By Proposition 3.13, these give 4!(4−1)!
φ(4) = 72 0-Klenian polynomials.

With e = 1 we have a group generated by α = (0, u)(u2, u3) and β = (0, u2)(u, u3):

K4 = {id, α, β, αβ},

giving 4! = 24 1-Klenian polynomials.


	Introduction
	Permutation Polynomials in One Variable
	Univariate Polynomials over Finite Fields
	Permutation Polynomials

	Permutation Polynomials in Several Variables
	Multivariate Polynomials over Finite Fields
	Permutation and Local Permutation Polynomials
	Permutation and Local Permutation Polynomials of Maximum Degree

	Bivariate Local Permutation Polynomials
	Permutation Polynomial Tuples
	e-Klenian Polynomials
	Orthogonal Polynomial Systems
	Latin Squares
	Mutually Orthogonal Latin Squares
	Hypercubes


	Applications of Latin Squares
	Coding Theory
	Cryptography
	Encryption
	Secret Sharing Schemes


	Appendices
	SageMath Package
	Examples
	The Package PermutationPolynomials
	e-Klenian Polynomials in F2, F3 and F4
	The Finite Field F2
	The Finite Field F3
	The Finite Field F4



