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lágrima.

Diese Zeilen sind für Dich, weil Du mir während der Dissertation stets zur

Seite standst. Du warst derjenige, der mir selbst in schwierigen Phasen ein Lächeln
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IV.B Caso práctico 1. Dique vertical. . . . . . . . . . . . . . .28
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CHAPTER

0
Resumen

Con el objetivo de lograr una mayor difusión dentro de la comunidad cientı́fica,

esta tesis doctoral ha sido redactada en inglés. Sin embargo, para cumplir los re-

quisitos impuestos por la Universidad de Cantabria, previoal cuerpo principal de

la tesis se adjunta un resumen de la misma en español. En esteresumen se intenta

sintetizar el contenido de la tesis, pero dada la naturalezapropia de un resumen,

este apartado no supone una traducción literal.

I Introducci ón
El diseño de infraestructuras marı́timas, costeras o en aguas profundas; ası́ como el

análisis de cualquier proceso costero gobernado por el oleaje requiere del conoci-

miento del clima marı́timo en la zona de estudio. Dependiendo del análisis o el tipo

de estructura a diseñar es necesaria la disposición del r´egimen extremal, el régimen

medio o ambos. Por lo tanto la existencia de datos que sirvan al ingeniero como

base con la que iniciar sus diseños se torna imprescindible.

Las bases de datos de clima marı́timo existentes pueden diferenciarse clara-

mente en 4 tipos:

1. Registros instrumentales (boyas)

1
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2. Datos provenientes de satélite

3. Registros de observaciones visuales

4. Series generadas mediante modelado numérico (reańalisis)

Dependiendo del estudio que se esté realizando, o la estructura que se esté

diseñando, se pueden utilizar unas u otras bases de datos. Asimismo, hay que

tener en cuenta las diferentes escalas temporales en la caracterización del clima

marı́timo. Los estudios se pueden clasificar en 4 niveles en función de su alcance

temporal:

1. Corto plazo: estudios que requieren de predicciones del oleaje del orden de

3 dı́as.

2. Medio plazo: diseños en los que es necesario un análisis del oleaje para

periodos de hasta 6 meses.

3. Largo plazo: infraestructuras para las que se precisa de la definición del clima

marı́timo con registros históricos de larga longitud (>20 años).

4. Muy largo plazo: estudios en los que en necesario tener en cuenta las proyec-

ciones del clima marı́timo bajo los diferentes escenarios de cambio climático.

Esta tesis se centra en estudios de largo o muy largo plazo conla utilización de

datos de reanálisis.

I.A Medidas de fiabilidad estructural

El diseño de cualquier estructura debe realizarse de tal forma que durante la vida

útil de la misma no se superen unos estados lı́mites predeterminados. Los estados

lı́mites pueden clasificarse según su grado de relevancia en:

1. Parada operativa. Interrupción del uso normal de la estructura producida

generalmente por agentes atmosféricos.
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2. Servicio. Interrupción del uso normal de la estructura por deformaciones,

vibraciones o daños superficiales.

3. Daño. Paradas que requieran de reparaciones de importancia para evitar el

colapso de la estructura.

4. Último. Colapso de toda o parte de la estructura.

En función de cómo se se determine la fiabilidad de la estructura, se pueden

diferenciar tres tipos de diseño:

1. Disẽno determinista.

El diseño determinista forma parte de los métodos clásicos, basados en co-

eficientes de seguridad, que tienen en cuenta la aleatoriedad de las variables

de forma implı́cita.

• Coeficiente de seguridad global

Se basa en dividir el espacion-dimensional de las variables implicadas

en dos zonas. Dicha división se hace respecto a un determinado estado

lı́mite. En la región segura se cumplen los condicionantesde proyecto

mientras que en la región de fallo la estructura deja de cumplir las fun-

ciones para las que se diseñó.

La inclusión de un coeficiente de seguridadF se traduce en un despla-

zamiento de la curva que separa ambas regiones, de forma que se gana

una zona extra de seguridad (ver Figura1).

• Coeficiente de seguridad parcial

Los coeficientes de seguridad parciales surgen como evolución del coe-

ficiente de seguridad global. Se basan en la determinación de diferentes

coeficientes de seguridad aplicables a las cargas y/o elementos de la

estructura. Estos coeficientes se dividen en coeficientes deminoración

para las resistencias de la estructura y coeficientes de mayoración para

las cargas actuantes.
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FAILURE REGION 

SAFE REGION

g(x1, x2)=1

X1

(Resistance R)

X2 (Loads S)

g(x1, x2)=F

ADDED SAFE REGION

Increasing danger

Increasing

danger

C

C

Figure 1: Aumento de la región segura mediante la inclusión de un coeficiente de

seguridad

La aplicación de coeficientes de seguridad (totales o parciales) en el diseño

de estructuras supone una primera aproximación en la estimación de la fia-

bilidad estructural. Sin embargo, su aplicación conllevaincertidumbres ya

que la determinación de los coeficientes puede no ser únicay los valores

representativos de las variables aleatorias implicadas pueden variar.

2. Disẽno parcialmente probabilista.

Los métodos de diseño parcialmente probabilista son aquellos en los que

se recurre al concepto de periodo de retorno. La definición del periodo de

retorno depende en gran medida de las hipótesis consideradas sobre las dis-

tribuciones de los sucesos. La utilización del periodo de retorno en el diseño

de estructuras es válida siempre y cuando se tenga en cuentaque:

• La definición del periodo de retorno depende de la escala de tiempo

utilizada.

• No se considera la posibilidad de ocurrencia de más de un evento dentro

de un mismo intervalo de tiempo. Por ello esta aproximaciónsólo es

4
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válida cuando los sucesos tengan una probabilidad de ocurrencia muy

baja dentro del periodo unidad.

3. Disẽno probabilista.

Los métodos explicados anteriormente son herramientas degran utilidad en

el diseño de estructuras, ahora bien, no son capaces de tener en cuenta que in-

cluso para un tiempo definido las variables tienen un nivel deincertidumbre

asociado. La incertidumbre asociada a la resistenciaR y a cada esfuerzoS

se puede representar mediante sus funciones de densidadfR y fS. Tanto las

cargas actuantes sobre la estructura como la resistencia dela misma pueden

ser variables con el tiempo debido al deterioro de los materiales, esto implica

que las funciones de densidad se ensanchen con el tiempo. Aún ası́, en la

mayorı́a de casos se suponen constantes tanto las cargas como las resisten-

cias.

Al suponer constantes en el tiempo las funciones de densidadde las incerti-

dumbres asociadas a las resistenciasfR(r) y a los esfuerzosfS(s) es posible

determinar la función de densidad conjuntafRS(r, s). Si ambas variables

pueden considerarse independientes, la función de densidad conjunta puede

estimarse como el producto de ambas marginales:fRS(r, s) = fR(r)fs(s).

De esta forma, la probabilidad de fallo se puede estimar mediante la ecuación

1

pf =

∫

D

∫

fRS(r, s)drds =

∫ ∞

−∞

∫ s

−∞

fRS(r, s)drsr (1)

Sin embargo, en la mayorı́a de diseños de estructuras no es posible simplifi-

car el problema a dos variablesR y S, por lo queR y S han de ser sustitui-

das por las funcioneshR(x1, x2, ..., xn) y hS(x1, x2, ..., xn), de manera que

la función de densidad conjunta resulta:

f(x) = fX1,X2,...,Xn
(x1, x2, ..., xn; Θ), (2)

dondeΘ es un vector paramétrico que define las distribuciones de las va-

riables. Con ello, la probabilidad de fallo se obtiene mediante:
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fpf(Θ) =

∫

g∗(x1,x2,...,xn)≤0

fX1,X2,...,Xn
(x1, x2, ..., xn; Θ)dx1dx2...dxn (3)

siendog∗(x1, x2, ..., xn) la ecuación de estado lı́mite, y que no es más que la

integral de la función de densidad conjunta de las variables que intervienen

en la región de fallo.

I.B Métodos con los que determinar la fiabilidad

En el ámbito del diseño de infraestructuras marı́timas, las Recomendaciones de

Obras Martimas (R.O.M.) de Puertos del Estado proporcionanun conjunto de nor-

mativas y criterios técnicos de aplicación en las cuatro fases en las que se puede

dividir la vida útil de una infraestructura marı́tima:

1. Fase de planificación y diseño.

2. Fase de construcción.

3. Fase de explotación y mantenimiento.

4. Fase de reutilización y desmantelamiento.

La R.O.M. se divide en diferentes capı́tulos, siendo laROM 0.0, Procedimiento

general y bases de cálculo en el proyecto de obras marı́timas y portuarias, en el que

especificamente se definen los diferentes métodos de verificación y diseño apli-

cables en el ámbito de las obras marı́timas. En este documento se dividen los

métodos de fiabilidad en tres niveles, Nivel I, Nivel II y Nivel III. Mediante su apli-

cación se puede abordar un diseño capaz de garantizar la seguridad, el servicio y la

explotación de la infraestructura a lo largo de su vida útil.

• Nivel I

Los Métodos de Nivel I son aquellos en los que la fiabilidad seestima basándose

en la determinación de coeficientes de seguridad. Existen dos ramas princi-

pales dentro de los métodos de Nivel I, los métodos basadosen coeficientes

de seguridad globales y los métodos basados en la estimaci´on de coeficientes

parciales para cada una de las variables involucradas.
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• Nivel II

Los Métodos de Nivel II y III se basan en la estimación de la probabilidad

de fallo,pf . Normalmente, la obtención de una solución analı́tica dela inte-

gral que definepf no es posible. Mediante los Métodos de Nivel II se trata

de obtener una aproximación de la misma transformando el integrando para

trabajar con variables gaussianas independientes. De estaforma se pueden

estimar los dos primeros momentos de la función de distribución conjunta

y con ellos ya se procede al diseño. Esto es posible siempre ycuando las

variabes no estén correladas, cuando esto no ocurra previamente habrá que

transformarlas en variables independientes ([74]).

Los Métodos de Nivel I también son conocidos como FOSM (First Order

Second Moment). Los métodos FOSM tratan de aproximar la ecuación del

estado lı́mite mediante una recta y determinar el punto de diseño como el

punto de dicha recta para el cual la distancia sea mı́nima. Ladistanciaβ en

la Figura2 representa el coeficiente de fiabilidad propuesto por Hasofer y

Lind ([74]) para determinar si el sistema es seguro o no.

• Nivel III

Finalmente, los Métodos de Nivel III son aquellos que tratan de resolver la

ecuación de lapf mediante técnicas de integración (analı́tica o numéricamente)

o mediante técnicas de simulación. Sólo existe solución analı́tica de la ecuación

anterior para casos concretos, por lo que, normalmente se recurre a técnicas

de simulación. Los Métodos de Nivel III basados en estimarla región de fallo

pueden dividirse entre métodos FORM (First Order Reliability Methods) y

SORM (Second Order Reliability Methods). Por otro lado, losMétodos de

Nivel III que consisten en la generación sintética de las variables implicadas

están generalmente basados en técnicas de como la de MonteCarlo ([112]).

Los métodos FORM son una aproximación lineal teniendo en cuenta la dis-

tribución real de las variables. El proceso se lleva a cabo de forma similar que

en los métodos FOSM pero con la principal diferencia en la forma de trans-

formar las variables al espacio normal multidimensional. En el caso en que

7



0. RESUMEN

FAILURE REGION

fx(x)

SAFE REGION

x1

x2
gx(x)=0

gL(x)=0

mx1

mx2

x*

Linear Approximation

sx1sx1

sx2

sx2

Joint distribution

contours

β

Design point

Figure 2: Representación gráfica de superficie de estado ĺımiteGX(X) = 0 y su

aproximación lineal para un caso 2-D.

las variables no sean independientes, éstas pueden transformarse mediante la

transformación de Rosenblatt ([140]).

Existen casos en los que no es posible aproximar la ecuaciónde estado lı́mite

a una recta, ya sea porque dicha ecuaci ón define una curva muypronun-

ciada o bien porque al pasar las variables al espacio normal la curvatura de

dicha curva se incrementa. En estos casos el problema puede solucionarse

mediante la aplicación de mt́odos SORM. Estos métodos de segundo orden

se basan en la aproximación de las ecuación de estado lı́mite mediante fun-

ciones parabólicas o esféricas en el entorno del punto de diseño.

I.C Objetivos

El objetivo general de esta tesis es la generación de seriessintéticas que sirvan

como base para la aplicación al diseño de estructuras mar´ıtimas dentro de los

8
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métodos de diseño de Nivel III. Para una correcta simulación de las variables

meteo-oceánicas involucradas en el diseño de obras marı́timas hay que profundizar

en su comportamiento y variabilidad. Ası́mismo, la gestión de series temporales

multivariadas de largo periodo requiere de la utilizaciónde diferentes técnicas es-

tadı́sticas.

El objetivo general propuesto puede disgregarse en dos objetivos parciales en

los que se puede resumir el contenido de esta tesis.

1. Ser capaces de generar series sintéticas multivariadasde las principales va-

riables que definen el oleaje y las condiciones atmosféricas. Para ello se

abordan distintas técnicas que hacen posible tener en cuenta las diferentes

escalas y los distintos procesos involucrados.

2. Transformar las series temporales de las variables meteo-oceánicas simula-

das en series temporales de parámetros de los que dependan los principales

modos de fallo de las estructuras.

La consecución de los objetivos propuestos requiere la exploración y el desar-

rollo de diferentes técnicas y algoritmos y su consecuentevalidación.

I.D Metodoloǵıa

La metodologı́a general para la generación de series sint´eticas aplicables al diseño

de estructuras marı́timas que se plantea está esquematizada en la Figura3. Con los

datos históricos de oleaje y presiones atmosféricas se simulan un número elevado

de vidas útiles de las variables de las cuales depende la estructura.Ésta simulación

conlleva varios pasos de manera que se tengan en cuenta las diferentes escalas tem-

porales y espaciales involucradas. Una vez se disponga de series sintéticas de las

variables se transfieren éstas a la estructura en forma de parámetros relativos a los

principales modos de fallo de cada estructura (estimaciónde carga actuantes sobre

la estructura, erosión,...). Esta transferencia se hace mediante una clusterización de

los datos simulados en grupos con caracterı́sticas semejantes, una estimación de los

parámetros relacionados con los modos de fallos de los datos clusterizados y una

posterior interpolación para reconstruir series temporales de los mismos. Con estas

9
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series temporales es posible analizar la integridad estructural de los elementos que

componen la infraestructura ası́ como los periodos de retorno de las cargas. En la

Figura3 se señala el alcance de los objetivos parciales planteadospreviamente para

la consecución de la metodologı́a general.

Simulación

Para llevar a cabo la metodologı́a propuesta se precisa de lautilización de di-

ferentes técnicas y algoritmos. Para simular correctamente estados de mar multi-

variados es necesario conocer las condiciones atmosféricas asociadas, ya que éstas

son el princpipal forzador del oleaje. Ası́mismo, es necesaria la inclusión de la

estacionalidad y el carácter autorregresivo tanto del oleaje como de las presiones

atmosféricas. Es por ello que la simulación de estados de mar se hace en tres pasos,

los cuales están esquematizados en la Figura4:

1. Se simulan las presiones atmosféricas en la zona de estudio. De esta forma

se tiene en cuenta la escala espacial de influencia en el oleaje al cual está

sometida la estructura a diseñar.

2. Se simulan las condiciones medias de oleaje diario frentea la estructura. En

este paso la escala espacial se reduce a la localización exacta de la obra.

3. Se simulan los estados de mar horarios en la infraestructura. Con este tercer

paso se aumenta la resolución temporal de la simulación.

Transferencia

Por otro lado, una vez se dispone de series sintéticas de estados de mar en la

zona de localización de la obra se estiman las cargas y/o parámetros de los que van

a depender los modos de fallo de la obra. Este proceso se sintetiza en tres pasos:

1. Clasificación de los estados de mar horarios en un númerodeterminado de

patrones representativos (clusterización).

2. Estimación de las cargas producidas por los patrones representativos. Esta es-

timación puede realizarse mediante el uso de formulaciones semiempı́ricas,

modelado numérico o modelado fı́sico.

10



I Introducci ón
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Figure 3: Esquema de la metodologı́a.
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Figure 4: Esquema del proceso de simulación.

3. Reconstrucción de las series temporales de cargas o par´ametros que hayan

sido estimados previamente mediante una técnica de interpolación.

La metodologı́a expuesta se desarrolla tomando como base delas simulaciones

las distribuciones empı́ricas de las variables. Esto supone una limitación al no tener

en cuenta el diferente comportamiento para los regı́menes medio y extremal y al

no dejar libertad de simulación en los extremos. Este aspecto se intenta solventar

con el desarrollo de una técnica de simulación univariadaque tiene en cuenta dicha

diferencia de comportamiento y es capaz de reproducir bien tanto los eventos ex-

tremos con el régimen medio. Ası́mismo, la cola superior seajusta a un modelo de

extremos de forma que en el proceso de simulación los eventos simulados no estén

costreñidos a los máximos registrados históricamente.

En este trabajo de tesis se explica en detalle cada uno de los pasos expues-

tos en esta metodologı́a y que son necesarios para la consecución de los objetivos

planteados en el apartado anterior.

La tesis está compuesta por 7 capı́tulos con los que se profundiza en los obje-

tivos anteriormente especificados. El cuerpo central de la tesis está compuesto por

los Capı́tulos (2-6) que se corresponden con una serie de artı́culos ya publicados o

en proceso de revisión. Cada artı́culo ha sido modificado s´olamente en cuestión de

formato para poder adaptarlo al presente documento.

La secuencia de los mismos traza el camino a seguir planteadoen el apartado

anterior. Los Capı́tulos 2 y 3, solventan el problema de la simulación multiva-
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riada de variables meteo-oceánicas. Para ello inicialmente se desarrolla un modelo

logı́stico capaz de simular sistemas multivariados agregados (Capı́tulo 2). A conti-

nuación, con base en el modelo desarrollado previamente y una técnica existente

en la literatura ([120]) se desarrolla un método de simulación de Monte Carlo de

estados de mar trivariados condicionado a las condiciones atmosféricas (Capı́tulo

3). Por otro lado, los Capı́tulos 4 y 5 presentan un modelo hı́brido con el que esti-

mar de una forma eficaz los parámetros de diseño de la estructura marı́tima a partir

de las series sintéticas de oleaje creadas previamente, ahorrando carga computacio-

nal. Este modelo se aplica a dos tipos de estructuras diferentes: un dique vertical

(Capı́tulo 4) y una turbina eólica offshore (Capı́tulo 5).Finalmente, el Capı́tulo 6

explora la posibilidad de tratar conjuntamente los regı́menes medio y extremal en

las variables de diseño. Por último, en el Capı́tulo 7 se recogen las conclusiones

obtenidas al trabajo realizado y se plantean futuras lı́neas de investigación.
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II Modelo loǵıstico autorregresivo aplicado a patrones

de circulación atmosf́erica
La utilización de modelos logı́sticos autorregresivos noes un tema nuevo. Es-

tos modelos son conocidos dentro del ámbito de la investigación farmacológica y

médica. En el capı́tulo 2 se profundiza en la aplicación deeste tipo de modelos al

campo de la modelización de patrones de circulación atmosférica o también llama-

dos tipos de tiempo. El uso de estos modelos permite la consideración simultánea

de procesos de diferente naturaleza, como pueden ser la estacionalidad, la variabi-

lidad interanual, las tendencias de largo plazo y procesos autorregresivos.

II.A Modelo loǵıstico autorregresivo

Los modelos de regresión tracidionales además de asumir respuestas regidas por

distribuciones normales, no son capaces de tratar con estados categóricos, es por

eso que se recurre al uso de modelos logı́sticos. Ası́mismo,mediante el correcto

tratamiento de las covariables (variables predictoras) endichos modelos, es posible

la inclusión de estados previos del sistema, lo cual es de gran utilidad en procesos

claramente autorregresivos como la circulación atmosférica. Para la aplicación del

modelo a patrones de circulación atmosférica, los camposde presiones son prome-

diados diariamente y clasificados según el algoritmo de clasificación K-Medias en

nwt grupos. Asignando arbitrariamente un valor a cada tipo de tiempo se obtiene la

secuencia temporal de los patrones de circulación diarios.

SeaYt; t = 1, . . . , n el patrón de circulación para cada instantet, de tal forma

que los posibles valores deYt estén entre 1 ynwt; y considerandoX t; t = 1, . . . , n

como un vector de covariables para cada instantet, el modelo toma la forma:

ln

(

Prob(Yt = i|Yt−1, . . . , Yt−d,X t)

Prob(Yt = i∗|Yt−1, . . . , Yt−d,X t)

)

= αi +X tβi +
∑d

j=1 Yt−jγij;

∀i = 1, . . . , nwt|i 6= i∗,
(4)

dondeαi es un término constante,βi (nc × 1) y γij (j = 1, . . . , d) se correspon-

den, para cada patrón de circulacióni, con el vector asociado a las covariables y a
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los d estados previos considerados, respectivamente. De acuerdo con la expresión

anterior, la probabilidad condicionada de cualquier tipo de tiempo se define por:

Prob(Yt = i|Yt−1, . . . , Yt−d,Xt) =
exp

(

αi +X tβi +
∑d

j=1 Yt−jγij

)

nwt
∑

k=1

exp

(

αk +X tβk +
d
∑

j=1

Yt−jγkj

) ;

∀i = 1, . . . , nwt.

(5)

Como covariables de influencia en el modelo se puede considerar:

• Estacionalidad en términos harmónicos

πS = βS0 + βS1 cos (wt) + βS2 sin (wt) , (6)

• Diferentes covariables como la variabilidad interanual

πC = XβC = (X1, . . . , Xnc
)







βC1
...
βCnc






=

nc
∑

i=1

Xiβ
C
i , (7)

• Tendencias de largo plazo

πLT = βLT t, (8)

• Términos autorregresivos

πARd =

d
∑

j=1

Yt−jγj, (9)

Introduciendo estas covariables en el modelo, se obtiene:

Prob(Yt = i|Yt−1, . . . , Yt−d,X t) =
exp

(

πSi + πCi + πLTi + πARi
)

nwt
∑

k=1

exp
(

πSk + πCk + πLTk + πARk
)

;

∀i = 1, . . . , nwt.

(10)
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Para poder lidiar con las diferentes escalas temporales en el modelo: anual,

mensual y diaria; se transforman todos los parámetros a la escala de menor du-

ración temporal, en nuestro caso se reduce todo a la escala diaria. Las covariables

con escalas mayores se repiten diariamente, por ejemplo unacovariable con escala

mensual se considera como 30 dı́as con el mismo valor de dichacovariable.

II.B Caso práctico

Para mostrar la aplicabilidad del modelo propuesto, una vezse explica el trata-

miento requerido para cada tipo de covariable, en el capı́tulo 2 se plantea y resuelve

detalladamente un ejemplo práctico. Dicho ejemplo se trata de la modelización y

posterior simulación de patrones de circulación atmosf´erica en el Atlántico Norte.

Los pasos seguidos pueden sintetizarte en:

1. Clasificación de las presiones atmosféricas en patrones sinópticos de circu-

lación.

Esta clasificación se realiza mediante la técnica de K-medias. En este caso,

para facilitar la representación gráfica y su consecuentecomprensión, se cla-

sificaron las presiones atmosféricas diarias en 9 tipos de tiempo,nwt = 9. En

la Figura5 se muestran los 9 tipos de tiempo representativos de los campos

de presiones en el Atlántico Norte.

2. Definición de las variables de influencia en el modelo.

En el caso propuesto se analizó la influencia de: i) estacionalidad, definida

tanto por harmónicos como por un proceso autorregresivo deperiodo anual,

ii)variabilidad interanual, incluyendo las anomalı́as depresiones mensuales

calculadas respecto a su valor medio, iii) tendencias de largo plazo y iv)

procesos autorregresivos.

En la Figura6, se muestra el ajuste del modelo teniendo en cuenta como va-

riables de influencia la estacionalidad, la variabilidad interanual, la tendencia

de largo plazo y el primer orden del proceso autorregresivo (estado anterior al

estado actual). Mediante las barras de colores se muestra laprobabilidad de

ocurrencia observada en el registro histórico de cada uno de los 9 patrones de
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Figure 5: Patrones de circulación sinópticos obtenidos con la clasificación K-Medias.

circulación en los que se han clasificado las presiones atmosféricas, mientras

que las lı́neas negras representan las probabilidades estimadas por el modelo.

Se representan las probabilidades agregadas mensualmentea lo largo de un

periodo de 20 años.

3. Una vez definidas las variables de influencia significativaen el modelo, es

posible la realización de simulaciones de Monte Carlo de diferentes escena-

rios.

4. La validación de las simulaciones, y por tanto de la habilidad del modelo para

reproducir patrones de circulación atmosférica, se centra en tres aspectos: i)

correcta reproducción de la distribución de ocurrenciasde cada uno de los

patrones (Figura7 (a)), ii) capacidad de simulación de las transiciones entre

los diferentes grupos (Figura7 (b)) y iii) análisis de las persistencias de cada

grupo (Figura8).
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Figure 6: Ajuste del modelo logı́stico autorregresivo teniendo en cuenta la estaciona-

lidad, la variabilidad interanual, la tendencia de largo plazo y un proceso autoregresivo
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Figure 7: (a) Scatter plot de las probabilidades de ocurrencia de cadatipo de tiempo

empı́ricas vs. simuladas. (b) Scatter plot de las probabilidades de transición entre tipos

de tiempo empı́ricas vs. simuladas.
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Figure 8: Distribución acumulada empı́rica de las persistencias decada uno de los 9

tipos de tiempo: datos históricos vs. simulados.
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III Simulación de Monte Carlo de estados de mar tri-

variados condicionada a la circulacíon atmosf́erica
Una correcta caracterización del clima marı́timo es vitalpara entender todos aquel-

los procesos gobernados por el oleaje, ası́ como para el diseño de cualquier estruc-

tura costera u offshore. Allı́ donde la disposición de bases de datos de largo plazo

no sea posible, la generación de series de datos simulados se presenta como una

buena alternativa. En el Capı́tulo 3 se presenta una metodologı́a para simular series

de estados de mar trivariados a escala horaria que sean capaces de mantener las

caracterı́sticas estadı́sticas de los datos históricos.

III.A Metodoloǵıa

En la Figura9 se esquematiza la metodologı́a llevada a cabo. El proceso completo

puede dividirse en tres pasos interconectados: i) simulación de campos de pre-

siones diarias, ii) simulación de condiciones medias diarias de oleaje y iii) simu-

lación de estados de mar horarios condicionados a las condiciones medias diarias

previamente simuladas.

Para el desarrollo de la metodologı́a propuesta es necesario disponer de datos de

campos de presiones (SLP) y de oleaje. Los campos de presiones son el predictor

del oleaje en el punto objetivo, siendo este último el predictando. Ası́mismo se

necesitan series temporales de las variables que van a ser simuladas en la misma

localización.

El primer paso del proceso es la simulación de los campos de presiones agre-

gados diariamente. Los campos de presiones medias diarias,descompuestos en

componentes principales se simulan mediante una técnica de simulación multiva-

riada ([120]). Esta técnica permite tener en cuenta tanto la autocorrelación como

las correlaciones cruzadas entre variables, por eso es necesaria la descomposición

en componentes principales.

Los datos de oleaje se analizan con dos escalas temporales distintas. Por un

lado se agregan a una escala diaria para poderlos relacionarcon los campos de

presiones simulados previamente, y por otro lado se simulana escala horaria de

modo que no se pierde información.
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Figure 9: Esquema de la metodologı́a.

Por lo tanto, como segundo paso se simulan los datos agregados diariamente.

Esta simulación se lleva a cabo con el modelo logı́stico presentado en el Capı́tulo

2. Para ello, previamente el oleaje se clasifica según estados de mar representativos

mediante un algoritmo de clasificación como es K-Medias. Una vez el modelo se

ajusta, tomando como covariables explicativas las componentes principales de los

campos de presiones simulados en el paso anterior, es posible realizar simulaciones

de las condiciones medias diarias del oleaje.

Finalmente, como tercer paso del proceso se simulan las variables que definen

el oleaje con una resolución temporal horaria. Previo a la simulación se relacionan

las series horarias con los estados medios diarios históricos. Con esto se obtienen

distribuciones empı́ricas deHs, T y θ para cada tipo de condición media diaria.

Usando dichas distribuciones empı́ricas se normalizan lasvariables. Con ello se
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posibilita la utilización de la misma técnica de simulación multivariada usada en

el primer paso ([120]). Esta técnica tiene en cuenta las autocorrelación existente

enHs, T y θ y las correlaciones cruzadas entre ellas. Una vez simuladaslas tres

variables, se desnormalizan teniendo en cuenta las series simuladas de condiciones

medias diarias generadas en el paso 2.

III.B Caso práctico

En el capı́tulo 3 se explica detalladamente la metodologı́apropuesta anteriormente

mediante su aplicación a un caso práctico. La localizaci´on del caso práctico se sitúa

en un punto frente al dique de Langosteira, en el puerto de La Coruña. Para ello se

utilizan datos prodecentes de reanálisis tanto para las series de oleaje, [19] y [136],

como para los campos de presiones, [90].

Simulación de campos de presiones diarias

Los campos de presiones medios diarios, descompuestos en componentes prin-

cipales (14 componentes principales que representan más del 92% de la varianza),

son simulados mediante la técnica de simulación multivariada propuesta por [120].

Para ello, se normalizan las componentes principales y paracada una de ellas se

ajusta un modelo de autoregresión y media móvil, ARMA, univariado. Se estudia la

posible correlación cruzada existente entre los residuosderivados de estos modelos,

tanto simultáneamente como con distintos desfases entre las series. Con las corre-

laciones existentes entre residuos se determina la matriz de varianza-covarianza,

G. A continuación se generan residuos aleatorios, los cuales tras correlacionarlos

mediante la matrizG, son los que se introducen en la simulación de cada una de

las componentes principales.

En la Figura10 se muestra la comparación entre las distribuciones de probabi-

lidad empı́ricas y simuladas para cada una de las componentes principales

Simulación de condiciones medias diarias de oleaje

Para la simulación de condiciones medias diarias de oleaje, las series históricas

deHs, T y θ son promediadas a escala diaria y agrupadas en 16 grupos mediante

K-medias (Figura11); con esto se obtiene la secuencia temporal de patrones de

oleaje medio diario. Esa secuencia temporal se modeliza conel modelo logı́stico
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Figure 10: Distribuciones de probabilidad de cada PC: i) datos históricos (barras

grises) y ii) datos simulados (ĺıneas negras).

explicado en el capı́tulo anterior y teniendo en cuenta comocovariables las com-

ponentes principales históricas de los campos de presiones. En la Figura12 se

muestran las probabilidades de ocurrencia de los 16 grupos de oleaje agregados a

un año medio, en la parte superior se presentan los datos historicos mientras que en

la parte inferior los ajustados con el modelo.

Una vez el modelo está ajustado se pueden realizar simulaciones de diferentes

secuencias de condiciones medias diarias de oleaje. Para estas simulaciones se
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Figure 12: Gráfico de diagnóstico del ajuste del modelo.

toman como covariables las componentes principales simuladas en el paso anterior.

Simulación de estados de mar horarios condicionados a las condiciones

medias diarias

Finalmente, se simulan los estados de mar horarios condicionados al oleaje me-

dio diario. Se relacionan la serie temporal de condiciones de oleaje diario con las

series horarias de las 3 variables. Con esto se obtienen las distribuciones empı́ricas

de las tres variables para cada uno de los 16 grupos de condiciones medias dia-

rias. Según estas distribuciones empı́ricas se normalizan las tres variables y una

vez normalizadas se ajusta un ARMA para cada una de ellas. Se estiman los re-

siduos, se correlacionan y se determina la matriz de varianzas-covarianzas,G. A

continuación, con residuos generados aleatoriamente y posteriormente correlados

conG, se simulan series de las tres variables a través de los ARMAs ajustados. Fi-

nalmente las variables simuladas se desnormalizan teniendo en cuenta la secuencia

simulada en el paso 2 de condiciones medias diarias de oleajey las distribuciones

empı́ricas.

Las Figuras13-15 representan la comparación entre los resultados simulados

y las series históricas. En la Figura13 se muestran las comparaciones entre las
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Figure 13: Distribuciones de probabilidad deHs, Tm y θm : i) datos históricos (barras

grises) y ii) datos simulados (ĺıneas negras).

distribuciones de probabilidad, mientras que en la Figura14 se comparan las dis-

tribuciones conjuntas. Finalmente, para comprobar si las series simuladas cumplen

la estacionalidad inherente en el oleaje, la Figura15 muestra cada una de las tres

variables agregada en un año. Como se puede ver en las tres figuras, las series

simuladas se corresponden con las series originales, lo cual valida la metodologı́a

propuesta.

Figure 14: Comparación entre las distribuciones conjuntas históricas y simuladas.
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Figure 15: Comparación entre la estacionalidad de las series históricas y simuladas.
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diseño de estructuras

IV Metodoloǵıa para transferir variables meteo-océanicas

a parámetros de disẽno de estructuras
El diseño de cualquier obra marı́tima, costera u offshore requiere del cálculo de

las cargas a las que se supone va a estar sometida la obra durante su vida útil. El

disenõ clásico se hace basado en un estado de mar de diseño, pero sin embargo la

combinación simultánea de diferentes parámetros puedeproducir otras situaciones

crı́ticas que pueden poner en riesgo la estabilidad de la obra. Las técnicas de mayor

resolución, basadas en simulación de escenarios mediante modelos numéricos o

modelado fı́sico son muy costosas y requieren mucho tiempo.

En los Capı́tulos 4 y 5 se presenta una metodologı́a hı́bridacon la que trans-

formar las series temporales de las variables meteo-oceánicas en series temporales

de los parámetros de los que va a depender el diseño. De estaforma se pueden

obtener series temporales de los cargas y/o parámetros relacionados con los modos

de fallo de la estructura. Se presentan dos casos de aplicación, un dique vertical y

una turbina eólica.

IV.A Metodoloǵıa

La metodologı́a propuesta combina dos técnicas estadı́sticas conocidas. Primero

con ayuda de una algoritmo de clasificación de máxima dissimilitud (MDA), se

determinan los casos representativos de las variables. Para ese conjunto de ca-

sos respresentativos se estiman las cargas, ya sea por mediode formulaciones se-

miempı́ricas, modelado numérico o modelado fı́sico. Y porúltimo, mediante una

técnica de interpolación basada en funciones radiales (RBF), se obtienen las series

temporales de las cargas o parámetros que hayan sido estimados.

El algoritmo de clasificación MDA, comparado con otros algoritmos existentes

como pueden ser K-Medias o mapas autoorganizativos (SOM), es el único capaz de

seleccionar casos que se encuentran en los contornos del espacio multidimensional

de los datos. En la Figura16 se muestra una comparación entre las tres técnicas

mencionadas.

Por su parte, la interpolación que se realiza tras la estimación de los parámetros

se lleva a cabo mediante RBF. Esta técnica consiste en aproximar el valor de los
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Figure 16: Comparación de los algoritmos K-medias (KMA), mapas auto–

organizativos (SOM) y máxima disimilitud (MDA).

parámetros mediante una suma ponderada de funciones radialmente simétricas lo-

calizadas en los puntos de los cuales se dispone de dato empı́rico. Los puntos en

los que se encuentran las RBF son los puntos que se han seleccionado previamente

mediante el MDA.

IV.B Caso práctico 1. Dique vertical.

En el capı́tulo 4 se presenta la metodologı́a explicada anteriormente aplicada al caso

de un dique vertical. En el mismo se consideran estados de mardefinidos por su

altura de ola,Hs, periodo de picoTp, dirección media del oleaje,θm y nivel medio

del mar,Zm. Se utilizaron datos provenientes de las bases de reanálisis ([136]) con

una cobertura temporal de 60 años horarios.

En función de las variables mencionadas se estiman las cargas a las que está

sometido el dique según el método de Goda-Takahashi ([63], [157]) y la erosión

frente al mismo según [81].

Para poder validar los resultados obtenidos con la metodologı́a propuesta por un

lado se estimaron las cargas y la erosión sólo de los estados de mar seleccionados

mediante MDA, y por otro se estimaron también para la serie completa. De esta

forma se pudo hacer una comparación directa entre los resultados históricos y los

obtenidos tras la interpolación con RBF.

En la Figura17se puede ver la evolución del error cometido en la comparación

directa entre el percentil del99% deFh y Fv en función del número de estados

28

C0_F16.eps


IV Metodologı́a para transferir variables meteo-océanicas a paŕametros de
diseño de estructuras

Figure 17: Evolución del error del percentil del99% deFh y Fv variando el número

de casos seleccionados.

seleccionados con MDA y con los que a posteriori se reconstruyó la serie con RBF.

Finalmente, en la Figura18 se muestra los resultados obtenidos de la compa-

ración de erosión calculada empı́ricamente para toda la serie temporal y la erosión

estimada aplicando la metodologı́a propuesta, para 50, 100, 200 y 500 casos selec-

cionados con MDA.

IV.C Caso práctico 2. Turbina eólica.

En el capı́tulo 5 se presenta una extensión del caso práctico anterior aplicando la

metodologı́a propuesta al caso de una turbina eólica. Se calculan las cargas en el

mástil de la turbina relacionadas con agentes ambientales. Para ello se consideran

las siguientes variables meteo-oceánicas: altura de ola significante,Hs, periodo

medio,Tm, dirección del oleaje,θWaves magnitud y dirección del vientoV1−hour
y θWind, magnitud y dirección de las corrientes de marea ,UT idal y θT idal, y nivel

medio del mar,SWL. Los datos han sido extraı́dos de bases de datos de reanálisis

([19],[111],[6]) con una cobertura temporal de 20 años y resolución horaria.
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Figure 18: Erosión calculada empı́ricamente vs estimada según la metodologı́a pro-

puesta con 50, 100, 200 y 500 casos seleccionados.

Para estimar las cargas sobre el mástil de la turbina se aplica la normativa IEC

61400–3 [4].

Al igual que en el caso práctico anterior, se han estimado las cargas paralela-

mente para toda la serie y sólo a los casos seleccionados conMDA y posteriormente

se interpola con RBF. Con esto es posible realizar una comparación directa de los

resultados obtenidos con la metodologı́a.

En la Figura19 se muestra la comparación de los resultados obtenidos para

el cálculo deFu (componenteX) y Fv (componenteY ) por los dos métodos,

empı́ricamente y mediante el uso de la metodologı́a propuesta.

Con la disposición de series temporales de las cargas sobreel mástil de la tur-

bina eólica es posible analizar los esfuerzos a los que se vesometida la misma desde

diferentes puntos de vista. En la Figura20 se representan las rosas probabilı́sticas

de los esfuerzos producidos por los diferentes agentes (olas, viento y corriente) en

comparación con el esfuerzo total en todo el periodo de 20 a˜nos. Mientras que en

la Figura21 se muestran los esfuerzos totales en tres años consecutivos.
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Figure 19: Scatter plot de las series temporales (calculada empı́ricamente vs. recons-

truida con RBF) deFu (componenteX) y Fv (componenteY ) considerando 75, 200,

500 y 1000 casos.
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Figure 20: Rosas probabiĺısticas de los diferentes esfuerzos (viento– arriba izquierda,

olas– centro arriba y corrientes–arriba derecha) y el total(abajo).

Figure 21: Rosas probabiĺısticas del esfuerzo total, 1999 (izquierda), 2000 (centro)

and 2001 (derecha).
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V Técnica de simulacíon conjunta del régimen medio

y extremal
En los capı́tulos anteriores, se han tomado las distribuciones empı́ricas como base

tanto para las simulaciones como para las interpolaciones.Esto supone una limi-

tación en los valores máximos que se pueden reproducir, yaque están costreñidos

a los máximos registrados históricamente. Además, el comportamiento de los va-

lores extremos no es el mismo que el del régimen medio, lo cual imposibilita el

ajustar las distribuciones empı́ricas a distribuciones conocidas. Para solventar esta

limitación, el capı́tulo 6 propone una técnica de simulación con la que es posible

tener en cuenta simultáneamente tanto el régimen medio como el extremal, mante-

niendo la dependencia temporal del proceso estocástico.

V.A Relación entre el régimen medio y el ŕegimen extremal. Re-

presentacíon gráfica

En esta sección se presenta una forma útil de representación gráfica en la que se

muestran ambos regı́menes simultáneamente.

Supongamos un proceso estocásticoXt, cuya frecuencia de ocurrencia sea

f = 1/Tx (dondeTx es su frecuencia de muestreo: horario, 3 horario...) y su

distribución de régimen medio esF PT (x). Si simulamos muestras den valores

del proceso estaocásticoXt y calculamos sus máximos,XM se rige según una dis-

tribuciónFEV (x). El método para representar gráficamente ambos regı́menes si-

multáneamente se basa en re–escalar el régimen extremal.Para ello inicialmente se

calcula el periodo de retorno equivalente para el régimen medio:T PT = 1
1−FPT (x)

.

Con esto ya es posible representar gráficamente el régimenmedio. Para repre-

sentar en la misma escala el régimen extremal se calcula su periodo de retorno,

TEV = 1
1−FEV (x)

, y se re–escala teniendo en cuenta el tamaño de la muestra,n:

TEVr = n · TEV . De esta forma ya se puede representarTEVr frente ax.

La Figura22 muestra dos ejemplos de la representación gráfica propuesta. En

la parte superior se muestra un ejemplo en el que la variableXt se corresponde

con una distribucion Normal(0,1), mientras que en la parte inferior se corresponde

con una distribución Gamma(θ = 5, κ = 10). En ambos casos se simulan 1000
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años de datos horarios y se considera que el régimen extremal esté asociado a los

máximos anuales, por lo quen = 8766. La lı́nea gris oscura representa el régimen

medio (T PT , x) mientras que los puntos negros representan los máximos anuales.

Finalmente la lı́nea gris clara representa (TEVr , xMAX).

V.B Simulación simultánea del ŕegimen medio y el ŕegimen ex-

tremal

Para poder realizar simulaciones que simultáneamente tengan en cuenta ambos

regı́menes y mantengan la autocorrelación del proceso estocástico hay que reali-

zar diferentes pasos. Primero hay que determinar hasta quépunto se supone el

régimen medio y a partir de ahı́ se considera el régimen extremal. Para ello se de-

termina el valor dex para el cual la distancia entreT PT y TEVr es mı́nima. En la

gráfica23se representa las PDFs y CDFs de ambos regı́menes y cómo se determina

el umbral entre ambos.

Minimize
x

(

1

1− FPT(x)
− n

1− FEV(x)

)2

. (11)

Una vez se ha determinado el punto a partir del cual se usa uno uotro régimen,

hay que re–escalar los valores que están por encima de ese umbral. Ese re–escalado

se realiza considerando que la ditribución extremal estárelacionada con el máximo

den elementos del régimen medio; y que hay una zona de solape en ambas distri-

buciones (Fig23): los valores que aún pertenciendo al régimen extremal, están por

debajo del umbral considerado se suponen pertenencientes al régimen medio. Por

tanto, la forma de re–escalar los valores pertenecientes alrégimen extremal es la

siguiente:

x =

{

FPT−1
(

uPT
)

if uPT ≤ pPTlim (x ≤ xlim)

FEV−1
(

uEV
)

if uPT > pPTlim (x > xlim),
(12)

dondeuEV , es la probabilidad re–escalada y es igual a:

uEV = pEVlim +
uPT − pPTlim
1− pPTlim

(1− pEVlim). (13)
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Figure 22: Representación gráfica del régimen medio y extremal: a) distribución nor-

mal y b) distribución gamma.
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Figure 23: Representación gráfica del proceso de simulación.

Determinadas las transformaciones que hay que realizar para simular simultáneamente

ambos regı́menes, falta tener en cuenta la autocorrelación del proceso. Para ello se

utilizará un modelo ARMA. Este modelo ARMA se ajusta a la serie temporal del

proceso estocástico, de esta forma se tendrá en cuenta su autocorrelación.

Por lo tanto, el proceso completo de simulación puede sintesizarse en los si-

guientes puntos:

1. Utilizando el registro histórico se ajustan los regı́menes medio y extremal.

2. Se normaliza el registro histórico.

3. Con el registro histórico normalizado, se ajusta un modelo ARMA y se obtie-

nen los residuos. Estos residuos no están correlados y siguen una distribución
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normal.

4. Se simulan errores independientes según una normal de media 0 y varianza

la misma que se obtenga con los residuos históricos.

5. Con los residuos simulados y el ARMA ajustado, se hace la simulación.

6. Los valores simulados hasta entonces están normalizados, al desnormalizar-

los se utiliza la transformación explicada en12

V.C Caso Pŕactico. Análisis de las condiciones ambientales para

el disẽno de turbinas éolicas offshore.

En el capı́tulo 6 se, una vez se ha presentado la técnica de simulación conjunta

del régimen medio y extremal, se añade un ejemplo de aplicación práctica. Di-

cho ejemplo es el análisis de las condiciones ambientales en el diseño de turbinas

eólicas offshore, en concreto la determinación de los contornosHs − V para un

periodo de retorno de 50 años (Hs-Altura de ola significante yV -Velocidad del

viento a 10 m sobre el nivel del mar). Los datos han sido extra´ıdos de bases de

datos de reaálisis con una cobertura temporal de 60 años horarios.

Una vez clasificadas las alturas de ola según el valor de la velocidad del viento

asociada, se ajustan las distribuciones resultantes. En laFigura24 se muestran los

histogramas y las funciones de densidad ajustadas para cadauno de los 27 grupos

en los que se han dividido ambas variables. En la misma figura se muestran también

los ajustes en la cola de cada una de las distribuciones en lasque se han dividido

los datos originales.

Una vez se ha aplicado la técnica de simulación conjunta para ambos regı́menes

se pueden obtener las envolventes deHs−V para un periodo de retorno de 50 años.

Para poder aplicar dicha técnica es preciso transformar las variables al espacio

normal mediante la transformación de Rosenblatt, de manera que se conviertan en

variables independientes. El resultado de la aplicación de dicha técnica ası́como

las envolventes resultantes se muestran en la Figura25
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Figure 24: Histogramas y funciones de densidad ajustadas deHs condicionada aV .
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Figure 25: Envolventes de periodo de retorno 50 años.
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VI Conclusiones

VI.A Resumen de Aportaciones

En este apartado se hace un resumen de las contribuciones de mayor relevancia

presentadas en esta tesis:

1. Se ha presentado un modelo logı́stico autorregresivo conel cual es posible

modelizar las condiciones atmosféricas en términos de patrones sinópticos de

circulación. El carácter nominal del modelo permite tener en cuenta procesos

autoregresivos ası́ como otras covariables para tener en cuenta procesos de

distinta naturaleza, como son la estacionalidad, la variabilidad interanual y

las tendencias de largo plazo.

2. Se ha desarrollado una metodologı́a para la simulación de estados de mar ho-

rarios trivariados. Para ello se ha hecho uso del modelo log´ıstico presentado

previamente y de una técnica de simulación multivariada existente en la lite-

ratura. Esta metodologı́a tiene en cuenta procesos de diferente naturaleza con

distintas escalas temporales y espaciales y permite generar series temporales

de largo periodo de estados de mar horarios.

3. Se ha mostrado la posibilidad de utilización de un método hı́brido que com-

bina dos algoritmos estadı́sticos para estimar los parámetros de cálculo en

el diseño de estructuras costeras reduciendo el tiempo computacional. Este

método se ha aplicado a dos tipologı́as distintas de estructuras.

4. Por último se ha desarrollado una metodologı́a de simulación que permite

utilizar los regı́menes medio y extremal de una variable. Deesta forma se

facilitan los diseños de aquellas estructuras en las que ambos regı́menes son

de interés.

VI.B Conclusiones

Tras revisar las aportaciones hechas dentro del trabajo expuesto se llega a las si-

guientes conclusiones:
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1. Una correcta simulación de las variables implicadas en el diseño de estructu-

ras marı́timas requiere del conocimiento de los procesos y los forzamientos

del oleaje al que va a estar sometida la misma. Es por eso que unestudio del

clima marı́timo conlleva el estudio de las condiciones atmosféricas asociadas

al mismo, es decir, conocer el comportamiento de los vientosy las presiones

en la zona de influencia del punto de estudio.

2. Además de tener en cuenta la escala espacial del proceso,es necesario el

conocimiento y la inclusión de las diferentes escalas temporales de las cuales

depende el oleaje. Es obvio que el oleaje es un proceso en el cual el estado

actual depende de estados previos (proceso autoregresivo), sin embargo hay

otras variaciones de mayor periodo que también han de ser tenidas en cuenta

como son la estacionalidad, la variabilidad interanual o las tendencias de

largo plazo.

3. El uso de técnicas estadı́siticas permite una gestión más eficiente de bases

de datos de largo periodo, de forma que su tratamiento y la estimación de

parámetros a partir de ellas sea más manejable y eficaz. Esto permitirı́a una

selección objetiva en los casos a modelar numéricamente oen laboratorio de

forma que luego los resultados obtenidos se puedan extrapolar para el resto

de estados de mar de la base de datos.

4. La disposición de bases de datos de largo periodo hacen posible la simulación

tomando como referencia las distribuciones empı́ricas de las variables. Sin

embargo para una correcta caracterización del régimen extremal es necesa-

ria una correcta modelización de los eventos extremos de manera que en la

simulación los eventos extremos no estén limitados al registro histórico de la

base de datos.

Sobre el modelo loǵıstico autorregresivo

• El modelo permite tener en cuenta estados previos del sistema.

• La naturaleza nominal del modelo realza el sentido fı́sico de las clasifica-

ciones de tipos de tiempo.
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• Es posible considerar simultáneamente la influencia de covariables de dis-

tinta naturaleza.

• Los patrones atmósfericos sinópticos están definidos mediante una clasifi-

cación realizada con K-medias, una técnica apropiada para la definición de

tipos de tiempo.

Sobre la metodoloǵıa para generar estados de mar trivariados

• La combinación de diferentes técnicas estadı́sticas hace posible la conside-

ración de diferentes escalas de tiempo y espacio.

• El procedimiento desarrollado permite reproducir estadosde mar trivariados,

considerando la correlación entre las variables.

• Las series temporales horarias simuladas están condicionadas a las condi-

ciones medias dominantes, facilitando la relación existente entre el oleaje en

un punto y las condiciones atmosféricas reinantes.

• Las condiciones medias se clasifican mediante K-medias. Esta técnica de

clasificación genera grupos con similares caracterı́sticas entre ellos, lo cual

resulta conveniente a la hora de definir patrones sinópticos.

Sobre el procedimiento para transferir estados de mar en paŕametros de

diseño

• La gestión de series temporales multivariadas de largo periodo se puede

realizar de una forma eficiente mediante el uso combinado de técnicas es-

tadı́sticas.

• Con el algoritmo MDA es posible seleccionar estados de mar representativos.

A diferencia de otras técnicas de clusterización este método incluye en los

estados seleccionados estados extremos.

• La posterior interpolación mediante RBF posibilita la generación de series

de largo periodo de parámetros de diseño de estructuras marı́timas.
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• Para la estimación de los parámetros de diseño se han empleado formula-

ciones semiempı́ricas, pero la metodologı́a es de similar aplicación en el caso

de utilizar modelos numéricos o modelado fı́sico.

Sobre la t́ecnica de simulacíon simultánea para reǵımenes medio y extre-

mal

• Se ha presentado una nueva forma de representación gráficaque facilita el

entendimiento de la relación entre ambas distribuciones.

• El método de simulación propuesto tiene en cuenta simult´aneamente ambos

regı́menes y mantiene la dependencia temporal de los mismos.

• Al simular ambos regı́menes a la vez se evita la decisión sobre qué régimen

es necesario para cada aplicación.

VI.C Futuras L ı́neas de Investigacíon

Una vez se ha planteado el trabajo y las aportaciones del mismo, y se han expuesto

las conlusiones a las que se ha llegado tras su realización,se plantean las siguientes

lı́neas para futuras investigaciones.

Respecto al desarrollo de modelos logı́sticos con los que analizar las condi-

ciones atmosféricas u oceánicas:

• Determinación del número óptimo de patrones sinópticos con los que des-

cribir los procesos atmosféricos y/o las dinámicas marinas. En la literatura

existen discrepancias entre autores en relación con el número óptimo de ti-

pos de tiempo a tener en cuenta. Hay que profundizar sobre este tema para

establecer un criterio objetivo con el que determinar el número de patrones a

considerar.

• Comparación entre los diferentes escenarios de cambio climático. Mediante

el uso del modelo logı́stico se pueden simular los diferentes escenarios de

cambio climático propuestos y ası́ comparar las tendencias que se obtengan.

En relación con la simulación de estados de mar basada en tipos de tiempo:
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• La inclusión de regı́menes extremales en la técnica de simulación propuesta.

Todo el trabajo mostrado en relación a la simulación multivariada se ha hecho

con base en las distribuciones empı́ricas obtenidas de los registros históricos.

Es por ello que el siguiente paso es la inclusión en la metodologı́a la posi-

bilidad de simular eventos extremos. Esta extensión a la metodologı́a actual

no es trivial, ya que requiere un estudio detallado de los lı́mites entre ambos

regı́menes y un análisis de las correlaciones existentes entre las diferentes

variables.

• Habilitar la metodologı́a para añadir más variables. Dependiendo de la estruc-

tura a diseñar o el proceso costero a aestudiar, puede ser necesario el disponer

de unas u otras variables. Para conseguir adaptar el métodoactual es preciso

analizar las correlaciones entre variables y la propia autocorrelación que pre-

senten las variables. Además, la adición de otras covariables que expliquen

los procesos a parte de las tendencias, la variabilidad interanual o la estacio-

nalidad pueden ser necesarias.

• Generalización del método propuesto. Previo a las modificaciones menciona-

das serı́a necesario una generalización de la técnica de simulación propuesta.

Su aplicabilidad en diferentes localizaciones donde los procesos involucra-

dos sean diferentes tiene que ser probada.

• Simulación de eventos extremos basada en patrones climáticos. En la litera-

tura existen métodos con los que generar series sintéticas de eventos extre-

mos ([75]) que también distinguen entre ambos regı́menes. Serı́a interesante

en el ámbito del diseño marı́timo el ser capaces de combinar esas técnicas de

simulación con los métodos basados en patrones de circulación propuestos

en esta tesis. De esta forma, la influencia de diferentes variables con distintas

escalas temporales y espaciales podrı́an ser tenidas en cuenta.

En relación a la transferencia de estados de mar a parámetros de diseño:

• Aplicación de la combinación MDA-RBF al diseño de ensayos de labo-

ratorio. La metodologı́a propuesta ha sido aplicada a formulaciones semi
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empı́ricas, pero su aplicación a la hora de crear planes de ensayo en labora-

torio serı́a de gran utilidad. Para realizarlo, habrı́a querealizar un análisis

con el que se pueda determinar el número mı́nimo de ensayos arealizar en el

laboratorio y la repetitibilidad alcanzable en el mismo.

• Determinación de las debilidades del proceso. Es necesario una mayor pro-

fundización para determinar qué parte de la metodologı́aconlleva una mayor

incertidumbre asociada: el número de casos extrı́dos por el algoritmo MDA

o la técnica de interpolación. Una vez se haya determinadoqué parte es la

más débil del proceso se podrı́a estimar la incertidumbreasociada a un cierto

número de casos.

En el área de la simulación simultánea de los regı́menes medio y extremal:

• Inclusión del extremal index. La inclusión de un ı́ndice de transición entre

ambos regı́menes debe ser estudiada con mayor detalle. En lametodologı́a

propuesta aquı́ no se ha considerado este hecho, de forma quela transición

entre ambos regı́menes puede producir resultados no precisos para periodos

de retorno bajos.
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CHAPTER

1
Introduction

1 Introduction
Wave climate characterization is vital to understand wave-driven coastal processes

and to design coastal and offshore structures. In each case,mean or extreme condi-

tions, or even both may be needed. The availability of data from which to start the

design process is therefore essential.

Existent wave climate databases can be divided into four categories: instrumen-

tal records (buoys), satellite data, visual data and time series generated by nume-

rical models (reanalysis). Each presents advantages and disadvantages. Buoy re-

cords, despite being high quality data and being able to record different variables,

are local measurements, and their density is limited and mayprove insufficient.

Visual observations are inevitably conditioned by the subjectivity of the observer,

and the zones where data of this kind are available are restricted to the main ma-

ritime waterways. On the other hand, in recent decades many satellites have been

developed which are able to provide wave data with a high spatial density, but have

a temporal density which is restricted by the frequency of the satellite overpass. Fi-

nally, thanks to advances in computational fields and improvements in calculation

times, numerical models have been developed which are able to generate historical

met-ocean time series. These are known as reanalysis databases or hindcast. These
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data are very useful because of their high spatial density and their continuity over

time. However, before they can be used they need to be corrected. To correct them,

the other kinds of data (buoys, satellite) become crucial.

Depending on the study or design to be developed, one type of data or another,

or combinations, may be used. Moreover, the different temporal scales must be

taken into account to properly characterize the wave climate. With reference to

these temporal scales, studies may be classified into four types:

1. Short term: Studies requiring forecasts of 3 days or less.

2. Middle term: Designs for which an analysis of the wave climate for periods

of up to 6 months is needed.

3. Long term: Infrastructures for which the design requires the use of long term

historic data (>20 years)

4. Very long term: Studies that require considering wave climate projections

under different climate change scenarios.

Even when wave data in the study area is available, often its time duration

is inadequate. In these cases, simulation techniques may beused to allow for a

probabilistic–design. For applications using these design methods, wave climates

must be accurately generated using synthetic methods. To achieve this, the different

temporal and spatial scales involved must be taken into account. For the temporal

scales, the autoregressive nature of the wave climate, suchas its seasonality must

be considered. As regards the spatial scales, the designer has to be aware of the

structure’s location as well as the atmospheric and oceanicprocesses which are

characteristic of the area. Because of this, in wave climatestudies special attention

is usually paid to atmospheric conditions, since they are the principal determinant

of the wave generating force.

There are different reliability measurements and methods used to estimate these

atmospheric forces. The next section examines the different reliability measure-

ments existent, and the basic concepts associated with each. Following the me-

thods, the various levels of design applied to maritime structures are explained.
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2 Structural reliability measurements
The design of any structure must be done so as to ensure that during itsservice life,

predeterminedlimit statesare not exceeded. By service life is meant the period of

time during which the structure must maintain acceptable safety, functionality and

aspect conditions without requiring any rehabilitation operation. The limit state

refers to the threshold above which the structure is not ableto accomplish any of

the functions for which it was designed ([106]). Limit states can be classified into:

1. Operational stop.Any interruption of normal use resulting from atmospheric

agents.

2. Service.Interruption of normal use due to deformations, vibrationsor super-

ficial damages.

3. Damage.Shutdown which requires important repairs to prevent the collapse

of the structure.

4. Ultimate.Partial or total collapse of the structure

Regarding the reliability measurement, the design can be classified into three

different types:

1. Deterministic design.

2. Partially probabilistic design.

3. Probabilistic design.

2.1 Deterministic design

Deterministic design belongs to classical methods, based on safety factors that im-

plicitly consider variable randomness.

• Global safety factor

This consists of dividing then-dimensional space of the involved variables

into two areas. This division corresponds to a specified limit state. In the
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FAILURE REGION

g(x1, x2)<1

C

C

SAFE REGION

g(x1, x2)>1

g(x1, x2)=1

X1

(Resistance R)

X2 (Loads S)

Figure 1.1: Scheme showing the safe and failure regions and the limit state equation

for a bidimensional example.

safe region, project conditions are achieved, while in the failure region the

structure no longer ensures the functions for which it was designed.

In Figure1.1 the red line shows the locus where the safe region equals the

failure region. In order to increase the safe region, a safety factor is applied,

as in Figure1.2. Let us consider the safe region asS ≡ {g(x1, x2) > 1} and

the failure region asF ≡ {g(x1, x2) ≤ 1}, andhS(x1, x2) andhF (x1, x2) as

the magnitudes that correspond to safety and failure respectively. Thus, the

red line would be the one that ensuresg(x1, x2) = 1. To guarantee that the

limit state is not surpassed a safety factor is added:

g∗(x1, x2) =
hR(x1, x2)

hS(x1, x2)
− F > 0 (1.1)

The addition of a safety factorF , results in a displacement of the curve that

divides both regions, thereby gaining an extra region of safety.
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FAILURE REGION 

SAFE REGION

g(x1, x2)=1

X1

(Resistance R)

X2 (Loads S)

g(x1, x2)=F

ADDED SAFE REGION

Increasing danger

Increasing

danger

C

C

Figure 1.2: Increase of the safety region by adding a safety factor.

• Partial safety factor

Partial safety factors arise from the evolution of the global safety factor. Ba-

sed on the estimation of different safety factors applicable to the load and/or

elements that conform the structure, these coefficients aredivided into reduc-

tion factors for the resistances, and magnification factorsfor the loads.

The application of safety factors (globally or partially defined) in structure de-

sign can be seen as a first approach in structural reliabilityestimation. Nevertheless,

its application involves uncertainties because the factors determination may not be

unique, and the representative values of the random variables may vary.

2.2 Partially probabilistic design

In order to reduce the temporal uncertainties related to theoccurrence of natural

phenomena, the concept of areturn periodis utilized. The return period of a pro-

cess is the mean time between two statistically independentsequential events.
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T = E(X) (1.2)

whereE(X) stands for the expected value ofX. The definition of the return

period depends on the events distributions. If it is assumedthat the time between

events,X, is a random variable with a geometric distribution, the probability of the

time between two events will be:

P [X = x] = p(1− p)(x−1)x = 1, 2, ... (1.3)

So, the expected value ofX, and consequently the return period, is:

E[X ] =

∞
∑

x=1

xp(1− p)(x−1) =
p

(1− (1− p))2
=

1

p
(1.4)

From equation1.4 it follows that the return period is the inverse of the event

occurrence probability in the period of time defined. Using the return period when

designing structures is valid as long as it is considered that:

• The return period definition depends on the time scale used.

• The possibility of more than one event within the same periodof time is not

taken into account. Thus, this approach is only viable when the occurrence

probability of the events is very low in the period of time defined.

2.3 Probabilistic design

The methods explained previously are very useful tools for structural design, but

they are not able to take into account that even for a defined period of time, the

variables present uncertainties. The uncertainty relatedto the resistanceR and to

every loadS, may be represented by their density functionsfR andfS. Both loads

and resistances can vary over time due to for example, material spoiling. This

implies an increase in density function widths (Figure1.3). Even so, in most of the

cases, loads and resistances are considered to remain constant over time.

Considering the density functions of the uncertainties related to resistances

fR(r), and loadsfS(s), constant in time, allows the determination of the joint den-

sity functionfRS(r, s). If both variables are independent, the joint distributionis
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t0

ta

t (time)

fR(r|t=t0) fS(s|t=t0)

fR(r|t=ta) fS(s|t=ta)

r, s

Figure 1.3: Reliability varying with time.

the product of the marginals, i.e.fRS(r, s) = fR(r)fs(s). In Figure1.4 all these

concepts are shown. Failure probability can be then defined as:

pf =

∫

D

∫

fRS(r, s)drds =

∫ ∞

−∞

∫ s

−∞

fRS(r, s)drsr. (1.5)

Taking into account that the joint distribution is the product of the marginals,

equation1.5can be reformulated as:

pf =

∫

D

∫

fRS(r, s)drds =

∫ ∞

−∞

(
∫ s

−∞

fR(r)dr

)

fS(s)ds. (1.6)

In equation1.6, the integration offR(r) between−∞ and s, is the density

function particularized forr = s, thus:

pf =

∫ ∞

−∞

FR(s)fS(s)ds. (1.7)

Equation1.7 is known as the convolution integration.FR represents the proba-

bility of R ≤ s, while fS(s) represents the probability ofS = s. If it is desired,pf
can be expressed in terms of the resistance:
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s

(loads)

r 

(resistance)g*(r, s)=0

fR(r)

fS(s)

fRS(r,s)

mR

mS

fRS(r,s)

SAFE 

REGION

g*(r, s)>0

FAILURE

REGION

g*(r, s)<0

Figure 1.4: Graphical representation of the joint distributionfRS(r, s), marginals

fR(r) andfS(s) and failure region.

pf =

∫ ∞

−∞

[1− FS(r)]fR(r)dr. (1.8)

In Figure1.5 those concepts already mathematically expressed are shown. In

1.5(a), R andS marginal distributions are plotted. In1.5(b) and (d), the failure

probability, expressed as function ofS andR, respectively, is represented; while in

1.5(c) the graphical interpretation of the failure probability is shown.

Nevertheless, in most of the structural design cases it is not possible to reduce

the problem to only two variablesR andS. Because of this,R andS must be re-

placed byhR(x1, x2, ..., xn) andhS(x1, x2, ..., xn) respectively. This way the joint

density function is given by:

f(x) = fX1,X2,...,Xn
(x1, x2, ..., xn; Θ), (1.9)

whereΘ is a parametric vector defining variable distributions. With that, failure

probability may be obtained with:
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Area=1-FS(r*)

fS(s)

mRmSr* s*

Area=FR(s*)

(a)

r,s r,s

FR(s)

mS s*

FR(s*)

fS(s)

(b)

s

(loads)

r 

(resistance)

r,s

pf -> Failure 

             Probability

(c)

r,s

fR(r)

r*

1-FS(r*)

(d)
mS

Figure 1.5: Graphical representation of marginal density distributions fR(r) and

fS(s), distribution and probability of failure.

fpf(Θ) =

∫

g∗(x1,x2,...,xn)≤0

fX1,X2,...,Xn
(x1, x2, ..., xn; Θ)dx1dx2...dxn, (1.10)

with g∗(x1, x2, ..., xn) being the equation that defines the limit state.

In this way, a conditional probability is obtained; being a punctual estimation

of the failure probability for a determined value ofΘ. But this can be generalized

if the expected value of the failure probability is considered ([40]):

pf(Θ) = E[pf (Θ)] =

∫

Θ

pf(Θ)fΞ(Θ)dΘ, (1.11)

with E[·] being the expected value andfΞ(Θ) the joint density function ofΘ.
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3 Methods of reliability estimation
In the maritime structure design field in Spain, the R.O.M. (Recomendaciones de

Obras Martimas) of Puertos del Estado ([139]) provides a catalogue of rules, regu-

lations and technical criteria to be applied to the four phases into which the service

life of infrastructures can be divided:

1. Planning and design.

2. Construction.

3. Operating and maintenance.

4. Recycling and dismantling.

The R.O.M. is divided into different sections, with theROM 0.0, Procedimiento

general y bases de cálculo en el proyecto de obras marı́timas y portuarias, being

the one that specifically refers to the different verification and design methods to

be applied in the maritime structure field. In this document,reliability methods

are divided into Level I, Level II and Level III methods. By its application, a

design that ensures safety, service and operation over the structure’s lifetime can

be formulated.

3.1 Level I

Level I methods are those based on safety factors estimation. There are two main

branches within these methods: methods based on global safety factors, and those

based on partial safety factors for all the involved variables. With the first set,

a minimum safety factor that the infrastructure has to ensure over its lifetime is

estimated. This coefficient is obtained from the main failure modes and lifetime of

the structure, and from the limit states, ultimate and service. On the other hand,

methods based on the estimation of partial safety factors disaggregate the safety

factor into several partial factors. Each of them is obtained through the quantiles

of the different involved variables. To these obtained values, some corrections of

weighting and compatibility are applied.
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Level I methods represent an easy and traditional approach to structural design.

They are very useful and easily applied methods, but they arenot able to inform

about the possibility of not satisfying the requirements.

3.2 Level II

Level II and III methods are based on the failure probabilityestimation,pf . The

analytical solution ofpf , where all the involved variables are taken into account,

can be expressed as:

pf =

∫

g(x1,x2,...,xn)≤0

fx1, x2, ..., xn(x1, x2, ..., xn)dx1dx2...dxn (1.12)

Usually, the achievement of an analytical solution of this integration is not pos-

sible. There are different approaches to estimate the failure probability. In the case

where the involved variables are not correlated it is possible to estimate the two

first moments of the joint distribution and proceed with themto the design ([54],

[103], [144], [8], [33], etc.). But, in the case of correlated variables, they mustfirst

be transformed into independent variables.

3.2.1 FOSM. First Order Second Moment

Level II methods are also known as FOSM (First Order Second Moment) methods.

FOSM methods simplify the ultimate limit state equation to astraight line, and the

point on this line for which the distance is the minimum distance will be the design

point (Figure1.6).

The distanceβ in Figure1.6represents the reliability index proposed by Haso-

fer and Lind as a constant measurement, to determine whetherthe system is safe or

not. This index can be estimated by:

β = Minimum
x

√

(x− µX)
Tσ−1

X (x− µX)
T (1.13)

subject togX(x) = 0

Unlike Level I methods, there is no weighting or correction to be applied to the

parameters obtained using Level II and III methods.
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FAILURE REGION

fx(x)

SAFE REGION

x1

x2
gx(x)=0

gL(x)=0

mx1

mx2

x*

Linear Approximation

sx1sx1

sx2

sx2

Joint distribution

contours

β

Design point

Figure 1.6: Limit state surface graphical representationGX(X) = 0 and its linear

approximation for a 2-D case.

3.2.2 Hasofer-Lind transformation

Among FOSM methods, Hasofer and Lind ([74]) proposed a transformation of the

multivariate standard variables into independent normal variablesN(0, 1). In the

case of having independent variables this transformation is simple:

Zi =
Xi − µXi

σXi

; ∀i = 1, ..., n (1.14)

µXi
andσXi

each being thei variable’s mean and variance respectively. But, in the

case of the variables being correlated an orthogonal transformation is required to

obtain random normal variables

Orthogonal transformation for random normal variables.

Let X = (X1, X2, ..., Xn) be a vector containing the random correlated va-

riables involved in the system, and its mean and variance-covariance values be

µX = E(X) = (E(X1), E(X2), . . . , E(Xn)) = (µX1
, µX2

, . . . , µXn
),
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and

σX = cov(Xi, Xj) = σ2
X(i, j)

If the variables are independent, the variance-covariancematrix is strictly dia-

gonal.

The purpose of this transformation is the obtention of a linearly independent

vectorU, and a transformation matrixB which satisfies:

U = BX (1.15)

The transformation must be orthogonal to keep constant the distance between

both spacesX andZ. VectorU will not be correlated if the variance-covariance

transformed matrixσU is diagonal.

σU = cov(U,UT ) = cov(BX,XT
B
T ) = (1.16)

= B cov(X,XT ) BT = B σX B
T (1.17)

The variance-covariance being a symmetric definite positive matrix, it can be de-

composed by Cholesky decomposition:

σX = LL
T (1.18)

whereL is a lower triangular matrix such that its’ inverseB = L
−1 will also be

lower triangular and easy to achieve. So:

B σX B
T = (B L)

(

L
T
B
T
)

= I (1.19)

whereI is the identity matrix.

Substituting1.19in 1.17results in:

σU = I. (1.20)

Finally, variablesU ∼ N(µU , I) are transformed intoZ ∼ N(0, In). To do

this:

Z =
Z− µZ

I
= B(X− µX) (1.21)

This final expression1.21allows changing from spaceX to Z.
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3.3 Level III

Finally, Level III methods are those that try to solve equation 1.12by integration

techniques (analytically or numerically), or by using simulation techniques. Only

in a few cases does an analytical solution exist, so normallysimulation techniques

are used. Level III methods based on the estimation of the failure region can be split

into FORM (First Order Reliability Methods), and SORM (Second Order Reliabi-

lity Methods). On the other hand, Level III methods that consist of the synthetic

generation of involved variables are generally based on simulation techniques such

as Monte Carlo ([112]).

3.3.1 FORM. First Order Reliability Methods

While FOSM estimates the failure probability considering two first moments of

the random variables, FORM methods are a linear approximation of the problem

taking into account the actual distributions of the variables. These methods were

firstly proposed by Freudenthal [54] in the field of structural reliability and then

developed by [74], [134], [79], [42], etc. The process undertaken is similar to

FOSM methods, the main difference is related to the transformation applied to the

random variables to transfer them to the multivariate normal space.

A random variableX can be transformed into a normally distributed variable

Z by:

FX(x) = Φ(z) or z = Φ−1(FX(x)) (1.22)

whereFX(x) is the distribution function ofX, andΦ is the distribution function of

the normal variableZ ∼ N(0, 1)..

When the variables are not independent, the Rosenblatt transformation ([140])

may be used.

3.3.2 Rosenblatt transformation.

With X representing random variables with an unknown distribution, they can be

transformed into independent uniform variablesU(0, 1) by:
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u1 = F1(x1)
u2 = F2(x2|x1)
...

...
...

un = Fn(xn|x1, x2, . . . , xn−1),

(1.23)

Then, these uniform variables can be transformed into normally distributed va-

riablesZ by:

z1 = Φ−1 (F1(x1))
z2 = Φ−1 (F2(x2|x1))
...

...
...

zn = Φ−1 (Fn(xn|x1, x2, . . . , xn−1)) .

(1.24)

whereF1(x1), F2(x2|x1), . . . , Fn(xn|x1, x2, . . . , xn−1) are the marginal distribu-

tion functions ofX1 and the conditional variables, respectively.

Once the variables have been transformed to normally distributed ones, it is

necessary to transform the state limit equation fromgX(x) to gZ(z). In order to

do this, the jacobianJ of the transformation has to be estimated. When the joint

density function of the variables is not available, the transformation proposed by

([123]) can be used.

3.3.3 SORM. Second Order Reliability Methods

There are cases where it is not feasible to approximate the state limit equation

to a straight line. This occurs when the state limit equationis a sharp curve, or

when this curve is not so sharp in the original space but is sharp in the transformed

space. When this occurs, the problem can be solved by using SORM (Second Order

Reliability Methods). Among these methods can be listed theapproaches proposed

by [15], [26], [27], [28], [73], [159], [41], [94], [125], etc.

These second order methods are based on an approximation of the state limit

equations by parabolic or spheric approximations in the surroundings of the maxi-

mum verisimilitude design point. The results obtained by these methods are very

accurate and can be more efficient than Monte Carlo simulation techniques at esti-

mating extreme percentiles.
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3.3.4 Simulation techniques

Failure probability estimation (1.12) through simulation techniques belongs to Le-

vel III methods. These techniques are based on the syntheticgeneration of a high

number of vectors containing the involved variables (x̂= x̂1, x̂2, x̂n), and in a later

check to determine whether or not the limit state is exceededwith all of them. In

this way the failure probability can be estimated as:

pf ≈
n(g(x̂) ≤ 0)

N
(1.25)

This procedure is known as Monte Carlo. There are many variation of it which

may be used to improve the results and/or adapt them to specific cases. Two

examples of these variations are a weighted simulation and adirectional simula-

tion.

The first example is a modification of Monte Carlo proposed by [71], [147],

[141], [167] or [60]. It provides efficiently and simultaneously an estimationof

the failure probability and the error. Moreover, it is able to deal with limit state

functions which are non–differentiable. On the other hand,directional simulation

is an adaption to polar coordinates proposed by [46], [49] or [44].

In order to apply these simulation techniques to structuralreliability problems

it is necessary to identify the variables involved and to be able to systematically

generate random vectors from them.

4 Objectives
The general objective of this thesis is the generation of synthetic time series to be

applied in the design of maritime structures. This design would be set within the

Level III methods. For a correct simulation of met-ocean variables it is necessary to

understand their behaviour and variability. Moreover, an efficient treatment of long

term multivariate time series requires the use of differentstatistical techniques.

This general objective can be divided into two partial objectives which are:

1. To be able to generate synthetic multivariate time seriesof the variables that

mainly define wave climate and atmospheric conditions. To dothis, different
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techniques are explored, allowing for the consideration ofdifferent temporal

and spatial scales.

2. To transform the simulated time series of met-ocean variables into time series

of the parameters, on which the main failure modes of the structures depend.

The achievement of the proposed objective requires a deep exploration and de-

velopment of different techniques and algorithms, and its subsequent validation.

5 Methodology
The general methodology to generate synthetic time series to be applied to mari-

time structure design is depicted in Figure1.7. Taking into account the historical

data of wave climate and atmospheric pressure fields, a largenumber of lifetimes

are simulated. This simulation involves some steps in orderto consider the different

temporal and spatial scales involved. The availability of synthetic time series en-

ables its transference to the structure in terms of the parameters related to its failure

mode (loads, momentums, scour,...). This transference is done by a clusterization

and a later interpolation to reconstruct time series of those parameters. The availa-

bility of these long term series enables a structural integrity analysis of the element

or the estimation of the loads return periods. In Figure1.7the scope of each partial

objective previously defined in order to achieve the generalobjective is depicted.

5.1 Simulation

The achievement of the proposed methodology requires the use of different tech-

niques and algorithms. To properly simulate multivariate sea states it is necessary

to know the associated atmospheric conditions, as they constitute the main force

which generates waves. Moreover, it is necessary to includeseasonality and the

autoregressive character inherent to waves and atmospheric conditions. For these

reasons the simulation is undertaken in three steps, schematized in Figure1.8

1. Simulation of the atmospheric pressure fields. In this waythe spatial scale of

influence in the wave climate is taken into account.
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Figure 1.7: Diagram of the methodology.
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Figure 1.8: Diagram of the simulation process.

2. Simulation of mean sea conditions at the structure location. In this step the

spatial scale is reduced to match that of the actual locationof the structure.

3. Simulation of hourly sea states at the structure location. This third step is

made to preserve the initial temporal resolution.

5.2 Transference

Alternatively, once the synthetic time series at the structure location are available,

loads and other parameters can be estimated. The parametersto be estimated are

those on which the principal failure modes depend. This process is undertaken

using the following steps:

1. Sea state clusterization in a certain number of representative patterns.

2. Loads/scour,... produced by the representative cases are estimated. This esti-

mation can be made by using semi–empirical formulation, numerical models

or even physical models.

3. Reconstruction of the loads/scour,... time series by using an interpolation

technique.

The stated methodology is developed considering the empirical distributions of

the variables. This may be a limitation because this way doesnot take into account
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the different behaviours of mean and extreme values. Moreover, the simulation is

constrained to the historical events recorded. Regarding these issues, a univariate

technique to solve them has been developed. This technique is able to consider both

regimes simultaneously, reproducing both the extreme events and mean conditions

accurately. Moreover, the upper tail is adjusted to an extreme model, allowing for

the simulation of events not constrained to the historical maxima.

In this thesis work, each of the steps outlined in the proposed methodology will

be explained in detail, allowing the achievement of the formulated objectives.

6 Organization of the Thesis

The Thesis is composed of 7 chapters where the previously stated objectives are

deeply explored. The main body of this document, Chapters 2–6, each correspond

to one paper that has been already published or is under consideration for accep-

tance. Each paper has only been changed in terms of format to adapt it to the

present document.

The papers follows the same outline of the previous section.Chapters 2 and

3 solve the problem of multivariate simulation of met-oceanvariables. In order to

achieve this a logistic model has been developed to deal withaggregated multiva-

riate systems (Chapter 2). Then, based on the developed model and combining it

with another technique existent in the literature ([120]) a Monte Carlo simulation

method applied to trivariate sea states is developed (Chapter 3). This method takes

into account the influence of the atmospheric conditions. Chapters 4 and 5 present a

hybrid model to estimate design parameters from met-ocean time series efficiently

and saving computational effort. This model is applied to two different kinds of

structures: a vertical breakwater (Chapter 4) and an offshore wind turbine (Chap-

ter 5). Finally, Chapter 6 explores the possibility of dealing simultaneously with

extreme and mean regimes. In Chapter 7 a summary of the conclusions obtained

from the work is given and some future research topics are proposed.

Chapter 2. Autoregressive logistic regression applied to atmospheric circula-
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tion patterns.1

Based on the atmospheric pressure fields, a logistic model tosimulate circu-

lation patterns is developed. In order to do this, pressure fields are classified into

synoptic patterns by a clusterization technique, such as k-means. This model allows

the use of nominal variables (in this case, the pressure fields previously classified)

and the inclusion of previous states (autoregressive behaviour, Markov Chain), sea-

sonality, trends, and other covariates of influence in the process.

Chapter 3. Climate-based Monte Carlo simulation of trivariate sea states.2

Combining the autoregressive model explained in Chapter 2 and a technique of

multivariate simulation proposed by [120], this chapter develops a methodology to

simulate hourly trivariate sea states. This method can be divided into three steps: i)

simulation of the pressure fields, ii) simulation of the meansea conditions and iii)

simulation of the hourly sea states. The process undertakenenables the considera-

tion of different temporal and spatial scales.

Chapter 4. A simplified method to downscale wave dynamics on vertical

breakwaters.3

By means of the application of a hybrid method wave climate, time series

are transformed into loads and scour time series in front of avertical breakwater.

This hybrid method combines a clusterization technique of maximum dissimilarity

(MDA) and a later interpolation algorithm (RBF). Time series of the parameters

involved in structure design are thereby, obtained.

Chapter 5. A multivariate approach to estimate design loads for offshore wind

1Guanche,Y., Mı́nguez, R. and Méndez, F.J. (2013). Autoregressive logistic regression applied

to atmospheric circulation patterns.Clymate Dynamics.doi: 10.1007/s00382-013-1690-3
2Guanche,Y., Mı́nguez, R. and Méndez, F.J. (2013). Climate-based Monte Carlo simulation of

trivariate sea states.Coastal Engineering, under revision
3Guanche,Y., Camus, P., Guanche, R., Méndez, F.J. and Medina R. (2013). A simplified method

to downscale wave dynamics on vertical breakwaters.Coastal Engineering.7168–77
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turbines.1

This chapter, as an extension of the previous one, shows the application of

the same methodology to an offshore wind turbine. In this case wave conditions

as well as wind and current conditions are relevant. With theapplication of the

methodology, loads and momentum time series acting upon thestructure over its

lifetime are obtained.

Chapter 6. Point-in-time and extreme-value probability simulation technique

for engineering design.2

As stated before, the previous chapters’ simulations were based on the use of

the empirical distributions involved in each case. Nevertheless, it is true that there

is a discrepancy between the extreme events distribution and the mean regime.

Because of this discrepancy, this chapter explores the possibility of jointing both

regimes and taking them into account simultaneously duringthe simulation. In

order to demonstrate this simulation technique, an application has been added to the

already published paper; the environmental conditions foroffshore wind turbines

have been analyzed and the 50–year return period environmental contours have

been evaluated.3

Chapter 7. Conclusions and Future Research.

This last chapter summarizes all the conclusions from the presented work. Mo-

reover, some future research topics suggested by this studyare presented.

1Guanche,Y., Guanche, R., Camus, P., Méndez, F.J. and Medina R. (2012). A multivariate

approach to estimate design loads for offshore wind turbines. Wind Energy.doi: 10.1002/we.1542
2Mı́nguez, R., Guanche,Y., and Méndez, F.J. (2012). Point-in-time and extreme-value probabi-

lity simulation technique for engineering design.Structural Safety.4129–36
3Mı́nguez, R., Guanche,Y., Jaime, F.F., Méndez, F.J. and Tomás, A. (2013). Filling the gap

between point-in-time and extreme value distributions.to be presented in ICCOSAR ’13, New York.
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CHAPTER

2
Autoregressive logistic

regression applied to
atmospheric circulation

patterns

1 Abstract
Autoregressive logistic regression (ALR) models have beensuccessfully applied in

medical and pharmacology research fields, and in simple models to analyze wea-

ther types. The main purpose of this chapter is to introduce ageneral framework

to study atmospheric circulation patterns capable of dealing simultaneously with:

seasonality, interannual variability, long-term trends,and autocorrelation of dif-

ferent orders. To show its effectiveness on modeling performance, daily atmosphe-

ric circulation patterns identified from observed sea levelpressure (DSLP) fields

over the Northeastern Atlantic, have been analyzed using this framework. Model

predictions are compared with probabilities from the historical database, showing

very good fitting diagnostics. In addition, the fitted model is used to simulate the

evolution over time of atmospheric circulation patterns using Monte Carlo method.

69



2. AUTOREGRESSIVE LOGISTIC REGRESSION APPLIED TO
ATMOSPHERIC CIRCULATION PATTERNS

Simulation results are statistically consistent with respect to the historical sequence

in terms of i) probability of occurrence of the different weather types, ii) transition

probabilities and iii) persistence. The proposed model constitutes an easy-to-use

and powerful tool for a better understanding of the climate system.

2 Introduction
The study of atmospheric patterns, weather types or circulation patterns, is a to-

pic deeply studied by climatologists, and it is widely accepted to disaggregate the

atmospheric conditions over regions in a certain number of representative states.

This consensus allows simplifying the study of climate conditions to improve wea-

ther predictions and a better knowledge of the influence produced by anthropogenic

activities on the climate system [83, 84, 85, 129].

The atmospheric pattern classification can be achieved by using either manual

or automated methods. Some authors prefer to distinguish between subjective and

objective methods. Strictly speaking, both classifications are not equivalent be-

cause, although automated methods could be regarded as objective, they always

include subjective decisions. Among subjective classification methods and based

on their expertise about the effect of certain circulation patterns, [77] identify up

to 29 different large scale weather types for Europe. Based on their study, dif-

ferent classifications have been developed, for instance, [58], [59] and [163] among

others. To avoid the possible bias induced by subjective classification methods, and

supported by the increment of computational resources, several automated classi-

fication (clusterization) methods have been developed, which may be divided into

4 main groups according to their mathematical fundamentals:i) threshold based

(THR), ii) principal component analysis based (PCA), iii) methods based on leader

algorithms (LDR), and iv) optimization methods (OPT). A detailed description of

all these methods and their use with European circulation patterns can be found in

[129].

Once the atmospheric conditions have been reduced to a catalogue of represen-

tative states, the next step is to develop numerical models for a better understan-

ding of the weather dynamics. An appropriate modeling of weather dynamics is

very useful for weather predictions, to study the possible influence of well-known
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synoptic patterns such as East Atlantic (EA), North Atlantic Oscillation (NAO),

Southern Oscillation Index (SOI), etc., as well as to analyze climate change stu-

dying trends in the probability of occurrence of weather types, and so on. For

example, [153] investigated long term trends in annual frequencies associated with

weather types, demonstrating the utility of weather classification for climate change

detection beyond its short-term prognosis capabilities. [124] studied the dynamics

of weather types using 1st order Markovian and non-Markovian models, however

seasonality is not considered. [89] introduced a seasonal Markov chain model to

analyze the weather in the central Alps considering three weather types. The transi-

tion probabilities are determined using a linear logit regression model. [126] imple-

mented a cyclic Markov chain to introduce the influence of theEl Niño-Southern

Oscillation (ENSO).

Generalized linear regression, and especially autoregressive logistic regression,

has proved to be a promising framework for dealing with seasonal Markovian mo-

dels, and not only for atmospheric conditions. Similar models have been applied

successfully in medical and pharmacological research fields [10, 39, 130]. The

main advantages of autoregressive logistic regression (ALR) are that i) it can be

used to model polytomous outcome variables, such as weathertypes, and ii) stan-

dard statistical software can be used for fitting purposes.

The aim of this chapter is twofold; firstly, to introduce autoregressive logistic

regression models in order to deal with weather types analysis including: seasona-

lity, interannual variability in the form of covariates, long-term trends, and Markov

chains; and secondly, to apply this model to the Northeastern Atlantic in order

to show its potential for analyzing atmospheric conditionsand dynamics over this

area. Results obtained show how the model is capable of dealing simultaneously

with predictors related to different time scales, which canbe used to predict the

behaviour of circulation patterns. This may constitute a very powerful and easy-to-

use tool for climate research.

3 Autoregressive Logistic Model
Traditional uni- or multivariate linear regression modelsassume that responses (de-

pendent variables or outcomes) are normally distributed and centered at a linear
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function of the predictors (independent variables or covariates). For some regres-

sion scenarios, such as the case considered here, this modelis not adequate because

the response variableY is categorical and its possible outcomes are associated with

each weather type (Y ∈ {1, 2, . . . , nwt} beingnwt the number of weather types),

which are not normally distributed. Thus the necessity to dispose of alternative

regression models.

Logistic regression was originally defined as a technique tomodel dependent

binary responses ([12, 35]). The likelihood of the binary dependent outcome is

expressed as the product of logistic conditional probabilities. [121] introduced

the capability of dealing with transition probabilities using Markov chains, which

was further explored by [39] to predict the outcome of the supervised exercise for

intermittent claudication, extending the model to polytomous outcomes.

Let Yt; t = 1, . . . , n be the observation weather type at timet, with the fol-

lowing possible outcomesYt ∈ {1, . . . , nwt} related to each weather type. Consi-

deringX t; t = 1, . . . , n to be a time-dependent row vector of covariates with

dimensions (1 × nc), i.e. seasonal cycle, NAO, SOI, principal components of sy-

noptic circulation, long-term trend, etc., the autoregressive logistic model is stated

as follows:

ln

(

Prob(Yt = i|Yt−1, . . . , Yt−d,Xt)

Prob(Yt = i∗|Yt−1, . . . , Yt−d,X t)

)

= αi +X tβi +
∑d

j=1 Yt−jγij;

∀i = 1, . . . , nwt|i 6= i∗,
(2.1)

whereαi is a constant term andβi (nc × 1) andγij (j = 1, . . . , d) correspond, for

each possible weather typei, to the parameter vectors associated with covariates

andd-previous weather states, respectively. Note thatd corresponds to the order

of the Markov model. The model synthesized in equation2.1provides the natural

logarithm of the probability ratio between weather typei and the reference weather

type i∗, conditional on covariatesX t and thed previous weather states, i.e. the

odds. The left hand side of equation2.1 is also known aslogit. According to this
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expression, the conditional probability for any weather type is given by:

Prob(Yt = i|Yt−1, . . . , Yt−d,Xt) =
exp

(

αi +X tβi +
∑d

j=1 Yt−jγij

)

nwt
∑

k=1

exp

(

αk +X tβk +
d
∑

j=1

Yt−jγkj

) ;

∀i = 1, . . . , nwt.

(2.2)

Note that in order to make parameters unique we impose an additional condi-

tion, which fixes the parameter values related to the reference weatheri∗ (arbitrary

chosen) to zero.

3.1 Description of the parameters

Since the purpose of this chapter is to present a unique modelable to reproduce

different weather dynamic characteristics, including: seasonality, covariates in-

fluence, long-term trends, and Markov chains; the inclusionof these features in

the model (2.1) will be briefly described in this subsection:

• Seasonality: It is known that there is a strong seasonality on weather type

frequencies, for example, [89] modeled this effect for the weather in the cen-

tral Alps. In their work the seasonality is introduced in themodel as an au-

toregressive term but it could be also introduced by adding harmonic factors.

Here, the seasonality is introduced in the model using harmonics as follows:

πS = βS0 + βS1 cos (wt) + βS2 sin (wt) , (2.3)

whereπS represents the seasonality effect on thelogit, t is given in years,

βS0 correspond to annual mean values, andβS1 andβS2 are the amplitudes of

harmonics,w = 2π/T is the angular frequency. SinceβS0 is a constant term,

it replaces the independent termαi in 2.1. For this particular case, we choose

T to be defined in years, and thusT = 1 andt is in annual scale. This means,

for instance, that the time associated with day45 within year2000 is equal

to 2000 + 45/365.25 = 2000.1232. However, according to the definition of

the harmonic argument (wt = 2πt
T

), t could be given in days, thenT must be

equal to365.25.
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Analogously to Autoregressive Moving Average (ARMA) models [14], sea-

sonality can also be incorporated trough an autoregressiveterm at lag 365.

Details about how to incorporate this autoregressive component are given in

the autoregressive or Markov chain parameters descriptionbelow.

• Covariates: To introduce the effect of different covariates, the model is sta-

ted as follows:

πC = XβC = (X1, . . . , Xnc
)







βC1
...
βCnc






=

nc
∑

i=1

Xiβ
C
i , (2.4)

whereπC is the covariates effect on thelogit, X is a row vector including

the values of differentnc covariates considered (SOI, NAO, monthly mean

sea level pressure anomalies principal components, etc.),andβC is the cor-

responding parameter vector.

• Long-term trends: The long-term trend is a very important issue because

many authors, such as [16, 64, 85] , perform a linear regression analysis using

as predictand the probabilities of each weather type, and the time as predic-

tor. However, mathematically speaking, this may conduct toinconsistencies,

such as probabilities outside the range 0 and 1, which is not possible. To

avoid this shortcoming, we use a linear regression model butfor the logits,

being considered as a particular case of covariate:

πLT = βLT t, (2.5)

whereπLT represents the long-term trend effect on thelogit, andt is given in

years. The parameter represents the annual rate of change associated with the

logarithm of the probability for each weather type, dividedby the probability

of the reference weather type, i.e.∆ log pi
p∗i

. The regression coefficientβLT

is a dimensionless parameter, which for small values of the coefficient may

be interpreted as the relative change in the oddsδpi
p∗i

due to a small change in

time δt. Note that2.5 does not correspond to the typical trend analysis be-

cause trends are analyzed on logits. However, as numerical results show, this

codification provides consistent results on long-term changes of the weather

type probabilities.
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• Autoregressive or Markov chain: The sequence of atmospheric circulation

patterns can be described as a Markov chain. [89] proved that a first or-

der autoregressive logistic model is appropriate for reproducing the weather

types in the central Alps. This effect can be included in the model using the

following parameterization:

πARd =
d
∑

j=1

Yt−jγj, (2.6)

whereπARd represents the autoregressive effect of orderd on thelogit. The

orderd corresponds to the number of previous states which are considered

to influence the actual weather type,Yt−j is the weather type on previous

j-states, andγj is the parameter associated with previousj-state.

Note that eachYt−j; j = 1, . . . , d in 2.6 corresponds to a different weather

type, according to the polytomous character of the variable. In order to fa-

cilitate parameter estimation using standard logistic regression techniques,

the autoregressive parts must be transformed using a contrast matrix, such as

the Helmert matrix [39] so that each covariateYt−j transforms intonwt − 1

dummy variablesZt−j . The Helmer contrast matrix for transforming out-

comeYt into the dummy variable row vectorZt is provided in Table2.1.

According to this transformation matrix, equation2.6becomes:

Yt Zt (1× (nwt − 1))

1 −1 −1 −1 . . . −1 −1

2 −1 −1 −1 . . . −1 1

3 −1 −1 −1 . . . 2 0
...

...
...

...
. . .

...
...

nwt − 2 −1 −1 nwt − 3 . . . 0 0

nwt − 1 −1 nwt − 2 0 . . . 0 0

nwt nwt − 1 0 0 . . . 0 0

Table 2.1: Helmert Contrast Matrix

75



2. AUTOREGRESSIVE LOGISTIC REGRESSION APPLIED TO
ATMOSPHERIC CIRCULATION PATTERNS

πARd =

d
∑

j=1

Yt−jγj =

d
∑

j=1

nwt−1
∑

k=1

Zt−j
k γjk. (2.7)

Regarding seasonality, and according to expression2.7, it can be included in

the model as follows:

πAR365 = Yt−365γ365 =
nwt−1
∑

k=1

Zt−365
k γ365,k, (2.8)

which corresponds to an autoregressive component at lag 365.

Note that the prize for using standard logistic regression fitting is an incre-

ment on the number of parameters, i.e. fromd to d× (nwt − 1).

The model can include all these effects adding the logits, i.e. π = πS + πC +

πLT + πARd. Thus, expression2.2can be expressed as follows:

Prob(Yt = i|Yt−1, . . . , Yt−d,X t) =
exp

(

πSi + πCi + πLTi + πARi
)

nwt
∑

k=1

exp
(

πSk + πCk + πLTk + πARk
)

;

∀i = 1, . . . , nwt.

(2.9)

In order to deal with different time-scales within the model: annual, monthly

and daily; all the parameters to be included are transformedto the lowest scale

considered, i.e. daily. Thus, we require a covariate value for each day. This va-

lue may be chosen assuming a piecewise constant function over the data period (a

month for monthly data, a year for yearly data, and so on), which is the one consi-

dered here, or using interpolation and/or smoothing techniques, such as splines.

Note that in our case, the same covariate value keeps constant for the entire month

(during 30-31 days).

3.2 Data set-up

Once the mathematical modeling is defined, this section describes the data set-up

from the practical perspective. LetY correspond to the vector of weather types
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x

Autocorrelation

t Y t y Seasonality Trend Covariates Lag 1 . . . Lag d

t1 Y1 y1,1 . . . y1,nwt
cos(wt1) sin(wt1) t1 X1,1 . . . X1,nc

Zt−1

1,1 . . . Zt−1

1,nwt−1
. . . Zt−d

1,1 . . . Zt−d
1,nwt−1

t2 Y2 y2,1 . . . y2,nwt
cos(wt2) sin(wt2) t2 X2,1 . . . X2,nc

Zt−1

2,1 . . . Zt−1

2,nwt−1
. . . Zt−d

2,1 . . . Zt−d
2,nwt−1

t3 Y3 y3,1 . . . y3,nwt
cos(wt3) sin(wt3) t3 X3,1 . . . X3,nc

Zt−1

3,1 . . . Zt−1

3,nwt−1
. . . Zt−d

3,1 . . . Zt−d
3,nwt−1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

tn Yn yn,1 . . . yn,nwt
cos(wtn) sin(wtn) tn Xn,1 . . . Xn,nc

Zt−1

n,1 . . . Zt−1

n,nwt−1
. . . Zt−d

n,1 . . . Zt−d
n,nwt−1

Table 2.2: Data Setup for the Autoregressive Logistic Regression applied to Weather

Types

at different times of dimensions (n × 1), so thatYt ∈ {1, . . . , nwt}. To deal with

polytomous variables a matrixy of dimensions (n× nwt) is constructed as:

ytj =

{

0 if j 6= Yt
1 if j = Yt

; ∀j = 1, . . . , nwt; ∀t = 1, . . . , n. (2.10)

Note that since only one weather type at a time is possible,
∑nwt

j=1 ytj = 1; ∀t. The

matrixx of dimensionsn× (3 + nc +1+ d× (nwt− 1)) includes all predictors at

each of then observations. Three parameters for seasonality (2.3), nc parameters

for covariates (2.4), one parameter for the long term trend (2.5), andd× (nwt − 1)

parameters for the autocorrelation (2.7). The general data setup for the autoregres-

sive logistic regression applied to weather types is provided in Table2.2.

Note that the column associated with the seasonality constant termβ0 in 2.3,

which corresponds to a column vector(1, 1, . . . , 1)T , must be included in matrix

x depending on the standard logistic model used. While some ofthose models

automatically include this constant, others do not.

3.3 Parameter estimation

Parameter estimation is performed using the maximum likelihood estimator, which

requires the definition of the likelihood function. For a given sequence ofnweather

typesY , the likelihood function becomes:

`(Θ,Y ,X t) =

n
∏

t=1

nwt
∏

i=1

Prob(Yt = i|Yt−1, . . . , Yt−d,X t)
uti, (2.11)
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whereΘ is the parameter matrix, and the auxiliary variableuti is equal to:

uti =

{

0 if yt 6= i
1 if yt = i

; ∀i = 1, . . . , nwt; ∀t = 1, . . . , n. (2.12)

Note that the likelihood function (2.11) is the product of univariate logistic

functions.

An important issue for the appropriate modeling of weather types, is to decide

whether the inclusion of a covariate is relevant or not. There are several tests and

methods to deal with this problem, such as Akaike’s information criteria or Wald’s

test. Further information related to logistic regression parameterization and fitting

can be found in [47, 138, 162].

There are several statistical software packages which are able to solve a poly-

tomous logistic regression fitting (e.g.SYSTAT, NONMEM), but for this particular

case, the functionmnrfit in MATLAB has been used. This function estimates

the coefficients for the multinomial logistic regression problem taking as input ar-

guments matricesx andy from Table2.2.

4 Case study: Weather types in the Northeastern At-

lantic
In the last decade, the availability of long term databases (reanalysis, in situ mea-

surements, satellite) allows a detailed description of theatmospheric and ocean

variability all over the globe, which include the analysis and study of atmosphe-

ric patterns. To show the performance of the proposed model,Daily Sea Level

Pressure (DSLP) data from NCEP-NCAR database [90] have been used. The area

under study corresponds to the Northeastern Atlantic covering latitudes from25◦ to

65◦N and longitudes from52.5◦W to 15◦E. The data record covers 55 years, from

1957 up to 2011. Note that NCEP-NCAR data records start in 1948, however it is

accepted by the scientific community that recorded data up to1957 is less reliable

[93].

The first step to apply the proposed method is data clustering. However, in order

to avoid spatially correlated variables that may disturb the clusterization, a principal

components analysis is applied to the daily mean sea level pressures (DSLP). From
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this analysis, it turns out that11 linearly independent components represent95%

of the variability.

As proposed by several authors, such as [34, 51] and [96] among others, the

non-hierarchical K-means algorithm is able to classify multivariate patterns into a

previously determined number of groups, eliminating any subjectivity in the clas-

sification. To reduce the likelihood of reaching local minima with the algorithm,

clusterization is repeated a hundred times, each with a new set of initial cluster

centroid positions. The algorithm returns the solution with the lowest value for

the objective function. In this application, the daily meansea level pressures cor-

responding to the55 years of data (n = 20088 days), represented by11 principal

components, are classified intonwt = 9 groups.

Note that in this particular case we select 9 weather types for the sake of sim-

plicity, to facilitate the implementation, fit and interpretation of the model results.

However, the selection of the appropriate number of clusters is an open issue not

solved yet. There are authors, such as [34, 89, 160], that defend the use of a maxi-

mum of 10 weather types, others ([16, 87, 101]) claim that a higher number of

weather types is required to represent the intrannual/interannual variations and

seasonality appropriately. Being more specific, [34] uses only 4 weather types

to represent daily precipitation scenarios, [51] classifies into 20 weather types the

daily atmospheric circulation patterns, or for example, [87] uses 64 weather types

to study the extreme wave height variability. This methodology does not solve the

problem of establishing the appropriate number of weather types, which must be

decided by the user according to his/her experience. But dueto the facility to im-

plement, fit and interpret model results might help establishing a rationale criteria

for solving this problem.
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Figure 2.1: DSLP synoptical patterns associated with the clusterization.

Figure 2.1 shows the9 representative weather types obtained from the clus-

terization. For instance, the upper left subplot represents a synoptical circulation

pattern with a low pressure center above the Britannic Islands while the Azores

High remains southwestern the Iberian Peninsula, whereas the upper central sub-

plot shows the Azores High with its center southwest of the United Kingdom.

Assigning arbitrarily an integer value between 1 andnwt = 9, for each weather

type in Figure2.1, we get the time series of weather typesY , which is the input for

the model.

To fit the data and according to the parameterizations given in (2.3)-(2.7), long-

term trend, seasonality, covariates and a first order autoregressive Markov chain are

included. Each study and location may require a pre-processto select the parame-

ters to be included according to their influence. Related to covariates, it is worth to

mention that Monthly Sea Level Pressure Anomalies fluctuations (MSLPA) have

been considered. These anomalies correspond to monthly deviations from the55-
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year monthly averages, which allows obtaining interannualvariations. This inter-

annual modulation can be related to well known synoptic patterns, such as EA,

NAO, SOI, etc. [82], but we preferred to use the principal components of the ano-

malies to avoid discrepancies about what predictors shouldbe used instead. Ne-

vertheless, we could have used those indices within the analysis. In this case, the

first 9 principal components of the monthly sea level pressure anomalies (MSLPA)

that explain more than96% of the variability are included as covariates. Figure2.2

shows the spatial modes related to those principal components. Note, for instance,

that the correlation between the first mode and NAO index isr = −0.618 and the

correlation between the second mode and EA synoptic patternis r = 0.482.
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Figure 2.2: MSLPA spatial modes related to the Principal Components included as

covariates in the model.

4.1 Model Fitting

Results obtained from the application of the proposed modelto the Northeastern

Atlantic are described in detail. The output given by functionmnrfit is a matrix
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p̂ of dimensions (np × (nwt − 1)) including parameter estimates by the maximum

likelihood method, wherenp is the number of parameters in the model andnwt

is the number of weather types considered. Note that each weather type has an

associated parameter except for the reference weather type, whose parameters are

set to zero.

The criteria to choose the final model, i.e. the orderd of the auto-regressive

component, seasonality, covariates, etc. is based on statistical significance, in par-

ticular, using the likelihood ratio (LR) statistic. This statistical method is appro-

priate to compare nested models by comparing the deviance ratio ∆Dev., which

measures the change of fitting quality for two different parameterizations, and the

chi-square distribution with∆df = ∆np× (nwt−1) degrees of freedom. Note that

∆np is the difference in terms of number of parameters for both parameterizations.

Basically, it tries to check if the increment of fitting quality induced by increasing

the number of parameters is justified, i.e. does the increment on fitted parameters

conduct to a better model? For instance, assuming a confidence levelα = 95%,

if ∆Dev.> χ2
0.95,∆df , the improvement achieved by addingnp additional parame-

ters is significant. This test allows to analyze which parameters or covariates are

relevant to represent climate dynamics in a particular location.

In order to evaluate the goodness-of-fit related to the predictors, several dif-

ferent fits are considered. In Table2.3, up to7 nested models are compared depen-

ding on the predictors involved. In this table, the number ofparameters (np), the

deviance of the fitting (Dev.), the degrees of freedom (df) and the rate of change

on deviance (∆Dev.) are provided. Model0 is the so-calledNull model that only

takes into account an independent term (β0). Model I adds the possible influence

of seasonality(πS), which according to the increment on deviance with respectto

the null model∆Dev. = 7417 > χ2
95%,16 is significant, confirming the hypho-

thesis that there is a seasonality pattern in the occurrenceof the different weather

types. ModelII includes seasonality and MSLPA covariates (πS + πC), which

also provide significant information. ModelIII is fitted accounting for seasona-

lity, MSLPA covariates and long-term trend (πS + πC + πLT ). In this particular

case, the increment on quality fit induced by the inclusion ofan additional parame-

ter, related to long-term trend, is not significant, i.e.∆Dev.= 9 < χ2
95%,8. Models

IV andV include the influence of autoregressive terms (Markov Chains, MC) with
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ordersd = 1 andd = 2, respectively (πS + πC + πLT + πARd). Note that both

autoregressive components are significant. Additionally,due to the importance of

long-term changes in the probabilities of occurrence of thedifferent weather types,

a model that only takes the long term trend into account has also been fitted, model

V I (πLT ). This additional factor is statistically significant∆Dev.= 69 > χ2
95%,8,

which means that there is a long-term evolution on the probability of occurrence

related to each weather type. However, there is an inconsistency with respect to

model III, where this factor is not statistically significant. The reason for this

behaviour is simple, when using covariates, the long-term effects are implicitly

included in the covariates and there is no reason to include additional effects not

explained by those covariates.

It is important to point out that deciding which model is moreappropriate for

each case depends on weather dynamics knowledge of the user,and its ability to

confront or contrast its feeling about which physical phenomena is more relevant,

with respect to the statistical significance of the corresponding fitted model. The

main advantage of the proposed method is that it provides an statistical and objec-

tive tool for deciding what information is more relevant to explain climate variabi-

lity.

Model Predictors np df Dev. ∆ Dev. χ2
95%,∆df

0 β0 1 160696 85736
7417 26.9

I πS 3 160680 78319
10214 92.8

II πS + πC 12 160608 68105
9 15.5

III πS + πC + πLT 13 160600 68096
22159 83.7

IV πS + πC + πLT + πAR1 21 160536 45937
327 83.7

V πS + πC + πLT + πAR2 29 160472 45610

0 β0 1 160696 85736
69 15.5

VI πLT 2 160688 85667

Table 2.3: Fitting diagnostics for different model parameterizations, including number

of parameters (np), the deviance of the fitting (Dev.), the degrees of freedom (df) and

the rate of change on deviance (∆Dev.)

83



2. AUTOREGRESSIVE LOGISTIC REGRESSION APPLIED TO
ATMOSPHERIC CIRCULATION PATTERNS

Note that as said in Section3.1 of this chapter, the seasonality constant term

β0, which corresponds to a column vector(1, 1, . . . , 1)T is automatically included

in the model depending on the standard logistic model used. Using the function

mnrfit this constant is automatically added, thus the null model (a) hasnp = 1

and the model fitted only with the trend (g) hasnp = 2.

If we consider modelIV , which accounts for seasonality, MSLPA covariates,

long-term trend and a first order autoregressive component as predictors (πS+πC+

πLT +πAR1), the model has21 parameters,np = 21 = 3+nc+1+d×(nwt−1) =

3 + 9 + 1 + 1 × 8: i) three for seasonalityπS, ii) nine for the MSLPA principal

componentsπC , iii) one for the long-term trendπLT , and eight for the dummy

variables of the first autoregressive componentπAR1 .

Once the parameter estimates for the modelsΘ̂ are known, the predicted pro-

babilities p̂ for the multinomial logistic regression model associated with given

predictorsx̃ can be easily calculated. This task can be performed using the MAT-

LAB function mnrval, which receives as arguments the estimated parametersΘ̂

and the covariate values̃x. In addition, confidence bounds for the predicted proba-

bilities related to a given confidence level (α = 0.99, 0.95, 0.90) can be computed

under the assumption of normally distributed uncertainty.Note that these probabi-

lities p̂ correspond to the probability of occurrence for each weather type according

to the predictor values̃x.

These probabilities allow direct comparison with the empirical probabilities

from the data, and the possibility to simulate random sequences of weather types.

The graphical comparison between fitted model and observed data can be done

in different time scales, aggregating the probabilities ofoccurrence within a year,

year-to-year or for different values of the covariates (MSLPA).

• SeasonalityTo analyze the importance of seasonality, Figure2.3 shows the

comparison of the probabilities of occurrence for each weather type within

a year. Color bars represent cumulative empirical probabilities, and black

lines represent the same values but given by the fitted modelI, which only

accounts for seasonality using harmonics (panel above in Figure 2.3), and

also using an autoregressive term at lag 365 (panel below in Figure 2.3).

For each day within a year the bars represent cumulative probabilities of
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occurrence of all the9 weather types, which are calculated for each day using

the 55 data associated with each year.
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Figure 2.4: Evolution of the monthly probabilities of occurrence during 20 years and

comparison with the seasonal fitted modelI (black line).

Note that there is a clear seasonal pattern which is capturedby the model

using harmonics, being circulation patterns4, 7 and8 the most likely weather

types during the summer, while groups1, 6 and9 are more relevant during

the winter. Comparing both ways of accounting for seasonality, the harmonic

(panel above of Figure2.3) is capable of reproducing the seasonal behavior

better than the autocorrelation term at lag 365 (panel belowof Figure2.3).

This seasonal variation through the years is also shown in Figure2.4. In this

particular case color bars represent cumulative monthly probabilities. Note

that the model (black line) repeats the same pattern all overthe years since

we are using fitting results associated with modelI. Analogously to the

previous Figure2.3, it is observed a clear seasonal pattern. For example, in

the lower part of the graph it is observed how weather types1 and2, mostly

related to winter and summer, respectively, change the occurrence probability

depending on the season within the year. The same behavior isobserved in

the upper part of the graph related to weather types3 and9.
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i) Seasonality with harmonics.

ii) Seasonality with autoregressive term at lag 365
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Figure 2.3: Model fitting diagnostic plot considering seasonality: i) using harmonics

(Model I), and ii) using an autoregressive term at lag 365.
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• Mean Sea Level Pressure Anomalies (MSLPA)Although modelI repro-

duces and explains the important seasonality effect, it canbe observed in Fi-

gures2.3and2.4that there are important fluctuations and discrepancies bet-

ween the empirical data and the model on a daily and monthly basis, respec-

tively. If modelIV including seasonality, MSLPA covariates, an autoregres-

sive component of orderd = 1 and long-term trend (πS +πC + πAR1 + πLT )

is considered, results are shown in Figures2.5and2.6. The fitted model now

explains all fluctuations both on the daily and monthly scale.
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Figure 2.6: Evolution of the monthly probabilities of occurrence during 20 years and

comparison with the seasonal fitted modelIV (black line).

Note that once the noise on daily and monthly probabilities is explained by

those additional factors, the consideration of seasonality through the 365-lag

autoregressive model also provides similar diagnostic fitting plots, i.e. model

IV : πS + πC + πAR1 + πLR ≡ πAR365 + πC + πAR1 + πLR.

It is relevant to point out how the inclusion of MSLPA allows explaining the

monthly fluctuations on the probabilities of occurrence associated with the

different weather types (see Figure2.6). These results confirm that modelIV

is capable of reproducing and explaining the weather dynamics accurately,

both on a daily and monthly basis. Using this model we manage to model at-

mospheric processes on both the short and the long term, using a combination
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Figure 2.5: Model fitting diagnostic plot considering modelIV : i) using harmonics

(Model I), and ii) using an autoregressive term at lag 365.
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of short-term sequencing through autocorrelation terms and long-term cor-

relations included implicitly through seasonality, covariates and long-term

variations.

To further explore the influence of the MSLPA on the occurrence probability

for each weather type, Figure2.7shows the probability of occurrence of each

weather type conditioned to the value of the MSLPA principalcomponents

(PCi; i = 1, . . . , 9) included as covariates. Color bars represent the cumu-

lative empirical probabilities from data, and the black lines are fitted model

probabilities.
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Figure 2.7: Evolution of the probabilities of occurrence of each weather type condi-

tioned to the principal component value associated with fitted modelIV (black line).
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According to results shown in Figure2.7, the presence or absence of a wea-

ther type may be related with the value of the PC anomaly. For instance,

in the subplot associated with the first principal component(upper left sub-

plot), negative values of the principal component imply an increment on the

occurrence of weather types1 (red),6 (maroon) and9 (grey); while for po-

sitive values the most likely weather types are2 (green),3 (light blue) and

5 (yellow). On the other hand, for negative values of the second principal

component, the dominant weather type is the blue one (8), prevailing wea-

ther types1 and5 for positive values of the PC. Finally, for the third principal

component, the behavior is different; the lowest values of this principal com-

ponent indicate a higher likelihood of weather types4 and9, while higher

values increase the probability of occurrence of weather type3.

Note that according to the low variance explained by principal component

from 4 to 9, we could be tempted to omit them from the analysis.To check

whether these covariates improve significantly the qualityof the fit, we have

included the principal components one at a time, and check the likelihood

ratio (LR) statistic. Table2.4 provides the results from the analysis. Note

that although it is clear that the most relevant informationis given by the first

three principal components, which represent important increments on de-

viance, the remainder covariates also improve the quality of the model from

an statistical viewpoint. For this particular case, all principal components are

statistically significant on a 95% confidence level.

• Trends Finally, in order to show the possible influence of a long-term trends,

results associated with modelV I, which only accounts for long term trends,

are shown in Figure2.8. Color bars represent the annual probability of occur-

rence for each year (55 data record) associated with the9 established weather

types. The black line represents the model fitting (model VI in Table2.3).

Note that we do not present results associated with modelIV because the

long term trend is not statisticcally significant in that model, because long-

term effects are implicitly accounted for through the covariates.
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Model df Dev. ∆ Dev. χ2
95%,8

0 160696 85736
4428 15.5

PC1 160688 81308
3879 15.5

PC2 160680 77429
2292 15.5

PC3 160672 75137
225 15.5

PC4 160664 74912
122 15.5

PC5 160656 74790
61 15.5

PC6 160648 74729
79 15.5

PC7 160640 74650
99 15.5

PC8 160632 74551
18 15.5

PC9 160624 74533

Table 2.4: Fitting diagnostics related to the principal components associated with

MSLPA, including the deviance of the fitting (Dev.), the degrees of freedom (df) and

the rate of change on deviance (∆Dev.)
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Figure 2.8: Annual probabilities of occurrence for each weather type and comparison

with modelV I fitting results (black line) in the period1957 − 2011.
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WT1 WT2 WT3 WT4 WT5 WT6 WT7 WT8

Trend(×10−2) 0.09 -0.4 -0.51 -0.48 -1.33 0.25 −0.07 −0.16

σTrend(×10−2) 0.24 0.21 0.22 0.20 0.24 0.21 0.19 0.19

Table 2.5: Fitting parameters associated with modelV I including long-term trends,

and their corresponding standard error. Values in bold are statistically significant at

95% confidence level and values in cursive are significant at90% confidence level.

The parameters for the trends and their corresponding standard errors are

provided in Table2.5. Note that statistically significant trends at95% confi-

dence levels are boldfaced, while trends which are statistically significant at

90% confidence level are in italics. According to results given in this table

the following observations are pertinent:

– The reference weather type is weather type number9. That is the reason

why there is no parameter related to this case. Note that it isa typical

winter weather type.

– The coefficients may be interpreted as the relative change inthe odds

due to a small change in timeδt, i.e. the percentage of change in odds

between weather types 5 and 9 during one year is approximately equal

to -1.33%.

– Weather types4, 7 and8, which represent summer weather types, de-

crease with respect to type9. This means that weather types related to

winter are increasing its occurrence probability. This result is consistent

with recent studies about the increment of wave climate severity, which

is linked to weather types during the winter season.

– Note that weather type 1, also typical during winter, slightly increases

the odds with respect to type9. Confirming the increment of occurrence

related to winter weather types.
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4.2 Monte Carlo Simulations

Once the model has been fitted and thep̂ matrix is obtained, synthetic sequences

of weather types can be generated through Monte Carlo method. In this particular

case, since we require the knowledge of the covariate valuesduring the simulation

period,55 years of daily data series (n = 20088) are sampled using the original

covariates. In order to obtain statistically sound conclusions according to the sto-

chastic nature of the process, the simulation is repeated100 times. The results

obtained are validated with a threefold comparison againstthe original sequence of

weather types: i) occurrence probabilities of WT, ii) transition probability matrix

between WT and iii) persistence analysis of WT.

• Occurrence Probabilities

The probabilities of occurrence of the9 groups for the100 simulations,

against the empirical probability of occurrence from the55-year sample data,

are shown in Figure2.9. Note that results are close to the diagonal, which

demonstrates that the model simulations are capable of reproducing the pro-

bability of occurrence associated with weather types appropriately.
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Figure 2.9: Scatter plot of the empirical occurrence probabilities associated with the

weather types versus Monte Carlo simulation results.
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• Transition Probabilities Matrix

The transition probabilities express the probability of changing from groupi

to groupj between consecutive days. Thus, in the case of having9 weather

types, the transition matrix (T) has dimensions9× 9, and each cellTi,j is the

probability of changing from weather typei to weather typej ([132]). The

diagonal of the transition matrixT corresponds to the probability of staying

in the same group. The transition matrix is calculated for each of the100 si-

mulated samples. Figure2.10shows the scatter plot related to the9×9 = 81

elements of transition matrix, including its uncertainty due to the simula-

tion procedure, against the empirical transition probabilities obtained from

the initial data set. The model is able to reproduce correctly the transitions

between circulation patterns within the sequence. In this particular case, the

points with probabilities in the range0.6 − 0.8 are those representing the

probability of staying in the same group (diagonal of the transition matrix).
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Figure 2.10: Scatter plot of the empirical transition probabilities between weather

types versus Monte Carlo simulation results.
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• Persistence Analysis

Finally, a persistence analysis is performed over the simulated samples in

order to check the ability of the model to reproduce weather dynamics. The

correct reproduction of the weather types persistence is very important for

many climate related studies, because it may be related to length of droughts,

heat waves, etc. Figure2.11shows the empirical cumulative distributions of

the persistence associated with each weather type. Note that the average

empirical distribution (green line) is very close to the onerelated to the his-

torical sample data (blue line) for all cases. This blue linestays between the

95% confidence intervals (red dotted line) related to the 100 simulations. To

further analyze the performance on persistence from an statistical viewpoint,

we perform a two-sample Kolmogorov-Smirnov ([102]) goodness-of-fit hy-

pothesis test between the original data and each sampled data. This test al-

lows determining if two different samples come from the samedistribution

without specifying what that common distribution is. In Figure2.12the box

plots associated with thep-values from the100 tests for each weather type

are shown. Note that if thep-value is higher than the significance level (5%)

the null hypothesis that both samples come from the same distribution is ac-

cepted. Results shown in Figure2.12prove that for most of the cases the

persistence distributions from the Monte Carlo simulationprocedure come

from the same distribution as the persistence distributionfrom the historical

data. For all the weather types the interquartile range (blue box) is above the

5% significance level (red dotted line). These results confirm the capability

of the model to reproduce synthetic sequences of weather types coherent in

term of persistence.
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Figure 2.11: Empirical cumulative distribution of the persistence for the 9 groups

related to: i) historical data and ii) sampled data using Monte Carlo method.
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5 Conclusions

5 Conclusions
This work presents an autoregressive logistic model which is able to reproduce

weather dynamics in terms of weather types. The method provides new insights

on the relation between the classification of circulation patterns and the predictors

implied. The advances with respect to the state-of-the-artcan be summarized as

follows:

• The availability of the model to include autoregressive components allows

the consideration of previous time steps and its influence inthe present.

• The models allows including long-term trends which are mathematically

consistent, so that the probabilities associated with eachweather type always

range between0 and1.

• The proposed model allows to take into account simultaneously covariates of

different nature, such as MSLPA or autoregressive influence, where the time

scales are completely different.

• The capability of the model to deal with nominal classifications enhances the

physical point of view of the problem.

• The flexibility of the proposed model allows the study of the influence of any

change in the covariates due to long-term climate variability.

On the other hand, the proposed methodology presents a weakness in relation

with the data required for fitting purposes, because a long-term data base is needed

to correctly study the dynamics of the weather types.

Although further research must be done on the application ofthe proposed mo-

del to study processes that are directly related with weather types, such as marine

dynamics (wave height, storm surge, etc.) or rainfall, thismethod provides the ap-

propriate framework to analyze the variability of circulation patterns for different

climate change scenarios ([127]).
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CHAPTER

3
Climate-based Monte Carlo
simulation of trivariate sea

states

1 Abstract
Accurate wave climate characterization, which is vital to understand wave-driven

coastal processes and to design coastal and offshore structures, requires the availa-

bility of long term data series. Where existing data are sparse, synthetically gene-

rated time series offer a practical alternative. The main purpose of this chapter is

to propose a methodology to simulate multivariate hourly sea state time series that

preserve the statistical characteristics of the existing empirical data. This metho-

dology combines different techniques such as univariate ARMAs, autoregressive

logistic regression and K-means clusterization algorithms, and is able to take into

account different time and space scales. The proposed methodology can be bro-

ken down into three interrelated steps: i) simulation of sealevel pressure fields, ii)

simulation of daily mean sea conditions time series and iii)simulation of hourly

sea state time series. Its effectiveness is demonstrated bysynthetically generating

multivariate hourly sea states from a specific location nearthe Spanish Coast. The
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direct comparison between simulated and empirical time series confirms the ability

of the developed methodology to generate multivariate hourly time series of sea

states.

2 Introduction
Sea condition data is required for the long-term analysis ofwave-driven coastal

areas and the design of coastal structures and related risk assessments. Depending

on the kind of structure to be designed, the extreme value distribution, the long-

term distribution or even both are required. There are several different data sources

available for designers such as: buoy, satellite, reanalysis (or hindcast) data and

visual observation records. To obtain an accurate characterization of the extreme

conditions at a specific location, a long term data set is required, which is rarely

available. Reanalysis data usually provide longer recordsand avoid missing data

and sparse spatial resolution. In the last decade, long-term databases from numeri-

cal models have been developed improving the knowledge of deep water wave cli-

mate ([136], [30], [135]) and its propagation to obtain nearshore conditions ([19]).

It is of note however, the length of these hindcast databasesis limited, typically up

to 60 years. Because of limited record lengths, synthetic stochastically similar time

series may be required for structural design and flood and erosion risk analysis, for

example.

Simulating synthetic time series in order to represent sea conditions is not new.

In 1952, Longuett-Higgins gave an approach for the statistical distribution of wave

heights based on a short term model ([99]). Since then, many authors have made

contributions to achieve improved models representing time series of significant

wave heights. A revision and an application to the Portuguese Coast can be found

in [69]. More recently, [151] proposed a unified distribution model that mixes

different fits for central, minimum and maximum regimes, objectively determining

the thresholds within the different regimes.

Despite being one of the most important variables to define a sea state, the

wave height (Hs) alone is not sufficient to fully characterise the prevailing wave

conditions. As a minimum, the mean period (or peak period) associated with the
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significant wave height is required. It is well known that wave period can be an in-

fluencing variable in many situations, such as overtopping or transmission through

permeable breakwaters, for example. There exist in the technical literature different

analyses that explore the joint distribution ofHs − Tm. For example, in [68], a bi-

variate autoregressive model is described that reproducestime series of significant

wave height and mean period. In their work, an ARMA (Autoregressive Moving

Average) model is used to represent both variables, significant wave height and

mean period. Recently, in [48] a maximum entropy distribution of significant wave

heights and peak periods was proposed. One of their approaches uses a univariate

maximum entropy distribution, while an alternative approach consists of adjusting

the maximum entropy marginal distribution of wave height, followed by conditio-

ning the wave period distribution on the wave height. With anextension from the

ARMA models to the VARMA models (Vector Autorregressive Moving Average),

[17] proposed a multivariate simulation able to deal simultaneously with more than

two variables but with the inherent complexity of the multivariate ARMA parame-

ter estimation.

In [22], long-term statistics of storms are characterized by a setof three va-

riables that represent the maximum significant wave heightHsmax
during each

storm, its maximum wave heightHmax, and the associated wave periodTzmax
(that

occurring withHmax). The joint probability distribution and dependence struc-

ture is derived from real data so that once a storm has occurred, its intensity

and characteristics can be derived from this joint distribution, i.e., a set of values

(Hsmax
, Hmax, Tzmax

can be drawn at random from a population with the corres-

ponding distribution. Their model defines (1) The marginal distribution ofHsmax
,

2) The conditional distribution ofHmax givenHsmax
and (3) the conditional distri-

bution ofTzmax
givenHmax, Hsmax

. Alternatively, if more than two variables are

included in the analysis, copula functions may be used instead. This way, [38] pre-

sents a multivariate model to study sea storms. In their study, up to four variables

(wave height, storm duration, storm direction and time in between storms) are taken

into account to develop a model capable of simulating sea storm behaviour.

[120] proposed a methodology to generate statistically dependent wind speed

scenarios decoupling the process into univariate ARMA models and their cross-

correlations. This allows the reproduction of more than twovariables avoiding
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the complexity of multivariate ARMA parameter estimation or the use of copula

functions. This methodology provides good results not onlyin the joint distribution

but also in the marginals.

Alternatively, to deal efficiently with long time-series, several clustering me-

thods have been developed in the field of data mining. These techniques extract

features from the original data, giving a representative subset of selected values..

The K-means algorithm (KMA) and self-organizing maps (SOM)are two of the

most popular clustering techniques in this field. These allow the definition of a

number of synoptic patterns. These algorithms have been widely used in both: at-

mospherical and marine climate data. For example, [87] classify SLP (Sea Level

Pressure) fields and use them to explain the wave climate and its variability; while

[19] use a clusterization of the met-ocean parameters to propose a wave propaga-

tion methodology.

Moreover, plausible time series of circulation patterns can be simulated using

an autoregressive logistic model as described by [67]. In that approach, a mo-

del that takes into account seasonality, interannual variability in terms of sea level

pressure anomalies, long-term trends and Markov Chains is developed to accura-

tely reproduce stochastically similar time series of circulation patterns.

The aim of this chapter is to combine the different space and time scales to ge-

nerate plausible long-term hourly time-series of trivariate (significant wave height,

Hs, mean period,Tm and mean directionθm) sea state parameters by using some

of the aforementioned techniques. To achieve this objective, a methodology has

been developed that comprises three interrelated steps. Inthe first step, synthetic

daily sea level pressures fields (DSLP), decomposed into principal components,

are simulated by using the multivariate simulation technique proposed by [120].

During the second step, daily mean sea conditions (DMSC), clustered by K-means

as proposed by [19], are simulated by applying an autoregressive logistic model

and taking into account the previously simulated DSLP as covariates. The third

step consists of a modified version of the methodology proposed by [120], to be

used with hourly sea state (HSS) parameters and conditionedto the catalogue of

synoptic DSS patterns simulated in the previous step.
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Figure 3.1: Diagram of the methodology.

3 Methodology
In this section, the procedure to generate plausible synthetic multivariate sea state

time series is described step-by-step. As mentioned before, the entire methodology

can be divided into three interrelated processes: the simulation of DSLP fields, the

simulation of daily mean sea conditions (DMSC) and the simulation of hourly sea

states (HSS) conditioned to daily mean sea conditions. A general framework of the

methodology is shown in Figure3.1and is explained in detail below.

Although the final objective is to undertake a stochastic simulation of the wave

parameter time series, both SLP and wave climate (Hs, Tm andθm) databases are

needed as inputs for the algorithm. SLP fields in the wave generation area of the

study location are used as a covariate (predictor). In addition, historical time series

of the wave climate variables to be simulated (predictand),at the same location,
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are also required . The SLP fields are daily averaged (prior tosimulation). These

fields relate to the required time for wave generation and cyclones evolution in the

location where the methodology is to be applied. Within different study areas, the

timescales of relevance will vary. Wave parameters data is analysed at two different

temporal scales: daily and hourly. In the first instance, thedata is daily averaged

to establish the relationship with the daily averaged SLP field. This information is

the one used in the subsequent stochastic simulation of hourly data, thus preserving

the initial time resolution within the raw data. This enables the combination of the

different temporal and spatial scales that are required in the subsequent analysis.

The first step of the proposed methodology is the simulation of the daily ave-

raged SLP fields. These simulated fields are later used as an explicative variable

when studying the daily mean wave conditions. The DSLP fields, decomposed into

PCs, are simulated with a multivariate simulation technique ([120]). This tech-

nique enables both the autocorrelation of each variable andthe cross-correlations

between variables to be accounted for.

The second step consists of the simulation of daily mean sea conditions. In

order to simplify this step, and to achieve more accurate results in the third step,

the DMSC data is clustered (K-means) into groups, with each group containing data

with similar characteristics. Thus, a discrete time seriesof daily mean conditions

is obtained. The simulation of DMSC uses an autoregressive logistic model ([67]).

This kind of model enables the consideration of previous states (autoregressive

processes) as well as other explicative variables (covariates). In the case presented

here, the model is fitted using the DSLP decomposed intoPCs as covariates as

well as the significant previous states (Autoregressive process). Once the model is

fitted using the historical data, the previously simulated DSLPPCs are taken into

account for synthetic DMSC time series simulation.

Finally, the third and last step of the proposed methodologyconsists of simu-

lating the variables defining the wave parameters with an hourly time resolution.

Prior to the simulation, the hourly and the daily historicaltime series are linked,

using the original database timestamp, obtaining the empirical distributions ofHs,

Tm andθm for each cluster. By using these empirical distributions, the three va-

riables are normalized. This enables the use of the same multivariate simulation

technique as in step 1. As detailed above, this technique accounts for the existing
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autocorrelation inHs, Tm andθm, as well as the cross-correlation between them.

After simulating the normalized variables, and considering the empirical distribu-

tions, together with the synthetic sequence of DMSC generated before, the three

variables are transformed back onto the original scales. The resultingHs, Tm and

θm time series show similar marginal and joint distributions as those obtained with

the historical data. The disaggregation into daily condition groups improves the

simulation results and preserves the seasonality of the variables. Moreover, the use

of the synthetic DMSC is an indirect consideration of the SeaLevel Pressure in the

wave generation area related to the location of study.

3.1 STEP 1. Simulating Daily Sea Level Pressure (DSLP) fields

The simulation of daily sea level pressure fields during Step1 is carried out by

using the multivariate simulation method proposed by [120]. In order to do so, the

original DSLP data are monthly standardized, and decomposed into principal com-

ponents. By this, seasonality is avoided and the dimensionality of the DSLP data

is reduced, which may affect the following steps of the methodology. The decom-

position into principal component is especially useful forreducing the number of

dimensions and to identify patterns in environmental data.This technique removes

the data dependency and data redundancy with a minimum loss of variance, which

is sometimes required for the assumptions made by many statistical methods. More

information related to this analysis can be found in [87] and [133]. Once the data

is pre-treated, the simulation is carried out.

The process of the multivariate simulation ([120]), once the DSLP is decompo-

sed intoPCs, can be summarized as follows:

1. For theNPC principal components, a normalization is done according tothe

empirical distributions for eachPC, obtaining the transformed variablesZi,

with i = 1, ...NPC.

2. A univariate ARMA model is adjusted for each normalized variable (Zi).

This fitting process yields uncorrelated normal residuals (historical errors).

Further information related to these models and their performance can be

found in [14].
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3. Although the historical error series obtained before arenot autocorrelated,

they should be cross-correlated if the variables involved are interrelated.

To compute the cross-correlation between residuals, the variance-covariance

matrix (G) is built. As explained in [120], the size ofG is (K +NPC)×Ns,

K being the number of lags (positive or negative) taken into account andNs

the length of the following simulations to be done.

4. Once the variance-covariance matrix is built, Cholesky decomposition is

done (i.e., computingL suchG = LLT ) obtaining the orthogonal trans-

formation needed to cross-correlate the independent errors.

5. ξ = Ns independent standard normal errors are simulated.

6. The generated errors are cross-correlated by using the orthogonal transfor-

mation obtained earlier.

7. For theNPC components involved, using the ARMA model fitted previously

and theNs cross-correlated residuals corresponding to each variable, Zsi
transformed variables are simulated.

8. At this point,NPC autocorrelated and cross-correlated series have been si-

mulated with a length ofNs. The multivariate simulation ends after the de-

normalization ofZsi, which is done using the empirical distribution of each

PC.

A flowchart of Step 1 is depicted in Figure3.2. A more detailed explanation of

the multivariate simulation process is provided by [120].

3.2 STEP 2. Simulating Daily Mean Sea Conditions (DMSC)

time series

In order to generate plausible sequences of DMSC an autoregressive logistic re-

gression model is applied to the met-ocean variables data. [67] provides a detailed

description of the model and one application to the simulation of synthetic series

of circulation patterns of mean daily sea level pressures can be found. The aim of
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Figure 3.2: Flow diagram of the Step 1.

Step 2 is to simulate statistically similar time series of DMSC, taking into account

the DSLP fields from Step 1. The sequence of Step 2 is:

1. Classification of the multivariate met-ocean variables of the DMSC inton

groups by using a K-means classification technique. This technique splits

the multivariate data into different clusters, each one defined by a centroid

and formed by the data for which the centroid is the nearest.
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2. Fitting the obtained DMSC sequence by using a logistic model. Seasonality,

DSLP and Markov Chains of sea states and DSLP have been used ascova-

riates. The DSLP, decomposed intoPCs, are introduced to the model, while

the seasonality is introduced by adding intra-annual harmonics. The fitting

process allows the selection of the significant covariates to be included in the

model and is unique for each study location. ThePCs of the DSLP used to

fit the model are obtained from the historical data, not the simulated.

3. Once the model is fitted, synthetic sequences of DMSC can beeasily simu-

lated. Taking into account the significant covariates established in the fitting

process and the simulatedPCs of DSLP obtained in Step 1, synthetic se-

quences of DMSC are then sampled.

Figure3.3shows the flow diagram for the sequence during Step 2 of the simula-

tion process. The model parametrization, the theoretical foundation of the logistic

models and a detailed example simulating weather type sequences, can be found in

[67].

K-means clusterization 

DMSC data

Fit multivariate

Logistic model

Step 2

Simulate sequences

         of DMSC

     PCs of the

historical DSLP

    Simulated 

   DSLP PCs

Step 1

Step 1

Figure 3.3: Flow diagram of the Step 2.

3.3 STEP 3. Simulating Hourly Sea States (HSS) time series

Once the sequence of DMSC is simulated taking into account the DSLP fields, the

third and last step of the presented method is to transfer thedaily data of sea mean

conditions to an hourly scale. This is done by a modified version of the methodo-

logy proposed by [120]. The modification consists of a disaggregation of the entire
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process into as many DMSC groups as defined in Step 2. This process ensures

we capture the dominant properties of the data and thus improves in accuracy du-

ring the simulation process. The development of this step can be summarized as

follows:

1. Transference of the DMSC original sequence to the empirical hourly sea

state time series. This way,nxN groups are obtained, wheren is the number

of DMSC previously determined andN the number of variables taken into

account. This disaggregation incorporates the historicalsequence of DMSC.

2. All the n groups ofN variables are normalized considering their empirical

distribution(Zi, with i = 1, ...N).

3. Fitting a univariate ARMA model for eachZi.

4. Computing the variance-covariance matrix (G).

5. Cholesky decomposition (G = LLT ) .

6. Simulation of independent standard normal errors (ξ = Ns).

7. Cross-correlation of the independent errors.

8. Simulation of the transformed variables (Zsi) by using the fitted ARMA mo-

dels.

9. Denormalization of theN variables taking into account then DMSC empi-

rical distributions and the simulated DMSC temporal sequence.

Except for the initial decomposition of the hourly databaseinto the DMSC

groups, the process is analogous to the one in Step 1, and is represented in Figure

3.4.
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Figure 3.4: Flow diagram of the Step 3.

4 Case study: Hourly Sea States time series simula-

tion in a location in NW Spanish coast.

An application to demonstrate the methodology has been undertaken on the North

West Coast of Spain. The area is located close to Langosteira’s harbour, in Galicia.

In this section, the methodology is implemented and the results are verified.
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4.1 Data

To show the performance of the proposed methodology, long-term data sets of

waves and Sea Level Pressure fields are required. Data from reanalysis databases

are used because of their length and consistency.

The SLP data is extracted from the NCEP-NCAR database, [90]. The area

under study corresponds to the Northeastern Atlantic covering latitudes from25◦

to 65◦N and longitudes from52.5◦W to 15◦E. This area covers the wave generation

area of the waves arriving to the Northwestern coast of Spain. The data record

covers 55 years, from 1957 up to 2011. Note that NCEP-NCAR data records start

in 1948, however it is accepted by the scientific community that recorded data up

to 1957 is less reliable [93]. This database has a 6-hour temporal resolution, thus,

in order to obtain the Daily Sea Level Pressure (DSLP), the four values of each day

are averaged.

The hindcast wave data used in this work is: DOW 1.1 (Downscaled Ocean

Waves, [19]) developed by IH Cantabria. These data comprises an hourlyregional

wave reanalysis for the period 1948-2008 with spatial resolution of∼200 m along

the Spanish coast. A hybrid method is used to downscale the GOW 1.1 reanalysis

([136]) to coastal areas, based on a propagation catalog using theSWAN model

([13]) and statistical techniques: MDA in the selection processand RBF in the time

series reconstruction; and calibrated using instrumentaldata (see [50], [115] and

[118]). The forcing inputs come from the SeaWind NCEP/NCAR dataset ([111]).

Both data sets comprise a common period of time from 1957 to 2008. This 52

year period of data constitutes the basic information for the implementation of the

methodology.

4.2 Step 1

In order to avoid spatially correlated variables and to reduce dimensionality, a prin-

cipal components analysis is applied to the daily mean sea level pressures (DSLP).

Prior to the principal component analysis, the data seasonality is removed by un-

dertaking a monthly standarization. This will help the simulation avoiding inac-

curate results because the multivariate simulation is not able by itself to reproduce
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Figure 3.5: Spatial modes related to the DSLP Principal Components.

seasonality accurately. ThePCs analysis shows that14 (NPC = 14) linearly in-

dependent components represent more than92% of the variability. These14 PCs

are simulated by using the multivariate simulation technique proposed by [120].

Figure3.5shows the spatial modes related to those principal components.

Taking the empirical distributions into account the14 PCs are standardized,

obtaining the transformed variablesZi, with i = 1, ...14. These transformed va-

riables are fitted to univariate ARMA(p, q) models. In this particular case the use

of an ARMA(2, 1) model for all the time series provides appropriated results. The

fitting process of these kind of models is a well-known process and further infor-

mation can be found in [14].

The residual errors given in the comparison between the standardized PCs and

the adjusted ARMAs are not autocorrelated, but they are cross-correlated if there

exists temporal correlation between the differentPCs. In Figure3.6, the cross-

correlation of residuals between somePCs are plotted. Due to the high amount of

possible combinations ofPCs, only those with higher correlation coefficients are

shown. From the results obtained from the cross-correlation diagrams the number

of lags (K) to be considered is determined, in this caseK = 4.

The variance-covariance matrixG is built from the cross-correlations coeffi-
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Figure 3.6: Cross-correlations of residuals obtained after the ARMA fits of different

PC combinations .

cients. For lately comparative purposes, the simulations are going to be the same

size of the original time series; thus theNS taken was the same as the original time

series length.

With theG matrix built, the Cholesky decomposition is constructed. Then the

NS independent standard normal errors are generated and cross-correlated. When

they are introduced within the ARMA models, the standardizedPCs are simulated.

Finally, the variables are denormalized.

Figure3.7shows the comparison between the original and simulated empirical

probability density functions for the14 PCs. Visual inspection shows that the si-

mulation accurately reproduces the marginal distributionof the DSLPPCs. Due to

the high number of joint distributions within the 14PCs, a graphical representation

for comparison purposes is not feasible. Thus, to compare between the original and

simulated joint distributions, the Kullback-Leibler divergence measurement [95]

has been calculated for all the possible combinations. The Kullback-Leibler di-

vergence measurement, also known as Relative Entropy, is given by the following
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Figure 3.7: Empirical probability density function of eachPC related to: i) historical

data (grey bars) and ii) simulated data (black line).

expression:

DKL(P | Q) =
∫ ∞

−∞

p(x) ln
p(x)

q(x)
dx (3.1)

Which estimates the difference between two probability distributions P and Q.

This measurement is always positive and only would be 0 if thetwo distributions

compared were the same.

The estimation ofDKL, assuming that P is the empirical bidimensional distri-

bution of eachPCi−PCj (with i, j = 1, ...14) and Q the bidimensional distribution

of the simulated data for all thePCsimi − PCsimj (with i, j = 1, ...14), results in

the symmetric matrix shown in Table3.1. In this table, each value(i, j) represent

theDKL of the comparison between the 2-D distribution ofPCi−PCj against the

2-D distribution ofPCsimi − PCsimj . The values of the diagonal are the compa-

rison between marginals,PCi againstPCsimi. Note that all the values from the

table are close to zero, i.e. there is a good agreement between the empirical and the

simulated 2-D distributions.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14

PC1 0.0035 0.0221 0.0198 0.0179 0.0257 0.0151 0.0455 0.0149 0.0148 0.0257 0.0173 0.0123 0.0164 0.0226

PC2 0.0009 0.0173 0.0135 0.0161 0.0142 0.0350 0.0114 0.0109 0.0169 0.0168 0.0127 0.0107 0.0116

PC3 0.0026 0.0132 0.0172 0.0149 0.0390 0.0139 0.0155 0.0147 0.0166 0.0122 0.0120 0.0117

PC4 0.0009 0.0119 0.0131 0.0345 0.0117 0.0130 0.0183 0.0105 0.0104 0.0105 0.0108

PC5 0.0005 0.0103 0.0395 0.0096 0.0122 0.0138 0.0144 0.0091 0.0119 0.0108

PC6 0.0007 0.0353 0.0116 0.0091 0.0161 0.0139 0.0130 0.0107 0.0089

PC7 0.0257 0.0336 0.0371 0.0409 0.0354 0.0340 0.0377 0.0336

PC8 0.0006 0.0082 0.0125 0.0132 0.0104 0.0114 0.0086

PC9 0.0004 0.0141 0.0185 0.0089 0.0104 0.0095

PC10 0.0047 0.0180 0.0171 0.0184 0.0159

PC11 0.0030 0.0114 0.0146 0.0141

PC12 0.0004 0.0095 0.0103

PC13 0.0006 0.0111

PC14 0.0005

Table 3.1: Kullback-Leibler divergence measurement results.
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4.3 Step 2

The second step of the process starts with the clusterization of the trivariate Daily

Mean Sea Conditions, (Hs, Tm, θm). The non-hierarchical K-means algorithm is

used to classify the data into a previously determined number of groups represen-

ted by a centroid. In this case, the number of groups chosen isn = 16. To reduce

the likelihood of reaching local minima with the algorithm,clusterization is repea-

ted a hundred times, each with a new set of initial cluster centroid positions. The

algorithm returns the solution with the lowest value for theobjective function. Note

that in this particular case we select 16 clusters for several reasons: i) for the sake

of simplicity, ii) to facilitate the implementation, fit andinterpretation of the model

results and iii) to reduce computational effort. The subsetobtained by KMA algo-

rithm applied to the data is shown in Figure3.8, where the centroid positions are

represented by the larger dots.

Assigning arbitrarily an integer value between 1 and n=16 for each DMSC in

Figure3.8, we get the sequence of DMSC, which is the input for the autoregressive

logistic model.

The autoregressive logistic model allows the simulation ofsynthetic sequences

of DMSC taking into account different covariates such as seasonality, DSLP and

autoregressive terms of both: DMSC and DSLP. It is importantbecause it is known

that sea conditions at any given point in time depend on the previous states and may

be affected by atmospheric behaviour of present and previous days. Moreover, its

nominative nature is useful when working with classified data. Further information

related to the theoretical foundation and covariates implementation can be found

in [67]. Here, the fitting process is described briefly. The criteria to choose the

final model, i.e. the order of the auto-regressive components, seasonality, number

of DSLP PCs, etc. is based on statistical significance, in particular, using the li-

kelihood ratio (LR) statistic. This method compares nestedmodels by comparing

the deviance ratio∆Dev., which measures the change of fitting quality for two dif-

ferent parameterizations, and the chi-square distribution with∆df = ∆np×(n−1)

degrees of freedom, being∆np the difference in terms of number of parameters for

both parameterizations. Here, a confidence levelα = 0.95 is assumed, so that if

∆Dev.> χ2
0.95,∆df the improvement achieved by addingnp additional parameters is
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Figure 3.8: KMA classification of the Daily Mean Sea Conditions.

significant. The initial model to compare with is the null model, which hasnp = 1

because a constant term is automatically added by the model.

In Table3.2 the fitting process is presented. In the Model column: X states

for the model fitted just taking into account seasonality (byadding 2 harmonics),

Z andZ2 refers to the first and second autoregressive terms of the DMSC, each

Yi =

i
∑

j=1

PCj refers to the addition of consecutive DSLPPCs to the model and

Si =
i
∑

j=1

ZPCj
,S2,i =

i
∑

j=1

Z2,PCj
andS3,i =

i
∑

j=1

Z3,PCj
state for the addition of the

first, second and third autoregressive term of consecutive DSLPPCs, respectively.

Firstly the addition of the two first autoregressive terms ofDMSC is tested. The

results show that only the first one is significant. Note that the inclusion of each

117

C3_F8.eps


3. CLIMATE-BASED MONTE CARLO SIMULATION OF TRIVARIATE
SEA STATES

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Days

P
ro

ba
bi

lit
y

Historical

 

 

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Days

P
ro

ba
bi

lit
y

DMSC 1 DMSC 2 DMSC 3 DMSC 4 DMSC 5 DMSC 6 DMSC 7 DMSC 8 DMSC 9 DMSC 10 DMSC 11 DMSC 12 DMSC 13 DMSC 14 DMSC 15 DMSC 16

Simulated

Figure 3.9: Model fitting diagnostic plot.

autoregressive term involvesn − 1 parameters, wheren is the number of DMSC

groups. Then, the DSLPPCs are included one by one to determine significant

ones. As shown in Table3.2, the 14PCs of DSLP in the concurrent day, the first

3 PCs of the previous day and the first 5PCs of two days before are significant.

The influence of the third autoregressive term of thePCs is not significant. So,

the resulting fitted model takes into account: seasonality,first autoregressive term

of the DMSC, 14 PCs of the concurrent day, 3 firstPCs of the day before (first

autoregressive term of the DSLPPCs) and 5 firstPCs of two days before (second

autoregressive term of the DSLPPCs). Note that this fitting process has been made

taking into account the historical DSLP decomposed intoPCs, not the simulated

PCs obtained in step 1.

Figure3.9 shows a comparison between the empirical and the simulated pro-

babilities of then = 16 DMSC groups within a year. The simulation is made

considering the significant covariates estimated before. The data are 3-daily aggre-

gated for a better graphical representation.

Once the model is fitted, synthetic sequences of weather types can be generated

through a Monte Carlo method, using the simulatedPCs as covariates. To check

the ability of the model to reproduce statistically similarsequences of DMSC the
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Model df ∆ df Dev. ∆ Dev. χ2
0.95,∆df

Null 284880
30

97409
6287 43.8

X 284850
225

91122
21976 260.9

X + Z 284625
225

69146
-6350 260.9

X + Z + Z2 284400 75496

X + Z 284625
15

69146
864 260.9

X + Z + Y1 284610
15

68282
4350 25

X + Z + Y2 284595
15

63932
1817 25

X + Z + Y3 284580
15

62115
263 25

X + Z + Y4 284565
15

61852
774 25

X + Z + Y5 284550
15

61078
1552 25

X + Z + Y6 284535
15

59526
342 25

X + Z + Y7 284520
15

59184
163 25

X + Z + Y8 284505
15

59021
197 25

X + Z + Y9 284490
15

58824
739 25

X + Z + Y10 284475
15

58085
65 25

X + Z + Y11 284460
15

58020
300 25

X + Z + Y12 284445
15

57720
526 25

X + Z + Y13 284430
15

57194
811 25

X + Z + Y14 284415
15

56383
301 25

X + Z + Y14 + S1 284400
15

56082
700 25

X + Z + Y14 + S2 284385
15

55382
327 25

X + Z + Y14 + S3 284370
15

55145
-100 25

X + Z + Y14 + S4 284355 55245

X + Z + Y14 + S3 284370
15

55145
51 25

X + Z + Y14 + S3 + S2,1 284355
15

55094
90 25

X + Z + Y14 + S3 + S2,2 284340
15

55004
61 25

X + Z + Y14 + S3 + S2,3 284325
15

54943
349 25

X + Z + Y14 + S3 + S2,4 284310
15

54594
250 25

X + Z + Y14 + S3 + S2,5 284295
15

54344
-47 25

X + Z + Y14 + S3 + S2,6 284280 54402

X + Z + Y14 + S3 + S2,5 284295
15

54344
-40 25

X + Z + Y14 + S3 + S2,5 + S3,1 284280 54384

Table 3.2: Fitting process results.
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simulation has been repeatednsims = 100 times. The results obtained have been

validated with a threefold comparison against the originalsequence of DMSC: i)

occurrence probabilities of DMSC, ii) transition probability matrix between DMSC

and iii) persistence analysis of DMSC.

Firstly, the probabilities of occurrence of then groups for thensims simulations,

against the empirical probability of occurrence from the 52-year sample data, are

shown in Figure3.10. The results are close to the diagonal, demonstrating the

model capability to reproduce the probability of occurrence appropriately.
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Figure 3.10: Scatter plot of the empirical occurrence probabilities associated with the

DMSC versus 100 Monte Carlo simulation results.

The transition probabilities express the probability of changing from groupi to

groupj between consecutive days. Thus, in the case of having 16 waveconditions

groups, the transition matrix (T ) has dimensions16 × 16, and each cellTi,j is the

probability of changing from DMSC groupi to DMSC groupj. The diagonal of

the transition matrix T corresponds to the probability of staying in the same group.

The transition matrix is calculated for each of the 100 simulated samples and Fi-

gure3.11shows the scatter plot related to the16× 16 = 256 elements of transition

matrix, including its uncertainty due to the simulation procedure, against the em-
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pirical transition probabilities obtained from the historical data set. As shown, the

model is able to reproduce correctly the transitions between DMSC.
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Figure 3.11: Scatter plot of the empirical transition probabilities associated with the

DMSC versus 100 Monte Carlo simulation results.

Thirdly, a persistence analysis is performed over the simulated samples in or-

der to check the ability of the model to reproduce wave climate dynamics. Figure

3.12shows the empirical cumulative distributions of the persistence associated with

each DMSC group. The green line represents the average empirical distribution

while the one related to the historical sample data is coloured in blue for all cases.

The red dotted line represents the 95% confidence intervals related to the 100 si-

mulations. To further analyze the performance of persistence from an statistical

view-point, a two-sample Kolmogorov-Smirnov ([102]) goodness-of-fit hypothe-

sis test between the original data and each sampled data is performed. This test

determines if two different samples come from the same distribution without spe-

cifying what that common distribution is. In Figure3.13the box plots associated

with the p-values from the 100 tests for each DMSC group are shown. Note that if

the p-value is higher than the significance level (5%) the null hypothesis that both

samples come from the same distribution is accepted. Results shown in Figure3.12
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prove that for most of the cases the persistence distributions from the Monte Carlo

simulation procedure come from the same distribution as thepersistence distribu-

tion from the historical data. For all the DMSC groups the interquartile range (blue

box) is above the 5% significance level (red dotted line).

0

0.2

0.4

0.6

0.8

1

DMSC1

P
ro

b
a
b
ili

ty

 

 
2 3 4

0

0.2

0.4

0.6

0.8

1
5 6 7 8

0

0.2

0.4

0.6

0.8

1
DMSC 9 10 11 12

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
13

Days
0 2 4 6 8 10

14

0 2 4 6 8 10

15

Historical data 95% CI Simulations

0 2 4 6 8 10

16

DMSC DMSC DMSC

DMSC DMSC DMSC DMSC

DMSC DMSC DMSC

DMSC DMSC DMSC DMSC

P
ro

b
a
b
ili

ty
P

ro
b
a
b
ili

ty
P

ro
b
a
b
ili

ty

DaysDaysDays

Figure 3.12: Empirical cumulative distribution of the persistence for the 16 groups

related to: i) historical data and ii) sampled data using Monte Carlo method.

4.4 Step 3

In the two previous steps the simulations are performed witha daily temporal re-

solution and the main objective is to reproduce the daily mean wave characteristics

taking into account the influence of the atmospheric conditions. This third step of

the process involves a change in the temporal scale, transferring the daily informa-

tion obtained in the previous steps into hourly sea states simulation.

To accomplish this third step and thus the entire process, a modified version

of the multivariate simulation technique proposed by [120] is used. Initially, the

trivariate hourly data are split into the daily mean sea conditions obtainingn = 16

groups for each of theN = 3 variables:Hs, Tm andθm.
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Spanish coast.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DMSC

P
-v

a
lu

e

 

 

 5% Significance Level

Figure 3.13: Box plot associated with the p-values from the 100 tests for each DMSC.

For all theN variables a normalization is made taking into account the empi-

rical distribution of then groups and the historical sequence of DMSC. Thus,Zi

(with i = 1, ...3) transformed variables are obtained. These transformed variables

are fitted into ARMA(p, q) models, in this case ARMA(2, 1) models for the three

variables provides appropriated results. The cross-correlation that exists between

the residual errors of the models is shown in Figure3.14. As seen, there is a strong

concurrent cross-correlation betweenHs andT , while the correlations with the

wave direction present lower values.
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Figure 3.14: Cross-correlations of residuals obtained after the ARMA fits of the three

variables.

123

C3_F13.eps
C3_F14.eps


3. CLIMATE-BASED MONTE CARLO SIMULATION OF TRIVARIATE
SEA STATES

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

P
ro

ba
bi

lit
y

H
s

0 2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

ba
bi

lit
y

T
m

 

 

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

P
ro

ba
bi

lit
y

θ 
m

Historical Simulated

Figure 3.15: Empirical probability density function ofHs, Tm andθm related to: i)

historical data (grey bars) and ii) simulated data (black line).

From these results, up to 10 lags (K = 10) are considered to be appropriate

to build the variance-covariance matrixG. Once the matrixG is built, the simu-

lation process is similar at the one explained in step 1, but the main difference

comes in the denormalization of the simulated variables. This denormalization is

made taking into account the empirical distribution of then = 16 groups in which

each variable is split but considering the simulated sequences of DMSC. This way,

synthetic hourly trivariate sea states are obtained.

Figures3.15and3.16show the ability of the process to provide good results not

only in the joint distribution but also in the marginals. To quantify the similarity

between the historical data and the simulated ones, the Kullback-Leibler measure-

ment is estimated for all the combinations. Results of this measurement are shown

in Table3.3, each element of diagonal represents theDKL measurement for compa-

rison between marginal distributions of the three variables while the non-diagonal

elements are the estimations for the 2D joint distributionswithin variables and its

comparison between empirical and simulated data. Note thatall the estimated va-

lues are close to 0, meaning that both data (historical and simulated) present similar

marginal and joint distributions.

Hs Tm θm

Hs 0.0003 0.0345 0.0068

Tm 0.0003 0.0100

θm 0.0001

Table 3.3: Kullback-Leibler divergence measurement results.
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4 Case study: Hourly Sea States time series simulation in a location in NW
Spanish coast.

Figure 3.16: Comparison between historical and simulated joint distributions.

Contour lines represent the empirical joint density distribution while dots are hourly

data.

In terms of simulating correctly the seasonality present inthe parameters distri-

bution, Figure3.17shows a comparison between the original and simulated data.

In the upper subplots the three variables aggregated in a year while in the lower

ones the simulated data are presented.

The methodology allows the generation of synthetic time series with statisti-

cally similar behaviour. Because of the use of the empiricaldistributions when

denormalizating the simulated time series, the maximal value of Hs andT are

constrained to be the historical maxima of the original data. This could be avoided

by using a fitted distribution (i.e. Pareto) to describe the extreme values, but this

involves the definition of a threshold and the choice of the best fit. This is out of

the scope of the present work and it is a subject for further research.
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SEA STATES

Figure 3.17: Comparison of the seasonality of historical and simulated.Contour lines

represent the empirical joint density distribution while dots are hourly data.

5 Conclusions
This work presents a methodology to reproduce hourly trivariate sea state time

series. The method combines the use of univariate ARMA models cross-correlated

with an autoregressive logistic regression model. This combination of techniques

allows the simulation of wave climate time series taking into account the different

temporal and spatial scales involved. The advances with respect to the state-of-the-

art can be summarized as follows:

• The possibility to simulate daily Sea Level Pressure fields decomposed into

PCs allows the generation of different atmospheric scenarios.

• The autoregressive logistic model takes into account simultaneously cova-
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5 Conclusions

riates of different nature, such as DSLP, seasonality or autoregressive in-

fluence, where the time and space scales are completely different.

• The methodology is able to reproduce multivariate time series of interrelated

variables.

• The developed model is DSLP-driven, facilitating the understanding of local

wave climate as a function of given synoptic circulation patterns.

Further research is required on the correct characterization of extreme events.

Although the use of the empirical distributions gives accurate results, a better de-

finition of extreme values would provide the possibility of simulating different se-

vere events from those actually recorded. This definition could be done by fitting a

Pareto distribution over a predetermined threshold.
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CHAPTER

4
A simplified method to

downscale wave dynamics on
vertical breakwaters

1 Abstract
A coastal structure is usually designed with the final objective to guarantee its func-

tionality and stability throughout its life cycle. Regarding stability, the three main

failure modes are sliding, overturning and failure of the foundations. To accom-

plish the design objectives, a design sea state is usually used when calculating the

loads and scour around the structure. This design sea state corresponds to a certain

sea state with specific return period values of a significant wave height. However,

the combination of different simultaneous sea state parameters can produce other

critical situations compromising the stability of the structure which then require the

calculation of long time series of wave forces corresponding to long-term histori-

cal wave situations. Moreover, a design force associated toa certain return period

can be defined from the time series of the stability parameters. The most accurate

techniques which can be used to estimate structure stability are based on numeri-

cal and physical models, but these are very time consuming and the calculation of
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4. A SIMPLIFIED METHOD TO DOWNSCALE WAVE DYNAMICS ON
VERTICAL BREAKWATERS

long time series is therefore unfeasible. Here, we propose ahybrid methodology

to transform wave conditions into wave forces acting upon vertical structures and

scour around it. The methodology consists of a selection of asubset of sea states

representative of wave climate at the structure location, using a maximum dissi-

milarity algorithm. The wave forces acting upon the structure and scour around

it, for the wave situations selected, are then estimated. Finally, a reconstruction of

the calculated parameters corresponding to historical seastates using an interpola-

tion technique is done based on radial basis function. The validation of the results,

through a direct comparison between reconstructed series and analytically (semi-

empirical formulations) calculated ones, confirms the ability of the developed me-

thodology to reconstruct time series of stability parameters on vertical breakwaters.

This methodology allows its application to numerical and physical models.

2 Introduction
The design of a vertical breakwater requires information onseveral parameters that

influence its behavior during its life cycle. The three main major failures can be

synthesized in the following: sliding, overturning and failure of foundation. In

order to achieve an accurate design, in terms of structural stability, it is crucial to

have the data to estimate loads (sliding and overturning) and erosion (foundation

failure).

The determination of wave loads has been a challenge since the beginnings of

coastal structure engineering. The early stages of the definition of the pressure law

over submerged walls took place in field tests conducted on the breakwaters of the

Great Lakes, by Gaillard at the beginning of the 20th century. This study laid the

foundations for many subsequent studies.

During the past 100 years, several authors have studied and proposed different

methods to determine wave loads on a vertical wall ([78], [145], [113], [119], [143],

[86],[61],[62], [157]). The Goda-Takahashi method (Goda, 1974 with the modifi-

cations of Takahashi and Tanimoto, 1994) is commonly used, as a semi-empirical

formula, as it allows estimating both the wave load acting upon a vertical breakwa-

ter and the buoyancy and uplift pressures, allowing the design of the caisson.
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Apart from semi-empirical methods, there are two other waysof estimating the

forces acting upon a caisson: numerical models and physicalmodels. The former

have been developed over the last decades, due to the improvement in computatio-

nal resources, allowing us to determine the forces acting upon a caisson ([65]). As

for physical models, several studies have been conducted todetermine wave loads

based on laboratory tests ([70], [31], [36], [37]).

In terms of erosion around breakwaters, many studies have tried to investigate

the influence of the complicated flow originated by the interaction between the

structure and the seabed. Every structure in the sea will change the flow patterns in

its neighborhood which can then result in scour at the breakwater toe and a possible

total failure of the breakwater.

Throughout the last decades, many authors have studied and proposed several

estimations of the scour depending on the type of structure and the sea conditions

it is exposed to ([166], [81], [152], [154], [155], [156], [97], [122]). In the majority

of these studies, semi empirical formulations are established taking into account

the results obtained with experimental tests or with numerical models.

In the design of vertical breakwaters, the critical stability parameters (wave

loads and scour) are usually calculated for the sea state with a significant wave

height associated with a specific return period (design sea state) and the other cor-

responding sea state parameters which influence the structure stability obtained

from the joint probability function between the significantwave height and the

rest of the parameters. However, we consider that calculating the wave loads and

the maximal scour produced on the breakwater as a result of all the possible sea

states occurring at this location provides more realistic results. Consequently, each

sea state is defined by means of the simultaneous significant wave height and the

other sea state parameters considered (e.g., wave peak period, mean sea level, mean

wave direction), which can produce worse combination of seastate parameters for

the stability of the structure. A design force with a certainreturn period can be

defined by means of stability parameter time series and can beused to optimize the

breakwater design. Consequently, long-term wave data are required at the breakwa-

ter location to carry out a proper statistical definition. Instrumental data are rarely

available for the required position, making reanalysis databases with high spatial

and hourly resolutions a good choice. This can be used to define wave climate at
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the breakwater location. The transformation of wave reanalysis sea state time se-

ries (usually consisting of over 50 years of hourly data) to the parameters involved

in the breakwater stability (loads and scour) is unfeasibledue to the high amount

of time required if numerical or physical models are used to calculate wave loads.

Therefore, the objective of this work is to propose a methodology to transform

wave time series at the breakwater location into stability parameter time series, in

order to be able to use numerical or physical models with reasonable computational

time demands.

In meteorology, the concept downscaling refers to several methods proposed

in the literature to gain subgrid detail of the outputs of thenumerical atmospheric

global circulation models (GCMs) or to simulate a local variable not generated in

the GCM ([164]). On the one hand, the dynamic downscaling methods use the

ACM-integrated gridded fields as boundary conditions for a new higher resolution

limited-area model, including parameterizations adaptedfor the region of interests.

On the other hand, the statistical downscaling methods define a statistical model

which relates the gridded atmospheric patterns to historiclocal observations. Ba-

sed on the same idea, different downscaling methods have been developed to trans-

fer wave climate from deep water to coastal areas at higher resolutions while still

simulating shallow water transformations. Another group of methodologies which

combines numerical models (dynamic downscaling) and mathematical tools (sta-

tistical downscaling) to reduce the computational effort ([76], [20]) are also propo-

sed. Therefore, to achieve the previously stated objective, a hybrid methodology is

adopted, based on the selection of a number of sea states, thecalculation of the sta-

bility parameters mentioned previously (loads and scour) and their reconstruction

using a statistical technique.

This methodology is mainly based on the maximum dissimilarity algorithm

(MDA) and the radial basis function (RBF) as the hybrid approach to downscale

wave climate to coastal areas as proposed in [19], [20]. In the present applica-

tion, the term downscale means the transformation of the seastate time series at

the structure location to wave load parameters on the breakwater. The hybrid me-

thodology proposed selects a subset of representative sea states of historical wave

data at the location of coastal structures using MDA, the calculation of the stabi-

lity parameters with a numerical or physical model corresponding to selected wave
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conditions (dynamical downscaling), and an interpolationtechnique based on ra-

dial basis function (RBF) to reconstruct long time series ofparameters involved in

the stability of coastal structures.

A rigorous validation of the methodology would imply calculating wave forces

using numerical or physical models for each hourly sea statecondition over a per-

iod of several years, which supposes an unfeasible computational time, in order

to compare these time series with the reconstructed ones obtained applying the

proposed methodology (based only on several numerical or physical simulations).

Therefore, a semi-empirical method is considered to explain the methodology. In

the present application, the Goda-Takahashi method was applied to estimate the

wave forces corresponding to each sea state of the wave reanalysis database while

Hughes and Fowler (1991), [81], was used to estimate the scour around the break-

water, this method being more efficient both economically and computationally.

The obtained time series were compared to those reached whenusing the proposed

methodology. Each of the steps of the proposed methodology is explained in detail

in the following sections.

3 Proposed methodology

The methodology proposed to downscale stability parameters calculating these pa-

rameters for a representative subset of wave conditions extracting them from a

historical database and performing a statistical reconstruction of the time series

created for these parameters. The steps involved are: (a) selection of sea states;

(b) calculation of wave loads acting upon the vertical breakwater and scour around

it; and (c) reconstruction of the complete series of sea states using an interpola-

tion scheme. To validate this methodology, two semi-empirical methods (Goda-

Takahashi method for wave loads and Hughes and Fowles formulation for scour)

were applied to calculate wave forces and scour allowing us to obtain the analytical

time series on the breakwater which corresponds to each sea state of the histori-

cal database. The reconstructed time series of each load parameter obtained with

the proposed methodology could then be directly compared with the analytically

calculated time series. The different steps are explained in the following sections.
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A double application is considered to explain the proposed methodology. The

breakwater under study is located on the north coast of Spain, at Gijon’s harbor.

The hindcast wave data used in this work is: DOW 1.1 (Downscaled Ocean Waves,

[19]) obtained by IH Cantabria, an hourly regional wave reanalysis for the period

1948-2008 with coverage of∼200 m along the Spanish coast. A hybrid method

is used to downscale the GOW 1.1 reanalysis ([136]) to coastal areas, based on a

propagation catalog using the SWAN model and statistical techniques: MDA in

the selection process and RBF in the time series reconstruction. The forcing inputs

come from the SeaWind NCEP/ NCAR dataset ([111]).

The sea state (considered to be 1 h) parameters required by the GodaTakahashi

formula to define the wave loads on the breakwater are: significant wave height

(m) Hs, peak period (s) Tp, mean wave direction (◦) θm and hourly mean sea

level (m) Zm. On the other hand, the variables involved in the Hughes and Fowler

formulation of scour are: significant wave height (m) Hs, peak period (s) Tp,

and hourly mean sea level (m) Zm. The methodology hereafter was established

as a function of the four parameters used by the GodaTakahashi method; similarly,

this could also be established for the Hughes and Fowler formulation if the wave

direction was discarded.

4 Selection of sea states
The aim of the selection process was to extract a subset of wave situations which

were representative of those conditions available at the breakwater location through

the DOW 1.1 reanalysis database. There are several selection algorithms to extract

a subset of data from a database (i.e., KMA (K-Means Algorithm), SOM (Self Or-

ganizing Maps), MDA (Maximum Dissimilarity Algorithm)). Out of these options,

the MDA algorithm was chosen due to its ability to distributethe selected data

fairly evenly throughout the space, with some points selected along the borders of

the data space, therefore guaranteeing the most representative subset in comparison

with the original sample ([20]). Consequently, the MDA algorithm allows an au-

tomatic selection of a subset of sea states which are representative of wave climate

at the breakwater location. This algorithm was then appliedto reconstruct wave

load and scour time series on a marine structure. Multivariate data were defined as:
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Xi = Hs,i, Tp,i, θm,i, Zm,i; i = 1, , N , whereN amounted to 534,000 hourly sea

states, corresponding to the period between 1948 and 2009. This reanalysis data is

defined by scalar and directional parameters of different magnitudes which require

normalization and an implementation of the distance in the circle for the directional

parameter on the MDA algorithm.

The scalar variables are normalized by scaling the variablevalues between 0

and 1 with a simple linear transformation which requires twoparameters, the mi-

nimum and maximum values of the two scalar variables. In the case of circular

variables (defined in radians or in sexagesimal degrees using the scaling factor

π/180), and considering that the maximum difference between two directions over

the circle is equal toπ and the minimum difference is equal to 0, normalization

was achieved by dividing the direction values between p. Similarly, the circular

distance was rescaled between 0 and 1. The dimensionless input data were expres-

sed asXi = Hi, Ti, θi, Zi; i = 1, , N , after these transformations.

Therefore, given a sample dataXi = Hi, Ti, θi, Zi; i = 1, ..., N consisting ofN

n-dimensional vectors, a subset ofM vectorsD1, ..., DM is selected by the MDA

algorithm. The initial data of the subsetD1 is considered to be the sea state with

the highest significant wave height. The rest of theM − 1 elements are selected

iteratively, transferring the most dissimilar one to the subset established by the

MaxMin version of the algorithm ([165]). For example, if the subset is formed by

R(R = M) vectors, the dissimilarity between the vector i of the data sample N-R

and the j vectors belonging to theR subset is calculated as:

dij = ‖Xi −Dj‖; i = 1, ..., N − R; j = 1, ..., R (4.1)

Subsequently, the dissimilaritydi,subset between vectori and subsetR, is calcu-

lated as:

di,subset = min{‖Xi −Dj‖}; i = 1, ..., N −R; j = 1, ..., R (4.2)

Once theN − R dissimilarities have been calculated, the next selected data is

that with the maximumdi,subset. We used the algorithm developed by Polinsky et

al. (1996).
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A Euclidean-Circular distance (E for the Euclidean distance in scalar parame-

ters and C for the circular distance in directional parameters) was implemented in

the MDA algorithm:

‖Xi−Dj‖ =

√

(Hi −Hj
D)2 + (Ti − Tj

D)2 + (Zi − Zj
D)2 + (min{|θi − θj

D|, 2− |θi − θj
D|})

(4.3)

Finally, we de-normalized the subset applying the oppositetransformation used

during normalization. The MDA subset was then defined asDj
∗ = {Hs,j

D, Ts,j
D,

Zs,j
D, θs,j

D}; j = 1, ...M

The MDA was applied to the 60 year time series of the four parameters consi-

dered in the definition of wave conditions at the breakwater location. We used

different subset sizes (from 10 to 1000 sea states) to analyze the influence of re-

presentative case numbers in the calculation of the parameters. Figure4.1shows a

zoom over the time series of the four parameters{Hs,i, Tp,i, Zm,i, θm,i} and MDA

subsets of different size (M being the number of selected cases). The firstR se-

lected data using MDA of different subset sizes are the same,meaning that for a

selection ofM=200 cases and another ofM=100 cases, the first 100 cases of the

first selection are exactly the same cases as those belongingto the second selection.

Figure4.2shows the distribution of the sample data for different 2-dimensional

combinations of the 4 parameters, both for the 60 year data series and for the

M=1000 selected data. As seen in both figures (Figs.4.1 and4.2), the selected

cases spread all over the data range.

5 Stability parameter calculation

5.1 Dynamic loads

Wave forces were calculated for each set of selected (Section 5) wave conditions at

the structure location according to the previously defined sea state parameters. The

dynamic loads (F ) can be expressed as a function of wave parameters:

Fi = fF (Hs,i, Tp,i, θm,i, Zi) (4.4)
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Figure 4.1: Time series ofHs, Tp, θm andZm in front of the breakwater (grey dots),

the selected cases by MDA algorithm,M = 1, 50 red points,M = 51, 100 green

points,M = 101, 200 yellow points.

The transformation of a sea state to wave forces should be estimated by a nume-

rical or physical model. However, a semi-empirical formula(Goda-Takahashi) was

considered because it allowed the direct transformation ofthe 60 year hourly rea-

nalysis time series, making the validation of the proposed methodology possible.

The Goda-Takahashi method is explained in section5.1.1of this chapter. Pres-

sures exerted upon the breakwater, as estimated by this empirical method, are a

function of the parametersHs, Tp, θm, Z and the breakwater geometry. Once the

pressure distribution and the uplift pressure distribution have been calculated, they

can be integrated. Then the horizontalFh, and vertical,Fv forces, as well as their

moment around the bottom of an upright section: the horizontal Mh, and vertical

forceMv momentums, are obtained. Finally, the safety factor against sliding,SSC

and overturning,OSC are defined as follows:

SSC =
µ(W − Fv)

Fh
(4.5)
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Figure 4.2: Distribution of the selected data (M = 1, 50 red points,M = 51, 100

green points,M = 101, 200 yellow points) obtained by MDA algorithm in the sample

time series (grey points).

OSC =
Mw −Mv

Mh
(4.6)

whereW stands for the breakwater weight,Mw for its momentum andµ is a

friction coefficient (0.65 in this application). The critical stability of the structure

can be analyzed by means of the sliding and overturning factor time series.

This procedure has been applied to each sea state selected bythe MDA algo-

rithm and to the complete wave reanalysis time series at the vertical breakwater

location, at the Gijon’s harbor (Fig.4.3).

5.1.1 Goda-Takahashi method

Since 1974, Goda’s formulas have been widely used to predictwave loads acting

on vertical breakwaters for irregular waves, both for breaking and non breaking
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Figure 4.3: Vertical breakwater cross section at the harbor of Gijon extension.

waves. In 1994, Takahashi implemented a coefficient taking into consideration an

impulsive breaking wave on a vertical wall.

This method assumes the existence of a trapezoidal pressuredistribution along

the vertical wall, as shown in Figure4.4. In this figure, h represents the sea level at

the breakwater, i.e.: the depth considering the mean sea level and the tidal elevation

Z, d is the depth above the armor layer of the rubble foundation, h’ the distance

from the design water level to the bottom of the upright section, and hc the crest

elevation of the breakwater above the design water level. The highest wave in the

design sea state should be employed.

The elevation to which the wave pressure is exerted is shown asη∗:

η∗ = 0.75(1 + cos(θm))(1.8Hs) (4.7)

whereθm denotes the angle between the direction of wave approach anda line

normal to the breakwater. Goda proposed rotating this wave direction by an amount

of up to15◦ toward this line. The wave pressure on the front of a verticalwall can

be calculated by:

p1 = 0.5(1 + cos(θm))(α1 + α∗ cos2(θm))ρg(1.8Hs) (4.8)
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Figure 4.4: Distribution of wave pressure on an upright section of a vertical breakwa-

ter. Goda-Takahashi (1994) method.

p2 =

{ (

1− hc
η∗

)

p1 if η∗ > hc

0 if η∗ < hc
(4.9)

p3 = α3p1 (4.10)

where the coefficientsα1, α2 andα3 are a function ofHs, Tp, θm, Z and the

geometry of the breakwater (hs, h, d):

L =
gT 2

p

2π
tanh

(

2πh

L

)

(4.11)

α1 = 0.6 + 0.5

[

4πhs/L

sinh(4πhs/L)

]

(4.12)

α∗ = max {α1, α2} (4.13)

α3 = 1− h

hs

[

1− 1

cosh(2πhs/L)

]

(4.14)
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where:

α2 = min

{

hb − d

3hb

(

1.8Hs

d

)2

,
2d

1.8Hs

}

(4.15)

αI = αI0αI1 (4.16)

αI0 =







1.8Hs/d if 1.8Hs/2 ≤ 2

2 if 1.8Hs/d > 2
(4.17)

αI1 =

{

cosh δ2
cosh δ1

if δ2 ≤ 0
cosh δ2

cosh δ1(cosh δ2)0.5
if δ2 > 0

(4.18)

δ1 =

{

20δ11 if δ11 ≤ 0
15δ11 if δ11 > 0

(4.19)

δ2 =

{

4.9δ22 if δ22 ≤ 0
3δ22 if δ2 > 0

(4.20)

δ11 = 0.93

(

B

L
− 0.12

)

+ 0.36

(

hs − d

hs
− 0.6

)

(4.21)

δ22 = −0.36

(

B

L
− 0.12

)

+ 0.93

(

hs − d

hs
− 0.6

)

(4.22)

whereB is the toe berm width.

The uplift pressure acting on the bottom of the upright section is assumed to

have a triangular distribution where toe pressure pu is given by the equation below:

pu = 0.5(1 + cos(θm))α1α3ρg(1.8Hs) (4.23)

Once the pressure distribution and the uplift pressure distribution are calculated,

they can be integrated obtaining the horizontal force,Fh, and the vertical force,

Fv and its moment around the bottom of an upright section: the horizontal force

momentumMh, the vertical force momentumMv.
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5.2 Scour around the breakwater

For each of the selected cases defined by the MDA algorithm, the maximum scour

depth at the foot of the breakwater was calculated. In 1991, Hughes and Fowler

performed several laboratory tests, and from these resultsobtained the following

empirical equation:

Sm
(Urms)m · Tp

=
0.05

(sinh(kp · h))0.35
(4.24)

wherekp is the wave number determined from the dispersion relationship,h is

the depth and (Urms)m is given by the equation:

(Urms)m
g · kp · Tp ·Hs

=

√
2

4π · cosh(kp · h)
·
[

0.54 · cosh
(

1.5− kp · h
2.8

)]

(4.25)

with Tp as the peak period,Hs the significant wave andg the gravity accelera-

tion.

6 Time series reconstruction
The reconstruction of the time series of the stability parameters on the vertical

breakwater was carried out by means of an interpolation technique based on the ra-

dial basis function (RBF), a very convenient method for scattered and multivariate

data ([53], [72]). This interpolation method approximates the real-valued function

f = f(x) using a weighted sum of radially symmetric basic functions located on

the scattered data pointsx1, , xM where the associated real function valuesf1, , fM

are available. The approximation function is assumed to be of the form:

RBF (x) = p(x) +

M
∑

j=1

ajΦ(‖x− xj‖) (4.26)

whereΦ is the radial basis function,‖‖ being the Euclidian norm;p(x) is a

monomial basisp0, p1, , pn, formed by a number of monomials of degree=1 equal

to the data dimension (n) and a monomial of degree=0 andb = b0, b1, , bn the

coefficients of these monomials. The RBF coefficientsaj and the monomial co-

efficients b are obtained by enforcing the interpolation constraintsRBF (xi) =
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6 Time series reconstruction

fi. Gaussian functions with a shape parameter are used as the radial basis co-

efficients. The optimal value of the shape parameter is estimated using the al-

gorithm proposed by [137]. To implement the RBF interpolation technique in

the pressure distribution time series reconstruction, we haveM 4-dimensional

pointsDj
∗ = {Hs,j

D, Ts,j
D, Zs,j

D, θs,j
D}; j = 1, ...M , corresponding to theM

cases selected by the MDA algorithm and the associated semi-empirical parame-

ters obtained applying the GodaTakahashi method. In parallel and for the scour

distribution time series reconstruction we haveM 4-dimensional pointsDj
∗ =

{Hs,j
D, Ts,j

D, Zs,j
D}; j = 1, ...M , for theM cases selected and the associated pa-

rameters of the Hughes and Fowler formulation. These semi-empirical parameters

are: the horizontal forceFh, the vertical forceFv, the horizontal force momentum

Mh, the vertical force momentumMv and the scour around the breakwaterSm.

With the parameters mentioned above, the stability of the vertical breakwater can

be analyzed and the safety factor against sliding (SSC) and overturning (OSC) can

be estimated. The aim of the RBF application is the evaluation of the interpolation

function of each of the following parameters: the horizontal force RBFFh
, the

vertical forceRBFFv
, the horizontal force momentumRBFMh

, the vertical force

momentumRBFMv
, and the scourRBFSm

. To calculate the interpolation func-

tions, scalar variables are normalized with a simple lineartransformation which

scales the values between 0 and 1. Circular variables are normalized by dividing

the direction values byπ. Therefore each situation in the time series (60 years)

is defined asXi = Hs,i, Tp,i, θm,i, Zm,i; i = 1, ..., N , while each selected case is

expressed asDj = {Hs,j, Ts,j, Zs,j, θs,j}; j = 1, ...M The interpolation function is

calculated using the following expression:

RBF (Xi) = p(Xi) +
M
∑

j=1

ajΦ(‖Xi −Dj‖) (4.27)

wherep(Xi) = bo+ b1Hsi+ b2Tpi+ b3θmi+ b4Zi andΦ is a Gaussian function

with a shape parameter c. The Euclidean distance has been replaced by the distance

EC as in the MDA algorithm.

Φ(‖Xi −Dj‖) = exp(−‖Xi −Dj‖2
2c2

) (4.28)
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The optimal shape parameter is estimated by the Rippa algorithm. The coeffi-

cientsbl = [b0, b1, b2, b3, b4]
T of the monomials and the coefficientsaj = [a1, , aM ]T

of the radial basis functions are obtained by the interpolation conditions:

RBF (Dj) = fj(Dj); j = 1, ...,M (4.29)

where the real functionsfj are defined by the parametersFh, Fv, Mh or Mv

obtained by GodaTakahashi, corresponding to the sea statesselected by the MDA

algorithmDj .

Therefore, pressure and scour distributions are calculated for the entire 60 year

series by means of the RBF functions obtained for each parameter. These functions

are defined as:

Fh,i = RBFFh
({Dj, Fh,j(j = 1, ...,M)}, Xi); i = 1, ..., N (4.30)

Fv,i = RBFFv
({Dj , Fv,j(j = 1, ...,M)}, Xi); i = 1, ..., N (4.31)

Mh,i = RBFMh
({Dj,Mh,j(j = 1, ...,M)}, Xi); i = 1, ..., N (4.32)

Mv,i = RBFMv
({Dj,Mv,j(j = 1, ...,M)}, Xi); i = 1, ..., N (4.33)

Sm,i = RBFSm
({Dj, Sm,j(j = 1, ...,M)}, Xi); i = 1, ..., N (4.34)

And the final result is the reconstructed time series of the parameters that define the

wave loads and the scour at a vertical breakwater:

Xp,i = {Fh,i, Fv,i,Mh,i,Mv,i, Sm,i}; i = 1, ..., N (4.35)
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7 Validation
The proposed methodology was applied to calculate wave loads and scour at a

breakwater. The time series of the propagated parametersFh, Fv, Mh, Mv andSm
were reconstructed considering different numbers of casesselected by the MDA

algorithm (M = 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 500, 750 and 1000).

It means that, for example withM = 10, the RBF is applied to reconstruct the

60 years hourly time series taking into account the 10 sea states selected with the

MDA algorithm. That process was then repeated for all the values of M considered

and for all the parameters of study.

On the other hand, values for the same four parameters (Fh, Fv, Mh, Mvand

Sm) for the entire 60 year time series were calculated analytically. Thus we have

real values available for the validation of the time series reconstructed by means of

the proposed methodology.

To validate the time series,99% of the percentiles for each time series re-

constructed were calculated, varying the number of cases selected by the MDA

(M = 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 500, 750, 1000) for all the parame-

ters obtained. Once this was done, the error made by these percentiles was calcu-

lated according to the following:

Ei =
(Xi − Yi)

Xi
· 100 (4.36)

whereXi stands for the value of the99% percentile of the series obtained nu-

merically andYi for the99% percentile of each reconstructed time series. Figure

4.5shows the evolution of the error of the99% percentile of theFh, andFv series

reconstructed by varying the number of selected cases. Fairly good results were

obtained for the99% percentiles of the horizontal and vertical forces and momen-

tums, with maximum differences of< 5% for the horizontal force and momentum,

and78% for the vertical force and momentum. Note that these values of disagree-

ment correspond to series reconstructed with less than 50 cases from a data base

of about 500,000 cases (60 year hourly data). Whenever series were reconstructed

with more than 100-200 cases, this error reached values of less than1%.

The quality of the reconstruction of theFh andFv time series is shown in Figure

4.6, which represents the real time series and those reconstructed withM = 50 and
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4. A SIMPLIFIED METHOD TO DOWNSCALE WAVE DYNAMICS ON
VERTICAL BREAKWATERS

Figure 4.5: Evolution of the error in the99% percentile ofFh andFv varying the

number of selected cases to reconstruct the time series.

M = 500 selected with the MDA algorithm from the entire series, respectively. In

this figure, the line describing theFh andFv series using 500 cases is hardly dif-

ferent from that of the real time-series. The line corresponding to 50 cases presents

larger differences with the real one.

In terms of scour, the results obtained are significantly better than those regar-

ding the forces. Figure4.7 shows the evolution of a scatter plot for an increasing

number of selected cases used to reconstruct the series. As can be seen, the recons-

tructed time series matches almost perfectly the analytically calculated one.

As a final summary of the proposed methodology, Figure4.8shows a diagram

of the steps followed throughout the entire process

8 Conclusions
A hybrid methodology was developed to obtain long-time series of wave loads on

a breakwater using numerical or physical models with a reasonable computational

time. The methodology is based on the selection of a number ofrepresentative
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8 Conclusions

Figure 4.6: Time series calculated (in grey) and reconstructed considering M = 50

cases (in green) andM = 500 cases (in pink) of the parametersFh andFv.

wave climate sea states at the breakwater location, the calculation of the dynamic

loads corresponding to these selected wave situations and amultidimensional RBF

interpolation to reconstruct the wave load time series.

Although the methodology was developed to be used with numerical or physi-

cal models, requiring huge computational times to simulateeach sea state, in this

study a semi-empirical formula (Goda-Takahashi method) was used to carry out

the validation, due to the possibility of calculating load parameters corresponding

to every sea state of the reanalysis database. Validation ofthe results confirmed that

the proposed methodology can reproduce the time series of wave loads and scour.

The results shown above state that for a selection of less than 500 cases, the error

made in the estimated parameters is almost negligible in a reconstruction of a 60-

year hourly time series. The proposed methodology therefore provides a tool with

accurate results of estimated parameters avoiding many calculations. In terms of

computational effort and using a standard PC, it takes less than an hour to recons-

truct a time series using RBF and around half an hour to extract a representative

group of cases by using MDA algorithm.
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Figure 4.7: Scatter plot of the calculated series of scour and the reconstructed ones.

In the upper-left plot withM = 50 cases, in the upper-right plot withM = 100 cases,

in the lower-left withM = 200 cases and withM = 500 in the lower-right plot.

The MDA algorithm automatically selects a subset of multidimensional sea

states evenly covering the diversity of wave situations at the structure location and

is very convenient for the subsequent RBF interpolation technique.

The availability of long time series of loads acting on a vertical breakwater

and the scour around it allows the analysis of critical stability situations, taking

into account the combination of different correlated sea state parameters, and the

definition of the design force with a certain return period, which constitutes an

improvement in the design of coastal structures.

As shown, the proposed methodology can be applied to reconstruct parameters

of different nature such as loads and scour. Both examples explained in this chapter

were selected due to their relation to the breakwater stability. The methodology

can also be used to transform stability parameters which depend on other sea state

parameters with higher dimensionality due to the capability of MDA and RBF to

work with high dimensional data.
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CHAPTER

5
A multivariate approach to

estimate design loads for
offshore wind turbines

1 Abstract
The design of offshore wind farms is a complex process that requires a detailed

study of the oceanographic, meteorological and geotechnical conditions at the site.

The structure and all structural members shall be designed in a way that they can

be resistant against different kinds of loads: permanent, variable, environmental,

accidental and deformations. This chapter is focused on those called environmen-

tal loads. The main environmental conditions that may contribute to structural

damage, operational disturbances or other failures are wind, waves, currents and

sea ice. Thus, the combination of the different parameters may produce many dif-

ferent critical situations for the integrity of the structure, requiring the calculation

of long time series corresponding to long-term historical data situations. The most

accurate techniques available at the moment to estimate loads acting upon a struc-

ture are numerical and physical models; however, they are very time consuming,
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and the calculation of long time series of data is unfeasible. Therefore, a new hy-

brid methodology to select waveswindcurrent representative conditions that allow

the interpolation of long time series of forces on a wind turbine is proposed. The

methodology consists of a selection of a subset of representative cases of wave-

windcurrent climate at the structures location by using a maximum dissimilarity

algorithm, then estimating loads acting upon the structurefor the seawind states

selected and the reconstruction of loads corresponding to historical data using an

interpolation technique based on radial basis function. Tovalidate the proposed

methodology and because of there is no availability of long time records of loads

on wind turbines, the well-known IEC 61400-3 has been applied to estimate the

loads for the complete reanalysis time series of waves, winds and currents. The va-

lidation of the results confirms the ability of the methodology developed to recons-

truct time series of forces on the structure on the basis of the previously selected

cases. This methodology permits application of numerical and physical models to

offshore wind farm design, considerably reducing the number of tests or simula-

tions.

2 Introduction
The need for clean, renewable and sustainable energy sources has increased in

recent decades. Along with this need comes the development of technology and

the capabilities of human society. As a result of these two ideas, offshore wind

energy appears. Wind energy is one of the most promising options for electri-

city generation. According to the Europe 2020 Renewable Energy Targets, wind

energy-installed production will increase from 2.9GW in 2010 to 40GW in 2020.

Technology today makes offshore structures possible whereconditions are fa-

vourable. A good example is seen on the North West Europe coast, especially the

North Sea, where the 2020 installed production target is 25GW. There, continen-

tal shelf conditions allow good foundations for turbines onthe sea floor, and the

constant winds provide the energy needed to start the process. On the Spanish

coast, the Mediterranean would be where it would be possibleto instal wind farms

moored to the sea bottom. The Atlantic Coast and the Canary Islands Coasts are

too deep for that.
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2 Introduction

The analysis and design of offshore wind farms are a complex process that

involves many technical requirements. This design has to guarantee safe and eco-

nomical operation during the service life of at least 20 years and must take account

of the most important external conditions, closely relatedto the wind farm location.

According to the DNV–OS–J101 Offshore Standards ([5]), when designing

wind turbine farms, a high number of load cases should be considered. These load

cases fall into different categories: permanent (mass), variable (actuation, operatio-

nal), environmental (wind, waves, current, ice), accidental (collisions, explosions,

fire, etc.) and deformation loads (temperature, built-in deformations and settlement

of foundations). This study is focused on environmental applied loads (wind, wave

and currents) during the operational life of the wind turbine. Other kinds of loads

(e.g. accidental loads, internal loads due to the dynamic response of the structure

and loads associated with turbine or grid faults) are not considered.

For offshore structures, environmental load involves loads due to waves, wind,

current, earthquakes, ice, snow, tidal, scouring, etc., but the most important is those

related to waves, winds and currents. From all the external agents referred to be-

fore, the design rules establish multiple combinations of situations that may occur

during the life cycle of the structure to be studied and/or simulated, both nume-

rically and physically. In terms of numerical models, several computer programs

have been developed to simulate the behaviour of offshore structures([2], [1],[3]).

Related to these aero–hydro–servo–elastic time–domain simulations have appeared

in the lasts years the contour line or surface methods, whichcan be very useful in

terms of extreme responses for limit state designs,([91],[92]) but the assessment

of combined wave, wind and current loads on offshore structures continues to be

a time-consuming process. On the other hand, physical models give good results,

but the number of cases that can be tested is limited by financial and time factors.

Despite their limitations, physical models are very usefulfor optimizing design and

for the verification and validation of numerical models.

This study proposes a hybrid methodology to obtain long timeseries of envi-

ronmental loads on an offshore wind turbine by simulating a limited number of

seawind states. The methodology is based on that proposed todownscale wave

dynamics in coastal structures ([66]) and combines a selection of seawind states
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by using data mining algorithms and a later reconstruction interpolation with ra-

dial basis functions (RBFs). To validate the proposed methodology, the loads have

been estimated applying IEC 61400-3 (2009), but the final objective of the propo-

sed methodology is to apply numerical or physical models. Itmust be noted that

some simplifications have been made when estimating the loads.

By using this methodology, the number of numerical simulations or physical

tests needed to reproduce long time series of loads on the wind turbine can be

reduced. The availability of long time series of loads on thewind turbine gives

access to all the combinations of effects because of external agents that may not

be included in the recommended load cases of the standards. This study therefore

aims to provide a useful tool in wind turbine structure design.

3 Proposed methodology
The methodology proposed is a transformation to design parameters (loads) of a

representative subset of sea and wind conditions from a historical database, and

a statistical reconstruction of the time series of the parameters is calculated ([19],

[20]). The stages of the methodology are the following: (i) definition of the met-

ocean database; (ii) selection of representative wind and sea states using data mi-

ning algorithms; (iii) loads on a wind turbine calculation;and (iv) transference of

the complete series of wind and sea states using an interpolation scheme. The pro-

posed methodology has been successfully used to study loadsacting upon vertical

breakwaters ([66]). A diagram of the methodology is shown in Figure5.1.

• (1) Use of this methodology requires a long-term database (N data) of the

different variables involved at the location. For this application, the number

of independent met-ocean parameters isn = 8. These variables define the

characteristics of waves (significant wave height (Hs), wave period (Tm),

wave direction (θWaves)), wind (magnitude and direction (V1−hour, θWind)),

currents (the speed and direction of the tidal current (UT idal, θT idal)) and sea

level (SWL).

• (2) The aim of the selection process was to extract a representative subset

of windwave conditions of the long time series from reanalysis databases.
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Figure 5.1: Diagram of the methodology.

The maximum dissimilarity algorithm (MDA) allows an automatic selection

of a subset of sea states that are representative of met-ocean climate at the

location useful to be combined with an interpolation technique ([19]).

These reanalysis data are defined by scalar and directional parameters of dif-

ferent magnitudes that require normalization and an implementation of the distance

in the circle for the directional parameter in the MDA algorithm. The scalar va-

riables are normalized by scaling the variable values between 0 and 1 with a simple

linear transformation requiring two parameters, the minimum and maximum values
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of the two scalar variables. In the case of circular variables (defined in radians or

in sexagesimal degrees using the scaling factorπ/180) and considering that that

the maximum difference between two directions over the circle equalsπ and the

minimum difference equals 0, normalization was achieved bydividing the direc-

tion values byπ. In this way, the circular distance was rescaled between 0 and

1. The initial data of the subsetD1 were considered to be the sea state with the

highest significant wave height. The rest of theM − 1 elements were selected

iteratively, transferring the most dissimilar ones to the subset established by the

MaxMin version of the algorithm ([165]). This dissimilarity was determined using

the Euclidean circular distance. Finally, we de-normalized the subset applying the

opposite transformation used during normalization.

• (3) In this phase of the methodology, loads were calculated for each of the

selected seawind conditions at the structures location. A simplified method

(based on IEC 61400-3) is considered because it allows the direct transforma-

tion of the long time hourly reanalysis series (20 years for this application),

which made the validation of the proposed methodology possible.

• (4) The reconstruction of the time series of loads on the windturbine used

an interpolation technique based on RBF, a very handy methodfor scattered

and multivariate data ([53], [72]).

Figure5.2shows a detailed schematic diagram of the methodology.

An application is considered to explain the proposed methodology. The off-

shore wind turbine under study is located on the northeast Mediterranean coast of

Spain between the city of Tarragona and the Ebro River Delta.This place was cho-

sen because the continental shelf in the area would, as already pointed out, allows

an offshore wind farm to be located there.

Figure5.3shows the location of the case study.

4 Database
To apply the methodology described, long-term database of waves, currents and

winds from the location is needed. The parameters were takenfrom reanalysis da-

tabases because of its adequate length, covering 20 years (1989-2009). The wave

156



4 Database

 
 

Selection 

Max_Diss 

},,,,,,,{ ,1,1,,,
D

jhour
D

jhour
D

jTidal
D

jTidal
D
j

D
j

D
j

D
jsj

vuvu
VVUUNMTHD --= θ

  ),....,1( Mj =  

 

Normalization 

},,,,,,,{ 11 vuvu hourhourTidalTidalmsi VVUUNMTHX --= θ              

),....,1( Ni =   

IEC 61400-3 

},,,,,,,{ ,1,1,,,
D

jhour
D

jhour
D

jTidal
D

jTidal
D
j

D
j

D
j

D
js vuvu

VVUUNMTH --θ   
),....,1( Dj =  

 

RBF 

( ){ }( ) )...1(;,...1;, , NiXMjFDRBFF ijujH
N

u ===  

( ){ }( ) )...1(;,...1;, , NiXMjFDRBFF ijvjH
N

v ===  

( ){ }( ) )...1(;,...1;, , NiXMjMDRBFM ijvjH
N
u ===  

( ){ }( ) )...1(;,...1;, , NiXMjMDRBFM ijvjH
N
v ===  

Data 

},,,,,,,{ ,1,1,,,,
*

ihourihouriTidaliTidaliiimisi
vuvu

VVUUNMTHX --= θ    

),....,1( Ni =  

EC distance 

2})2,(min{...)( D
ji

D
ji

D
jiji HHDX θθθθ ---++-=-  

Denormalization 

},,,,,,,{ ,1,1,,,
* D

jhour
D

jhour
D

jTidal
D

jTidal
D
j

D
j

D
j

D
jsj

vuvu
VVUUNMTHD --= θ

),....,1( Dj =  

   Dj 

Results 

},,,{ ,,,, iviuiviui MMFFY =              ),....,1( Ni =  

- Forces (Fu, Fv) 
- Momentums (Mu, Mv) 

Figure 5.2: Schematic diagram of the methodology.
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Figure 5.3: Location of the case study.

data were taken from Downscaled Ocean Waves 2.1, a coastal hourly wave reana-

lysis database with a spatial of resolution of 0.125◦ in the western Mediterranean

Sea. This database has been obtained downscaling the GlobalOcean Waves 2.1 da-

tabase applying a hybrid methodology ([19]) that combines the SWAN wave model

(dynamical downscaling) with statistical tools (MDA algorithm for the selection of

500 representative deep water conditions and RBF interpolation technique for the

20 year hourly time series reconstruction). Global Ocean Waves 2.1 (IH Canta-

bria) is a wave reanalysis database generated usingWW3 model and forced by 15

km resolution wind fields from a dynamic downscaling (WRF model) nested to

ERA-Interim (1989-2009) atmospheric reanalysis.

The wind data were extracted from the SeaWind-ERA-Interim database (IH

Cantabria)([111]). SeaWind constitutes an hourly wind reanalysis databaseon a

15 km spatial resolution grid, which provides surface windsat a height of 10m.

It was generated by dynamic downscaling, using the WRF modelfrom a global

reanalysis (ERA-Interim, developed by the European Centrefor Medium-Range

Weather Forecasts) over the South Atlantic-European region and the Mediterranean

basin.

The storm surge data used were extracted from the Global Ocean Surges 2.1
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5 Selection of wind and sea states

database (IH Cantabria) ([6]), a high-resolution hourly storm surge reanalysis data-

base covering 20 years (1998-2009) in Southern Europe, witha spatial resolution of

1/8◦ (∼13 km). It was generated with the three-dimensional Regional Ocean Mo-

delling System model developed by the Rutgers Ocean Modelling Group and for-

ced with high-resolution wind and pressure data (∼15 km) from a dynamic downs-

caling of ERA-INTERIM.

5 Selection of wind and sea states
The subset is selected using the MDA. Figure5.4 shows the resulting clusters or

selected data when applying three different data mining techniques: K-means algo-

rithm, self-organizing maps and MDA, in a data sample located in a circle domain

([20]). It can be observed that MDA distributes selected data rather evenly across

the space, with some points selected in the outline of the data space guarantee the

most representative subset from the original sample.

Figure 5.4: Comparison of K-means (KMA), self-organizing maps (SOM) and maxi-

mum dissimilarity (MDA) algorithm.

Therefore, selection was carried out using this technique because of its ability

to fairly represent the space with some points selected in the outline of the data

set. An explanation of the algorithm and the required data pre-processes is given in

section5.1 of this chapter. Different selections have been performed using MDA

for different subset sizes. Figure5.5 shows the long time series of the eight inde-

pendent variables with the data selected by MDA algorithm.

Figure5.6 shows different scatter plots of the hourly time series and the data

selected in different colours (M=1, 50 in red, M= 51, 100 in green and M= 101,
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Figure 5.5: Time series ofHs, Tp, θ(wave direction),SWL, tidal current (in its

componentsX andY ) and wind (in its componentsX andY ) at the wind turbine

location (grey points), the cases selected by MDA algorithm, M = 1, 50 red points,

M = 51, 100 green points andM = 101, 200 yellow points .
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200 in yellow). The cases selected span the space of the inputdata, trying to cover

it evenly and fill it uniformly. It must be mentioned that the MDA algorithm is a

deterministic method, so for example in a subset of M= 200 cases, the first 100 will

be the same as those for a subset of M= 100 cases.

Figure 5.6: Distribution of cases selected by MDA algorithm (M = 1, 50 red points,

M = 51, 100 green points andM = 101, 200 yellow points).

5.1 Maximum dissimilarity algorithm

In the development of computer-based methods for selectingsets of structurally

diverse compounds from chemical databases, dissimilarity-based compound selec-

tion has been suggested as an effective method to identify a subset comprising the

most dissimilar data in a database ([148]). The maximum dissimilarity algorithm

(MDA) is one subclass of these selection techniques. The selection process starts

initializing the subset by transferring one vector from thedata sample. The remai-

ning elements are selected iteratively, calculating the dissimilarity between each

remaining data in the database and the elements of the subsetand transferring the

most dissimilar one to the subset.
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In this work, sampleXi = {Hsi, Tmi, SWLi, θWavesi, UT idali, θT idali, V1−houri,

θWindi}; i = 1, ..., N are defined by scalar and directional variables of different

magnitudes. The vector components require to be normalizedto be equally weigh-

ted in the similarity criterion. The scalar variables are normalized by scaling the

variables values between [0,1] with a simple linear transformation, which requires

two parameters, the minimum and maximum value of the two scalar variables. The

circular variables are normalized by dividing the direction values betweenπ, there-

fore rescaling the circular distance, which could be maximum equal toπ, between

[0,1]. The Euclidean circular distance is implemented in the similarity criterion.

Between all the algorithm variants ([165]), the MaxMin version has been consi-

dered to obtain the most representative subset of the diversity of the data. For

example, if the subset is formed byR (R ≤ M) vectors, the dissimilarity between

the vectori of the data sampleN − R and thej vectors belonging to the R subset

is calculated as

dij = ‖Xi −Dj‖; i = 1, ..., N − R; j = 1, ..., R (5.1)

Subsequently, the dissimilaritydi,subset between the vectori and the subsetR is

calculated as

di,subset = min{‖Xi −Dj‖}; i = 1, ..., N − R; j = 1, ..., R (5.2)

Once theN − R dissimilarities are calculated, the next selected data is the one

with the largest value ofdi,subset. Moreover, the efficient algorithm developed by

[131] has been implemented, which implies not calculating the distance between

the different vectorsdij in the definition of the distancedi,subset. For example, in the

selection of theR vector, the distancedi,subset is defined as the minimum distance

between the vectori of the data sample (consisting ofN − (R − 1) vectors at this

cycle) and the last vector transferred to the subsetR, and the minimum distance

between the vectori and theR−1 vectors of the subset determined in the previous

cycle:

dmini,subset = min{di,R, dmin1,subset(R−1)} (5.3)
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After finishing the selection process, a denormalization ofthe subset has to be

carried out. Finally, the MDA subset is defined byDi = {Hsi, Tmi, SWLi, θWavesi,

UT idali, θT idali, V1−houri, θWindi}; i = 1, ...,M .

6 Calculation of wind turbines loads
IEC 61400 [4] is a class of IEC international standards for wind turbines. Subclass

614003 refers to design requirements for offshore wind turbines, explaining how

to study the structural components to provide an appropriate level of protection

against damage from all hazards during the planned lifetime. The most important

environmental loads on a monopile offshore wind turbine canbe divided into the

forces because of wind, waves and currents as shown in Figure5.7. These forces

arise as a function of different parameters. The momentum calculation follows the

same scheme. All moments are referred to the bottom of the sea:

Figure 5.7: Loads on a wind turbine.

−→
F =

−→
F Waves−Current +

−→
F Wind (5.4)
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−→
M =

−→
MWaves−Current +

−→
MWind (5.5)

6.1 Wave-current forces

Particle velocities due to waves depend onHs, Tp, θWaves andSWL. There are

many ways to attempt to describe the velocity and acceleration profile. For this

study in the interest of simplicity, linear wave theory was used despite not being

the most accurate method taking into account the largest waves in water depths

typical for offshore wind farms.

−→
W (z, t) = ±H

2

2π

Tm

cosh(k(h+ z))

sinh(kh)
cos

(

2π

Tm
t

)

(5.6)

−→̇
W (z, t) = ±H

2

(

2π

Tm

)2
cosh(k(h+ z))

sinh(kh)
cos

(

2π

Tm
t

)

(5.7)

As seen, because of water oscillation movement, velocitiesare time dependent

on the wave period. Therefore, there are both a positive and anegative component

inside the same wave. In this way, the highest wave (Hmax = 1.8Hs) with the mean

period (Tm) of each sea state was chosen, and maximum velocity instant was taken

from its period.

When there is a current, the velocity profile given by it can beassumed to be

described by:

−→
U (z)T idal = |−→U (z)T idal|

[

z + h

h

]1/7

(sin(θT ide)~i+ cos(θT ide)~j) (5.8)

−→
U (z)Wind = 0.01

−→
V (z = 10m)1−hour

[

z + 20

20

]

(sin(θWind)~i+ cos(θWind)~j)

(5.9)

For collinear waves and currents, velocity profiles (waves and current in the

wave direction component) should be added before estimating forces to take into

account wavecurrent interaction, so the hydrodynamic forces (wave-current) are

calculated with
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−→
F (t)WCθw

=

z=0
∫

z=−h

{[

1

2
CdρWaterD|−→W (z, t) +

−→
U (z)θw|

(−→
W (z, t) +

−→
U (z)θw

)

]

+

[

π
4
CMρWaterD

2

(−→̇
W (z, t) +

−→̇
U (z)θw

)]}

dz

(5.10)

−→
F WCθw

= max
(

|−→F WCθw
|
)

(sin(θWaves)~i+ cos(θWaves)~j) (5.11)

−→
M(t)WCθw

=

z=0
∫

z=−h

{[

1

2
CdρWaterD|−→W (z, t) +

−→
U (z)θw|

(−→
W (z, t) +

−→
U (z)θw

)

]

+

[

π
4
CMρWaterD

2

(−→̇
W (z, t) +

−→̇
U (z)θw

)]}

(z + h)dz

(5.12)

−→
MWCθw

= max
(

|−→MWCθw
|
)

(sin(θWaves)~i+ cos(θWaves)~j) (5.13)

The non-collinear component of the current with the wave direction (current

orthogonal to the wave direction) contributes with a drag force calculated by

−→
F (t)WC⊥θw

=

z=0
∫

z=−h

[

1

2
CdρWaterD|−→U (z)⊥θwTidal

|−→U (z)⊥θwTidal

]

dz (5.14)

−→
M(t)WC⊥θw

=

z=0
∫

z=−h

[

1

2
CdρWaterD|−→U (z)⊥θwTidal

|−→U (z)⊥θwTidal

]

(z + h)dz (5.15)

6.2 Wind forces

Finally, forces due to wind are a function ofV1−hour, θWind andSWL and can be

divided into the forces acting on the tower of the turbine andthose acting on the
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wind turbine. For this particular application, forces and moments on the tower are

calculated using the IEC standards [4], and those on the turbine are calculated on

the assumption of a 5 MW Reference turbine as defined by the National Renewable

Energy Laboratory ([88]). It must be said that the wind forces considered are steady

state wind forces. The cut-off velocity was set at 25 m/s, so wind forces over the

turbine due to higher wind speeds have been neglected. However, these forces

should be considered for a better prediction of extreme values. Nevertheless, the

methodology proposed allows use other sophisticated numerical models that can

consider additional non-linearities. Figure5.8 shows the thrust force applied on

the wind turbine related to wind speed.

Figure 5.8: Thrust force on the turbine.

−→
F Wind =

−→
F −→

V Tower
+
−→
F −→

V Turbine
(5.16)

with:

−→
F −→

V Tower
=

z=nacelle
∫

z=0−SWL

1

2
CdρAirD|−→V (z)1−hour|

−→
V (z)1−hourdz (5.17)
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−→
F −→

V Turbine
→ NREL/TP-500-38060 (5.18)

and:

−→
MWind =

−→
M−→

V Tower
+
−→
M−→

V Turbine
(5.19)

with:

−→
M−→

V Tower
=

z=nacelle
∫

z=0−SWL

1

2
CdρAirD|−→V (z)1−hour|

−→
V (z)1−hour(z + h)dz (5.20)

−→
M−→

V Turbine
=

−→
F −→

V Turbine
z (5.21)

where:

−→
V (z)1−hour =

−→
V (z = 10m)1−hour

( z

10

)0.14

(sin(θWind)~i+ cos(θWind)~j) (5.22)

7 Time series reconstruction
The reconstruction of the time series of loads on the wind turbine used an interpo-

lation technique based on RBF, a very useful scheme for scattered and multivariate

data. The RBF approximation has been successfully applied in many fields, usually

with better results than other interpolation methods.

This interpolation method consists of approximating the real-valued function

f = f(x) with a weighted sum of radially symmetric basic function located at the

scattered data pointsx1, ..., xM where the associated real function valuesf1, ..., fM

are available. Therefore, after calculating the forces indicated in Section6 for

the M select waves-wind-current conditions, functions forthe total horizontal and

vertical force(Fu, Fv) and for the horizontal and vertical momentum(Mu,Mv)

are determined using RBF method. The 20 year time series of these forces and

momentums can be reconstructed applying the correspondingRBF functions in the

rest of the environmental conditions. A detail explanationcan be found in7.1.
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7.1 Radial Basis Function interpolation technique

Suppose that f=f(x) is the real-valued function that we wantto approximate.We are

givenM scattered data pointsx1, ..., xM of dimensionn and the associated real

function valuesf1, ..., fM , beingfi = f(xj), j = 1, ...,M . The radial basis func-

tion (RBF) interpolation method consists of a weighted sum of radially symmetric

basic function located in the data points. The approximation function is assumed

to be of the form:

RBF (x) = p(x) +

M
∑

j=1

ajΦ(‖x− xj‖) (5.23)

whereΦ is the radial basis function, being‖‖ the Euclidian norm;p(x) is a mo-

nomial basisp0, p1, ..., pn, formed of a number of monomials of degree of 1 equal

to the data dimension(n) and a monomial of degree of 0, beingb = b0, b1, ..., bd

the coefficients of these monomials.

The RBF coefficientsaj and the monomial coefficientsb are obtained by enfor-

cing the interpolation constraintsRBF (xi) = fi.

There are several expressions for radial basis functions (linear, cubic, Gaussian,

multiquadric), some of them containing a shape parameter that plays an important

role for the accuracy of the interpolation method. [137] has proposed an algorithm

for choosing an optimal value of the shape parameter by minimizing a cost function

that imitates the error between the radial interpolant and the unknown function

f(x). This cost function collects the errors for a sequence of partial fits to the data:

E = (E1, ..., EM)T , whereEk is defined as the error between the functionfk in

the pointxk and the estimated value by the RBF function calculated removing the

pointxk from the original data set.

In the implementation of the RBF interpolation technique inthe wind turbine

load series reconstruction, we haveM points eight-dimensionalDi = {Hsi, Tmi,

SWLi, θWavesi, UT idali, θT idali, V1−houri, θWindi}; i = 1, ...,M , corresponding to

theM cases selected by MDA algorithm and the associated (real) forces obtained

by the application of the specific formulation to evaluate the environmental forces

acting on the wind turbine (i.e. the total horizontal and vertical forcesFu,j andFv,j ,

and the total horizontal and vertical momentumMu,j andMv,j).
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Therefore, the aim of the RBF application is the evaluation of the interpolation

function of the forces acting on the wind turbine decomposedin the components

x− andy,RBFFu
andRBFFv

, respectively.

To calculate the interpolation functions, the variables that define the process

are normalized by means of a lineal transformation that scales the values between

0 and 1. Therefore, each initial situation is defined asXi = {Hsi, Tmi, SWLi,

θWavesi, UT idali, θT idali, V1−houri, θWindi}; i = 1, ..., N , whereas each selected case,

where the real forces are available, is expressed asDi = {Hsi, Tmi, SWLi, θWavesi,

UT idali, θT idali, V1−houri, θWindi}; i = 1, ...,M

The interpolation function is calculated by means this expression:

RBF (Xi) = p(Xi) +
M
∑

j=1

ajΦ(‖Xi −Dj‖) (5.24)

wherep(Xi) = b0+b1Hi+b2Tmi+b3SWLi+b4θwi+b5Uti+b6θUti+b7V1hi+

b8θwindi andΦ is a Gaussian function with a shape parameterc.

Φ(‖Xi −Dj‖) = exp(−‖Xi −Dj‖2
2c2

) (5.25)

The optimal shape parameter is estimated by the Rippa algorithm. The coef-

ficientsbl = [b0, b1, b2, b3, b4, b5, b6, b7, b8]T of the monomials and the coefficients

aj = [a1, ..., aM ]T of the radial basis functions are obtained by the interpolation

conditions:

RBF (Dj) = fj(Dj); j = 1, ...,M (5.26)

where the real functionsfj are defined by the parametersFh, Fv,Mu or Mv

obtained, corresponding to the selected sea states by MDA algorithmDj.

Therefore, loads over the wind turbine are reconstructed tothe entire period of

data by means the RBF functions calculated for each calculated parameter. These

functions are defined as

Fu,i = RBFFu
({Dj, Fu,j(j = 1, ...,M)}, Xi); i = 1, ..., N (5.27)
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Fv,i = RBFFv
({Dj , Fv,j(j = 1, ...,M)}, Xi); i = 1, ..., N (5.28)

Mu,i = RBFMu
({Dj ,Mu,j(j = 1, ...,M)}, Xi); i = 1, ..., N (5.29)

Mv,i = RBFMv
({Dj,Mv,j(j = 1, ...,M)}, Xi); i = 1, ..., N (5.30)

8 Validation
To evaluate the progression of the accuracy in the reconstructed time series of the

parameters calculated,Fu, Fv, Mu andMv (horizontal and vertical forces and mo-

mentums, respectively), they were reconstructed considering different numbers of

cases selected by the MDA algorithm (M=10, 20, 30, 40, 50, 75,100, 150, 200,

300, 500, 750 and 1000).

On the other hand, the values for the same four parameters (Fu, Fv, Mu and

Mv) for the entire 20 year time series were calculated analytically. Thus in this

application, we have the real values available for the validation of the reconstructed

time series by using the proposed methodology.

The scatter plots for the propagated time series and the reconstructed time series

for Fu andFv are shown in Figure5.9. The reconstructed time series with M=75,

200, 500 and 1000 selected cases are shown in the subplots. The normalized root

mean square error (NRMSE) and the correlation coefficient (r) were computed for

Fu andFv. These statistics are given in Table I.

It can be seen that, with the proposed methodology, the reconstructed time se-

ries are more accurate when using more cases in the calculation of the correspon-

ding RBF function. The differences between the calculated and the reconstructed

time series are more significant using M=75 cases. However, the increased accu-

racy of reconstruction is not so great when using M=500 casesor M= 1000 cases.

The reconstructed time series ofFu andFv using M=200 cases (in orange),

M=1000 cases (in red) and the real-time series (in black) areshown in Figure5.10,
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8 Validation

Figure 5.9: Scatter plot of the time series (calculated vs. reconstructed) ofFu (X

component) andFv (Y component) consideringM = 75, M = 200, M = 500 and

M = 1000.

171

C5_F9.eps


5. A MULTIVARIATE APPROACH TO ESTIMATE DESIGN LOADS FOR
OFFSHORE WIND TURBINES

demonstrating that the proposed methodology is able to reproduce the structure of

the time series

Figure 5.10: Time series calculated (in black) and the time series reconstructed consi-

deringM = 200 cases (in orange) andM = 1000 cases (in red) of parametersFu (X

component) andFv (Y component).

Fu Fv

MDA 75 200 500 750 1000 75 200 500 750 1000

NRMSE 0.0367 0.0276 0.0165 0.015 0.0138 0.0531 0.0375 0.0220 0.0183 0.0163

ρ 0.9389 0.9635 0.9865 0.9887 0.9905 0.8875 0.9381 0.9773 0.9840 0.9873

Table 5.1: The normalized root mean square error and the correlation coefficient of

Fu (X component) andFv (Y component)
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9 Design Tools
The availability of long time series of environmental forces acting on a wind tur-

bine could become a useful tool in offshore wind turbine design and would allow

analysis of critical structural integrity situations representing an improvement in

the design of offshore wind turbine farms. Moreover, this study might be unders-

tood from different points of view. The data used are the reconstructed series based

on MDA= 1000 selected cases.

In terms of extreme situations, Figure5.11shows a Peak Over Threshold (POT)

distribution of the environmental forces acting upon the wind turbine, with a thre-

shold at the 99.5 percentile.

Figure 5.11: Peak over threshold (POT) distribution od the module of forces at the

wind turbine (95% confidence intervals in dashed lines).

Figure5.12shows the rose directional distribution of probabilities for the wind

(upper left rose), wave (upper central rose), currents (upper right rose) and total

force (lower rose). However, Figure5.13 shows wind, wave and current contri-

butions only during 1992. Moreover, Figure5.14 shows the spatial total force
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distribution during 1999 (left side rose), 2000 (central rose) and 2001 (right side

rose).

Figure 5.12: Roses of spatial distribution of wind (upper left rose), wave (upper cen-

tral rose), current (upper right rose) and total force magnitude (lower rose).

The methodology proposed also allows the availability of long-term series for

the different components of the environmental forces on themonopile and so may

be made a spatial and/or temporal study depending on the components. Figure

5.13shows the probabilistic roses of the three main components (waves, wind and

currents) and the total force for a period of only 1 year (1992). It can be seen that in

that year (1992), the worst states are due to waves, but that the most common state

arises from the combination of waves and the main wind direction. Notice that the

forces are misaligned, so that induced movements should be carefully studied to

avoid fatigue problems. At this case study location, current forces are negligible

compared with waves or wind, but at other location, they may become a significant
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Figure 5.13: Probabilistic roses of the different components of forces acting on

a wind turbine, 1992 (wind component: left panel, hydrauliccomponent(wave–

current):central panel and total force(sum of both):rightpanel).

Figure 5.14: Probabilistic roses for the total force acting upon a wind turbine, 1999

(left panel), 2000 (central panel) and 2001 (right panel).

force. The inclusion of current forces in the proposed methodology makes it more

versatile.

But not only the spatial distributions of force components are important when

designing wind turbine farms. Temporary variations of the spatial distributions

of total forces are also very important, and their study calls for long-term series.

Figure5.14shows the spatial total forces distribution acting on the wind turbine

over 3 consecutive years (1999 left side rose, 2000 central rose and 2001 right side
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rose). The variation in the shape and magnitude of the cluster of dots is clear.

Figures5.11-5.14serve as examples of the analysis that can be made with the

availability of long time series of forces and also the combination of their different

components. Thus, the availability of long time load seriesfor a wind turbine seems

to be useful, taking account of some combinations of external agents (waves, wind

and currents) that may not be included in the load cases proposed by the standards.

10 Conclusions
In this study, a hybrid methodology has been developed to obtain long time series

of the environmental loads on an offshore wind turbine, using some simplifications

that drastically reduce the computational effort. These loads can be determined by

numerical models or semi-empirical formulations. The methodology is based on a

selection of representative seawind states at the turbine location, calculation of the

dynamic loads corresponding to these selected seawind states and a multidimen-

sional RBF interpolation to reconstruct the long time series of dynamic loads.

The availability of long time series of the loads acting on anoffshore wind tur-

bine allows the analysis of critical stability situations,representing an improvement

in their design. Nevertheless, this methodology can be alsoapplied to reconstruct

other parameters involved in offshore structure design andalso allows the inclusion

of more variables that may influence the process.

To analyse possible application of the proposed methodology to real cases, an

application at a specific location is presented. Moreover, some examples of design

tools extracted from the results obtained are described.
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CHAPTER

6
Point-in-time and

extreme-value probability
simulation technique for

engineering design

1 Abstract
Engineering design of structural elements entails the satisfaction of different re-

quirements during each of the phases that the structure undergoes: construction,

service life and dismantling. Those requirements are settled in form of limit states,

each of them with an associated probability of failure. Depending on the conse-

quences of each failure, the acceptable probability variesand also the denomination

of the limit state: ultimate, damage, serviceability, or operating stop. This distinc-

tion between limit states forces engineers to: i) characterize both the point-in-time

and extreme probability distributions of the random variables involved (agents),

which are characterized independently, and ii) use the appropriate distribution for

each limit state depending on the failure consequences. This chapter proposes a
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Monte Carlo simulation technique, which allows the generation of possible out-

comes for agents holding the following conditions: i) both the point-in-time and

the extreme value distributions are appropriately reproduced within the simula-

tion procedure, and ii) it maintains the temporal dependence structure of the sto-

chastic process. In addition, a graphical representation of both distributions on a

compatible scale is given, this graph clarifies the link between point-in-time and

extreme regimes and helps quantifying the degree of accuracy of the simulation re-

sults. In addition, new insights for the development of First-Order-Reliability me-

thods (FORM) combining point-in-time and extreme distributions simultaneously

are provided. The method is illustrated through several simulation examples from

well-known distributions, whereas its skill over real datais shown using the signi-

ficant wave height data record from a buoy located on the Northern Spanish coast.

2 Introduction
Engineering structures undergo different phases during their lifetime: construction,

service life and dismantling. During each of these phases, the structure must sa-

tisfy different requirements, which from the engineering design point of view, are

defined as limit states. The objective of the design is to verify that the structure

satisfies those project requirements in terms of acceptablefailure rates and costs

(see [100] and [139]).

Acceptable failure rates are established by codes and expert committees [7, 80,

98, 139] on the basis of the consequences of failure for each limit state, and trying

to counter-balance safety and costs (direct, societal and environmental). Since the

consequences of failure might be very different depending on the limit state consi-

dered, these limit conditions are classified in different categories: ultimate, da-

mage, serviceability, or operating stop. The acceptable probabilities of failure for

each category depends on the type of structure and environmental conditions, but

in all cases it increases from the minimum acceptable probability of failure related

to the ultimate limite state, up to the maximum acceptable probability associated

with the operating stop limit state.

From the design perspective, these different probability thresholds encompass

the consideration of different probability distributionsfor agents. Serviceability
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or operating stop limit conditions depend on regular, central or mean values of

those agents, whereas damage and ultimate limit states require extreme conditions,

i.e. to pay attention to singular values. The statistical theory for dealing with

mean values (point-in-time distribution) is different from the theory for extreme

values [23, 24, 25, 32]. Traditionally, both problems are treated independently,

which makes difficult to understand the link between point-in-time and extreme

distributions and their implications from the practical point of view.

There are several attempts in the literature to incorporateboth the point-in-

time (central) and extreme information in the same probability distribution model

(mixture models), see for instance, [9, 18, 55, 56, 149, 158, 161]. The common

characteristic of these works is that all are applied to specific distributions, and the

parameter estimation is fuzzy, not providing a general framework to deal with the

problem. This work is intended to fill this niche.

As previously mentioned, safety of structures is the fundamental criterion for

design, and once limit states and required probabilities are defined, engineering de-

sign must ensure satisfaction of the safety constraints. There are several methods

to check the satisfaction of the safety requirements which can be classified in two

main groups: (a) the classical safety factor approach, and (b) the probability ba-

sed approach. The latter deals with probabilities of failure, which are difficult to

deal with because (a) it requires the definition of the joint probability of all va-

riables involved, and (b) the evaluation of the failure probability is not an easy task.

The problem becomes even more difficult if several failure modes are analyzed,

because the failure region is the union of the different failure mode regions, and

regions defined as unions are difficult to work with because oftheir irregular and

non-differentiable boundaries [106]. A method widely used by engineers to over-

come these difficulties is Monte Carlo simulation technique. Once the probability

distributions are defined, long records of the random variables involved may be

sampled [11, 141, 142] and used to check whether the safety constraints are satis-

fied in terms of probabilities of failure. The simplicity on its implementation has

increased the development of different methods for structural reliability analysis

[26, 71, 146], such as directional simulation techniques [11, 46], importance sam-

pling [44, 104, 105], or techniques which allows reproducing on multidimensional
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settings, not only the marginal distributions but the temporal dependence of the

stochastic processes involved as well [68, 120, 150].

The aim of this chapter is threefold: i) to develop a Monte Carlo simulation

method for reproducing both the point-in-time (mean values) and extreme value

distributions of random variables, while keeping the temporal dependence structure

of the stochastic process involved, and valid for any kind ofprobability distribu-

tion function, ii) to present a graphical interpretation ofsimulation results to merge

both distributions on a compatible scale, and iii) to provide new insights for the

use of the point-in-time and extreme regimes simultaneously within First-Order-

Reliability methods (FORM). The theoretical and practicalmaterial developed in

this chapter is intended to support engineers on the design process and help unders-

tanding the relationship between both distributions, freeing engineers of deciding

which conditions, average or extreme, must be used for each failure mode, because

both conditions are considered into the proposed distribution.

3 Order Statistics and Extremes
Let consider the point-in-time probability density and distribution functions of a

random variableX, i.e. fX(x) andFX(x). If we draw from this distribution a

samplex1, x2, . . . , xn of sizen, and arrange it in increasing orderx1:n, x2:n, . . . , xn,

we could obtain the probability distribution of therth element of this sequence,

Xr:n, so-called therth order statistic of a sample of sizen. The first and last order

statistics are the minimumX1:n and maximumXn:n respectively, and are called

extremes [25, 57].

This maximum and minimum are very important for the design considering

ultimate and damage limit states, and assuming that the point-in-time distribution

of the variable of interestFX(x) (loads, significant wave height, strength, etc.) is

known, the cumulative distribution functions of the maximum and minimum order

statistics of a sample of sizen are, respectively:

Fmax
X (x) = [FX(x)

n] , (6.1)

and

Fmin
X (x) = 1− [1− FX(x)]

n . (6.2)
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Whenn tends to infinity, distributions (6.1) and (6.2) are degenerate, only ta-

king values equal to 0 or 1. For these cases linear transformations ofx, consisting

on location and scale changes, are looked for to avoid degeneracy. Note that when

this is possible,FX(x) is considered to belong to the domain of attraction of the

limit distribution.

[52] proved that there is only one parametric family for each of the limit dis-

tributions of maxima and minima, which correspond to the Generalized Extreme

Value Distributions for maxima (GEV) and minima (GEVm), respectively. For

instance, the cumulative distribution function (CDF) for maxima is given by:

Fmax
X (x;µ, ψ, ξ) =


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


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; ξ 6= 0,

exp

{

− exp

[

−
(

x− µ

ψ

)]}

; ξ = 0,

whereµ, ψ, andξ are the location, scale and shape parameter,[a]+ = max(0, a),

and the support isx ≤ µ − ψ/ξ, if ξ < 0, or x ≥ µ − ψ/ξ, if ξ > 0. The

GEV family includes three distributions corresponding to the different types of

tail behavior: Gumbel (ξ = 0) with a light tail decaying exponentially; Fréchet

distribution (ξ > 0) with a heavy tail decaying polinomially; and Weibull (ξ < 0)

with a bounded tail.

Note that this result has two very important practical implications:

1. The complexity to characterize the point-in-time regimeFX(x) of a given

random variableX, which allows using multiple distributions as possible

candidates, contrasts with respect to the apparent simplicity to characterize

the probability distributions for maxima and/or minima, which only requires

the estimation of the three parametersµ, ψ, andξ from the corresponding

limit distribution family.

2. Since different point-in-time distributions may have the same domain of at-

traction, the best way to characterize the tail (upper/lower) of the distribution

is using data belonging to the corresponding tail (maxima/minima) and esti-

mate the parameters of the corresponding limit distribution.
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From the practical point of view, the use of the GEV distribution for maxima

is not appropriate in many cases because it uses small samples for the fitting pro-

cess. For those cases, it is preferable to use the Pareto-Poisson model, which is

valid for independent and identically distributed processes, or the Peaks Over Thre-

shold (POT) method, suitable for dependent and identicallydistributed processes.

The method presented is valid for those distributions or anyother distribution for

maxima.

Traditionally, engineers treat both point-in-time and extreme value distributions

independently depending on the kind of limit state under consideration. The me-

thod proposed facilitates the engineering task as follows:

1. By presenting a graphical interpretation which makes easier to check if the

right-tail of the distribution is appropriately reproduced or fitted by the point-

in-time distribution, and then decide if an additional analysis of those ex-

tremes is required.

2. For those cases where both analysis are relevant and required, we present the

methodology to link both distributions and use them simultaneously. Thus

avoiding the decision to choose one or the other depending onthe limit state

considered.

4 Relationship between point-in-time and extreme va-

lue distributions: Graphical representation
From the practical point of view, it would be very useful for engineers to establish

the relationship between the point-in-time and the extremevalue distributions for

random agents, or even to have a graphical visualization of this relationship, which

would allow them to quantify the skill of any Monte Carlo simulation technique to

deal with both central and extreme conditions at the same time.

The aim of this section is to present a graphical representation to accomplish

the aforementioned task. Let assume an stochastic processXt with associated sam-

pling or occurrence frequencyf = 1/Tx (Tx is the sampling period, for instance

1 hour, 2 hours, etc.) and whose point-in-time distributionis FPT(x). If we simu-

late samples of sizen from the stochastic processXt and calculate their maximum
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values, this maximum is a random variableXM with probability distribution func-

tionFEV(x). Both distributions may be plotted on the same return periodgraph as

follows:

1. Calculate the “equivalent return period” from the point-in-time distribution,

i.e. TPT =
1

1− FPT(x)
.

2. PlotTPT versusx.

3. Calculate the “return period” from the extreme value distribution, i.e.TEV =
1

1− FEV(x)
.

4. Plot the re-scaled return period using the sample sizen, i.e. TEV
r = n · TEV

versusx.

Figure6.1 (a) shows the proposed graphical interpretation associated with an

hourly stochastic process (Tx = 1 hour) without temporal correlation, and whose

marginal (point-in-time) distribution corresponds to thestandard normal (Xt ∼
N(0, 12)). Dark gray line corresponds to(TPT, x). We sampleny = 1000 years of

data and look for the annual maximumxmax. Black dots correspond to(TEV
r , xmax).

The re-scaled return period is calculated asTEVr = n
1−F̂EV(x)

, whereF̂EV(xi) =
i

ny+1
; ∀i = 1, . . . , ny is the empirical annual maxima probability distribution for

the sample, andn = 8766. Finally, the light gray line represents(TEV
r , xmax),

whereTEVr has been calculated using the GEV fitted distribution to annual maxima.

Note that both the point-in-time and the extreme regimes converge on the tail of

interest, however, there are slight differences between the point-in-time and the

maxima fitted distribution due to the simulation and fitting process uncertainty.

These differences tend to zero as the sample size tends to infinity. Note that the

true abscissas axis units in Figure6.1 are hours, however, we have re-scaled the

ticks to years to facilitate the interpretation.

Analogous results are shown in Figure6.1(b) for a gamma distributed stochas-

tic process with scale and shape parametersθ = 5 andκ = 10, respectively. Note

that as in the previous case, both the point-in-time and extreme-value probability

distributions converge on the tail of interest.
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Figure 6.1: Graphical representation of the point-in-time and extremeregimes for: a)

an standard normal and b) a gamma distributed stochastic processes.
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Figure 6.2: Hourly significant wave height record at Bilbao buoy from February 21,

1985 to July 13, 2009, annual maxima and peaks over the threshold u = 4.2.

These results are not surprising, since we are sampling fromgiven point-in-

time distributions, and thus the sampled data reproduce appropriately the tail of

interest, especially if large samples are used. However, when dealing with real

data sets, the point-in-time distribution does not usuallyfit appropriately the tail of

interest. This is the case for the significant wave height instrumental record (gray

line) associated with Bilbao buoy, shown in Figure6.2. Their corresponding annual

maxima (triangle dots) and peaks over the thresholdu = 4.2 m (circle dots) are also

shown. Note that the latter correspond to maximum values during independent

storms. The independence assumption is considered assuming that the minimum

distance in time between peaks must be 3 days. This data set consists of an hourly

time series of significant wave height in meters from February 21, 1985 to July 13,

2009.

Significant wave height is a very important parameter for harbor design. Ave-

rage conditions of significant wave height are relevant to analyze operating condi-

tions for ships, whereas extreme significant wave heights are used for the stability

design of protection structures, such as, vertical breakwaters, dikes, etc.. Thus the

importance of characterizing both distributions.
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Figure 6.3: Graphical representation of the point-in-time and extreme(annual

maxima) distributions for the significant wave height record at Bilbao buoy.

We fit both the significant wave height record and the corresponding peaks over

the selected threshold to different parametric distributions: i) a Gaussian Mixture

with 4 components for the point-in-time distribution, and ii) a POT model for the

annual maxima (extreme-value) distribution, it is possible to plot i) the histograms,

ii) the fitted densities, iii) the empirical cumulative and iv) fitted cumulative dis-

tributions (see Figure6.3). Note that they all present very good fitting diagnostic

plots. However, it is difficult to establish whether the fitted point-in-time distribu-

tion is capable of reproducing the tail of interest.

If data and fits from Bilbao buoy are plotted using the proposed graphical repre-

sentation, results shown in Figure6.4are obtained. Note that this representation al-

lows establishing the range of validity of the fitted point-in-time distribution, which

starts distorting results above4.8 meters of significant wave height approximately.

The hourly probability of not exceeding this value within the year is0.996. Above

these quantile and probability thresholds, the point-in-time distribution is no longer

valid. It can be observed that the extreme value fit allows reproducing appropriately

the tail of the distribution, especially for long equivalent return periods.
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Figure 6.4: Graphical representation of the point-in-time and extremedistributions

for the significant wave height record at Bilbao buoy using the proposed method.

These results confirm the appropriateness of using the graphical representation

to help understanding the relationship between both the point-in-time and extreme

regimes, posing a new challenge for LEVEL III reliability methods based on Monte

Carlo simulation techniques: is it possible to simulate, from given point-in-time

and extreme-value fitted distributions, samples reproducing both regimes simulta-

neously? The answer to this question is given in the next section.

5 Point-in-time and extreme-value simultaneous Monte

Carlo simulation technique
Consider the stochastic processXt, whose point-in-time and extreme-value proba-

bility distributions areFPT(x) andFEV(x), respectively. In Figure6.5 the PDFs

and CDFs of both distributions in case of maxima are plotted.The first impor-

tant issue in order to reproduce both distributions is to select the thresholdxlim,
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this limit corresponds to the maximum value which is governed by the point-in-

time distribution. From the practical point of view, it is established based on the

proposed graphical representation, as shown in panel left-below from Figure6.5,

being thex-value whose associated return periodsTPT andTEV
r are closer. This

condition can be mathematically defined as:

Minimize
x

(

TPT − TEV
r

)2
, (6.3)

which in case of dealing with maxima becomes:

Minimize
x

(

1

1− FPT(x)
− n

1− FEV(x)

)2

. (6.4)

Note that in case both regimes intersect, as it is shown in left-bottom panel from

Figure6.5, the optimal solution from problem (6.3) corresponds to zero, i.e.xlim
is the solution of the implicit equationTPT = TEV

r . Nevertheless, we advocate

this approach to overcome the difficulties of solving the implicit equation for those

cases where there is no solution (no intersection of regimes). In case of multiple

solutions, we take the minimum solution if we are dealing with maxima.

The probability of not exceeding the maximum valuexlim within the point-in-

time distribution is equal topPTlim = FPT(xlim), thus the simulation technique uses

FPT(x) for probabilities lower than or equal topPTlim (which is equivalent tox lower

thanxlim), andFEV(x) otherwise. However, for the extreme regime the probability

must be re-scaled considering:

1. The extreme distribution is related to the maximum ofn elements from the

point-in-time distribution.

2. There is a probabilitypEVlim = FEV(xlim) of not exceeding thexlim-value wi-

thin the extreme distribution, which is usually different from zero. This is the

case shown in Figure6.5. Thus, those values are not sampled again because

they are already considered within the point-in-time distribution.

Finally, when dealing with maxima, and for given uniformly distributed ran-

dom numberuPT representing a probability, the corresponding simulated value is

obtained as follows:

x =

{

FPT−1
(

uPT
)

if uPT ≤ pPTlim (x ≤ xlim)

FEV−1
(

uEV
)

if uPT > pPTlim (x > xlim),
(6.5)
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Figure 6.5: Graphical illustration of the simulation process.

where the re-scaled probability, is equal to:

uEV = pEVlim +
uPT − pPTlim
1− pPTlim

(1− pEVlim). (6.6)

The bottom-right panel of Figure6.5 shows the graphical interpretation of the

probability re-scaling, which constitutes a distorted zoom of the panel above. Note

that expression (6.5) allows reproducing both the point-in-time and extreme-value

distributions simultaneously.

To shown the functioning of the proposed simulation technique, 1000 years

of hourly significant wave height data has been sampled using(6.5) and the fitted

distributions at Bilbao buoy location. For this particularcasen = 8766 corresponds

to the mean number of hours per year used to evaluate the annual maxima.
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Figure 6.6: Graphical representation of the point-in-time and extremesimulation re-

sults for the significant wave height at Bilbao buoy locationusing the proposed me-

thod.

For the significant wave record, the solution of equation (6.4) is xlim = 6.404,

and the associated probabilities arepPTlim = 0.99996 andpEVlim = 0.66. These values

correspond to return periodsTlim ≈ 25817 hours andTlim = 2.94 years, respecti-

vely, which are equivalent.

Results from the simulation process are shown in Figure6.6. Note that the

sample fits appropriately the point-in-time distribution up to the probability related

to Tlim = 2.94 years return period, and finally the data fits to the extreme distri-

bution for larger return periods. In addition, results related to the annual maxima

are also shown. Note also the good fitting shown with respect to the theoretical

extreme value distribution aboveTlim = 2.94 years return period.

These results confirm the validity and good performance of the proposed pro-

cedure.
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6 Autocorrelation
The Monte Carlo simulation method provided in the previous section focusses on

the marginal distribution associated with an stochastic process. However, it has

been recognized by different authors the importance of the temporal correlation of

any stochastic process, or even the cross correlation between different stochastic

processes (see, for instance, [18, 29, 120]).

An appropriate description of any stochastic process requires recognizing its

time dependent nature. For this particular case, the proposed method given in (6.5)

is combined with results from [68, 120]. Basically, the method encompasses the

following sequential procedure:

1. Using the point-in-time marginal distribution function, transform the time

series of historical valuesxt into a normalized Gaussian time series using

the following transformation [123]:

Φ(zt) = FPT(xt). (6.7)

Transformation (6.7) allows preserving the marginal distribution of the ran-

dom variables involved.

2. Fitting of a time series model (e.g., an ARMA process) to the transformed

historical values obtained in step1 above. The obtained model allows taking

into account temporal correlations.

The time series theory based onautoregressive moving average(ARMA) mo-

dels allows incorporating the temporal structure. An ARMA(p, q) processZ is

mathematically expressed as

zt =

p
∑

j=1

φjzt−j + εt −
q
∑

j=1

θjεt−j, (6.8)

whereφi; i = 1, . . . , p are the autoregressive parameters, andθj ; j = 1, . . . , q

are the moving average parameters. The termεt stands for an uncorrelated normal

stochastic process with mean zero and varianceσ2
ε , and it is also uncorrelated with

zt−1, zt−2, . . . , zt−p. This process is so-calledwhite noise, innovation term, orerror

term.
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Observe in (6.8) that zt boils down to a linear combination of white noises,

and as such, the marginal distribution associated with the stochastic processZ is

necessarily normal, which is in accordance with the first assumption (6.7).

Note that a stationary process is assumed. In case of dealingwith seasonal be-

haviors, which could wreck the stationarity, non-stationary probability distributions

could be used instead [107, 108, 110, 116] to easily overcome this difficulty.

It is important to point out that only the data belonging to the point-in-time

distribution is used to characterize the autocorrelation structure of the stochastic

process, because the extreme data is by definition independent, and has no infor-

mation about autocorrelations. Note also that using ARMA models, only second-

moment properties are preserved by the autocorrelation, and this might not provide

a complete description in the case of a non-Gaussian process. That is the reason

why non-gaussian processes are transformed into gaussian processes using (6.7).

References [68, 120] proved that this approach reproduces autocorrelations inthe

original domain with a high degree of accuracy.

6.1 The algorithm

Once the parameters of the ARMA model are estimated from the transformed time

series, it is very simple to incorporate the autocorrelation structure to the final se-

ries. The overall method consists of the following sequential procedure:

• Step 1:Estimate the parameters of the probability distributions that best fits

both the point-in-time and the extreme-value regimes. Thisis done using the

available historical data.

• Step 2: Apply transformation (6.7) to the historical time series using the

point-in-time marginal cumulative distribution function. This way, atrans-

formedseries is obtained with an associated standard normal marginal distri-

bution.

• Step 3:Adjust a univariate ARMA model to the correspondingtransformed

series (obtained in Step 2 above). The fitting process to be performed in this

step is well known (see, e.g., [128]) and yields uncorrelated normal residuals

(historical errors) with zero mean and constant varianceσ2
ε .
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• Step 4:Simulate independent normal errors with zero mean and varianceσ2
ε ,

i.e. εsimt .

• Step 5:Introduce the simulated error seriesεsimt into the ARMA model fitted

in Step 3, obtainingzsim
t .

• Step 6:Calculate the time seriesusim
t = Φ(zsim

t ), which is uniformly distri-

buted.

• Step 7: In this step, the inverse transformation (6.5) is applied to this serie

in order to enforce the actual marginal distribution that has been estimated in

Step 1.

Note that the method proposed has the following advantages with respect to

existing Monte Carlo simulation methods:

1. It reproduces the autocorrelation function as in [21] or [22].

2. It preserves the statistical properties of the stochastic process in terms of the

marginal distribution, reproducing appropriately not only the central part of

the distribution (point-in-time) but also the right-tail (extremes).

In addition, as proposed in [120], the method could be easily extended to simu-

late different stochastic processes at the same time. This would allow replicating

the main cross-correlations coefficients characterizing those stochastic processes,

and not just the contemporaneous. However, since it is not clear how the cross

correlation in the point-in-time and extreme distributions behaves, this is a subject

for further research.

6.2 Illustrative example

To show the functioning of the proposed algorithm, the following ARMA process

(1, 1) with parametersφ1 = −0.8, θ1 = 0.3, and varianceσ2
ε = 1 is considered.

According to [14], the variance of the process isσ2
Z =

1 + θ21 − 2φ1θ1
1− φ2

1

σ2
ε ≈ 4.3611

(σZ ≈ 2.0883). One hundred years of hourly dataxsim (n = 100× 24× 365.25 =

876600) is sampled from this stochastic process. This sample is considered as our
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initial data set. The idea is to use this sample and the algorithm presented in the pre-

vious subsection to generate one thousand years (ny = 1000) of hourly dataysim

considering the autocorrelation, the fitted point-in-timeand extreme-value distri-

butions, and compare results with the reference values fromthe original stochastic

process and the initial sample dataxsim.

The results of the application of the algorithm are the following:

• Step 1: The point-in-time distribution ofxsim is normal, and its estimated

parameters and 95% confidence bands are:

µ̂ = 2.7840× 10−4 (−0.0041, 0.0047)
σ̂ = 2.0910 (2.0879, 2.0941),

(6.9)

which both contain the true values0 and2.0883, respectively. For the ex-

treme value distribution, the annual maxima from the samplexsim, i.e.xmax
sim ,

follows a GEV distribution with estimated parameters and 95% confidence

bounds:
µ̂e = 7.7050 (7.7007, 7.7093)

ψ̂ = 0.6020 (0.5989, 0.6051)

ξ̂ = −0.0178 (−0.0227,−0.0129).

(6.10)

• Step 2:Apply transformation (6.7) to the historical time series (xsim) using

the normally distributed point-in-time marginal distribution.

• Step 3:Adjust an univariate ARMA model to the correspondingtransformed

serieszsim, obtaining the following parameter estimates:φ̂ = −0.8011 and

θ̂ = 0.2984. The residuals standard deviation isσ̂ε = 0.4781.

Figure6.7 shows the proposed graphical interpretation applied to thesample

dataxsim andxmax
sim . Dark gray line corresponds to(TPT, x) for the point-in-time

fitted distribution. Light gray line corresponds to(TEV
r , x) associated with the GEV

fitted distribution for annual maxima. Note that both fitted distributions differ at the

right tail of the distribution (see the corresponding zoom in the figure, where data

has been remove to ease visualization), which is usually thecase when fitting real

data. Light gray circle dots correspond to the sample data values, and black dots

are related to sample annual maxima.
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Figure 6.7: Graphical representation of the point-in-time and extremeregimes for the

illustrative autocorrelated normal stochastic process.

• Step 4: In order to obtainny = 1000 years of hourly data,n = 1000 ×
365.25× 24 independent normal errors are sampled with standard deviation

σ̂ε = 0.4781, i.e. εsimy .

• Step 5:Introduce the sampled error time series into the ARMA model fitted

in Step 3, obtainingzsim
y .

• Step 6:Calculate the uniformly distributed time series of probabilitiesusim.

• Step 7: In this step, the inverse transformation (6.5) is applied to getysim.

Note that for this particular example, the solution of equation (6.4) is xlim =

8.3396, and the associated probabilities arepPTlim = 0.9999667 andpEVlim =

0.7082156. These values correspond to return periodsTlim = 30042.7 hours

andTlim = 3.427 years, respectively, which are equivalent.

The graphical illustration of the 1000 years simulated sample is given in Fi-

gure6.8. Note that it shows the same results as Figure6.7but replacing the sample

dataxsim andxmax
sim used to fit the distributions, by the 1000 years simulated samples
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Figure 6.8: Graphical representation of the point-in-time and extremeregimes for the

illustrative autocorrelated normal stochastic process.

ysim andymax
sim using the proposed procedure. Note the accuracy of the method to

reproduce both the point-in-time distribution up toxlim = 8.3396, where the simu-

lated sample starts following the extreme-value distribution. In addition, several

tests have been performed to check simulation results :

1. For the point-in-time distribution, a two-sample Kolmogorov-Smirnov test

with 0.05 significance level is performed to compare the distributions of the

initial sample data (xsim) and the simulation results (ysim). Note that thep-

value obtained is0.5966, which is higher than the significance level, i.e. the

null hypothesis that both samples come from the same continuous distribu-

tion is accepted.

2. Analogously, the two-sample Kolmogorov-Smirnov test isapplied to com-

pare the samples related to annual maxima, i.e.xmax
sim versusymax

sim . Note that

thep-value obtained is0.1183, so that the null hypothesis that both samples

come from the same extreme-value continuous distribution is accepted.

3. Finally, an ARMA model is fitted to the simulated sample, obtaining the
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7 New insights into structural reliability methods

following parameter estimates:̂φ = −0.8002 and θ̂ = 0.2998. The corres-

ponding residuals standard deviation isσ̂ε = 1.00015, which almost coincide

with the one from the initial ARMA process.

These results confirm the appropriate performance of the proposed procedure to

reproduce i) the point-in-time and extreme-value distributions and ii) the temporal

dependence structure of any stochastic process.

7 New insights into structural reliability methods
Besides providing a new Monte Carlo simulation method for dealing with point-

in-time and extreme-value distributions, new insights about how to incorporate this

methodology within alternative reliability analysis methods, such asFirst Order

Reliability Methods(FORM), are also given. Note that we assume that the reader

is familiar with LEVEL III methods ([43, 54, 74, 79, 134] ) for evaluating the

reliability index associated with any mode of failure:

β = Minimum
z

√

∑

∀i

z2i (6.11)

subject to

g(x,η) = 0, (6.12)

T(x,η) = z, (6.13)

whereg(x,η) = 0 is the failure condition, andT(x,η) is the transformation

([140]) giving the values of the standard and independent normal variablesz as

a function of the values of the randomx and designη variables. The probability of

failurepf is related to the reliability index by the approximate relationpf = Φ(−β),
whereΦ(·) is the cumulative distribution function of the standard normal random

variable.

The key issue when dealing with structural risk problems where the point-in-

time and extreme-value distributions may coexist, is to decide which one is more

relevant for the corresponding limit state. The Monte Carlomethod proposed in

this chapter deals with the simulation process giving more importance to the point-

in-time probability distribution, and it uses the re-scaled extreme-value regime to
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improve accuracy in the right tail of the distribution. According to (6.5)-(6.6) and

consideringu = Φ(zPT), the Rosenblatt transformation (6.13) becomes:

Φ(zPT) = FPT (x) if x ≤ xlim or zPT ≤ zlim

pEVlim +
Φ(zPT)− pPTlim

1− pPTlim
(1− pEVlim) = FEV (x) if x > xlim or zPT > zlim,

(6.14)

wherezlim = Φ−1
(

pPTlim
)

. It is important to point out that transformation (6.14)

takes into account the point-in-time distribution, but improving accuracy on the

upper tail by using the re-scaled extreme-value distribution. Probabilities of failure

obtained from this approach are related to the point-in-time frequency sampling,

i.e. hours.

Alternatively, if only the extreme-value distribution is considered, transforma-

tion (6.13) becomes:

Φ(zEV) = FEV (x) . (6.15)

In this case, probabilities of failure are associated with the extreme-value fre-

quency sampling, i.e. years.

From the practical point of view, we advocate the use of transformation (6.14)

and consider probabilities related to the point-in-time frequency sampling, because

it allows the consideration of any kind of limit state equation. However, it is impor-

tant to define the maximum probabilities of failure for each failure mode in terms of

the point-in-time frequency sampling. For instance, if an inner harbor must be de-

signed so that ships might not maneuver during no more than 1000 hours per year,

then the acceptable probability of failure must be equal topf = 1000/(365.25×24).

Besides, if the off-shore breakwater of the same harbor mustbe designed to fail on

average once every 25 years, the acceptable probability of failure must be equal to

pf = 1/(25 × 365.25 × 24). Considering those probability values, transformation

(6.14) may be used for both operating and ultimate limit states without any further

consideration.
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8 Case study: Environmental conditions for offshore

wind turbine design

8.1 IEC61400-3 Standards for off-shore wind turbine design

To show the importance of considering both the point-in-time and right tail distri-

butions in engineering design, herein we present an examplefrom the IEC61400-3

Standards, which establishes the set of design requirements made to ensure that

off-shore wind turbines are appropriately engineered against damage from hazards.

This code divide external marine conditions related to agents into normal and ex-

treme categories.

In particular, and for the case of waves, it proposes the consideration of severe

sea states, which shall be considered in combination with normal wind conditions

for calculation of the ultimate loading of an offshore wind turbine during power

production. The model should associate a severe sea state with each wind speed in

the range corresponding to power production. The significant wave height for each

severe sea state shall be determined by extrapolation of appropriate site-specific

met-ocean data such that the combination of the significant wave height and the

wind speed has a recurrence period of 50 years. For all wind speeds, the uncondi-

tional extreme significant wave height with a recurrence period of 50 years may be

used as a conservative value forHs.

It is recommended by this guide to extrapolate met-ocean data using the so-

called Inverse First Order Reliability Method (IFORM). This method produces an

environmental contour defining, in a certain sense, 50-yearrecurrence period com-

binations of mean wind speeds,v, and significant wave heights,Hs. A common

way to construct this transformation is to apply the so called Rosenblatt ([140])

transformation as follows:

Φ(z1) = FV (v)
Φ(z2) = FHs|V (Hs) ,

(6.16)

whereFV (v) is the marginal distribution of mean wind speed, andFHs|V (Hs) is

the conditional distribution of significant wave heights for given values of the mean

wind speed. Using First Order Reliability Methods [45, 74] the points satisfying

the equationz21 + z22 = β2, is transformed into a curve in thev −Hs plane, which
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constitutes the environmental contour.β is the reliability index, whose required

value is obtained from the following equation:

Φ (β) = 1− 1

N
, (6.17)

whereN is the number of independent sea states in 50 years.

In our particular case, and according to the IEC 61400-3, fora sea state of 1

hourN = 50× 365× 24 and the required reliability index from expression (6.17)

is equal toβ ≈ 4.6.

8.2 Application of the evaluation of 50-year recurrence period

environmental contours

Let consider a specific location in the Northern Spanish coast as possible candidate

for an off-shore wind farm. We have at our disposal two times series of hourly

significant wave heights and hourly mean wind speeds at 10 meters height. Both

data sets come from reanalysis data bases GOW ([136]), DOW ([21]) and Sea-

Wind [109], respectively, calibrated using instrumental data (see [? ], [114], [117]).

First of all, marginal and conditional distributions ofHs andV given in ex-

pression (6.16) must be defined. The best diagnostic fit for the wind speed data

corresponds to the Generalized Extreme Value (GEV) distribution. The maximum

likelihood estimates arêµ = 6.0019, σ̂ = 3.5812 and ψ̂ = 0.0236 for the loca-

tion, scale and shape parameters, respectively. The histogram and fitted probability

density functions shown in Figure6.9(upper panel) apparently present good fitting

diagnostics, however, if we analyze in detail the right tailin terms of equivalent

return periods (lower panel of Figure6.9), the GEV distribution does not appro-

priately reproduce extreme winds (gray dashed line) with respect to data. This

problem is solved by fitting the Pareto distribution above thresholdVlim = 20 m/s.

The maximum likelihood estimates for the Pareto distribution areθ̂ = 3.1004 and

ε̂ = −0.1467 for the scale and shape parameters, respectively. Note thatthe tail

behavior is completely different for the GEV and Pareto fits,while the one related

to GEV defines a heavy tail (Frechet), the one associated withPareto exhibits a

bounded tail (Weibull).
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Figure 6.9: Histogram and fitted probability density function of wind speedV , and

graphical representation in terms of equivalent return periods using the method propo-

sed by Mı́nguez, Guanche and Méndez (2012).

The conditional distribution of significant wave height forgiven values of the

wind speed has been fitted using 27 different GEV fits. Each data setΩi; i =

1, . . . , 27 is conformed choosingHsi-values so that their corresponding wind speeds

Vi hold the following conditions:j − 1 ≤ Vi < j; ∀j = 1, . . . , 26 andVi >

j − 1; j = 27. Figure6.10(upper panel) shows the histograms and fitted proba-

bility density functions for each significant wave height data set. Note that they

present good fitting diagnostics for the bulk of data.

However, if we take a closer look at the right tail of the distributions (Fi-

gure6.10, lower panel), it is clear that the GEV distribution does notappropria-

tely reproduce extreme significant wave heights (gray dashed line) with respect to

data for medium-low values of wind speed. Analogously to theprevious case, this

problem is solved by fitting the Pareto distribution above the threshold associated

with the 95% percentile. Lower panel of Figure6.10shows how the Pareto fit re-

produces the right tail of the distribution. Note that the GEV distribution is not

valid for significant wave height values associated with wind speeds below 16m/s.

Above this threshold value, the GEV may be considered appropriate although the

use Pareto fit on the tail is more convenient.

To get an smooth transition for the GEV parameters of the probability density

functionHs|V , the location, scale and shape parameters are fitted to a third order
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Figure 6.10: Histograms and fitted probability density functions of significant wave

heightHs for given values of the wind speedV .
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p̂1 (×10−5) p̂2 p̂3 p̂4

µ(V ) −26.150 0.01603 −0.1179 1.191

σ(V ) −7.240 0.003438 −0.004429 0.4573

ψ(V ) 6.429 −0.003046 0.02069 0.05389

θ(V ) 4.362 −0.002161 0.03037 0.4693

ε(V ) 3.545 −0.001666 0.01482 −0.1192

H lim
s (V ) −22.120 0.01277 −0.01653 2.568

Table 6.1: Optimal parameter estimates of the regression models givenin (6.18) and

(6.19).

polynomial:

µ(V ) = pµ1V
3 + pµ2V

2 + pµ3V + pµ4
σ(V ) = pσ1V

3 + pσ2V
2 + pσ3V + pσ4

ψ(V ) = pψ1 V
3 + pψ2 V

2 + pψ3 V + pψ4 .
(6.18)

Analogously, Pareto distribution parameters (scale and shape) and threshold

H lim
s are also smoothed as follows:

θ(V ) = pθ1V
3 + pθ2V

2 + pθ3V + pθ4
ε(V ) = pε1V

3 + pε2V
2 + pε3V + pε4

H lim
s (V ) = pHs

1 V 3 + pHs

2 V 2 + pHs

3 V + pHs

4 .
(6.19)

Maximum likelihood estimates of these parameters are givenin Table6.1.

The 50-year environmental contour for a 1-hour sea state duration, using ex-

pressions (6.16) and (6.18), and only considering the GEV fittings related to both

the wind speed and significant wave height, are shown in Figure6.11. Contours are

associated with equivalent return periods of 100 hours, 1, 5, 50, 100 and 500 years,

respectively. 50-year environmental contour is in black. This result confirms that

the 50-year environmental contour overestimate in excess significant wave heights

for wind speeds lower than≈ 20 m/s, which is precisely the interval where the

GEV fit does not appropriately reproduce the tail of the distribution. In contrast,

for wind speeds above≈ 20 m/s results are in accordance with data.

Alternatively, we could calculate the 50-year environmental contour using the
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Figure 6.11: 50-year environmental contour plot according to IEC 61400-3 standards,

without specific tail fitting.

following Rosenblatt transformation:

Φ(z1)=











FPT
V (V ) if V ≤ Vlim,

pPTV,lim +
FEV

V (V )−pEV

V,lim

1−pEV

V,lim

(1− pPTV,lim)

if V > Vlim,

Φ(z2)=











FPT
Hs|V

(Hs) if Hs ≤ Hs,lim,

pPTHs,lim
+

FEV

Hs|V
(Hs)−pEV

Hs,lim

1−pEV

Hs,lim

(1− pPTHs,lim
)

if Hs > Hs,lim.

(6.20)

In this particular case, we made distinction between the point-in-time distribu-

tion, that represents the probabilistic behavior of all data range but the right tail,

and the extreme-value distribution, that characterizes the right tail above the selec-

ted threshold. Note that the point-in-time distributionsFPT
V andFPT

Hs|V
correspond,

respectively, toFV (v) andFHs|V (Hs) from expression (6.16). The new 50-year

environmental contour for a 1-hour sea state duration improving the probability

density functions at the right tails is shown in Figure6.12. The improvement in

the region of interest, i.e. the one associated with high values of the significant

wave height and wind speeds in the range corresponding to power production, is

significant. Note that with previous approach significant wave heights related to
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Figure 6.12: 50-year environmental contour plot according to IEC 61400-3 standards,

but including specific tail fitting.

the 50-year environmental contour for low wind speed valuesare above 10 meters,

even higher than those related to high wind speeds, which is physically unlikely.

The IEC 61400-3 standards also recommend to use for all wind speeds of the

unconditional extreme significant wave height with a recurrence period of 50 years

as a conservative value forHs. Note that according to the fitting shown in Fi-

gure6.13, this conservative value is equal to9.6483 m (white circle marker speci-

fier). Since this value is above the 50-year environmental contour (see Figure6.12),

it is the one designer must take if the second analysis is performed. In contrast, in

case using the first analysis, designer would use significantwave heights conside-

rable above this threshold for low wind speeds, leading to anexcessive conserva-

tionist.

These results clearly demonstrated the importance of considering both the point-

in-time and right-tail distributions.

It is important to clarify that in both cases, the left tail ofthe distributions is

reproduced inappropriately. Contour plot intercepts negative wind speed and si-

gnificant wave height values, which is impossible. However,this does not distort

the relevant results from the engineering perspective, i.e. those in the upper tail.
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Figure 6.13: Histogram and fitted probability density function of unconditional si-

gnificant wave heightHs, and graphical representation in terms of equivalent return

periods using the method proposed by Mı́nguez, Guanche and Méndez (2012).

Alternatively, an specific distribution for the left tail could be used instead.

9 Conclusions
The method proposed in this chapter provides new insights onthe relationship bet-

ween the point-in-time and extreme-value distributions associated with any sto-

chastic process, and a possible way to deal with both distributions at the same time.

The advances with respect to the state-of-the-art can be summarized as follows:

1. A new graphical representation to help understanding therelationship bet-

ween both distributions is proposed.

2. A new Monte Carlo simulation technique holding the following requirements

is provided:

• It is able to reproduce both the point-in-time and extreme-value re-

gimes.

• It maintains the temporal dependence structure of the stochastic process

through ARMA models.

3. In addition, some hints about extending the method into FORM techniques

are given. In this case, the method frees the engineer to decide about what

regime should be used within the design process.
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9 Conclusions

All the methods have been tested using different synthetically generated samples

and an example based on real data. Results confirm the good behavior of the propo-

sed methods, and their suitability to i) support engineers on the design process and

ii) help understanding the relationship between both point-in-time and extreme-

value regime.

To further reinforce our arguments, a practical example about how to construct

environmental contours for the definition of design requirements for offshore wind

turbines (IEC 61400-3) is given, emphasizing possible problems which may lead

to unsafe or excessively conservatism designs.

Nevertheless, further work is required to improve the methodology in terms of:

1. Which is the appropriate threshold value for the definition of the right-tail

distribution?

2. How to transform equivalent return periods into real return periods? This is-

sue is related to the dependence assumption of extremes, andcould be solved

introducing the extremal index concept.

Further research must be also done on cross-correlations between different sto-

chastic processes, however, the results showed in this chapter constitute a clear

advance on the knowledge of point-in-time and extreme-value distributions.

Note that although all the material developed in this chapter is related to the

upper tail of the point-in-time distribution (maxima), alternative formulations can

be straightforwardly obtained for dealing with minima.
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CHAPTER

7
Conclusions and Future

Research

1 Summary of contributions

In this section a summary of the most relevant contributionspresented in this thesis

is presented:

1. An autoregressive logistic model has been presented to study atmospheric

conditions in terms of synoptical circulation patterns. The nominal character

of the model allows the inclusion of autoregressive terms aswell as other

covariates of different nature such as seasonality, interannual variability and

long term trends.

2. A methodology has been developed to simulate hourly trivariate sea state

time series. This methodology combines the logistic model mentioned before

and an existent technique of multivariate simulation. Thismethodology takes

into account various natural processes with different temporal and spatial

scales.
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3. A hybrid method of clusterization and interpolation has been used to estimate

loads in maritime structures. This hybrid method has already been used to

propagate waves from deep seas to shallows seas. Here, the methodology has

been successfully applied to two different structures, a vertical breakwater

and an offshore wind turbine.

4. Finally, a methodology of simulation has been developed which is able to

join both the extreme and mean regimes of single variables.

2 Conclusions
After a revision of the contributions contained within the presented work, the fol-

lowing conclusions can be made

1. An accurate simulation of the variables involved in maritime structure de-

sign requires a comprehensive knowledge of the relevant processes and the

engaged forces. Similarly, a wave climate study entails thedetailed study

of the associated atmospheric conditions. Additionally, the winds and pres-

sure fields in the region of influence of the structure being designed must be

properly considered.

2. In addition to properly accounting for the spatial scalesof the process, a tho-

rough knowledge and consideration of the different temporal scales involved

in wave climates is also required. It is obvious that waves present a strong

autocorrelation, but there are also other longer term variations that must be

taken into account such as seasonality, interannual variability and long term

trends.

3. The use of statistical techniques provides for the efficient management of

long term time series, enabling its treatment, and allows estimates of the re-

levant parameters to be derived from them. The hybrid technique proposed

serves to objectively select cases to be modeled numerically or in the labora-

tory.
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4. The availability of long term time series allows the simulation to be based on

empirical distributions. But to correctly characterize and simulate extreme

events, they have to be appropriately modeled. In this way, the simulation is

not constrained to the historical records.

2.1 On the autoregressive logistic model

• Previous states of the process can be considered in the model, and this is

relevant in atmospheric studies.

• The nominal nature of the model enhances the physical sense of circulation

pattern clusterization.

• The model allows for the inclusion of long-term trends whichare mathema-

tically consistent, so that the probabilities associated with each weather type

always range between 0 and 1.

• It is possible to simultaneously take into account the influence of different

variables.

• Synoptical circulation patterns are defined by clusterization techniques such

as k-means. This technique is appropriated to define pressure fields.

• Long-term climate variability resulting from any change inthe covariates can

be studied due to the flexibility of the proposed model.

2.2 On the methodology used to simulate trivariate sea states

• The combination of different statistical techniques allows for the considera-

tion of different temporal and spatial scales.

• The procedure developed enables the reproduction of trivariate sea states,

while considering the correlation between the variables.

• The hourly time series simulated are conditioned to daily mean conditions.

This is an easy way to facilitate the study of the relationship between the

local wave climate and the governing atmospheric conditions.
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• Daily mean sea conditions are classified using k-means. Thistechnique

creates groups of similar characteristic states, which is convenient to enable

the definition of synoptic patterns.

• Simulating daily Sea Level Pressure fields decomposed into PCs allows for

the generation of different atmospheric scenarios.

2.3 On the procedure to transfer sea states to design parameters

• Multivariate long term time series management can be efficiently accompli-

shed by combining statistical techniques.

• The MDA algorithm allows the selection of representative sea states. Un-

like other techniques this one can include extreme events within the selected

states.

• The RBF interpolation technique enables the generation of long term time

series of design parameters.

• To estimate the design parameters, semi-empirical formulation has been used,

but the methodology would be similar to the cases using numerical or physi-

cal models.

2.4 On the simulation technique used to consider mean and ex-

treme regimes simultaneously

• A new way of graphical representation that facilitates the understanding of

the relation between both regimes has been presented.

• The simulation technique proposed is able to reproduce boththe point–in–

time and extreme value regimes, and maintains the temporal dependence

structure of the stochastic process using ARMA models.

• Simulating both regimes simultaneously eliminates havingto decide which

regime to apply in each case.
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3 Future research topics

Nevertheless, further work is required to improve the methodology. Both the

appropriate selection of the threshold value for the definition of the upper–tail dis-

tribution, as well as how to transform equivalent return periods into real return per-

iods, require additional study. These issues are related tothe dependence assump-

tion of extremes, and may be solved by introducing the extremal index concept.

3 Future research topics
This PhD work constitutes a step towards further research related to different issues.

Here, some of these challenges are proposed.

Regarding the development of logistic models to analyze atmospheric or coastal

conditions:

• The determination of the optimal number of synoptical patterns to describe

the atmospheric processes and/or marine dynamics. In the literature there

exists discrepancies between authors, related to the optimal number of wea-

ther types to consider. Further research must be done on thisissue in order to

be able to establish objective criteria to determine the correct optimal number

of synoptical patterns that should be taken into account.

• Comparison of the different climate change scenarios. By means of the lo-

gistic model proposed, the different climate change scenarios could be simu-

lated and comparisons of the different trends obtained.

Concerning the climate–based simulation of sea states technique:

• Inclusion of extreme regimes models to the simulation technique. All the

work shown related to the multivariate simulation has been done based on

the empirical distribution of the variables from the historical databases. Be-

cause of this, the obvious subsequent path for future research would be to de-

velop the methodology of univariate simulation that takes into account both

regimes for multivariate cases. This extension is not trivial and requires a

detailed study of the limits between both regimes for each variable and an

exploration of the correlations between extreme events.
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• Addition of more variables of interest to the sea state simulation procedure.

Depending on the structure to be designed, it may be of interest to have the

availability of wind or currents time series. In order to accomplish this, cor-

relations between variables and autocorrelations within them should be ana-

lyzed. Moreover, the addition of other covariates that explain the processes

besides seasonality, trends and interannual variability may be required.

• Generalization of the proposed method. Previous to the lines mentioned be-

fore, it would be necessary to generalize proposed methodologies. Its appli-

cability in different locations where wave climate characteristics and invol-

ved processes are different must be tested.

• Climate-based simulation technique of extreme events. In the literature there

are works to generate synthetic time series of extreme events [75] that also

distinguish between two regimes when simulating. It would be of conside-

rable interest in maritime design fields to be able to combinethe existent ex-

treme simulation technique with the climate–based technique proposed here.

In this way, the influence of different natural variables with their own tempo-

ral and space scales could be taken into account.

With regard to the transference of sea states to design parameters:

• Application of the MDARBF methodology to laboratory tests planning. The

methodology has been proven with semi–empirical formulation, but its ap-

plication to laboratory tests plan designs would be of considerable interest.

In order to do this, some analysis should be done to establishthe minimum

number of tests to be taken into account and to determine the repeatability

achievable in the laboratory.

• Determination of the weaknesses of the process. Further research must be

done in order to determine which part of the methodology entails higher un-

certainties: the number of the selected cases by the MDA or the interpolation

technique. Once this is established, the process could be improved by esti-

mating the uncertainty associated with a certain number of selected cases.

In the area of simultaneous extreme and mean regimes simulation:
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3 Future research topics

• Inclusion of an extremal index. Regarding the simulation technique to consi-

der simultaneously extreme and mean regimes, the inclusionof an extremal

index to undertake the transition between mean and extreme regimes has to

be thoroughly investigated. In the methodology proposed here, this transition

does not consider this index, resulting in a sharp transition that may produce

inaccurate results for lower return periods.

• Threshold selection. Concerning the pointintime and extreme distributions

used in the simulation technique proposed, the determination of an objective

criteria to appropriately define the threshold between bothdistributions is a

subject for additional research
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