
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA

UNIVERSIDAD DE CANTABRIA

Trabajo Fin de Máster Desarrollo de una planta de

generación eléctrica y de vapor

Development of a power and steam generation plant

Para acceder al Título de Máster Universitario en

INGENIERÍA MARINA

Autor: Diego Moreira García

Director: Alfredo Girón Portilla

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA

UNIVERSIDAD DE CANTABRIA

Trabajo Fin de Máster

Desarrollo de una planta de generación eléctrica y de vapor

Development of an electrical generation plant and steam

Para acceder al Título de Máster Universitario en INGENIERÍA MARINA

Septiembre 2023

AVISO DE RESPONSABILIDAD

Este documento es el resultado del trabajo Fin de Máster de un alumno, siendo su autor responsable de su contenido.

Se trata de un trabajo académico que puede contener errores detectados por el tribunal y que pueden no haber sido corregidos por el autor en la presente edición.

Debido a dicha orientación académica no debe hacerse un uso profesional de su contenido.

Este tipo de trabajos, junto con su defensa, pueden haber obtenido una nota que oscila entre 5 y 10 puntos, por lo que la calidad y el número de errores que puedan contener difieren en gran medida entre unos trabajos y otros.

La Universidad de Cantabria, la Escuela Superior de Náutica, los miembros del tribunal de Trabajos Fin de Máster, así como el profesor/a no son responsables del contenido de este trabajo

Resumen

El objetivo de este trabajo consiste en la instalación de una planta donde se genera electricidad mediante el uso de un motor de combustión interna que usa como combustible gas natural para alimentar los equipos auxiliares de la planta y la industria donde se instale, así como la venta de energía sobrante a la red. Al mismo tiempo los gases de escape procedentes del motor son conducidos a una caldera para producir vapor que se envía a diferentes procesos de la industria.

Para tomar la decisión de la construcción de la planta, previamente se realiza un estudio eléctrico, térmico y de viabilidad económica, los cuales están descritos en el presente trabajo.

Palabras clave

Planta

Gas natural

Precio

Electricidad

Viabilidad

Beneficio

Abstract

The objective of this work consists in the installation of a plant where electricity is generated through the use of an internal combustion engine that uses natural gas as fuel to feed the auxiliary equipment of the plant and the industry where it is installed, as well as the sale of excess energy to the network. At the same time, the exhaust gases from the engine are led to a boiler to produce steam that is sent to different processes in the industry.

To make the decision to build the plant, an electrical, thermal and economic feasibility study is previously carried out, which are described in this work.

Keywords

Plant

Natural gas

Price

Electricity

Viability

Benefit

INDICE

1	INT	RODUCCIÓN	5
1.1	Obje	tivo	5
1.2	Alca	nce	5
1.3	Defii	nición de cogeneración	б
1.4	Norr	nas y referencias	7
1	.4.1	Disposiciones legales y normas a aplicar	7
1.5	Requ	uisitos de diseño	10
1	.5.1	Térmicos	10
1	.5.2	Eléctrico	10
1	.5.3	Emplazamiento	12
1.6	Anál	isis de soluciones	12
1.7	Elec	ción de la tecnología	14
2	ME	MORIA	. 15
2.1	Desc	ripción del proceso	15
2.2	Elem	entos de la instalación	17
2	.2.1	Motor de combustión interna	17
2	.2.2	Generador	23
2	.2.3	Compresor de aire	25
2	.2.4	Secador de aire	26
2	.2.5	Botellas de almacenamiento de aire	26
2	.2.6	Torres de refrigeración	26
2	.2.7	Tanques de compensación	28
2	.2.8	Tanque de almacenamiento de agua y aceite	28
2	.2.9	Bomba de trasiego	30

2	.2.10	Bomba de llenado de aceite a los motores	30
2	.2.11	Bomba de agua	31
2	.2.12	Puente grúa	31
2	.2.13	Ventilación de la planta	32
2	.2.14	Transformadores	33
2	.2.15	Instalación eléctrica	35
2.3	Plan de	e mantenimiento de la instalación	40
3	CÁLO	CULOS	42
3.1	Eléctric	cos	42
3.2	Térmic	os	44
3.3	Rendin	nientos	47
3.4	Cálculo	s simplificados	49
3	.4.1 D	liagrama de Sankey	50
3.5	Ingreso	os por venta de electricidad a la red	51
4	PRES	SUPUESTO DE LA INSTALACIÓN	54
5	ESTU	JDIO DE VIABILIDAD	59
5.1	Análisis	s del proyecto	60
5	.1.1 A	nálisis de rentabilidad	60
	5.1.1.1	Valor actualizado neto (VAN)	61
	5.1.1.2	Tasa interna de retorno o tasa interna de rentabilidad (TIR)	61
	5.1.1.3	Periodo de retorno de la inversión o Pay-back:	62
5.2	Caculo	s de rentabilidad	63
5	.2.1 E	n función de la orden TED/1295/2022, de 22 de diciembre	64
5	22 F	n función de la orden TED/171/2020	74

6 PL	ANIFICACIÓN	84
7 PL	IEGO DE CONDICIONES	86
7.1 Disp	posiciones generales	86
7.1.1	Objeto	86
7.1.2	Contrato. Responsabilidad del adjudicatario	87
7.1.3	Programa	87
7.1.4	Estudios, documentación técnica	88
7.1.5	Pliegos, instrucciones y normas aplicables	89
7.1.6	Seguridad y accidentes de trabajo	90
7.2 Cali	dad de los materiales	91
7.2.1	Materiales en general	91
7.2.2	Aceros	91
7.2.3	Otros materiales	91
7.3 REG	SLAS DE CÁLCULO	91
7.3.1	Normativa	91
7.4 DISI	POSICIONES GENERALES DE LAS OBRAS	92
7.4.1	Replanteo de la obra	92
7.4.2	Plazo de ejecución	92
7.4.3	Mejoras y variaciones en el proyecto	92
7.4.4	Contradicciones, errores u omisiones en los documentos	93
7.4.5	Trabajo defectuoso o no permitido	93
7.4.6	Subalternos de la obra	93
7.4.7	Seguro	94
7.5 Insp	pección, recepción y plazo de garantía	95
7.5.1	Inspección	95
7.5.2	Montaje. Inspección	95
7.5.3	Actas de fin de montaje	95
7.5.4	Ajuste, pruebas y servicio de prueba	96
755	Poconción provicional	06

7.5.6	Periodo de garantía	96
7.5.7	Recepción definitiva	97
7.6 Pago	o de las obras. Legislación	97
7.6.1	Definición de precios	97
7.6.2	Condiciones de pago	98
7.6.3	Penalizaciones	98
7.6.4	Rescisión del contrato	99
	NCLUSIONES	
	NEXOS	
10.1 P	lanos	102
10.1.1	Planta inferior	103
10.1.2	Planta superior	104
10.1.3	Esquema eléctrico	105

1 Introducción

En esta sección se describe el objetivo, alcance y una descripción de la cogeneración

1.1 Objetivo

Proyecto para la construcción de una planta de cogeneración en una industria textil, papelera, envasadora..., formada por un motor de combustión interna que utiliza como combustible gas natural y los equipos auxiliares necesarios para el correcto funcionamiento de la instalación con la finalidad de:

- Producir energía eléctrica para el funcionamiento de la industria y de la propia instalación
- Venta de energía a la red.
- Aprovechar la energía térmica de los gases de escape para la producción de vapor.

1.2 Alcance

En el presente proyecto se especificarán todos los elementos necesarios para llevar a cabo la construcción de la planta, así como la tecnología a aplicar atendiendo a:

- Demanda energética
- Demanda térmica

En el desarrollo del proyecto no se valorará la construcción de la nave que albergará la instalación, pero se presenta un plano con una posible distribución de los elementos dentro de la propia instalación.

Para que este proyecto cumpla las normas exigidas por el estado, se seguirá la normativa vigente para un correcto desarrollo de la instalación.[1]

1.3 Definición de cogeneración

"La cogeneración consiste en la producción simultánea de energía eléctrica y energía térmica a partir de una fuente primaria. La energía térmica residual no se desprecia, sino que se aprovechada en los procesos industriales. La cogeneración es una de las mejores alternativas como método de conservación de energía acorde con las políticas de globalización económica regional e internacional orientadas a lograr un desarrollo sostenible".[2]

Los elementos que componen una planta de cogeneración son los siguientes:

- Fuente de energía primaria: suele ser gas natural, gasóleo o fue-oil.
- Elemento motor: transforma la energía térmica del combustible en energía mecánica. Existen diversas opciones; turbinas de gas, turbinas de vapor o motores alternativos.
- Sistema de aprovechamiento de energía mecánica: se suele utilizar un alternador que trasforma la energía mecánica del motor en energía eléctrica.
- Sistema de aprovechamiento de calor: puede tratarse de calderas recuperadoras de calor de gases de escape, secaderos o intercambiadores de calor. Para la producción de frío a partir del calor obtenido se utilizan sistemas de absorción.
- Sistemas de refrigeración: utilizados para evacuar la energía térmica no aprovechada que debe ser evacuada. Se suelen utilizar torres de refrigeración, los aerocondensadores o intercambiadores.
- Sistema de tratamiento de agua: el fluido que utilizan (generalmente agua), tanto el sistema de refrigeración como el aprovechamiento de calor, requiere unas especificaciones en las características físico-

químicas y deben establecerse una serie de sistemas para su tratamiento y control.

- Sistema de control: utilizado para controlar las instalaciones de forma automática.
- Sistema eléctrico: utilizado para alimentar los equipos auxiliares de la planta y para llevar a cabo la exportación/importación de energía eléctrica necesaria para cumplir el balance. Es muy importante que la instalación eléctrica de la planta de cogeneración sea fiable y que pueda trabajar en isla, para poder suministrar energía eléctrica ante una situación de deficiencia de la red externa.
- Otros sistemas auxiliares: aire comprimido, ventilación, aire acondicionado, etc.

1.4 Normas y referencias

1.4.1 Disposiciones legales y normas a aplicar

Para la realización del proyecto se han tenido en cuenta los siguientes reglamentos y normas:

- Directiva 2004/8/CE del Parlamento Europeo y del Consejo, de 11 de febrero de 2004, relativa al fomento de la cogeneración sobre la base de la demanda de calor útil en el mercado interior de la energía y por lo que se modifica la Directiva 92/42/CEE
- Estrategia de ahorro y eficiencia energética en España 2004-2012 y plan de acción 2008-2012
- Real decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.
- Real decreto 661/2007, de 16 de mayo, sobre el fomento de la cogeneración.

- Orden ITC/3519/2009, de 28 de diciembre, por lo que se revisan las tarifas y primas de las instalaciones del régimen especial, a partir del 1 de enero de 2010.
- Orden TED/171/2020, de 24 de febrero, por la que se actualizan los parámetros retributivos de las instalaciones tipo aplicables a determinadas instalaciones de reducción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos, a efectos de su aplicación al periodo regulatorio que tiene su inicio el 1 de enero de 20220.
- Orden TED/1295/2022, de 22 de diciembre, por la que se establecen los valores de la retribución a la operación correspondientes al segundo semestre natural del año 2022, aplicables a determinadas instalaciones de producción de energía eléctrica a partir de fuentes de energía renovable, cogeneración y residuos.
- Reglamento Electrotécnico de Baja Tensión, (R.E.B.T.) según Decreto 842/2002 de 2 de agosto.
- Real decreto 2060/2008, de 12 de diciembre, por el que se aprueba el Reglamento de equipos a presión y sus instrucciones técnicas complementarias.
- Orden de 17 de marzo de 1981 por el que se aprueba la instrucción técnica complementaria del reglamento de aparatos a presión.
- Orden de 11 de octubre de 1988 por la que se aprueba la instrucción técnica complementaria MIE-AP16 del reglamento de aparatos a presión relativos a centrales térmicas generadoras de energía eléctrica.
- Real decreto 337/2017, de 9 de mayo. Por el que se aprueba el reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus instrucciones técnicas complementarias TC-RAT de o1 a 23.
- Orden de 23, de junio de 1988 por la que se actualizan diversas instrucciones técnicas complementarias MIE-RAT del reglamento

sobre condiciones técnicas complementarias y garantías de seguridad en centrales eléctricas, subestaciones y centros de transformación.

- Reglamento Electrotécnico de Baja Tensión, (R.E.B.T.) según Decreto 842/2002 de 2 de agosto.
- Real decreto 223/2008, de 15 de febrero, por el que se aprueban el Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Líneas Eléctricas de Alta Tensión y sus Instrucciones Técnicas Complementarias ITC-LAT 01 a 09.
- Real decreto 1434/2002, de 27 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de gas natural.
- Real decreto 919/2006, de 28 de Julio, por el que se aprueban el reglamento técnico de distribución y utilización de combustibles gaseosos y sus instrucciones técnicas complementarias ICG 01 a 11.
- UNE-EN 12327/2015 infraestructura gasista. Estaciones e regulación de presión de gas para el transporte y la distribución.
- UNE60302/2015 canalizaciones para combustibles gaseosos.
- UNE-EN 12327:2013 sistemas de suministro de gas. Ensayos de presión, puesta en servicio y fuera de servicio.
- Real decreto 865/2003, de 4 de Julio. Por el que se establecen los criterios higiénico-sanitarios para la prevención y control de la legionela.
- Real decreto 486/1997, de 14 de abril, por el que se establecen las disposiciones mínimas de seguridad y salud en los lugares de trabajo.

1.5 Requisitos de diseño

1.5.1 Térmicos

Necesidad de una cantidad mínima de energía térmica necesaria para poder producir vapor por medio de una caldera a una presión entre 7 y 9 bar con una temperatura de 170°C.

1.5.2 Eléctrico

A continuación, se expone el consumo de energía eléctrica necesaria para la industria y el necesario para el funcionamiento de la planta (consumo de auxiliares)

Mes	Días	Energía eléctrica consumida por la industria	•
		kWmes	auxiliares kWmes
01-ene	31	1377640	384400
02-feb	28	1244320	347200
03-mar	31	1377640	384400
04-abr	30	1333200	372000
05-may	31	1377640	384400
06-jun	30	1333200	372000
07-jul	31	1377640	384400
08-ago	16	711040	198400
09-sep	30	1333200	372000
10-oct	31	1377640	384400
11-nov	30	1333200	372000
12-dic	16	711040	198400
Total	335	14887400	4154000

Tabla 1.3.2.1 Consumo de energía eléctrica al año (elaboración propia)

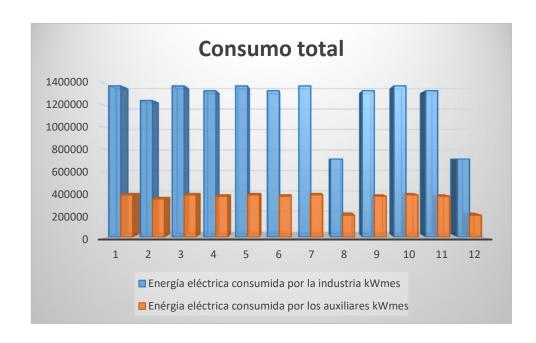


Tabla 1.3.2.2 Consumo de energía eléctrica al año (elaboración propia)

Se desea que la instalación se acoja al régimen especial de producción de energía eléctrica, dentro del subgrupo a.1.1, tal y como se indica en el R.D. 661/2007. Las ventajas de acogerse a este Real Decreto son principalmente económicas, ya que este otorga una prima por generación eléctrica a los productores de régimen especial.[3]

Como la potencia eléctrica que se producirá con la planta de cogeneración será inferior a 25 MW., el autoconsumo de energía eléctrica ha de ser un mínimo de 30%

Gracias a estos datos podemos calcular la potencia máxima de nuestra planta.

$$P = \frac{100 \cdot \text{Ctotal}}{30 \cdot \text{h}}$$
(fómula 1)

Ctotal=consumo energía eléctrica de auxiliares y fábrica

h=horas de funcionamiento anual (8040h)

Valor obtenido: P= 8065kW

1.5.3 Emplazamiento

Dado que esta planta a instalar no está definida para una industria en

concreto, ya que puede ser usada para diferentes tipos (textil, conserveras,

papeleras...) no podemos asignar una localización exacta, pero si que tiene

que cumplir una serie de requisitos, como los citados a continuación.

- Temperatura ambiente. Entre 2 y 30 °C, ya que fuera de estos valores

el rendimiento de la instalación será menor.

Disponer de una calificación de suelo como: urbano o industrial

dedicado a actividades industriales.

Tener acceso mediante transporte rodado o mediante canalización a

un suministro de gas natural estable.

Disponer de un caudal de agua que permita la refrigeración del sistema.

1.6 Análisis de soluciones

Para la construcción de una planta de cogeneración existen varias

alternativas, a continuación, citaremos las ventajas e inconvenientes de cada

una de ellas.

Motor alternativo de combustión interna con funcionamiento a gas

natural o a fuel oil pesado

12

Ventajas	Inconvenientes
Utilizan gran variedad de	Vida corta hasta 100000 h
combustible	
Bajo coste de adquisición	Recuperación de calor a 3 niveles y
	a baja temperatura
Tecnología sencilla y fiable	Mantenimiento frecuente
Facilidad de mantenimiento	Elementos contaminantes durante la
	combustión
Flexibilidad de funcionamiento,	
adaptándose con facilidad a	
variaciones de carga	
Alta proporción electricidad /calor	
Elevado rendimiento eléctrico	

Tabla 1.6.1 Motor alternativo de combustión interna (elaboración propia)

Diferencia entre motores a gas natural y a fuel oil pesado.

Gas	Fuel/Gasoil
Eficiencia entre 35-38%	Rendimiento térmico hasta 51%
Gran rendimiento en plantas de	Necesidad de planta de tratamiento
cogeneración entre 4-5MW	de combustible
Temperatura de gases de escape	2 circuitos de refrigeración, alta y baja
más elevadas	temperatura
No necesita tratamiento de	Variedades de fuel/gasoil
combustible	
Necesaria una estación de	
regulación y medida (E.R.M)	

Tabla 1.6.2 Motores de gas natural y de fuel oil (elaboración propia)

- Turbinas de gas

Ventajas	Inconvenientes
Puede usar gas, fuel o gasoil	Limitaciones debidas al fuel
Rentables para instalaciones de más	Periodo de vida relativamente corto
de 15MW	(15 años)
Calor de alta temperatura	Arranque relativamente lento
Gran fiabilidad	Tecnología no muy extendida

Tabla 1.6.3 Turbinas de gas (elaboración propia)

- Turbinas de vapor

Ventajas	Inconvenientes
Rendimiento alto	Baja proporción electricidad/calor
Puede usar gas natural, fuel o gasoil	Arranque lento
Periodo de vida largo (> 15 años)	Gran coste económico

Tabla 1.6.4 Turbina de vapor (elaboración propia)

1.7 Elección de la tecnología

La instalación que se instala tendrá una potencia de alrededor de 7500 kW debido a lo que la turbina de vapor y gas no son la opción más rentable en este caso, ya que se suelen usar para instalaciones de mayor potencia.

Debido a lo anterior, solo quedan 2 dos posibilidades, motores de combustión interna que funcionan a gas natural o fuel oil pesado. No debemos de olvidar que en la actualidad ya hay motores que funcionan con amoniaco, etanol y metanol, pero estos nuevos combustibles aún no están totalmente desarrollados y su suministro no puede ser constante por lo que se descartan.

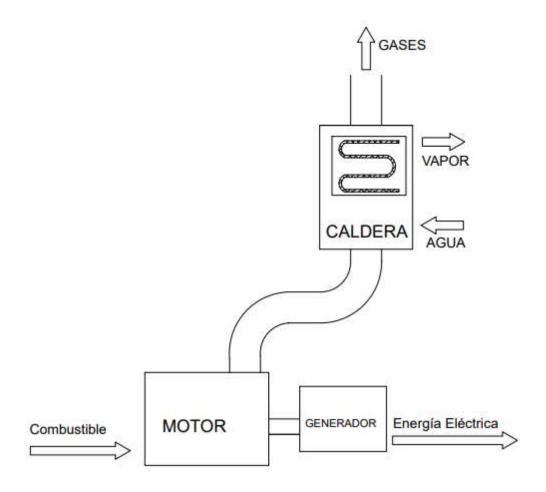
La elección entre el gas natural y el Fuel oil pesado resulta hoy en día sencillo ya que, debido a las directrices de la unión europea de intentar reducir la contaminación, así como incidir en la descarbonización, se opta por el uso de gas natural.

Ventajas del uso del gas natural:

- Reducción de elementos contaminantes como el NOx y SOx en la combustión
- No emite partículas sólidas que está compuesto en su mayoría por metano (95%)
- Suministrado continuo mediante canalización subterránea.
- Elevado poder calorífico.
- Energía con la mejor relación precio-poder calorífico.
- Se utiliza tal y como se extrae, no necesita una transformación previa.
- Alto poder calorífico

2 Memoria

2.1 Descripción del proceso


La instalación cuenta con un motor de combustión interna que funciona con gas natural, con una potencia de 7561 kW.

La instalación produce energía eléctrica que será consumida por la propia planta, por la fábrica a la que pertenezca y el resto será enviada a la red cumpliendo con el real decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.

Los gases de escape generados por el motor son enviados a una caldera pirotubular para la producción de vapor de agua.

Dibujo 2.1.1 Diseño instalación (elaboración propia)

A continuación, se presentan las prestaciones operacionales más importantes:

- Está diseña para trabajar en paralelo con la red de forma interconectada y por tanto puede realizar intercambios energéticos con la red que quedan reflejados en contadores de energía, siendo la modalidad de exportación de excedentes
- Está protegida ante las perturbaciones de la red, de forma que no cabe esperar averías derivadas de las mismas. En caso de perturbaciones de red, la central se aísla de la red en forma automática para así seguir

alimentando a la factoría ya que su demanda es inferior a la capacidad de motor. Ante una situación de isla los motores siguen funcionando.

- La sincronización de la red se realiza a través de un relé de comprobación de sincronismo que impedirá toda falsa maniobra.
- La operación de la central no es totalmente automática, sino que parte de las operaciones deben realizarse de forma manual por lo que para su correcto funcionamiento se requiere personal continuamente.
- Dispone de los elementos de control, indicación y registro de variables suficientes para su operación, análisis de funcionamiento y contabilización de las energías intercambiadas.
- La central está diseñada para trabajar de forma interrumpida durante todas las horas, pero son necesarias paradas para mantenimientos, revisiones y producirse paradas improvistas por averías.

2.2 Elementos de la instalación

2.2.1 Motor de combustión interna

El motor elegido es de la marca Bergen Engine, tipo BVG-16G, con una potencia de 7561kW. Motor en línea, de 4 tiempos, sobrealimentado que se compone, en lo esencial, de elementos estáticos, tales como bloque motor, las camisas de cilindro y las culatas, y de elementos móviles, como son el eje cigüeñal, el volante motor y el árbol de levas, así como el accionamiento de las bombas de combustible y de las válvulas.[4]

Ficha técnica

A continuación, se detallan las características de funcionamiento del motor n régimen normal de trabajo, es decir al 100% de la carga.

Motor					
Nº of cylinders	16				
Cylinder bore	350	mm			
Piston stoke	400	mm			
Rate site power	7532	kW			
Rate power	7700	kW			
Rate active power	7350	kW			
Generator efficiency	0.974				
Rate Output COS(phi)=0.9	8165	KVA			
Men effective pressure	19.6	bar			
Rates peed	750	rpm			
Mean piston speed	10	m/s			
Displacement	616	L			
Gas Data					
Specific energy consumption	7330	kJ/kWh			
Gas consumption	1435	m³n/h			
Gas consumtion	1125	kg/h			
Start air data					
Start air pressure max/min	30/15	bar			
Aie consumption start	15	m³/h			
Nº starts, 2000l receiver	3				
Lubrication data					
Lubrication oil	SAE 40				
Main pump capacity	99	m³/h			
Priming pump capacity	20	m³/h			
Lub. Oil pressure	4-5	Bar			
Lub. Oil temperatura	65	C°			
Spec. Lub. oil consumption	0.4	g/kWh			
Lub. oil consumption	3	kg/h			

Crankcese lub.oil max/min	4320/3440	L
Rocker arm system	0.5	Bar
Cooling wa	ter data	
Low temperatura stage		
Temp. Inlet max	45	°C
Water Flow	96	m³/h
Jacket water stage		
Pump capacity	144	m³/h
Water quantity	970	L
Temp. Normal	90	°C
Expansion tank	300	L
Air da	ta	
Turbocharger type	TPL65VA32	ABB
	VTG	
Charge air cooler	RR16V3540B	
Air consumption	30200	m³n/h
Air consumption	39100	kg/h
Charge air pressure	2.7	Bar
Charge air temperatura	55	°C
Exhaust	data	
Mass Flow	40300	kg/h
Volume Flow after turbin	76100	m³/h
Temperatue after cylinder	502	°C
Temperature after turbin	419	°C
Emissons		
NOx at 5% O2	500	Mg/ m³n
CO at 5% O2	750	Mg/ m³n
Heat dissi	pation	
Lub. oil cooler	860	kW

Low temperatura	445	kW
High temperatura	1205	kW
Jack water cooler		
Heat dissipation, engine	1070	kW
High tem ca-cooler	2275	kW
Ventilation		
Radiation engine	480	kW
Radiation generator	195	kW

Tabla 2.2.1.1 Datos técnicos del motor (ficha técnica Bergen Engines)

Durante la puesta en marcha de un motor de las mismas características se observan los siguientes datos:

Load	25%	50%	75%	100%
Engine speed rpm	751	750	751	750
Engine output kW	1880	3761	5609	7561
Generator load kW	1798	3660	5489	7407
Fuelrack mm	32	48	62	79
Spec. Heat comsu. kJ/kWh	8794	7963	7636	7435
Effective pressure bar	4.88	9.77	14.56	19.63

Tabla 2.2.1.2 Tabla datos motor puesta en marcha (ficha técnica Bergen Engines)

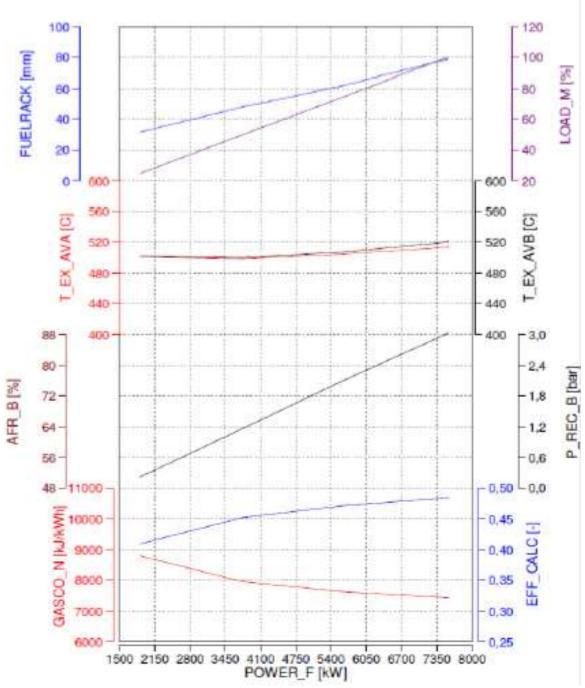


Gráfico 2.2.1.3 Datos puesta en marcha (ficha técnica Bergen Engines)

Gracias a estos datos obtenidos durante la puesta en marcha de un motor de las mismas características observamos que los datos son muy similares a los aportados por el fabricante en el momento de la adquisición del motor.

Los datos obtenidos en las tablas anteriores son utilizados en el apartado de

cálculos.

Para el correcto funcionamiento del motor es necesario que los elementos

citados a continuación astean acordes con las especificaciones descritas a

continuación:

Válvula control de temperatura de HT

Controla la temperatura de agua de HT gracias al desvío de agua procedente

de la refrigeración de las camisas, aire de carga y la línea de bypass.

Rango de operación: 82-91°C

Principio de operación: Desvío

Válvula control de temperatura de LT

Controla la temperatura de agua de LT mediante la mezcla del agua

procedente del intercambiador y el agua procedente del sistema de

enfriamiento.

Rango de operación: 37°C

Principio de operación: Mezcla

Válvula control temperatura de aceite

Controla la temperatura de entrada de aceite al motor mediante la mezcla del

aceite proveniente del enfriador y la línea de bypass.

Rango de operación: 54-63°C

Principio de operación: Mezcla

22

Válvula control de aire de carga

Controla la temperatura de aire de carga mediante la desviación del agua de LT y la línea de bypass.

Rango de operación: 55°C

Principio de operación: Derivación

2.2.2 Generador

El generador es una máquina eléctrica rotativa capaz de transformar energía mecánica (en forma de rotación) en energías eléctrica. Está compuesto principalmente por una parte móvil o rotor y una parte fija o estator. (elemento acoplado al motor)

General data		
Magnufactura	AVK	
Application	Stationary power plant	
Generator	DIG 167 d/8	
Poles	8	
Rate power	9156 kVA 7325kWe 7517kWe	
Power at pf 1.0	7373kVA 7373kWe 7517kWe	
Rate voltage	6kV	
Speed	750	
Frecunecy	50Hz	
Rate current	881.0A	
Winding pitch	Ca5/6	
Insulation class	Stator/rotor: Calss F	
Ambient teperature	40°C	
Cooling	IC01 Open circuit ventilation	

Coolant	Ambient air		
Cooling air volum	Min 5.5m³/s		
Momento f inertia	1880kgm²		
Weight	24600kg		
Connections and regulators			
Wires	4 terminals		
Operation mode	Parallel wirh the gird ans island mode		
Voltage regulator	Unitrol 1000-15 without MP		
Electrical data	100%	75%	50%
Power factor 0.8	97.45	97.44	97.06
Power factor 0.9	97.77	97.71	97.27
Power factor 0.9	98.08	97.97	97.48
Voltage regulation system			
Voltge regulator	ABB unitrol	1000-15	
Power supply of voltage regulator	Auxiliary winding		
Regulator loction	Loose for p	anel mountin	g
Transformer for value measuring	ng CT and VT included		
Instrumentation			
Temperatura in stator windings	2x3 PT100		
Bearing temperatura	1 PT100 Per bearing		
PT100 design/connection	Estándar design/2 wire connection		
Anticondensation heater	Supply 230	V, powe requ	ired 1500W

Tabla 2.2.2.1 Características del generador (ficha técnica AVK)

2.2.3 Compresor de aire

Datos técnicos	
Número de compresore instalados	2, uno en uso y otro en stand-by
Marca	Sperrre
Modelo	HL2/105A
N º de cilindros	2
Disposición de los cilindros	90° V
Números de etapas de compresión	2
Enfriamiento	Aire
Sistema de refrigeración	Directo axial ventilador accionado
Válvulas	Concéntricos válvula de placa
La capacidad de sumidero	10 litros
Sistema de lubricación	Salpicadura
Presión máxima de entrega	40 bar
Máxima temperatura ambiente	45 °C
Temperatura normal de salida de	Aprox.10 °C por encima de ambiente
aire	
Velocidad máxima	1800 rpm
Rotación	Hacia la izquierda (mirando el lado
	de accionamiento)
Capacidad	74 m³/h

Tabla 2.2.3.1 Datos técnico (ficha técnica Sperre)

[5]

2.2.4 Secador de aire

Características		
Marca	Sabroe Gmbh	
Modelo	SDE 122 ^a	
Presión admisible	16/30 bar	
Tº admisible	60 °C	
Voltaje	230 V	
Frecuencia	50 Hz	
Consumo	0,46 kW	
Refrigeración	R134a	

Tabla 2.2.4.1 Datos técnicos (ficha técnica Sabroe Gmbh)

2.2.5 Botellas de almacenamiento de aire

Características		
Número de botellas	2	
Marca	Termojet	
T ^a de diseño	100°C	
Capacidad	1m³	
Presión de trabajo	30bar	
Presión de prueba	46.5bar	
Peso	700kg	

Tabla 2.2.5.1 Datos técnicos (ficha técnica Termojet)

2.2.6 Torres de refrigeración

Su función es el enfriamiento del agua de los circuitos de HT y LT del motor d combustión interna.

Marca: Intercal

Modelo:

- Alta temperatura: P.I-16/3

Alto:3890 mm

Ancho:1950 mm

Largo 1950 mm

Caudal: 150 m³/h

Potencia motor: 5.5 kW

- Baja temperatura: P.I-11/3

Alto:3645 mm

Ancho:1650 mm

Largo 1650 mm

Caudal: 102 m³/h

Potencia motor: 3.5 kW

Componentes:

- Separador de gotas de alta eficiencia en PVC.
- Relleno laminar entrecruzado en PVC.
- Soportes de relleno en perfiles de poliéster reforzado con fibra de vidrio
 o en perfiles de acero galvanizados por inmersión en caliente.
- Distribución de agua mediante aspersores de gran diámetro y baja presión.
- Ventiladores axiales de bajo consumo.

- Motores eléctricos trifásicos con protección IP-55.
- Tortillería inoxidable.
- Ventiladores de bajo nivel sonoro.
- Equipos de tratamiento.
- Resistencias antihelio.
- Filtros y dispositivos anticavitantes.

Nota: los datos obtenidos para la elección de las torres se pueden comprobar en la tabla 2.2.1.1

2.2.7 Tanques de compensación

Su función es aportar agua a las líneas de alta y baja temperatura del motor.

Se dispone de 1 tanque para la línea de H.T y otro para la línea de B.T

EL tanque de H.T tiene una capacidad mínima de 500 litros mientras que el de baja es de 300 litros.

Son construidos de acero inoxidable, con línea de relleno, venteo, sensor de nivel y sensor de temperatura.

Nota: los datos obtenidos para la elección de las torres se pueden comprobar en la tabla 2.2.1.1

2.2.8 Tanque de almacenamiento de agua y aceite

Su función es almacenar el agua para su posterior uso, tanto para la refrigeración del motor como para la de las torres de refrigeración.

Se dispone de un tanque de almacenamiento de aceite de una capacidad de 27m³ (aceite de motor), dos tanques de almacenamiento de agua con una

capacidad de 50m³ (agua para las torres de refrigeración) y otro de 15 m³ (agua de relleno de los circuitos de HT y LT del motor).

Características de los tanques:

Clasificación: Tanque vertical con techo fijo

Normas aplicables: API 650

Norma que fija la construcción de tanques soldados para el almacenamiento de petróleo, aceite. La presión interna a la que pueden llegar a estar sometidos es de 15 psig, y una temperatura máxima de 90 °C. Con estas características son aptos para almacenar a la mayoría de los productos producidos en una refinería.

Generalidades:

- Boca de sondeo: para la medición manual de nivel y temperatura y para la extracción de muestras.
- Pasos de hombre: son bocas de aprox. 600 mm de diámetro para el ingreso al interior del tanque. La cantidad mínima necesaria la fija la norma en función del diámetro del tanque.
- Bocas de limpieza: se colocan cuando se considera necesario. Son aberturas de 1.2 x 1.5 m aprox. dependiendo del diámetro del tanque y de la altura.
- Base de hormigón: se construye un aro perimetral de hormigón sobre el que debe apoyar el tanque para evitar hundimiento en el terreno y corrosión de la chapa.
- Instalación contra incendios: debe cumplir con lo dispuesto por la ley 13660. Deben contar con fumáis que suministren espuma dentro del recipiente, y con un anillo de incendios que sea capaz de suministrar el caudal de agua mínimo que exige la ley.

Recinto: según lo exige la ley 13660, debe existir alrededor del tanque un recinto capaz de contener hasta el 10% más tanque. En caso de haber más de la capacidad máxima del de un tanque dentro del recinto, el mismo deberá ser capaz de contener la capacidad máxima del tanque más grande, tal de los tanques restantes más el 50% de la capacidad total de los tanques. Dicho recinto estará delimitado por un muro o talud de tierra.

- Válvulas de presión y vacío: Son necesarias debido al vaciado/llenado, aumento de la temperatura, exposición al fuego...

2.2.9 Bomba de trasiego

Características:

Marca: Azcue

Modelo: BT-DF

Presión: 10 bar

Viscosidad del fluido: 2 a 1500 cst (mm²/s)

Velocidad: 2900 rpm

Temperatura del fluido: máx. 100 °C

2.2.10 Bomba de llenado de aceite a los motores

Marca: Viscomat

Modelo: 90

Caudal: 50 I/min.

Tensión: 400/50

Presión: 5 bar

Velocidad máx.: 1450 rpm

2.2.11 Bomba de agua

Usada para suministrar agua a las torres de refrigeración. Se instalan 2, una funcionando como principal y otra como reserva.

Características:

Marca: Azcue

Modelo: BR

Presión máx.: 10 bar

Temperatura máx. del fluido: 90 °C

Cierre del eje: mecánico sin goteo

Sentido de giro: a derechas

2.2.12 Puente grúa

Se utiliza para el izado de equipos de gran peso

Características:

Marca: Abus

Modelo: Birrail ZLK

Peso aproximado: 4.3 Ton

Polipasto: Abus, modelo D

Tipo: GM832

Capacidad: 3,2 Ton

Recorrido del gancho: 6-10 m

Velocidad de elevación: 5 m/0,8 min

Velocidad traslación carro: 20 m/min.

Velocidad traslación puente: 32 m/min.

Tensión de servicio: 400 V 50 Hz

Caminos de rodadura de 2 x 30 m de longitud, formados por perfiles laminados y rectangular de 60 x 40 mm, calculados para una separación entre puntos de apoyo de 6 m. Sustentados por ménsulas existentes en las columnas de la nave.[6]

Distancia recorrida a lo ancho: 15 m

Mando a distancia mediante botonera colgante y mando radio.

2.2.13 Ventilación de la planta

Las renovaciones de aire en las naves industriales se miden en m³/h y se considera que una adecuada renovación es aquella que realiza un mínimo de 7 renovaciones por hora por lo que:

Q(caudal requerido)= vol.planta x nºrenovaciones= 3600 x 7=25200

Dados estos valores se montarán ventilación forzada mediante la instalación de 2 ventiladores.[7]

Características:

Marca: Nederman

Ventilador tipo: FM1000

Caudal: 14000 m³/h

Voltaje:400/690 V

Nivel ruido (DB): 76

Peso: 260 Kg

Potencia: 18,5 kW

2.2.14 Transformadores

Es necesario la instalación de dos transformadores, uno para el motor y otro para los equipos auxiliares.[8]

Características transformador auxiliar (1000kva):

Marca: Armanzabal (transformador sumergido en dieléctrico líquido)

Tensión primario: 20 kV

Tensión secundario: 420 V

Grupo de conexión: Dyn11

•

Perdidas en vacío: 1400 W

Perdidas en carga: 10500 W

Independencia de cortocircuito: 6%

Caída de tensión a plena carga: 1,22%

Rendimiento a plena carga: 98,82%

Largo: 1997 mm

Ancho: 1200 mm

Alto: 1158 mm

Normas: UNE 21428, EN 50464, IEC 60076

Litros aceite: 530

Peso total: 2430 kg

Características transformador de grupo (8000kva):

Marca: Scotech

Modelo: SS-8MVA-33/6.6(0.4)KV

Tipo: Transformador de potencia sumergido en aceite

Estándar: Amplificador IEC600076GG,SANS780

Potencia nominal: 8MVA

Frecuencia: 50 Hz

Fase: tres

Tipo de enfriamiento EN UNA

Voltaje primario:33kV

Voltaje secundario 6.6

Material de bobinado: cobre

Grupo de vectores: Dyn1yn1

Impedancia: 8%

Cambiador de grifo: NLTC

2.2.15 Instalación eléctrica

La planta de cogeneración consiste, en su vertiente eléctrica, en la implantación de un grupo motogenerador, que genera una potencia efectiva de 7561 kW que se conecta a un embarrado de distribución de 24 kV a través de un transformador de 8000 kVA.

La instalación e interconexión del grupo se realiza teniendo en cuenta:

El disparo de las protecciones provoca la separación entre los grupos y la red a través del interruptor de acople (quedando entonces en isla).

En caso de fallo de la red eléctrica se debe trabajar en isla y el grupo motogenerador debe suministrar la potencia demandada por la fábrica y los auxiliares.

Descripción de los elementos:

El alternador, junto con sus equipos auxiliares para medida, protección y sincronismo viene suministrado con el grupo motogenerador pero es necesario considerarlo para tener una visión global de la instalación eléctrica.

El sistema de excitación está formado por dos conjuntos: el inducido de excitación (que genera una corriente trifásica) y el puente rectificador trifásico (formado por diodos) conjuntamente entregan la corriente de excitación a la rueda del alternador. El inducido de excitación y el puente rectificador van montados en el rotor del alternador síncrono y están interconectados eléctricamente al campo rotativo de la máquina.

Elementos asociados al alternador:

- Transformadores de intensidad para protección, medida y regulación de cada generador.
- Transformadores de tensión para medida de cada generador.
- Resistencias de caldeo. Evita condensaciones cuando la máquina está parada.
- Equipos de medida. Cada generador dispone de voltímetro, amperímetro, frecuencímetro, indicador de factor de potencia y contador de energía activa.
- Controlador para mantener un determinado valor del factor de potencia en la interconexión con red.
- Equipo de sincronización automática, preparado para efectuar las operaciones de sincronismo.
- Relés de protección.

Sistema de control: El sistema de control es un sistema modular que tiene las funciones de regulación, control y protección; que son:

- Regular la velocidad.
- Regular la potencia.

- Equilibrio de potencias para el funcionamiento de varios generadores en paralelo.
- Ajustes de la potencia por sobretemperaturas y cargas puntuales.
- Control del motor, sus maniobras y seguridades (arranque, parada...)
- Relé de protección de máxima y mínima potencia. Controlan que el grupo motogenerador trabaje entre el 50% y el 100% de su potencia para que no existan problemas de lubricación, refrigeración y mecánicos.
- Relé de protección de potencia inversa (función 32). Tiene dos funciones. Una función consiste en evitar el funcionamiento del motor debido a una causa externa al generador (paro del motor por retorno de potencia activa), estando este acoplado a la red. La otra función consiste en evitar que la instalación vierta energía a la red a la que está conectado cuando se produzca alguna anomalía.
- Relé de protección de fallo de excitación (función 40). Realiza una protección contra retornos de potencia reactiva.
- Relé de protección de máxima tensión (función 59). Ajustada al 115%
 de la tensión nominal y con un temporizado de 2 s.
- Relé de protección de mínima tensión (función 27). Ajustada al 90% de la tensión nominal y con un temporizado de 3,5 s.
- Relé de protección de intensidad (función 50/51). Su función consiste en detectar las sobreintensidades monofásicas, bifásicas o trifásicas, ya sean debidas a una sobrecarga o un cortocircuito, ajustada al 105% de la intensidad nominal con un temporizado de 300 ms instantáneo para cortocircuitos.
- Relé de protección de desequilibrio de fases (función 46). Destinada a proteger el equipo contra desequilibrios de fase que puede hacer trabajar la máquina en condiciones forzadas.
- Relé de protección de falta a tierra (función 64). Su función consiste en detectar las fugas de corriente que debidas a un defecto del aislamiento

- o a la rotura de uno de los conductores de una fase activa, que provocará un cortocircuito a tierra.
- Relé de protección de frecuencia (función 81). Ajustada a una frecuencia máxima de 53 Hz y 1 s, y una mínima de 45 Hz y 2 s.
- Relé de protección térmica (función 49). Hay uno para cada devanado de cada fase.
- Contador Energía Activa y Energía Reactiva.
- Relé de protección de mínima tensión (función 27). Esta protección se ajusta de forma que al 104 V (87% de la tensión nominal) dispara en 1 s., y a 96 V (80% de la tensión nominal) dispara en 0.2 s. Esta protección hace actuar el interruptor del generador 52-G1 y 52-G2.
- Selector de modo de funcionamiento: MANUAL (arranque y parada manual) y AUTOMÁTICO (funcionamiento automático, tras recibir una señal externa).

Sincronización:

La conexión con la red deberá hacerse cuando en la operación de sincronización las diferencias entre las magnitudes eléctricas de los generadores y red sean inferiores o iguales a \pm 8 % de tensión, \pm 0,1 Hz de frecuencia y \pm 10° de fase.

Una vez esté sincronizado el generador con la red, el regulador de tensión y el de velocidad sólo podrán variar parcialmente los valores de tensión y frecuencia en función de la potencia de la línea. Si la potencia de la línea es alta, la tensión y frecuencia del generador tendrán que ser las de la línea.

Una diferencia en la frecuencia antes de la conexión en paralelo da lugar a una inmediata compensación de la potencia efectiva después de la conexión en paralelo, una diferencia de tensión antes de la conexión en paralelo da lugar a una inmediata compensación de la potencia reactiva tras la conexión en paralelo.

El sincronizador vigila y compara la tensión, la frecuencia y el ángulo de las entradas del aparato, calcula el avance de la consigna que realiza la sincronización para cerrar el interruptor de acople, en función a la velocidad de la diferencia de ángulos medida en cada momento y al valor del tiempo del interruptor, de esta forma se garantiza que el interruptor, en el momento de la coincidencia de fases, cierre dentro de un margen de tolerancia de ±5°.

Transformador:

Las protecciones propias de que dispone los transformadores son las siguientes:

- Relé Buchholz con contactos de alarma y disparo.
- Termómetro con contactos de alarma y disparo. Los valores de ajuste de temperatura son 85 °C para alarma y 95 °C para disparo.
- Indicador de nivel con contactos de alto y bajo nivel de aceite.
- Válvula de sobrepresión con contactos de disparo. El valor de ajuste es de 0,5 bar.

Puesta a tierra:

El sistema de puesta a tierra de protección y servicio de la instalación de cogeneración se compone de líneas de tierra, picas y puentes de prueba. Los cables de tierra se conectan en dos puntos a la red de tierras subterránea general.

Se conectan a la red de puesta a tierra las partes metálicas de la instalación que no estén en tensión normalmente pero que puedan estarlo a consecuencia de averías o causas fortuitas, tales como los chasis y los bastidores de los aparatos de maniobra, envolventes metálicas de las cabinas y carcasa de los transformadores y motogenerador.

En concreto se incluyen los cables para puesta a tierra de:

Partes metálicas de cuadros y cabinas de la central: celdas, cuadro de distribución de baja tensión de servicios auxiliares, cuadros de sala de control, cuadro general de baja tensión de la fábrica, etc.

Estructura de los motogenerador, estructura de elementos auxiliares de los grupos motogenerador, estructura de los transformadores de potencia.

Neutro de los generadores y transformadores.

El sistema de puesta a tierra consiste en un mallado con cable de cobre desnudo de 50 mm² que se entierra a una profundidad de 800 mm.

2.3 Plan de mantenimiento de la instalación

El objetivo del plan de mantenimiento es reducir las paradas inesperadas de la planta, ampliar la vida útil de los equipos, reducir los costes del mantenimiento, aumentar la eficiencia de la instalación y reducir al mínimo posible los stocks de la planta.

La instalación que se describe en este documento, está compuesta por muchos equipos con características diferentes por lo que se instala un programa de mantenimiento en la planta denominado TMmaster, que facilita la realización del mantenimiento de la misma. Se opta por este programa debido a su sencillez, bajo coste y eficiencia.

Debido a que se pretende optimizar lo máximo posible la instalación, se quieren evitar paradas de larga duración de la planta por lo que se realizará un mantenimiento mixto, es decir, mezcla entre el mantenimiento preventivo y el mantenimiento a 0 horas o también denominado overhaul, sin desechar el mantenimiento correctivo ya que este siempre está presente en todos los equipos.

El mantenimiento preventivo se aplicará a todos los elementos de la planta durante el funcionamiento normal de la misma sin la necesidad de la parada del equipo.

Por otro lado, el mantenimiento a 0 horas se realizará durante los periodos de parada de la planta que serán 15 días en agosto y 15 días en diciembre. En este tipo de mantenimiento se tendrá en cuenta las especificaciones del fabricante del equipo para llevar a cabo el mantenimiento mediante la toma de horas de los equipos, temperaturas, presiones...

Para reducir problemas durante el funcionamiento de la planta, siempre se realizarán los mantenimientos a 0 horas antes de que el equipo llegue a los valores límites marcados por el fabricante y siempre durante el periodo de para de la instalación, por lo que, si un equipo le falta por ejemplo 400 horas para llegar a su mantenimiento, este se realizará durante el tiempo de parada de la instalación. Esto es aplicable tanto a la parte mecánica como eléctrica/electrónica.

Para la realización de los mantenimientos distinguimos dos tipos de trabajos:

- Trabajos realizados por el personal de la planta.

Se encargan de los mantenimientos preventivos durante el funcionamiento normal de la instalación y de mantenimientos de 0 horas de equipos sencillos como pueden ser bombas de trasiego, compresores, filtros...

- Trabajos realizados por empresas externas.

Los trabajos de mantenimiento a 0 horas o overhauling son realizados por empresas que se dedican específicamente a una tarea concreta, como es el mantenimiento del motor de combustión interna, alternador, transformadores, torres de refrigeración, equipo eléctrico/eletrónico...

Con la utilización de estas empresas se asegura un buen mantenimiento del equipo y como consecuencia una reducción del tiempo de parada de la planta.

El mantenimiento mixto utilizado en esta planta permite una reducción de muy considerable de los tiempos de parada no previsto, con lo que la instalación puede estar a lo largo del año funcionando más horas.

La mayor desventaja de este tipo de mantenimiento es el incremento del coste del mismo, ya que se eleva un mínimo de un 2% con respecto a un mantenimiento preventivo en función de las horas de trabajo de los equipos.

En el apartado 5.2 del presente documento se puede comprobar el coste de mantenimiento anual asignada a la instalación.

3 Cálculos

En este apartado se exponen los cálculos realizados a la instalación, los cuales los dividiremos entre eléctricos, térmicos y de rendimiento.

Los cálculos son realizados mediante el programa EES (Engineering Equation Solver)

3.1 Eléctricos

Datos:

P_motor=7407 kW. Potencia desarrollada por el motor, medido en bornes del alternador (tabla 2.2.1.2)

h_año=8040 horas. Horas de trabajo anuales correspondientes a 355 días año (cabe recordar que la instalación para 15 días en Agosto para realizar el mantenimiento anual y otros 15 días en Diciembre para otros mantenimientos)

Resolución:

- P_total; Energía eléctrica total generada en un año

P total=P motor*h año= 5.95x10⁷ kWaño

(fórmula 2)

 P_caux; Energía eléctrica consumida por la propia planta para su funcionamiento. En este caso se considera que corresponde a un 7% de la producción total.

 $P_{\text{caux}} = P_{\text{total}}^*(7/100) = 4.169 \times 10^6 \text{ kWaño}$ (fórmula 3)

- P_fabrica Energía eléctrica que consume la fábrica a la que se le suministra la energía eléctrica. Para realzar este cálculo debemos referirnos a la tabla 1.3.2.1 donde aparece el dato de consumo anual de energía eléctrica de la industria/fabrica que es este caso es de 1.489E07 kWaño.

A partir de hacer una media, obtenemos que el consumo corresponde con el 25% de la producción total de energía anual

- P min; Potencia máxima a instalar en la planta.

$$P = \frac{100 \cdot \text{Ctotal}}{30 \cdot \text{h}}$$

(fórmula 4)

P_min=(100*(P_caux+P_fabrica))/(30*8040)= 7901 kW

Ctotal= P caux+P fabrica

H= h_año

Según el RD 661/2007 para que la instalación se acoja al régimen especial de producción de energía eléctrica el autoconsumo debe de ser como mínimo del 30% ya que la instalación a montar no supera los 25MW.

La planta a estudiar tiene un autoconsumo de 7% y el consumo de la industria/fabrica consume un 25%, en total 32%. Por lo que cumple con este apartado.

 P_exportar; Energía eléctrica máxima producida que se puede vender a la red. Este valor depende de si el rendimiento global de la instalación es mayor o igual al 75% (RD 616/2007), se comprobará en los apartados siguientes.

3.2 Térmicos

En este caso se hacen pasar los gases de escape del motor por una caldera para poder producir vapor y así alimentar a distintos procesos de la industria/fabrica.

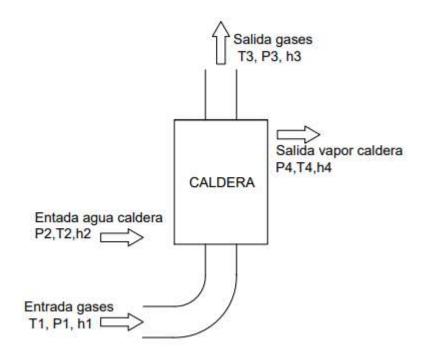


Gráfico 3.2.1 Proceso de cálculo de calor recuperado (elaboración propia)

Datos

Zona agua/vapor

"entrada"

P_2=910 kPa Presión de entra en la caldera

T_2=80 °C Temperatura de entrada en la caldera

h_2=ENTHALPY(WATER;T=T_2;P=P_2) Entalpia obtenida con la presión y temperatura.

"salida"

P_4=901 kPa Presión de salida en la caldera

T_4=180 °C Temperatura de entrada en la caldera

h_4=ENTHALPY(WATER;T=T_4;P=P_4) Entalpia obtenida con la presión y temperatura

Zona gases

"entrada"

T_1=419 °C temperatura entra de los gases a la caldera

h_1=ENTHALPY(AIR;T=T_1)

"salida"

T 3=160 °C temperatura salida de los gases de la caldera

h_3=ENTHALPY(AIR;T=T_3)

m_dot_g=40300 kg/h caudal masico de gases (dato obtenido en la tabla 2.2.1.1)

Para la realización de este cálculo tratamos los gases de escape como si fuera aire ya que la realización de estes cálculos sería muy laboriosa y llevaría mucho tiempo ya que habría que descomponer cada uno de los elementos que forman el gas natural.

Se realizar una igual de caudales masicos de gases y vapor

m dot $v^*(h 4-h 2)=m$ dot $g^*(h 1-h 3)$ (fórmula 5)

h 4= 2785 kJ/kg

 $h_2 = 335.6 \text{ kJ/kg}$

h_1= 705.1 kJ/kg

 $h_3 = 434.9 \text{ kJ/kg}$

m_dot_g=40300 kg/h

m_dot_v= 1.23 kg/h Caudal masico de vapor

- Calor transferido por hora

 $Q=m_dot_v^*(h_4-h_2)$

(fórmula 6)

Q= 3025 kW

- Calor transferido por año

Q_año=Q*H_año

(fórmula 7)

Qaño= 2.432x107 kWaño

3.3 Rendimientos

Consumo de combustible

C mhora=1125 kg/h consumo por hora (tabla 2.2.1.1, apartado Gas Data)

C_maño=C_mhora*H_año consumo combustible al año (fórmula 8)

C maño= 9.045x106 kg/año

- Pasar de kg/año a kcal/año

C_mañototal=C_maño*P_calorgn= 9.552x10¹⁰ kcal/año

(fórmula 9)

P_calorgn= 10560 kcal/kg PCl del gasnatural

Pasar de Kcal/año a kW /año

C combustible=C mañototal/V combustible

(fórmula 10)

C_combustible= 1.111x108 kW

V_combustible relación de 1kw= 859.83 kcal/h

- Rendimiento eléctrico equivalente (REE)

$$REE = \frac{E}{F_{CC} + F_{no-CHP, H postcombustión} - \frac{H_{CHP} + H_{no-CHP postcombustión}}{Ref H_{\eta}}$$
 (fórmula 11)

E= P_motaño= energía eléctrica producida

Fcc= C_combustible =consumo de combustible

Hchp= Q año = calor de cogeneración

RefH= Valor que aparece en tablas, Anexo I Y II 2007/74/CE

Los datos de Fno y Hno no son aplicables en este caso ya que nuestra instalación no tiene equipos de postcombustión.

REE=P_motaño/(C_combustible-(Q_año/0,9)) = $0.708 ext{ } 70.8\%$

Según el RD 436/2004 el REE debe ser mayor o igual al 55%, lo cual podemos afirmar que lo cumple, por tanto, sí que se puede acoger a lo descrito en el real decreto.

- Rendimiento global (fórmula 12)

R global=(energíaelectrica+calorrecuperado)/Consumocombustible

Energía electrica=P motaño

Calor de cogeneración=Q año

Consumo combustible=C_combustible

Rglobal=0.755 75.5%

Según el RD 616/2007 para poder exportar la energía generada como de cogeneración el rendimiento global debe de ser igual o mayor que el 75%, en este caso se cumple, por tanto, la electricidad generada y no consumida puede ser vendida como de cogeneración.

Rendimiento eléctrico

(fórmula 13)

R_electrico=energíaelectrica/Consumocombustible= 0.5361 53.61%

- Rendimiento térmico

(fórmula 14)

R_termico=Calorrecuperado/Consumocombustible= 0.2189 21.89%

3.4 Cálculos simplificados

A continuación, se expone una tabla con los datos obtenidos más relevantes para 1año de trabajo.

Energía producida	5.95x10 ⁷ kWaño
Energía consumida por la industria	1.489x10 ⁷ kWaño
Energía consumida por auxiliares	4.169x10 ⁶ kWaño
Energía a exportar	4.05x10 ⁷ kWaño
Calor de cogeneración (recuperado)	2.432x10 ⁷ kWaño
Rendimiento eléctrico equivalente	70.08%
Rendimiento eléctrico	53.61%
Rendimiento térmico	21.89%
Rendimiento global	75.5%

Tabla 3.4.1 Tabla resumen cálculos (elaboración propia)

3.4.1 Diagrama de Sankey

Son representaciones simbólicas formadas por nodos y flujos relacionados entre sí. Los diagramas poseen como característica principal una anchura proporcional de los flujos y de los nodos a los valores que los determinan. Es una herramienta muy intuitiva para visualizar la cantidad y la conectividad de los parámetros[9]



Gráfico 3.4.1.1 Diagrama de Sankey (elaboración propia)

3.5 Ingresos por venta de electricidad a la red

La instalación que se está describiendo en este documento pertenece al grupo a1, subgrupo a1.1, debido a que todo el proceso se genera como mínimo con un 95% de gas natural, es decir, todo el combustible utilizado es el mismo.

Para que la instalación se pueda acoger al régimen especial regulado la instalación debe pertenecer al grupo citado en el párrafo anterior, así como tener un REE en promedio medio de un periodo anual que sea igual o superior al que corresponde en la siguiente tabla. Norma existente en el anexo II del real decreto 436/2004, de 12 de marzo. Actualmente esta normativa sigue en vigor.[10]

Tipo de combustible	REE — Porcentaje
Combustibles líquidos en centrales con calderas. Combustibles líquidos en motores térmicos Combustibles sólidos Gas natural y GLP en motores térmicos Gas natural y GLP en turbinas de gas Otras tecnologías y/o combustibles	49 56 49 55 59

Tabla 3.5.1 Rendimiento eléctrico equivalente (real decreto 436/2004)

Por otro lado, y no menos importante, el valor por defecto de la relación entre electricidad y calor (comúnmente llamo rendimiento total) debe ser igual o superior al valor de la tabla siguiente para así poder vender el exceso de energía eléctrica a la red con los incentivos que aparecen en el Real Decreto correspondiente.

Tipo de unidad	Valor por defecto para la relación entre electricidad y calor C
Turbina de gas de ciclo combinado con recu- peración del calor	0,95 0,45
ción	0,45
Turbina de gas con recuperación del calor Motor de combustión interna	0,55
Motor de combustión interna	0,75

Tabla 3.5.2 Rendimiento total (real decreto 436/2004)

Revisando el apartado 3.4, observamos que estos dos valores son superados por nuestra planta, por lo que se pueden acoger a los incentivos anteriormente citados. También podemos afirmar que se considera cogeneración de alta eficiencia ya que cumple los criterios expuestos en el RD 616/2007, de 11 de mayo que está presente en lo posteriores reales decretos.[11]

Debido al conflicto en Ucrania, el precio del gas natural se elevó mucho por lo que el Gobierno implemento medida para contrarrestar el impacto sobre el mercado mayorista de electricidad. Debido a lo cual se establece un mecanismo de ajuste temporal de costes de producción de las instalaciones que utilizan gas natural. Esta medida tiene vigencia desde el 14 de Junio y por un periodo de 12 meses. Orden TED/1295/2022, de 22 de diciembre.[12]

Por medio del código de identificación IT-01211 (equivalente a nuestra instalación) tenemos que el valor de la retribución a la operación es de 123.924€/MWh.

Por otro lado, mediante el anexo II de la orden TED/171/2020, de 24 de febrero, tenemos que el parámetro retribuido a la inversión por un periodo de 25 años es de 76963€/Mw.[13]

A continuación, se realiza una tabla teniendo en cuenta los valores del periodo transitorio.

Retribución a la inversión	76963	€/MW
Retribución a la operación	123,924	€/MWh
Energía a exportar	40495,5	MW
Potencia de la planta	7,407	MW
Beneficio por inversión	570064,941	€
Beneficio a la operación	5018364,342	€
Beneficio total	5588429,283	€

Tabla 3.5.3 Datos para periodo transitorio (real decreto 436/2004)

Para una situación normalizada se aplicaría lo siguiente (orden TED/171/2020, de 24 de febrero) y el anexo II de la orden TED/171/2020, de 24 de febrero.

- Retribución a la aplicación= 48.82€/MWh
- Retribución por operación= 37.63€/MWh

- Retribución a la inversión= 76963 €/MW

Tabla para periodo normalizado

Retribución a la inversión	76963	€/MW
Retribución a la operación	37,63	€/MWh
Retribución a la aplicación	48,82	€/MWh
Energía a exportar	40495,5	MW
Potencia de la planta	7,407	MW
Beneficio por inversión	570064,941	€
Beneficio operación + inversión	3500835,98	€
Beneficio total	4070900,92	€

Tabla 3.5.4 Datos para el periodo normalizado (elaboración propia)

4 Presupuesto de la instalación

Presupuesto			
Elemento/descripción	Cantidad	Precio	
Elementos principales			
Motor Bergen engine, tipo BVG-16G			
Enfriador H.T	1	1.850.000 €	
Enfriador L.T	l l	1.050.000 €	
Estación de regulación y medida Generador síncrono trifásico (AVK)			
Poles 8			
Rate power 9156KVA 7325KVA 7517KVA	1	164.800 €	
Rate voltaje 6kV	'	104.000 €	
Speed 750			
Frecuncy 50Hz			

Transformador auxiliar (1000Kva)		
Marca: Armanzabal		
Tensión primario: 20kV		
Tensión secundario:420V	1	44.190 €
Grupo de conexión: Dyn11		
Pérdidas en vacío:1400W		
Pérdidas en carga: 10500W Transformador grupo (8000Kva)		
Marca:Scotech		
Modelo:SS-8MVA-33/6.6(0.4)kV		
Potencia nominal: 8MW		
Frecuencia: 50Hz	1	156.580 €
Fases:3		
Voltaje primario:33kV		
Voltaje secundario: 6.6		
Torre refrigeración HT		
Marca: Intercal		
Modelo: P.I-16/3	1	7.286,12 €
Caudal: 150m³/h		
Potencia motor: 5.5 kW		
Torre refrigeración LT		
Marca: Intercal	1	5.687,43 €
Modelo: P.I-11/3		

Caudal: 102m³/h		
Potencia motor: 3.5 kW		
Tanque de compensación HT		
Acero inoxidable	1	1.930,43 €
Capacidad:500 litros		
Tanque de compensación LT		
Acero inoxidable	1	1.530,15 €
Capacidad:300 litros		
Equipos auxiliares		2.232.004,13 €
Equipos auxiliares		
Compresor de aire		
Marca: Sperre		
Modelo:HL2/120		
Nº cilindros: 2		
Nº etapas de compresión: 2	2	19.230,44 €
Enfriamiento: aire		
Presión máxima: 40 bar		
T ^a ambiente máxima : 45°C		
Velociad máxima: 1800rpm		
Secador de aire		
Marca:Sabroe Gmbh		
Modelo: SDE 122	2	3.830,80 €
Presión admisible: 16/30 bar		3.030,00 €
T ^a admisible: 60°C		
Refrigerante: R134a		

Botellas almacenamiento aire		
Marca: Termojet		
T ^a diseño: 100°C		
Capacidad: 1m³	2	78.916,50 €
Presión de trabajo: 30bar		
Peso: 700kg		
Bomba de trasiego		
Marca: Azcue	2	7.880 €
Modelo: BT-DF		7.000 €
Presión: 10bar		
Bomba llenado aceite motores		
Marca: Viscomat		
Modelo: 90	1	1.358,23 €
Caudal: 50l/min		
Velocidad máxima: 1450rpm		
Bomba de agua		
Marca: Azcue		
Modelo: BR	2	4.960 €
Presión: 10bar		
T ^a máxima fluido: 90°C		
Ventilación		
Marca: Nederman		
Tipo: FM1000	2	3.713 €
Voltaje:440/690V		
	1	

Caudal: 14000m³/h		
Nivel ruido: 76		
Peso: 260kg		
Puente grúa		
Marca: Abus		
Modelo: Birrail ZLK	1	58.723,15 €
Capacidad 4.3T		
A los a a su a suria su ta		178.612 €
Almacenamiento		
Tanque almacenamiento agua para torres de refrigeración		
Construcción: Acero soldado	1	49.165,35 €
Capacidad: 50m³	'	10.100,00 C
Tratamiento: Interno con pintura para almacenamiento de agua		
Tanque almacenamiento agua para relleno circuitos motor		
Construcción: Acero soldado	1	34.520 €
Capacidad: 15m³		
Tratamiento: Interno con pintura para almacenamiento de agua		
Tanque almacenamiento aceite del motor		
Construcción: Acero soldado		
Capacidad: 27m³	1	39.250,65 €
Tratamiento: Interno con pintura para almacenamiento de aceites		
		122.936,00 €
Edificación		

Nave de prefabricado de hormigón		
	1	149.811,26 €
Dimensiones (m): 27 largo x20 ancho x 12 alto		
Muro contención derrames tanques		
Discoursiance (m) 7 - male - 11 7 lance - 14 5 - 14-	1	23.564,14 €
Dimensiones (m): 7 ancho x 7 largo x 1.5 alto		470 075 40 6
Doute eléctrice		173.375,40 €
Parte eléctrica		
Cableado eléctrico	1	57.365,15 €
Sala de control	1	5.460,33 €
Sala de armarios	1	8.654,65 €
		71.480,13 €
Puesta en marcha de la pl	anta	
Motor	1	12.658,24 €
Torres de refrigeración	1	3.654,25 €
Transformadores	1	1.586,35 €
		17.898,84 €
Presupuesto de ejecución material		2.796.306,56 €
Gastos generales 14%		391.482,92 €
Beneficio industrial		167.778,39 €
Presupuesto total		3.355.567,87 €
I.V.A 21%		704.669,25 €
Presupuesto de ejecución por contrata		4.060.237,13 €

5 Estudio de Viabilidad

El estudio de viabilidad tiene como objeto comprobar que un proyecto tiene soluciones que cumplan los objetivos del planteamiento inicial y determinar si son viable física, legal y económicamente.[14]

Los objetivos principales son:

- Conocer el proyecto en su totalidad
- Obtener soluciones

Estudiar la viabilidad de estas soluciones

El estudio de viabilidad puede ofrecer tres respuestas distintas:

- 1. La solución o soluciones del proyecto no son viables por causas técnica, económicas, legales. En este caso se rechaza el proyecto
- 2. Existe una solución viable al proyecto, por lo que se puede continuar con el mismo.
- 3. Existen varias soluciones viables al proyecto por lo que se selecciona la que más encaje en los objetivos finales.

El resultado de un estudio de viabilidad para proyectos industriales es la definición de:

- Proyecto con capacidad definida
- Uso de una o varias tecnologías
- Coste de inversión y producción definidos
- Ingreso que produzcan un rendimiento determinado respecto a la inversión

5.1 Análisis del proyecto

En este apartado vamos a analizar económicamente el proyecto, que consiste en comprobar la rentabilidad, si el valor de rendimientos que proporciona es mayor a los recursos que se utilizan.

5.1.1 Análisis de rentabilidad

Utilizamos tres técnicas sencillas y de fácil observación.

5.1.1.1 Valor actualizado neto (VAN)

Es el valor de todos los flujos de caja esperados, es decir, la diferencia entre el valor de los cobros menos el valor actualizado de los pagos.

$$VAN = -I_0 + \sum_{n=0}^{t} \frac{CF_t}{(1+i)^n}$$
 (fórmula 15)

I₀ = valor de inversión propia.

CF=Cash-Flow.

i = tasa de actualización.

t = número de años.

Interpretación de los resultados:

- VAN=0. Determina que el proyecto no dará ganancias ni perdidas.
- VAN>0. Determina que el proyecto será rentable, cuanto mayor sea el valor, mayor rentabilidad ofrece.
- VAN<0. Determina que el proyecto no es rentable

5.1.1.2 Tasa interna de retorno o tasa interna de rentabilidad (TIR)

Es la tasa de actualización a la cual el valor actual de los ingresos de efectivo es igual al valor actual de las salidas de efectivo.

$$VAN = -I_0 + \sum_{n=0}^{t} \frac{CF_t}{(1+r)^n} = 0$$
 (fórmula 16)

I₀ = valor de inversión propia.

CF= Cash-Flow.

i = tasa de actualización.

t = número de años.

- TIR=0. El proyecto debe de rechazarse ya que a nivel financiero no es rentable.
- TIR>interés normal del dinero. Proyecto viable, se puede realizar.
- TIR< interés normal del dinero. El proyecto debe de rechazarse.

5.1.1.3 Periodo de retorno de la inversión o Pay-back:

Es el número de años que la inversión se recupera.

$$\sum_{t=0}^{PB} \frac{CF^{*}_{t}}{\left(1+i\right)^{t}} = \sum_{t=0}^{n} \frac{I_{t}}{\left(1+i\right)^{t}}$$

(fórmula 17)

CF*_t = Cash-Flow parcial del año t = beneficios netos + depreciación de nave, maquinaria e instalaciones.

t = número de años.

 I_t = Inversiones correspondientes al año t (inversiones distribuidas a lo largo del tiempo).

n= número de años en los que se invierte.

i = Tasa de actualización.

$$i = e + k(1 + e) + r$$

siendo

e= Interés del capital.

k= inflación anual.

r= prima de riesgo.

5.2 Caculos de rentabilidad

Llegado a este punto realizaremos 6 estudios diferente de rentabilidad en función de 2 parámetro; precio del gas natural, aplicación del TED/171/2020 y precio del gas natural y el TED/1295/2022 (punto 3.5)

5.2.1 En función de la orden TED/1295/2022, de 22 de diciembre.

Caso 1:Precio combustible (gas natural): 0.0152 €/kWh[15]

Retribución inversión: 76963€/MW

Retribución operación: 123.924€/MWh

Potencia: 7.407MW

Datos:

Margen bruto=Venta electricidad -Coste combustible-Gastos mantenimiento

Impuestos=(Margen bruto-Amortización)xt

Flujo de caja=Margen bruto-Impuestos

t=tasa de actualización=10%

Amortización=Presupuesto/Años de inversión=406023.13€

Gastos de mantenimiento=7% de la venta

Año	IPC	Energía vendida	Beneficio inversión	Beneficio operación	Beneficio total
Allo	11 0	(MW)	€	€	€
1		40495,5	570064,941	5018364,342	5588429,283
2	0,015	40495,5	570064,941	5093639,807	5663704,748
3	0,015	40495,5	570064,941	5168915,272	5738980,213
4	0,015	40495,5	570064,941	5244190,737	5814255,678
5	0,015	40495,5	570064,941	5319466,203	5889531,144
6	0,015	40495,5	570064,941	5394741,668	5964806,609
7	0,015	40495,5	570064,941	5470017,133	6040082,074
8	0,015	40495,5	570064,941	5545292,598	6115357,539
9	0,015	40495,5	570064,941	5620568,063	6190633,004
10	0,015	40495,5	570064,941	5695843,528	6265908,469

Tabla 3.2.1.1 Beneficio venta de energía eléctrica (elaboración propia)

Año	Consumo Combustible/año kW	Incremento combustible %	Coste combustible €
1	112000000		1702400
2	112000000	0,015	1727936
3	112000000	0,015	1753472
4	112000000	0,02	1787520
5	112000000	0,02	1821568
6	112000000	0,02	1855616
7	112000000	0,02	1889664
8	112000000	0,02	1923712
9	112000000	0,02	1957760
10	112000000	0,02	1991808

Tabla 3.2.1.2 Coste de combustible/año (elaboración propia)

Año	Flujo de caja €	Coste combustible €	Impuestos €	Margen bruto €	Amortización €	Gastos mantenimiento €	Ingresos venta electricidad €
0	-4060237,13						
1	2568194,577	1702400	926644,7	3494839,233	406023,7	391190	5588429,28
2	2599323,705	1727936	939985,7	3539309,416	406023,7	396459	5663704,75
3	2630452,833	1753472	953326,8	3583779,598	406023,7	401729	5738980,21
4	2655623,561	1787520	964114,2	3619737,781	406023,7	406998	5814255,68
5	2680794,288	1821568	974901,7	3655695,963	406023,7	412267	5889531,14
6	2705965,016	1855616	985689,1	3691654,146	406023,7	417536	5964806,61
7	2731135,744	1889664	996476,6	3727612,329	406023,7	422806	6040082,07
8	2756306,472	1923712	1007264	3763570,511	406023,7	428075	6115357,54
9	2781477,2	1957760	1018051	3799528,694	406023,7	433344	6190633
10	2806647,927	1991808	1028839	3835486,876	406023,7	438614	6265908,47

Tabla 3.2.1.3 Flujo de caja (elaboración propia)

VAN	12.353.864,36 €		
TIR	64%		
Payback	1,58096943 años		

Se observa que en este caso la planta es viable.

Caso 2: Precio combustible (gas natural): 0.0336 €/kWh

Retribución inversión: 76963€/MW

Retribución operación: 123.924€/MWh

Potencia: 7.407MW

Año	IPC	Energía vendida (MW)	Beneficio inversión €	Beneficio operación €	Beneficio total €
1		40495,5	570064,941	5018364,342	5588429,283
2	0,015	40495,5	570064,941	5093639,807	5663704,748
3	0,015	40495,5	570064,941	5168915,272	5738980,213
4	0,015	40495,5	570064,941	5244190,737	5814255,678
5	0,015	40495,5	570064,941	5319466,203	5889531,144
6	0,015	40495,5	570064,941	5394741,668	5964806,609
7	0,015	40495,5	570064,941	5470017,133	6040082,074
8	0,015	40495,5	570064,941	5545292,598	6115357,539
9	0,015	40495,5	570064,941	5620568,063	6190633,004
10	0,015	40495,5	570064,941	5695843,528	6265908,469

Tabla 3.1.2.4Beneficio venta de energía eléctrica (elaboración propia)

Año	Combustible/año	Incremento combustible %	Coste combustible €
1	112000000		3763200
2	112000000	0,015	3819648
3	112000000	0,015	3876096
4	112000000	0,02	3951360
5	112000000	0,02	4026624
6	112000000	0,02	4101888
7	112000000	0,02	4177152
8	112000000	0,02	4252416
9	112000000	0,02	4327680
10	112000000	0,02	4402944

Tabla 3.2.1.5 Coste de combustible/año (elaboración propia)

Año	Flujo de caja €	Coste Combustible €	Impuestos €	Margen bruto €	Amortización €	Gastos mantenimiento €	Ingresos venta electricidad €
0	-4060237,13						
1	1125634,577	3763200	308404,6561	1434039,233	406023,713	391190	5588429,28
2	1135125,305	3819648	312472,1108	1447597,416	406023,713	396459	5663704,75
3	1144616,033	3876096	316539,5656	1461155,598	406023,713	401729	5738980,21
4	1140935,561	3951360	314962,2204	1455897,781	406023,713	406998	5814255,68
5	1137255,088	4026624	313384,8751	1450639,963	406023,713	412267	5889531,14
6	1133574,616	4101888	311807,5299	1445382,146	406023,713	417536	5964806,61
7	1129894,144	4177152	310230,1847	1440124,329	406023,713	422806	6040082,07
8	1126213,672	4252416	308652,8395	1434866,511	406023,713	428075	6115357,54
9	1122533,2	4327680	307075,4942	1429608,694	406023,713	433344	6190633
10	1118852,727	4402944	305498,149	1424350,876	406023,713	438614	6265908,47

Tabla 3.2.1.6 Flujo de caja (elaboración propia)

VAN	2.899.078,84 €
TIR	25%
Payback	3,60706503 anos

Se observa que en este caso la planta es viable

Caso 3: Precio combustible (gas natural): 0.0412 €/kWh

Retribución inversión: 76963€/MW

Retribución operación: 123.924€/MWh

Potencia: 7.407MW

Año	IPC	Energía vendida (MW)	Beneficio inversión €	Beneficio operación €	Beneficio total €
1		40495,5	570064,941	5018364,342	5588429,283
2	0,015	40495,5	570064,941	5093639,807	5663704,748
3	0,015	40495,5	570064,941	5168915,272	5738980,213
4	0,015	40495,5	570064,941	5244190,737	5814255,678
5	0,015	40495,5	570064,941	5319466,203	5889531,144
6	0,015	40495,5	570064,941	5394741,668	5964806,609
7	0,015	40495,5	570064,941	5470017,133	6040082,074
8	0,015	40495,5	570064,941	5545292,598	6115357,539
9	0,015	40495,5	570064,941	5620568,063	6190633,004
10	0,015	40495,5	570064,941	5695843,528	6265908,469

Tabla 3.2.1.7 Beneficio venta de energía eléctrica (elaboración propia)

Año	combustible/año	Incremento combustible %	Coste combustible €
1	112000000		4614400
2	112000000	0,015	4683616
3	112000000	0,015	4752832
4	112000000	0,02	4845120
5	112000000	0,02	4937408
6	112000000	0,02	5029696
7	112000000	0,02	5121984
8	112000000	0,02	5214272
9	112000000	0,02	5306560
10	112000000	0,02	5398848

Tabla 3.2.1.8 Coste de combustible/año (elaboración propia)

Año	Flujo de caja €	Coste combustible €	Impuestos €	Margen bruto €	Amortización €	Gastos mantenimiento €	Ingresos venta electricidad €
0	-4060237,13						
1	529794,5771	4614400	53044,65606	582839,2332	406023,713	391190	5588429
2	530347,7049	4683616	53281,71083	583629,4158	406023,713	396459	5663705
3	530900,8327	4752832	53518,7656	584419,5983	406023,713	401729	5738980
4	515303,5605	4845120	46834,22037	562137,7809	406023,713	406998	5814256
5	499706,2883	4937408	40149,67514	539855,9635	406023,713	412267	5889531
6	484109,0161	5029696	33465,12991	517574,146	406023,713	417536	5964807
7	468511,7439	5121984	26780,58468	495292,3286	406023,713	422806	6040082
8	452914,4717	5214272	20096,03946	473010,5112	406023,713	428075	6115358
9	437317,1995	5306560	13411,49423	450728,6938	406023,713	433344	6190633
10	421719,9273	5398848	6726,948998	428446,8763	406023,713	438614	6265908

Tabla 3.1.2.9 Flujo de caja (elaboración propia)

VAN	-1.006.158,66 €	
TIR	4%	
Payback	7,663795186	

En este caso observamos que la planta no es rentable, por lo tanto, no es viable.

5.2.2 En función de la orden TED/171/2020.

Caso 1:Precio combustible (gas natural): 0.0152 €/kWh[15]

Retribución inversión: 76963€

Retribución operación: 37.63 €/MWh

Retribución a la aplicación: 78.82 €/MWh

Potencia: 7.407MW

Datos:

Margen bruto=Venta electricidad -Coste combustible-Gastos mantenimiento

Impuestos=(Margen bruto-Amortización)xt

Flujo de caja=Margen bruto-Impuestos

t=tasa de actualización=10%

Amortización=Presupuesto/Años de inversión=406023.13€

Gastos de mantenimiento=7% de la venta

Año	IPC	Energía vendida (MW)	Beneficio inversión €	Beneficio operación+inversión €	Beneficio total €
1		40495,5	570064,941	4715700,975	5285765,916
2	0,015	40495,5	570064,941	4786436,49	5356501,431
3	0,015	40495,5	570064,941	4857172,004	5427236,945
4	0,015	40495,5	570064,941	4927907,519	5497972,46
5	0,015	40495,5	570064,941	4998643,034	5568707,975
6	0,015	40495,5	570064,941	5069378,548	5639443,489
7	0,015	40495,5	570064,941	5140114,063	5710179,004
8	0,015	40495,5	570064,941	5210849,577	5780914,518
9	0,015	40495,5	570064,941	5281585,092	5851650,033
10	0,015	40495,5	570064,941	5352320,607	5922385,548

Tabla 3.1.1.10 Beneficio venta de energía eléctrica (elaboración propia)

Año	Combustible/año	Incremento combustible %	Coste combustible €
1	112000000		1702400
2	112000000	0,015	1727936
3	112000000	0,015	1753472
4	112000000	0,02	1787520
5	112000000	0,02	1821568
6	112000000	0,02	1855616
7	112000000	0,02	1889664
8	112000000	0,02	1923712
9	112000000	0,02	1957760
10	112000000	0,02	1991808

Tabla Coste de combustible/año (elaboración propia)

Año	Flujo de caja €	Coste combustible €	Impuestos €	Margen bruto €	Amortización €	Gastos mantenimiento €	Ingresos venta electricidad €
0	-4060237,13						
1	2371160,725	1702400	842201,5767	3213362,302	406023,713	370004	5285765,92
2	2399334,345	1727936	854275,9852	3253610,33	406023,713	374955	5356501,43
3	2427507,965	1753472	866350,3938	3293858,359	406023,713	379907	5427236,95
4	2449723,185	1787520	875871,2024	3325594,388	406023,713	384858	5497972,46
5	2471938,405	1821568	885392,011	3357330,416	406023,713	389810	5568707,97
6	2494153,625	1855616	894912,8196	3389066,445	406023,713	394761	5639443,49
7	2516368,845	1889664	904433,6281	3420802,473	406023,713	399713	5710179
8	2538584,065	1923712	913954,4367	3452538,502	406023,713	404664	5780914,52
9	2560799,285	1957760	923475,2453	3484274,531	406023,713	409616	5851650,03
10	2583014,505	1991808	932996,0539	3516010,559	406023,713	414567	5922385,55

Tabla 3.2.1.11 Flujo de caja (elaboración propia)

VAN	11.075.521,09€
TIR	59%
Payback	1,712341592 años

Se observa que en este caso la planta es viable.

Caso 2: Precio combustible (gas natural): 0.0336 €/kWh[15]

Retribución inversión: 76963€

Retribución operación: 37.63 €/MWh

Retribución a la aplicación: 78.82 €/MWh Potencia: 7.407MW

Año	IPC	Energía	Beneficio	Beneficio	Beneficio total
Allo	IFC	vendida (MW)	inversión €	operación+inversión €	€
1		40495,5	570064,941	4715700,975	5285765,916
2	0,02	40495,5	570064,941	4786436,49	5356501,431
3	0,02	40495,5	570064,941	4857172,004	5427236,945
4	0,02	40495,5	570064,941	4927907,519	5497972,46
5	0,02	40495,5	570064,941	4998643,034	5568707,975
6	0,02	40495,5	570064,941	5069378,548	5639443,489
7	0,02	40495,5	570064,941	5140114,063	5710179,004
8	0,02	40495,5	570064,941	5210849,577	5780914,518
9	0,02	40495,5	570064,941	5281585,092	5851650,033
10	0,02	40495,5	570064,941	5352320,607	5922385,548

Tabla 3.2.1.12 Beneficio venta de energía eléctrica (elaboración propia)

		Incremento	Coste combustible
Año	Combustible/año	combustible %	€
1	112000000		3763200
2	112000000	0,015	3819648
3	112000000	0,015	3876096
4	112000000	0,02	3951360
5	112000000	0,02	4026624
6	112000000	0,02	4101888
7	112000000	0,02	4177152
8	112000000	0,02	4252416
9	112000000	0,02	4327680
10	112000000	0,02	4402944

Tabla 3.2.1.13 Coste de combustible/año (elaboración propia)

Año	Flujo de caja €	Coste combustible €	Impuestos €	Margen bruto €	Amortización €	Gastos mantenimiento €	Ingresos venta electricidad €
0	-4060237,13						
1	928600,7252	3763200	223961,5767	1152562,302	406023,71	370004	5285765,92
2	935135,9452	3819648	226762,3852	1161898,33	406023,71	374955	5356501,43
3	941671,1653	3876096	229563,1938	1171234,359	406023,71	379907	5427236,95
4	935035,1853	3951360	226719,2024	1161754,388	406023,71	384858	5497972,46
5	928399,2053	4026624	223875,211	1152274,416	406023,71	389810	5568707,97
6	921763,2253	4101888	221031,2196	1142794,445	406023,71	394761	5639443,49
7	915127,2453	4177152	218187,2281	1133314,473	406023,71	399713	5710179
8	908491,2654	4252416	215343,2367	1123834,502	406023,71	404664	5780914,52
9	901855,2854	4327680	212499,2453	1114354,531	406023,71	409616	5851650,03
10	895219,3054	4402944	209655,2539	1104874,559	406023,71	414567	5922385,55

Tabla 3.2.1.14 Flujo de caja (elaboración propia)

VAN	1.620.735,57 €
TIR	19%
Payback	4,372425112

Se observa en este caso que la planta es viable

Caso 3: Precio combustible (gas natural): 0.0387 €/kWh

Retribución inversión: 76963€

Retribución operación: 37.63 €/MWh

Retribución a la aplicación: 78.82 €/MWh Potencia: 7.407MW

Año	IPC	Energía vendida (MW)	Beneficio inversión €	Beneficio operación+inversión €	Beneficio total €	
1		40495,5	570064,941	4715700,975	5285765,916	
2	0,02	40495,5	570064,941	4786436,49	5356501,431	
3	0,02	40495,5	570064,941	4857172,004	5427236,945	
4	0,02	40495,5	570064,941	4927907,519	5497972,46	
5	0,02	40495,5	570064,941	4998643,034	5568707,975	
6	0,02	40495,5	570064,941	5069378,548	5639443,489	
7	0,02	40495,5	570064,941	5140114,063	5710179,004	
8	0,02	40495,5	570064,941	5210849,577	5780914,518	
9	0,02	40495,5	570064,941	5281585,092	5851650,033	
10	0,02	40495,5	570064,941	5352320,607	5922385,548	

Tabla 3.2.1.15 Beneficio venta de energía eléctrica (elaboración propia)

Año	Combustible/año	Incremento combustible %	Coste combustible €	
1	112000000		4334400	
2	112000000	0,015	4399416	
3	112000000	0,015	4464432	
4	112000000	0,02	4551120	
5	112000000	0,02	4637808	
6	112000000	0,02	4724496	
7	112000000	0,02	4811184	
8	112000000	0,02	4897872	
9	112000000	0,02	4984560	
10	112000000	0,02	5071248	

Tabla 3.2.1.16 Coste de combustible/año (elaboración propia)

Año	Flujo de caja €	Coste combustible €	Impuestos €	Margen bruto €	Amortización €	Gastos mantenimiento €	Ingresos venta electricidad €
0	-4060237,13						
1	528760,7252	4334400	52601,57666	581362,3019	406023,7	370004	5285765,92
2	529298,3452	4399416	52831,98524	582130,3305	406023,7	374955	5356501,43
3	529835,9653	4464432	53062,39382	582898,3591	406023,7	379907	5427236,95
4	515203,1853	4551120	46791,20241	561994,3877	406023,7	384858	5497972,46
5	500570,4053	4637808	40520,01099	541090,4163	406023,7	389810	5568707,97
6	485937,6253	4724496	34248,81957	520186,4449	406023,7	394761	5639443,49
7	471304,8453	4811184	27977,62815	499282,4735	406023,7	399713	5710179
8	456672,0654	4897872	21706,43673	478378,5021	406023,7	404664	5780914,52
9	442039,2854	4984560	15435,24531	457474,5307	406023,7	409616	5851650,03
10	427406,5054	5071248	9164,053887	436570,5593	406023,7	414567	5922385,55

Tabla 3.2.1.17 Flujo de caja (elaboración propia)

VAN	-999.884,33 €		
TIR	4%		
Payback	7,67877971 años		

En este caso observamos que la planta no es rentable, por lo tanto, no es viable.

6 Planificación

Debido a la complejidad de la instalación y al número de equipos a instalar, se estima como tiempo máximo de construcción 24 semanas siempre y cuando todos los elementos sean entregados en tiempo y forma.

A continuación, se detalla las tareas a realizar y tiempo empleado en cada una de ellas.

- Construcción de la nave
 Esta tarea consiste en la construcción de la nave donde se instalará la planta. Esta fase se inicia en la semana 1 y se acaba en la semana 22.
- Colocación del motor y alternador Esta tarea consiste en el asentamiento del motor y generador en el espacio indicado para ello, así como la alineación de los mismos y el vertido de la resina y la colocación de los amortiguadores (silentblocks) para su posterior funcionamiento. Inicio de la tarea la semana 4 y finalización la semana 8.
- Colocación de los enfriadores de H.T, L.T y aceite
 Consiste en el montaje de los enfriadores de alta, baja temperatura u aceite. Tarea iniciada la semana 6 y finalizada la 7.
- Construcción de los tanques de almacenamiento
 Consiste en la fabricación de los tanques necesarios para el almacenamiento de aceite y agua. Inicio de los trabajos la semana 8 y finalización la semana 13.
- Colocación de los transformadores
 La tarea consiste en el asentamiento de los transformadores en el lugar predeterminado, así como el llenado de aceite y comprobación de diferentes parámetros. Inicio la semana 10 y finalización la semana 12.
- Montaje de equipos auxiliares (compresores, bombas, botellas de aire...)

En este punto se realizará la instalación de todos los equipos auxiliares. Inicio de los trabajos la semana 12 y finalización la semana 14.

- Unión de los diferentes equipos mediante procesos de soldadura
 La tarea consiste en la conexión de las tuberías con los equipos instalados mediante procesos de soldadura. Inicios de los trabajos la semana 7 y finalización la 22.
- Montaje de conexiones eléctricas equipos
 Consiste en la instalación de cajas de conexión, cableado, arrancadores... Inicio de las tareas la semana 16 y finalización la semana 20
- Colocación torres de Refrigeración
 Montaje de las torres de refrigeración y los tanques de compensación de agua del motor. Inicio de las obras la semana 13 y finalización la 16.
- Montaje equipo de ventilación/extracción
 Esta tarea consiste en la colocación del equipo de ventilación y extracción del aire para el correcto funcionamiento del motor. Inicio la semana 16 a la semana 20.
- Instalación del puente grúa
 Colocación del puente grúa que se utilizará para realizar el mantenimiento en el motor y alternador. Inicio de la instalación la semana 18 y finalización la 21.
- Montaje sala de control y armarios eléctricos
 Esta tarea consiste en el montaje de la sala de control de la planta, así como la instalación de los equipos eléctricos para su control. Inicio de las obras la semana 16 y finalización la semana 22.
- Comprobación sistema de conexiones eléctricas
 Consiste en la comprobación de las señales eléctricas entre los equipos y sus controladores (Plc´s). Inicio la semana 19 y finalización la 22.
- Pruebas equipos auxiliares

Consiste en la puesta en marcha de diferentes equipos auxiliares para comprobar el correcto funcionamiento de los equipos. Inicio la semana 20 y finalización la semana 22.

- Llenado de tanques

Tarea consistente en el llenado del tanque de agua y aceite mediante los equipos auxiliares para a continuación poder iniciar las pruebas en la planta. Inicio de los trabajos la semana 20 y finalización la semana 22.

- Puesta en marcha de la instalación

Ultima etapa de la planta, consiste en la puesta en marcha de la instalación, comprobando que todos los parámetros que se han supuesto en el inicio de la construcción se cumplen. Inicio de la tarea la semana 22 y finalización la semana 24

Entrega de la instalación y formación del personal
 Una vez comprobado el funcionamiento de la instalación de entrega al propietario de la misma, pero durante las 2 semanas siguientes se formará a los operadores de planta para que ellos tomen el relevo en control de la misma.

7 Pliego de condiciones

7.1 Disposiciones generales

7.1.1 Objeto

El pliego de condiciones es el conjunto de instrucciones, reglas, requisitos y especificaciones que, junto con lo indicado en la memoria, planos y presupuesto, define todos los requisitos que deben cumplir las obras de la planta de cogeneración.

7.1.2 Contrato. Responsabilidad del adjudicatario

El adjudicatario deberá cumplir con las normas del trabajo pertinentes, la contratación del seguro obligatorio, subsidio familiar o de vejez, seguro de enfermedad y todas las regulaciones de carácter social vigentes en el momento de la ejecución de las obras. En particular, siempre se deben respetar, a menos que en el presente pliego no se indique lo contrario, lo dispuesto en la norma UNE 24042: Contrataciones de obras. Condiciones generales.

El adjudicatario es el único responsable del suministro y servicios que figuran en el contrato, en estricto cumplimiento de las disposiciones contractuales. Esta responsabilidad implica que será de su cuenta los cambios, reparaciones y sustituciones inesperadas para la correcta ejecución del contrato, así como las indemnizaciones justificadas por los daños causados por las deficiencias, errores o retrasos en el trabajo.

Si es necesario, la propiedad podrá suspender los pagos al adjudicatario y reclamar daños y perjuicios de acuerdo con lo dispuesto en el contrato sin perjuicio de la imposición de sanciones por la propiedad.

La propiedad puede ser representada por consultores u otras entidades que puede elegir para colaborar en los estudios, fabricación, montaje y pruebas.

7.1.3 Programa

El programa general de trabajo (estudios, suministro, fabricación, transporte, montaje y pruebas) a presentar con la propuesta debe cumplir con las normas establecidas.

El programa de contrato de las obras no puede ser modificado sin la conformidad expresa de la propiedad. Por otra parte, siempre que la

propiedad proponga un cambio, el adjudicatario se compromete a hacer todo lo posible para cumplir con los deseos de la propiedad.

El adjudicatario deberá iniciar las obras en el plazo establecido, desarrollándose de forma necesaria para que la ejecución total se lleve a cabo dentro del plazo establecido en el contrato.

Si los trabajos se desarrollaran con retraso respecto al programa aprobado, se aplicarán las sanciones correspondientes.

7.1.4 Estudios, documentación técnica

El adjudicatario reconoce haber recibido todos los datos de la propiedad y los documentos básicos necesarios para los estudios y proyectos. El adjudicatario deberá solicitar a la propiedad, de antemano, todas las aclaraciones y detalles necesarios para la organización adecuada del suministro.

Los documentos contractuales y todos aquellos que entregue a la propiedad durante la ejecución del contrato, deben ser revisadas cuidadosamente por el adjudicatario. En caso de errores u omisiones, el adjudicatario deberá proponer las modificaciones que considere convenientes para el buen orden de los suministros.

El adjudicatario proporcionará dentro del calendario establecido la memoria, cálculos, características de los materiales, planos y el resto de la documentación técnica, por lo que se compromete así a la definición del equipo y servicio contratado.

El adjudicatario entregará por lo menos tres copias de manuales de instrucciones de los equipos suministrados. El contenido mínimo debe ser el siguiente:

Descripción de los equipos.

- Las características nominales de diseño y pruebas.
- Composición y características de los materiales.
- Manual de instrucciones y de mantenimiento.
- Lista de componentes o de despiece, con números de identificación, diseños de referencia, los nombres y características de la pieza (dimensiones, materiales, etc.)
- Instrucciones para el montaje, desmontaje y tolerancias.
- Lista de piezas de repuesto.

7.1.5 Pliegos, instrucciones y normas aplicables

Los requisitos de las instrucciones y normas que se muestran a continuación son aplicables con carácter general, y todo lo que no contradiga o modifique la implicación de la información que incluye este pliego, para los materiales y la ejecución de las obras.

- El artículo 1588 y siguientes del Código Civil, en los casos en que está bien fundada su aplicación.
- Presión sobre equipos aprobados por el Decreto 1244/1979, de 4 de abril (BOE de 29.05.1979).
- Instrucción para el diseño y construcción de hormigón en masa o armado, aprobado por el Decreto 2987/1968 de 20 de septiembre (BOE de 03.12.1968).
- Normas básicas de la Construcción (NBE), el Ministerio de Obras Públicas y Transportes.
- Cuaderno de limitación de técnicas generales y las tuberías de abastecimiento de agua, aprobado por la Orden de 28 de julio de 1974 (BOE de 20/10/1974).
- PGDS Reglas resistentes a los terremotos-1, aprobado por el Decreto 3209/1974 de 30 de agosto (BOE de 11.21.1974).

- Decreto 2200/1995 de 28 de diciembre, se aprueba el Reglamento de la Infraestructura para la Calidad y Seguridad Industrial.
- Directiva 2004/8/CE del Parlamento Europeo y del Consejo, de 11 de febrero de 2004, relativa al fomento de la cogeneración sobre la base de la demanda de calor útil en el mercado interior de la energía y por lo que se modifica la Directiva 92/42/CEE.
- Real decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.
- Real decreto 661/2007, de 16 de mayo, sobre el fomento de la cogeneración.
- Reglamento Electrotécnico de Baja Tensión, (R.E.B.T.) según Decreto 842/2002 de 2 de agosto.
- Real decreto 223/2008, de 15 de febrero, por el que se aprueban el Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Líneas Eléctricas de Alta Tensión y sus Instrucciones Técnicas Complementarias ITC-LAT 01 a 09
- Ley de prevención de riesgos laborales 1996.
- Real decreto 1627 /1997, disposiciones mínimas de seguridad y salud en los lugares de trabajo. BOE 23/04/97.

7.1.6 Seguridad y accidentes de trabajo

El adjudicatario está obligado a cumplir con la legislación relativa al estudio de la seguridad e higiene en el trabajo y, en particular, todo lo que se prevé en el real decreto 555/1986 de 21 de febrero (BOE 21/03/1986).

Toda la responsabilidad por accidentes que puedan ocurrir por uso de materiales defectuosos, por imprudencia temeraria o por no cumplir con lo anterior, recaerá exclusivamente en el adjudicatario. Correrá también por su cuenta las multas, así como los daños y perjuicios causados a terceros en su persona, o propiedad.

7.2 Calidad de los materiales

7.2.1 Materiales en general

Todos los materiales suministrados por el adjudicatario deben de cumplir las condiciones requeridas de calidad. La aceptación por la propiedad de una marca, fábrica u otro lugar de extracción, no exime al adjudicatario del cumplimiento de estos requisitos.

7.2.2 Aceros

El adjudicatario indicará las propiedades mecánicas de los aceros utilizados de conformidad con los siguientes elementos:

- Partes y piezas de acero fundido.
- Estructuras de Acero.

7.2.3 Otros materiales

Para el resto de los materiales utilizados en la fabricación de los suministros, se indicarán características mecánicas y composición química.

7.3 REGLAS DE CÁLCULO

7.3.1 Normativa

Aplicar la norma DIN o nivel similar vigente en las bases de cálculo de estructuras de acero. El adjudicatario indicará las tensiones de trabajo, simples y compuestas, que están sometidos los distintos materiales utilizados en las estructuras. Además, se señalarán las tensiones máximas de trabajo o de base para el cálculo de tensiones:

- Resistencia a la tracción de tensión o compresión permitida, previa comprobación de deformación.
- Tensiones admisibles a esfuerzos cortantes.

7.4 DISPOSICIONES GENERALES DE LAS OBRAS

7.4.1 Replanteo de la obra

El director, una vez que el adjudicatario este en posesión del proyecto y antes de comenzar las obras, debe realizar el replanteo de estas, con especial atención a los puntos singulares.

Todas las operaciones que se requieren para el replanteo serán efectuadas por y a cuenta del adjudicatario, y no tendrá derecho a ningún tipo de reclamación. Por otra parte, está obligado a proporcionar a la propiedad los medios y dispositivos que la dirección considere necesarias para los replanteos de cualquier tipo.

7.4.2 Plazo de ejecución

Los plazos de entrega, tanto totales como parciales, empezará a contar desde la fecha de replanteo de las obras y desde la notificación por parte de la propiedad de la autorización para el comienzo de estas.

7.4.3 Mejoras y variaciones en el proyecto

Si durante el curso de las obras, el director considera conveniente introducirlos cambios en el proyecto, el adjudicatario estará obligado a ejecutarlas, siempre y cuando cantidad de obras no aumentará o disminuyera el pliego de condiciones. No se considerarán mejoras y variaciones del proyecto aquellas que han sido expresamente pedidos por escrito por el director.

En el caso de cualquier cambio en el proyecto, el adjudicatario tiene derecho a que se prorrogue, el tiempo que estime el director necesario.

7.4.4 Contradicciones, errores u omisiones en los documentos

En caso de contradicción entre los planos y el pliego y omitido en los planos o viceversa, debe ser aceptado como si se incluye en ambos documentos, siempre que, en opinión del director, quede bien definida la obra.

7.4.5 Trabajo defectuoso o no permitido

El adjudicatario debe utilizar materiales que cumplan con los requisitos establecidos en el pliego de condiciones particulares y realizar todas y cada una de las obras contratadas de acuerdo a este documento.

Como consecuencia de esto, cuando el director o su representante en la obra advierta defectos o fallos en el trabajo realizado, o que los materiales utilizados y los aparatos colocados no sean los adecuados, puede disponer que las partes defectuosas sean demolidas y reconstruidas de acuerdo con el contrato.

7.4.6 Subalternos de la obra

Cuando la propiedad desea suspender la ejecución de los trabajos, debe informar al adjudicatario con un mes de antelación, teniendo este que suspender los trabajos sin derecho a indemnización, siempre que se le pague la cantidad de obra realizada y el valor de los materiales acumulados a pie de obra. Se realizará lo mismo en caso de rescisión justificada.

Son motivos de la rescisión de la obra puedan ser los siguientes:

- No ejecutar las obras en el marco del proyecto o modificaciones indicadas.
- La utilización de materiales defectuosos o de su mala colocación en la obra que obliguen a demolerla o dejarla incorrecta.
- Que el trabajo no se llevó a cabo con ajuste a la programación.
- Incapacidad de personal contratado.
- Suspensión de pagos del adjudicatario.
- No iniciar los contratos de trabajo en el plazo fijado.
- El incumplimiento de las condiciones del contrato, negligencia o mala fe, en perjuicio de los intereses de las obras.
- La terminación del plazo de ejecución de la obra sin llegar a completarlas.
- Abandono del trabajo sin causa justificada.
- La muerte o incapacitación del adjudicatario.
- La suspensión de los trabajos iniciados.

7.4.7 Seguro

El adjudicatario estará obligado, después de comprobar el replanteo y antes del inicio de la obra, a proporcionar a la dirección la documentación que acredite la inscripción, afiliación a la Seguridad Social y las consiguientes pólizas de seguro:

- Seguro contra daños a terceros derivados de la ejecución del proyecto.
- Seguro contra accidentes de trabajo en la mutualidad laboral correspondiente.
- Seguro para todas las máquinas y equipos que utilizan el adjudicatario en el trabajo.
- Seguro de incendios para las obras.

7.5 Inspección, recepción y plazo de garantía

7.5.1 Inspección

La propiedad se reserva el derecho de efectuar, directamente o a través de una entidad de su elección, la inspección de la fabricación de equipos con el fin de cumplir los plazos, la calidad de los materiales y técnicas, tanto en las fábricas o instalaciones del adjudicatario como en el su proveedor.

7.5.2 Montaje. Inspección

Presentará para su aprobación una lista de nombres del personal técnico que se ocupará de la ejecución del montaje, indicando las tareas a realizar por cada uno de ellos y acreditando su capacidad técnica para el desarrollo de estos.

Cuando, a juicio de la propiedad, el personal técnico designado por el adjudicatario es insuficiente, este estará obligado a completar su organización con el número de técnicos necesarios, de acuerdo con el criterio de la propiedad.

El personal de inspección de la propiedad puede ordenar la suspensión de los trabajos que no se ejecutan de acuerdo con las condiciones y especificaciones del contrato. La orden de suspensión será confirmada por escrito.

7.5.3 Actas de fin de montaje

Cuando el adjudicatario considere que el equipo está en óptimas condiciones para entrar en servicio, deberá notificar por escrito a la propiedad y llevar a cabo una revisión general del montaje, levantándose, el acta de montaje final, firmado por representantes cualificados de ambas partes.

7.5.4 Ajuste, pruebas y servicio de prueba

Tras la finalización del montaje, se harán ajustes, pruebas y puesta en servicio de acuerdo con las condiciones establecidas.

La instrucción del personal de la propiedad se llevará a cabo en este momento por parte del adjudicatario.

7.5.5 Recepción provisional

Completado el servicio de prueba y al mismo tiempo con el inicio del servicio industrial, se levantará, antes de la finalización de las pruebas de aceptación correspondiente, un acta de recepción provisional firmada por representantes cualificados tanto de la propiedad como del adjudicatario.

7.5.6 Periodo de garantía

La fecha del acta de la recepción provisional será el comienzo del período de garantía. El adjudicatario puede mantener el trabajo en su totalidad o en parte de su personal especializado, siempre y cuando lo permitirá la propiedad.

La duración del período de garantía se acordará entre la propiedad y el adjudicatario en el momento de la formulación del contrato y comienza a contar desde la fecha de la firma de la recepción provisional.

Durante el período de garantía, el adjudicatario podrá reemplazar cualquier pieza defectuosa o equipo debido a un defecto o insuficiente calidad de las materias primas utilizadas, defecto de fabricación o un error de montaje.

Durante el período de garantía, cualquier equipo, componente o pieza para sustituirla por otra u otras a razón de la misma calidad, tendrá lugar a partir de

la fecha de entrada en servicio, un periodo de garantía igual al del equipo o pieza a reemplazar.

7.5.7 Recepción definitiva

Después del período de garantía, previo reconocimiento de las obras y demás trámites y en el supuesto de que todos los trabajos se encuentran en adecuadas condiciones, se procederá a realizar la recepción definitiva de las obras, para lo cual se prepara la correspondiente acta de aceptación final, en la que se redactará las incidencias ocurridas durante el período de garantía y deberá estar firmada por representantes cualificados de la propiedad y del adjudicatario.

Hasta que el representante de la propiedad no aprueba la aceptación final del trabajo, el adjudicatario se hará cargo de las roturas, el robo de materiales, defectos, etc.

Una vez completada la recepción definitiva de todo el suministro cesa la garantía establecida.

7.6 Pago de las obras. Legislación

7.6.1 Definición de precios

Los costos de bienes y servicios objeto de suministro, se expresarán en la unidad monetaria de la Unión Europea y cubrirán la fabricación, suministro e instalación de todo el equipo probado y en funcionamiento, así como piezas de repuesto y servicios adicionales que se especifican.

Todos los precios incluyen, sin excepción ni reserva, además del beneficio del adjudicatario, todos los costos y gastos incurridos en la realización de trabajos en los plazos establecidos para cada uno de ellos, incluidos los derivados de

las obligaciones impuestas por el adjudicatario a diversos documentos del contrato y las especificaciones de este.

En el precio de los materiales y equipos se incluyen los estudios de fabricación, esquemas eléctricos, etc., Así como los derechos de patentes, royalties y otros que puedan relacionarse con ellos, quedando la propiedad libre de cualquier obligación de terceros en esos derechos.

7.6.2 Condiciones de pago

A los efectos del pago de los equipos y servicios en virtud del contrato se considerarán las siguientes partidas:

- Equipos y materiales entregados en el sitio de montaje.
- Montaje e instrucción del personal de explotación de las instalaciones.

En el contrato, que contiene una cláusula que indica claramente cómo la propiedad deberá hacer el pago de los equipos y materiales.

El coste de la instalación estará totalmente preparado en la fecha de recepción final.

7.6.3 Penalizaciones

Podrán aplicarse sanciones al adjudicatario e incluso puede decidir rescindir el contrato en los siguientes casos:

- Si no cumple con los plazos finales o intermedios del programa de trabajo aprobado.
- Si se demora en la entrega de la documentación técnica.
- Si el equipo o parte de el, no fue capaz de asegurar un servicio normal a la industria para la que fue diseñado y especificado.

 Si los resultados de las pruebas y las medidas no corresponden a los valores garantizados.

7.6.4 Rescisión del contrato

Si la propiedad ordena el cese absoluto de la obra, el contrato se termina inmediatamente. Si la propiedad ordenó posponer para más de un año, ya sea antes o después del inicio de los trabajos, el adjudicatario tiene derecho a rescindir el contrato si así lo solicita, por escrito.

En caso de muerte del adjudicatario, el contrato será rescindido de pleno derecho, a menos que los herederos den un compromiso escrito para cumplir con el contrato existente, sin introducir ningún cambio en él. En el caso de insolvencia o quiebra del adjudicatario, el contrato se terminará inmediatamente.

En caso de cancelación por orden de la propiedad, se acordará entre esta y el adjudicatario que instalaciones deben permanecer en la obra y la indemnización a pagar por la propiedad en ese concepto.

8 Conclusiones

El objetivo del presente trabajo es instalar, si es posible, una planta de generación de energía eléctrica y mediante los gases de escape del motor, generar vapor por medio de una caldera, para alimentar a cualquier industria textil, conservera o papelera tanto de energía eléctrica como de vapor.

Para esto se fijan dos áreas de estudio, tecnológica y financiera.

Área tecnológica

En este apartado, todos los elementos descritos en el trabajo y puestos en común cumplen los objetivos eléctricos y térmicos para los que es diseñada

la instalación, es decir, se puede producir electricidad suficiente para la alimentación de la propia planta como para la industria en la que se instale, por otro lado mediante los gases de escape producidos por el motor de combustión interna y enviados a la caldera, generamos vapor a una presión de 9 bar y temperatura de unos 180°C, mediante el calor extraído de los gases, lo cual es suficiente para poder ser utilizados en las diferentes industrias.

Con lo citado anteriormente, afirmo que en esta área si cumple con el objetivo inicial

Área financiera

Debido a la situación global actual, el mercado de los combustibles es muy volátil por lo que el precio del mismo es muy cambiante.

Actualmente es muy difícil hacer pronósticos fiables en relación a la subida o baja del precio por lo que toda empresa que quiera realizar una inversión en el sector industrial, donde tenga como materia importante de consumo cualquier combustible debe de realizar un estudio económico.

Como consecuencia de lo anterior el gobierno impulsa ayudas para poder abaratar los costes del combustible o como en el caso que nos afecta, elevado el valor de la retribución por operación a 123.924 €/MWh por un periodo de 12 meses, un valor mucho más elevado que anteriormente.

A partir de los estudios realizados para nuestro proyecto podemos afirmar que nuestra planta cumple con la normativa actual, por lo que el exceso de energía eléctrica puede ser vendido a la red.

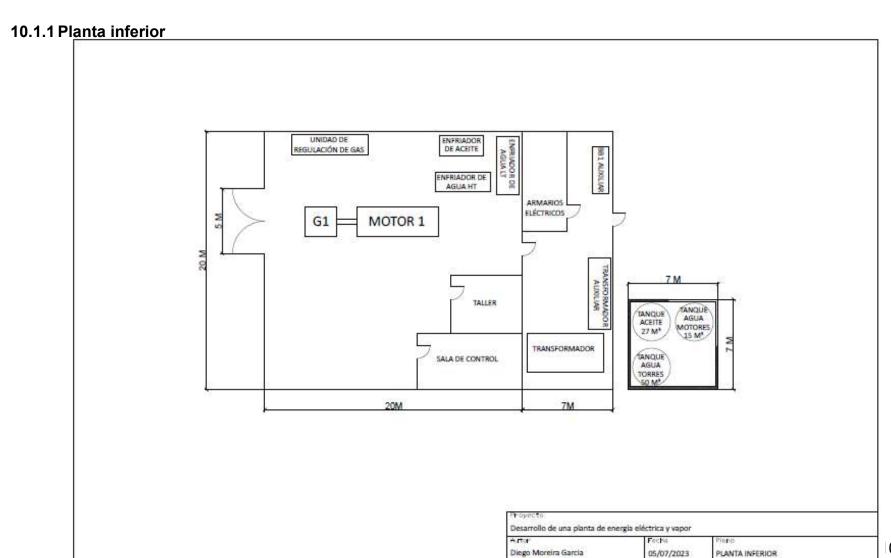
En lo referido estrictamente a la economía, como se puede observar en la sección de viabilidad, la planta es rentable siempre y cuando el precio del gas natural sea inferior a 0.0412 €/kWh en el caso de excepcionalidad (aplicando la Orden TED/1295/2022, de 22 de diciembre). Por otro lado, si nos referimos

a la situación sin ayudas extraordinarias (aplicando el anexo II de la orden TED/171/2020) a la generación la planta será rentable siempre que el precio del gas natural sea inferior a 0.0387€/kWh.

A fecha de realización de este trabajo el precio de gas natural es de 0.0336 €/kWh, por lo que la planta es viable para su explotación.

9 Referencias bibliográficas

- [1] Energía [online]. [vid. 2023-07-05]. Dostupné z: https://www.gobiernodecanarias.org/energia/materias/energia-electrica/guia-proyectos/
- [2] ¿Qué es la cogeneración y cómo funciona? *REPSOL* [online]. [vid. 2023-07-05]. Dostupné z: https://www.repsol.com/es/energia-futuro/transicion-energetica/cogeneracion/index.cshtml
- [3] MINISTERIO DE INDUSTRIA, TURISMO Y COMERCIO. Resolución de 14 de mayo de 2008, de la Secretaría General de Energía, por la que se aprueba la Guía Técnica para la medida y determinación del calor útil, de la electricidad y del ahorro de energía primaria de cogeneración de alta eficiencia [online]. 24. červen 2008 [vid. 2023-07-05]. Dostupné z: https://www.boe.es/eli/es/res/2008/05/14/(3)
- [4] Home. Bergen Engines [online]. [vid. 2023-07-04]. Dostupné z: https://www.bergenengines.com/
- [5] HL2/105A. Sperre [online]. [vid. 2023-07-04]. Dostupné z: https://sperre.com/products/models/hl2-105a
- [6] Puentes grúa birraíles | ABUS Grúas S.L.U. [online]. [vid. 2023-07-04]. Dostupné z: https://www.abusgruas.es/gruas/puentes-grua/puentes-grua-birraíles
- [7] *FM ventilador* [online]. [vid. 2023-07-04]. Dostupné z: https://www.nederman.com/es-es/pws-catalog/p/filtros-fmc/fm-ventilador
- [8] Fabricantes de transformadores de potencia sumergidos en aceite de tres devanados de 8 MVA 8000 KVA 33 / 6.6 / 0.4KV Precio de costo SCOTECH. *Jiangshan Scotech Electrical Co., Ltd* [online]. [vid. 2023-07-04]. Dostupné z: http://es.scotech-electrical.com/transformer/power-transformer/8-mva-8000-kva-33-6-6-0-4kv-three-winding-oil.html
- [9] GEEDS. Análisis energético del modelo MEDEAS mediante diagramas Sankey. GEEDS [online]. 5. červenec 2021 [vid. 2023-07-04]. Dostupné z: https://geeds.es/news/analisis-energetico-del-modelo-medeas-mediantediagramas-sankey/

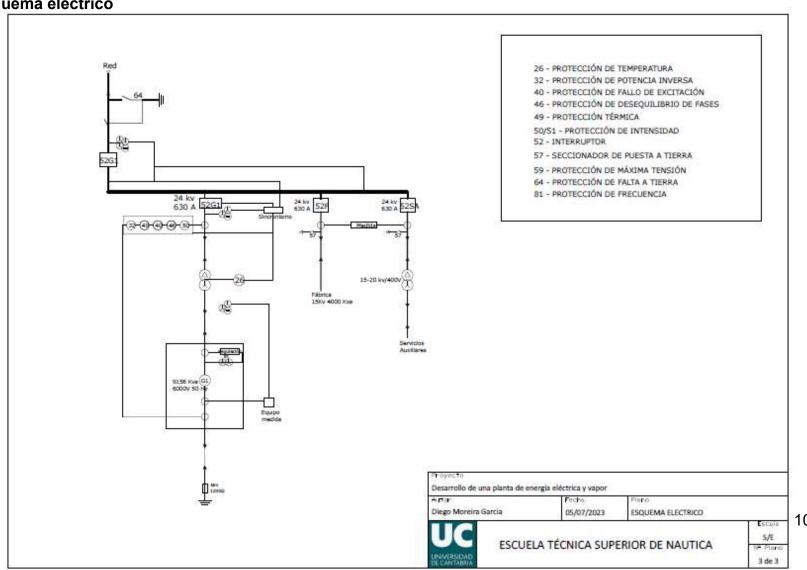


- [10] MINISTERIO DE ECONOMÍA. Real Decreto 436/2004, de 12 de marzo, por el que se establece la metodología para la actualización y sistematización del régimen jurídico y económico de la actividad de producción de energía eléctrica en régimen especial [online]. 27. březen 2004 [vid. 2023-07-04]. Dostupné z: https://www.boe.es/eli/es/rd/2004/03/12/436
- [11] BOE-A-2007-9691 Real Decreto 616/2007, de 11 de mayo, sobre fomento de la cogeneración. [online]. [vid. 2023-07-04]. Dostupné z: https://www.boe.es/buscar/act.php?id=BOE-A-2007-9691
- [12] MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO. Orden TED/1295/2022, de 22 de diciembre, por la que se establecen los valores de la retribución a la operación correspondientes al segundo semestre natural del año 2022, aplicables a determinadas instalaciones de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos [online]. 28. prosinec 2022 [vid. 2023-07-04]. Dostupné z: https://www.boe.es/eli/es/o/2022/12/22/ted1295
- [13] BOE-A-2020-2838 Orden TED/171/2020, de 24 de febrero, por la que se actualizan los parámetros retributivos de las instalaciones tipo aplicables a determinadas instalaciones de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos, a efectos de su aplicación al periodo regulatorio que tiene su inicio el 1 de enero de 2020. [online]. [vid. 2023-07-04]. Dostupné z: https://www.boe.es/buscar/act.php?id=BOE-A-2020-2838
- [14] Tema 2. Estudio de viabilidad TEMA 2 ESTUDIO DE VIABILIDAD ÍNDICE DE CONTENIDOS Definición de Studocu [online]. [vid. 2023-07-04]. Dostupné z: https://www.studocu.com/gt/document/universidad-rafael-landivar/contabilidad-iii/tema-2-estudio-de-viabilidad/49569954
- [15] ENAGÁS. Factor de conversión de facturación Energy Data Enagás [online]. [vid. 2023-07-05]. Dostupné z: https://www.enagas.es/es/gestion-tecnica-sistema/energy-data/informacion-comercial/factor-conversion-facturacion/
- 10 Anexos
- 10.1 Planos

S/E

Nº Plano 1 de 3

ESCUELA TÉCNICA SUPERIOR DE NAUTICA



10.1.2 Planta superior 7 M **PUENTE GRUA** TANQUE TANQUE LT Desarrollo de una planta de energia eléctrica y vapor Diego Moreira Garcia 05/07/2023 PLANTA SUPERIOR Escolo S/E ESCUELA TÉCNICA SUPERIOR DE NAUTICA 2 de 3

10.1.3 Esquema eléctrico

