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Resumen

Una cadena de Markov es un proceso temporal aleatorio sin memoria. Es
sabido que toda cadena de Markov irreducible y aperiódica en un conjunto
finito tiene una única distribución estacionaria, a la cual converge cuando el
tiempo tiende a infinito sea cual sea la distribución de probabilidad inicial.

El comportamiento asintótico de la cadena frecuentemente presenta un fenómeno
de umbral: existe un valor concreto del tiempo en el cual la distribución
de probabilidad pasa bruscamente de estar alejada de la estacionaria a ser
prácticamente la estacionaria.

En este trabajo se introducen los conceptos básicos de cadenas de Markov y
fenómenos de umbral y se estudian dos ejemplos de fenómenos de umbral en
paseos aleatorios en grafos: paseos perezosos con sesgo en una cadena finita, y
paseos en el modelo de configuración para grafos dirigidos.

Palabras clave: grafo aleatorio, cadena de Markov, distribución estacionaria,
modelo de configuración, fenómenos de umbral

Abstract

A Markov chain is a random time process without memory. It is known that
any irreducible and aperiodic Markov chain on a finite set has a unique station-
ary distribution, to which it converges when time tends to infinity whatever
the initial probability distribution.

The asymptotic behaviour of the chain frequently exhibits a cutoff phenomenon:
there is a particular value of time at which the probability distribution abruptly
changes from being far from stationary to being almost stationary.

This paper introduces the basic concepts of Markov chains and cutoff phenom-
ena and studies two examples of cutoff phenomena in random paths in graphs:
lazy paths with laziness in a finite chain, and paths in the configuration model
for directed graphs.

Key words: random graph, Markov chain, stationary distribution, configu-
ration model, cutoff phenomena
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Introducción y resumen

Los fenómenos de umbral aparecieron por primera vez en el año 1986 en un art́ıculo de
Persi Diaconis y David Aldous “Shuffling cards and stopping times” [8] donde, al estudiar
el número de mezclas que haćıan falta en un mazo de n cartas para que estuviese bien
mezclado, se observó un comportamiento abrupto que haćıa que el mazo pasase de no
estar mezclado a estarlo prácticamente en cuestión de pocos pasos. Diaconis mencionó los
fenómenos de umbral de manera más formal en parte de sus notas “Group Representations
in Probability and Statistics” en 1992 [7] donde menciona como problema abierto en una
de sus secciones el entender si el fenómeno de umbral suele suceder (pág 91 punto (8)). Sin
embargo, no fue hasta 1996 cuando publicó otro art́ıculo “The cutoff phenomenon in finite
Markov chains” [6], donde defińıa estos fenómenos de umbral sobre cadenas de Markov en
función de la distancia a su distribución estacionaria y daba una serie de ejemplos en los
que teńıa o no lugar este tipo de umbral.

En este trabajo, estudiaremos el fenómeno de cutoff en dos situaciones relacionadas
con cadenas de Markov en grafos. Por un lado, en paseos aleatorios perezosos con sesgo
en una ĺınea, y por otro en paseos aleatorios en grafos dirigidos a su vez aleatorios, de
acuerdo al modelo de configuración.

Nos hemos basado principalmente en dos fuentes: el libro de David A. Levin “Markov
Chains and Mixing Times” [11] y el art́ıculo de C. Bordenave, P. Caputo y J. Salez
“Random walk on sparse random digraphs” [3]. Se ha utilizado el libro de Levin para
una introducción y contextualización general de las cadenas de Markov y el fenómeno de
umbral, aśı como el primer gran ejemplo del trabajo: El paseo perezoso y sesgado en una
ĺınea (sección 8.2.1 del libro, caṕıtulo 3 de esta memoria). Por último, el art́ıculo de C.
Bordenave et al. utiliza el “configuration model” de Béla Bollobas [2], permitiendo dar
el segundo gran ejemplo del trabajo: fenómenos de umbral en grafos dirigidos bajo el
“configuration model” (caṕıtulos 4 y 5 de la memoria).

Descripción de la memoria

El caṕıtulo 1 consistirá en unos preliminares donde se enunciarán algunas definiciones,
teoremas importantes y notación de teoŕıa de grafos, probabilidad y notación asintótica,
con el objetivo de agrupar prerrequisitos y dedicar el resto del trabajo al tema principal.

En el caṕıtulo 2 comenzará el análisis de las cadenas de Markov. Definiremos lo que
es una cadena de Markov, con las propiedades y elementos que la caracterizan como su
matriz de transición o su grafo dirigido asociado. Posteriormente veremos el concepto
de distribución estacionaria junto con el de variación total al equilibrio y se darán varios
ejemplos, fundamental para comprender los fenómenos de umbral en cadenas de Markov.
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A continuación estudiaremos la existencia y unicidad de distribución estacionaria. El
Teorema 2.2.9 garantiza la existencia para toda cadena de Markov (finita y tiempo-
homogénea), la Proposición 2.3.5 nos dice que esta es única si la cadena es irreducible
(equivalentemente, si su grafo dirigido asociado es fuertemente conexo), y el Teorema 2.3.6
garantiza que si, además, la cadena es aperiódica, entonces la cadena converge siempre a la
distribución estacionaria sea cual sea la distribución de probabilidad inicial. Cerraremos
el caṕıtulo definiendo el umbral de una sucesión de cadenas de Markov, aśı como una
caracterización equivalente de esta propiedad.

En el caṕıtulo 3 abordaremos el primer ejemplo importante del trabajo: la ventana
de cutoff en el paseo sesgado y perezoso en una ĺınea; es decir, consideramos el grafo
formado por una cadena de aristas de longitud n y en él tenemos una cadena de Markov
que consiste en moverse a la derecha con una cierta probabilidad p/2, a la izquierda con
(1 − p)/2, habiendo también una probabilidad 1/2 de quedarse en el sitio. El teorema
principal nos dice que esta cadena tiene un cutoff en tiempo t = β−1n y con una ventana
del orden de

√
n, donde β = p − 1/2 es el sesgo (entendido como exceso de probabilidad

de ir a la derecha en vez de a la izquierda).
Para demostrar el teorema principal del caṕıtulo, relacionado con la ventana de cutoff,

introduciremos el concepto de acoplamiento de dos cadenas de Markov. Esto permite
estudiar propiedades de una cadena a partir de las de otra relacionada con ella, y será
una técnica esencial que usaremos varias veces a lo largo de la prueba. La demostración
se divide en dos partes. En la sección 3.1 demostramos varios resultados auxiliares que
se necesitarán después pero cuyo enunciado y demostración no tiene que ver con el cutoff
en śı, y en la sección 3.2 realizamos la prueba del teorema de cutoff, la cual a su vez está
dividida en cuatro apartados.

El caṕıtulo 4 consiste en la descripción del “configuration model” y de algunas de sus
propiedades. En el modelo de configuración se fija un cierto número de vértices n aśı como
sus grados de salida y de entrada, con la restricción obvia de que la suma de los grados de
salida y los de entrada sea la misma, y luego se toma el grafo dirigido aleatorio que sale de
dar probabilidad uniforme a todos los emparejamientos entre “salidas” y “entradas”. El
grafo resultante puede no ser simple (puede tener lazos y/o aristas múltiples). Este modelo
fue introducido por Bollobas [2] para grafos no dirigidos. En este caṕıtulo estudiamos
algunas propiedades del configuration model para grafos dirigidos, como son el hecho de
que localmente tienen estructura de árbol (Proposition 4.2.7) y, de manera más precisa,
que el paseo aleatorio en el configuration model con gran probabilidad va a estar en nodos
que tienen entornos con estructura de árbol (Proposition 4.3.1). Obsérvese que en este
modelo tenemos superpuestos dos procesos aleatorios. Por un lado el configuration model
produce un grafo aleatorio (con una certa distribución de probabilidad) y por otr lado en
ese grafo tenemos la cadena de Markov consistente en hacer un paseo aleatorio.

En el último caṕıtulo 5 del trabajo enunciamos el teorema fundamental (Teorema 5.1.1)
que describe el umbral para paseos aleatorios en grafos bajo el modelo de configuración.
La prueba consiste en dos grandes partes: Enunciamos los teoremas de forma similar pero
trabajando con una distribución estacionaria aproximada para el cálculo de la distancia al
equilibrio, para luego mostrar la equivalencia entre el resultado inicial y esta aproximación
y por último demostrar ambos teoremas. En la última parte, por falta de espacio y debido
a su complejidad, hay dos resultados técnicos que hemos enunciado sin demostración
(Proposiciones 5.1.5 y 5.3.2, que son las Proposiciones 8 y 10 de [3]).



Introduction and summary

Cutoff phenomena first appeared in 1986 in a paper by Persi Diaconis and David Aldous
“Shuffling cards and stopping times” [8] where, while studying the number of shuffles it
took for a deck of n cards to be properly shuffled, they observed an abrupt behavior
that caused the deck to go from unshuffled to shuffled in a matter of virtually a few
steps. Diaconis mentioned cutoff phenomena more formally in part of his notes “Group
Representations in Probability and Statistics” in 1992 [7] where he mentions as an open
problem in one of his sections to understand whether cutoff phenomena usually happen
(p 91 item (8)). However, it was not until 1996 when he published another article “The
cutoff phenomenon in finite Markov chains” [6], where he defined the cutoff on Markov
chains as a function of the distance to their stationary distribution and gave a number of
examples in which this type of threshold did or did not occur.

In this paper, we will study the cutoff phenomenon in two situations related to Markov
chains in graphs. On the one hand, in lazy random paths with bias on a line, and on the
other hand in random paths in directed graphs random in turn random, according to the
configuration model.

We have relied mainly on two sources: David A. Levin’s book “Markov Chains and
Mixing Times” [11] and the article by C. Bordenave, P. Caputo and J. Salez “Random walk
on sparse random digraphs” [3]. Levin’s book has been used for a general introduction
and contextualization of Markov chains and the cutoff phenomenon, as well as the first
major example of the work: The lazy and biased random walk on a line (section 8.2.1 of
the book, chapter 3 of this paper). Finally, the paper by C. Bordenave et al. uses the
configuration model of Béla Bollobas [2], allowing to give the second major example of the
paper: threshold phenomena in directed graphs under the “configuration model” (chapters
4 and 5 of the paper).

Memory description

Chapter 1 will consist of some preliminaries where some definitions, important theorems
and notation of graph theory, probability and asymptotic notation will be stated, with the
aim of grouping prerequisites and dedicating the rest of the work to the main topic.

In chapter 2 we will begin the analysis of Markov chains. We will define what a Markov
chain is, with the properties and elements that characterize it such as its transition matrix
or its associated directed graph. Then we will see the concept of stationary distribution
together with the concept of total variation distance from equilibrium and several exam-
ples will be given, fundamental to understand the threshold phenomena in Markov chains.
Then we will study the existence and uniqueness of stationary distribution. The The-
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orem 2.2.9 guarantees existence for every (finite and time-homogeneous) Markov chain,
Proposition 2.3.5 tells us that it is unique if the chain is irreducible (equivalently, if its
associated directed graph is strongly connected), and Theorem 2.3.6 guarantees that if, in
addition, the chain is aperiodic, then the chain always converges to the stationary distribu-
tion regardless of the initial probability distribution. We will close the chapter by defining
the cutoff of a succession of Markov chains, as well as an equivalent characterization of
this property.

In chapter 3 we will address the first important example of this work: the cutoff window
on the biased and lazy walk on a line; that is, we consider the graph formed by a chain
of edges of length n and in it we have a Markov chain consisting of moving to the right
with a certain probability p/2, to the left with (1 − p)/2, there being also a probability
1/2 of staying in place. The main theorem tells us that this chain has a cutoff in time
t = β−1n and with a window of order

√
n, where β = p − 1/2 is the bias (understood as

excess probability of going right instead of left).
To prove the main theorem of the chapter, related to the cutoff window, we will

introduce the concept of coupling of two Markov chains. This allows us to study properties
of one chain from those of another related chain, and will be an essential technique that
we will use several times throughout the proof. The demonstration is divided into two
parts. In section 3.1 we prove several auxiliary results that will be needed later but whose
statement and proof has nothing to do with the cutoff itself, and in section 3.2 we show
the proof of the cutoff theorem, which is divided in four sections.

The chapter 4 consists of the description of the configuration model and some of its
properties. In the configuration model we fix a certain number of n vertices as well as
their output and input degrees, with the obvious constraint that the sum of the output
and input degrees be the same, and then take the random directed graph that comes
out of giving uniform probability to all pairings between “outputs” and “inputs”. The
resulting graph may not be simple (it may have multiple loops and/or edges). This
model was introduced by Bollobas [2] for undirected graphs. In this chapter we study
some properties of the configuration model for directed graphs, such as the fact that
they are locally tree-structured (Proposition 4.2.7) and, more precisely, that the random
walk in the configuration model will most likely be on nodes that have tree-structured
environments (Proposition 4.3.1). Note that in this model we have two overlapping random
processes. On the one hand the configuration model produces a random graph (with a
certain probability distribution) and on the other hand in that graph we have the Markov
chain consisting of a random walk.

In the last chapter 5 of the paper we state the fundamental theorem (Theorem 5.1.1)
describing the cutoff for random paths in graphs under the configuration model. The
proof consists of two main parts: We state the theorems in a similar way but working with
an approximate stationary distribution for the calculation of the distance to equilibrium,
then show the equivalence between the initial result and this approximation and finally
prove both theorems. In the last part, for lack of space and due to their complexity, there
are two technical results that we have stated without proof (Propositions 8 and 10 of [3]).
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Chapter 1

Basic definitions and results
1.1 Graph Theory

In order to understand Markov chains, it is necessary to have a solid knowledge of some
underlying mathematical concepts. One of these main ideas is graphs, since they provide
a visual representation of the elements and relations in a system. The concepts on this
chapter have been extracted from [9].

Definition 1.1.1 (Graph). A (finite) graph G is a triple (V (G), E(G), ϕG), consisting
of a finite nonempty set of vertices V (G), a set of edges E(G) and an incidence function
ϕG : E(G) → P (V (G)), that assigns each edge with a pair of vertices, i.e. ϕG(e) = {x, y}
with e ∈ E(G) and x, y ∈ V . If ϕG(a) = {x}, we say that e ∈ E(G) is a loop.

Definition 1.1.2 (Simple graph). A graph G is simple if there are no loops and for any
two vertices there is at most one edge that links them.

Definition 1.1.3 (Directed graph). A directed graph or digraph is a triple (V (G), E(G), ϕG)
where V (G) and E(G) are defined as on graph definition 1.1.1 and ϕG : E(G) → V × V
an incidence function that associates an edge to an ordered pair of vertices.

1

2

34

5

(a)

1

2

3

4

(b)

Figure 1.1: Simple graph and directed graph

Definition 1.1.4 (Strongly Connected Graph). A directed graph is a strongly connected
graph if for every pair of vertices x, y ∈ V there exists a path from x to y.

1.2 Probability

Since Markov chains are stochastic processes, a great deal of proofs use random variables
and their convergence. Some relevant definitions are:

3



4 CHAPTER 1. BASIC DEFINITIONS AND RESULTS

Definition 1.2.1 (Convergence in Probability). A sequence of real random variables

(X0, X1, . . . ) converges to a random variable X in probability and denoted by Xn
P−→ X if

lim
n→∞

P (|Xn −X| ≥ ϵ) = 0, for all ϵ > 0

Definition 1.2.2 (With high probability). An event which depends on n occurs with high
probability (W.H.P.) if its probability goes to 1 as n goes to infinity.

Theorem 1.2.3 (Central Limit Theorem). [1] Consider the random variable Sn as the
sum of n random independent and identically distributed variables with mean µ and vari-
ance σ2 < ∞. Define Zn as a standarization of Sn:

Zn :=
Sn − nµ

σ
√
n

Then:

lim
n→∞

P (Zn ≤ z) = Φ(z) :=

∫ z

−∞

1√
2π

e
−x2

2 dx

where Φ(z) is called the “cumulative error function”.

Theorem 1.2.4 (Boole’s Inequality). For any finite or countable set of events, the prob-
ability that at least one events happens is upper bounded by the sum of the probability of
the individual events. That is to say:

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai)

1.3 Asymptotic notation

When working with limits that tend to infinity, asymptotic analysis is used to describe
limiting behaviour. The Bachmann-Landauu notation represent the behaviour of functions
in a neighborhood in terms of other functions [12].

Definition 1.3.1 (Big O notation). Let f be the real or complex function to be estimated
and let g be the real-positive valued comparison function. f(x) = O(g(x)) if there exists
a real number M > 0 and a real number x0 such that:

|f(x)| ≤ Mg(x) for all x ≥ x0.

Definition 1.3.2 (Small o notation). Let f be the real or complex function to be estimated
and let g be the real-positive valued comparison function. f(x) = o(g(x)) if for every
constant ϵ > 0 there exists a real number x0 such that:

|f(x)| ≤ ϵg(x) for all x ≥ x0.

Definition 1.3.3 (Big Θ notation). Let f be the real or complex function to be estimated
and let g be the real valued comparison function. f(x) = Θ(g(x)) if for every constant
ϵ > 0 there exists two positive real numbers M1 and M2 and a real number x0 such that:

M1g(x) ≤ |f(x)| ≤ M2g(x) for all x ≥ x0.



Chapter 2

Markov Chains

Everything in this chapter is following the book [11] and with some proofs based on [10].

2.1 Definitions and basic properties

A sequence of finite or countable random variables (X0, X1, ...) is a discrete Markov chain
with state space X if it satisfies the Markov property:

∀n ∈ N and ∀i1, i2, ..., in ∈ X :

P (Xn = in|Xn−1 = in−1, ..., X0 = i0) = P (Xn = in|Xn−1 = in−1),

where X is nothing but a set with every possible value that the random variables can have.

The interpretation is that we have a process that can be in different states (the elements
of X ) and moves from one state to another as time passes, where time is discretized and
represented by the index n. Having said that, the Markov chain property means that the
probability of moving from a state i at time n to a state j at time n+1 (both in X ) does
not depend on the previous steps to reach i.

From now on we assume that our Markov chains are time-homogeneous which means
that the probability does not depend on n either. That is:

P (Xn+1 = j|Xn = i) = P (Xn = j|Xn−1 = i), for every n.

We will also assume that X is finite.

This allows us to define a transition matrix P , a |X |× |X | matrix whose (i, j)-th entry
(denoted by P (i, j)) is the probability

P (i, j) := P (X1 = j|X0 = i) = P (Xn = j|Xn−1 = i) (2.1)

The i-th row of P is the distribution P (i, ·). P is stochastic:∑
j∈X

P (i, j) = 1 for all i ∈ X and P (i, j) ≥ 0 for all i, j ∈ X .

The directed graph of a Markov chain with transition matrix P ∈ Rn×n is the directed
graph with vertices {1, . . . , n} and with an edge (i, j) if and only if P (i, j) ̸= 0.

5



6 CHAPTER 2. MARKOV CHAINS

As a Markov chain moves along the set X , a question may appear: How can we know
where are we going to be after t steps?

Let us define the initial distribution π0 as the probability distribution of the Markov
chain at time 0. i.e. for every state i ∈ X we express π0(i) = P (X0 = i) as the probability
that the chain starts at state i. In general, let us denote πn as distribution of the Markov
chain at time n, that is to say, πn(i) = P (Xn = i) ∀i ∈ X . By the Law of Total Probability:

πn+1(j) = P (Xn+1 = j) =
∑
i∈X

P ((Xn+1 = j) ∩ (Xn = i)) =

=
∑
i∈X

P (Xn+1 = j|Xn = i)P (Xn = i) =
∑
i∈X

P (i, j)πn(i)

In matrix notation this is equivalent to:

πn+1 = πnP

By induction we have that
πn = π0P

n

Given an initial distribution π0, we denote by Pπ0(A) the probability of the event A
having initial distribution π0. Let j be a state in X ; the distribution having probability 1
of being at j is denoted δj but we abbreviate Pδj as Pj . A similar notation is used for the
expectations Eπ0 , Ej .

Consider t ∈ N and two vertices i, j ∈ X . The probability of reaching j from i after
exactly t steps is:

Pi(Xt = j) = (δiP
t)(y) = P t(i, j).

Definition 2.1.1 (Stationary distribution). Let π be a distribution of the Markov chain
at time t. π is a stationary distribution if the probability distribution of the Markov chain
at any time n ≥ t equals π too; equivalently, if:

π = πP

It can be seen that this stationary distribution may be unique, have infinite possibilities
or even not exist.

Definition 2.1.2 (Total variation). The total variation between two distributions
µ, σ : X −→ R is:

∥µ− σ∥TV = max
A⊂X

|µ(A)− σ(A)|

Proposition 2.1.3. If the state space X is finite the total variation can be also expressed
as

∥µ− σ∥TV =
1

2

∑
i∈X

|µ(i)− σ(i)|

Proof. Let B = {i ∈ X : µ(i) ≥ σ(i)}. Consider A ⊆ X any set of states. We can write
A = (A ∩B) ∪ (A ∩Bc).

µ(A)− σ(A) = µ(A ∩B) + µ(A ∩Bc)− σ(A ∩B)− σ(A ∩Bc) ≤ µ(A ∩B)− σ(A ∩B),
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where the last inequality holds because if i ∈ A ∩Bc =⇒ µ(i)− σ(i) < 0.
Since B = (A ∩B) ∪ (B\A) and having that B\A ⊆ B,

µ(A ∩B)− σ(A ∩B) ≤ µ(A ∩B)− σ(A ∩B) + µ(B\A)− σ(B\A) = µ(B)− σ(B).

Putting together both inequalities:

µ(A)− σ(A) ≤ µ(B)− σ(B) (2.2)

By a similar reasoning
µ(Bc)− σ(Bc) ≤ µ(A)− σ(A).

Let us bound |µ(A)− σ(A)| by µ(B)− σ(B) as follows:

µ(B) + µ(Bc) = 1 = σ(B) + σ(Bc) =⇒ µ(Bc)− σ(Bc) = −(µ(B)− σ(B))

−(µ(B)− σ(B)) ≤ µ(A)− σ(A) ≤ µ(B)− σ(B) =⇒
=⇒ |µ(A)− σ(A)| ≤ µ(B)− σ(B)

As µ(A)− σ(A) is bounded by equation (2.2), the equality holds when A = B, so:

∥µ− σ∥TV =max
A⊂X

|µ(A)− σ(A)| = µ(B)− σ(B) =

=
1

2
(µ(B)− σ(B) + σ(Bc)− µ(Bc)) =

=
1

2

(∑
i∈B

|µ(i)− σ(i)|+
∑
i∈Bc

|µ(i)− σ(i)|

)
=

=
1

2

∑
i∈X

|µ(i)− σ(i)|

In the next two sections we study conditions for the Markov chain to have a unique
stationary distribution π.

A first approach to calculate this distribution is to solve the linear system

π(P − I) = 0,

This approach will lead to Theorem 2.3.5 showing that irreducible Markov chains have a
unique stationary distribution.

An alternative to obtain π is to understand the stationary distribution as the limit of
the distribution when time tends to infinity. Indeed, if the limit of Pn as n goes to infinity
exists, then each row in the limit is a stationary distribution.

In Theorem 2.3.6 we show that this always happens for aperiodic irreducible Markov
chains and, moreover, the convergence is exponentially fast.

Definition 2.1.4 ([11, Section 4.4], [3, Section 1]). For each i we define the total variation
distance from equilibrium at time t starting at i as:

Di(t) := ∥P t(i, ·)− π∥TV



8 CHAPTER 2. MARKOV CHAINS

We are mostly interested in the maximum over all i, the maximum total variation distance
from equilibrium at time t

d(t) := max
i∈X

∥P t(i, ·)− π∥TV

The main reason to look at this maximum is that it bounds the distance to equilibrium
for any initial distribution, not only δi:

Proposition 2.1.5. For any two distributions π0 and π′ and any t ∈ N we have

∥π0P t − π′∥TV ≤ max
i∈X

∥P t(i, ·)− π′∥TV .

In particular for the stationary distribution π:

∥π0P t − π∥TV ≤ d(t).

Proof. π0 is a convex combination of the distributions δi, with coefficients λi := π0(i).
Thinking of P t as a linear map, this makes π0P

t a convex combination of the distributions
P t(i, ·) := δiP

t. That is:

π0P
t =

∑
i∈X

λiP
t(i, ·).

Convexity of the total variation 1 then implies ∥π0P t−π′∥TV ≤ maxi∈X ∥P t(i, ·)−π′∥TV .

An important result related with the distance to equilibrium is the fact that advancing
the chain only gets closer to stationarity; that is to say

∥π0P t+1 − π∥TV ≤ ∥π0P t − π∥TV .

This can be easily deduced from the following lemma:

Lemma 2.1.6. Let P be the transition matrix of a Markov chain with state space X , let
µ and σ be two distributions on X . We have that:

∥µP − σP∥TV ≤ ∥µ− σ∥TV .

Proof. By the very definition of total variation distance

∥µP − σP∥TV =
1

2

∑
i∈X

|µP (i)− σP (i)| = 1

2

∑
i∈X

∣∣∣∣∣∣
∑
j∈X

P (j, i)[µ(j)− σ(j)]

∣∣∣∣∣∣ ≤
≤ 1

2

∑
i∈X

∑
j∈X

P (j, i)|µ(j)− σ(j)| = 1

2

∑
j∈X

|µ(j)− σ(j)|
∑
i∈X

P (j, i) =

=
1

2

∑
j∈X

|µ(j)− σ(j)| = ∥µ− σ∥TV

1The total variation ∥·∥TV is a rescaling of the L1-norm and for every norm and any convex combination
v =

∑k
i=1 λivi with 0 ≤ λi ≤ 1 and

∑
i λi = 1 we have that

∥v − u∥ =

∥∥∥∥∥
k∑

i=1

λivi − u

∥∥∥∥∥ =

∥∥∥∥∥
k∑

i=1

λi(vi − u)

∥∥∥∥∥ ≤
k∑

i=1

λi∥vi − u∥ ≤

(
k∑

i=1

λi

)
max

j
∥vj − u∥ = max

j
∥(vj − u)∥.
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Corollary 2.1.7. For every initial distribution π0 we have ∥π0P t+1 − π∥TV ≤ ∥π0P t −
π∥TV . In particular, d(t) is (weakly) decreasing with t.

Proof. Apply the previous lemma with σ = π and µ = π0P
t as follows:

∥π0P t+1 − π∥TV = ∥(π0P t)P − πP∥TV ≤ ∥π0P t − π∥TV .

Example 2.1.8. Let us calculate the stationary distribution π in both of the previous
ways. Consider the Markov chain with state space X = {1, 2, 3} and transition matrix:

P =

0 1 0
0 1

4
3
4

1
2

1
2 0


The graph of the chain can be represented as follows

1

2

3

• Obtain π solving linear system:
1
2z = x

x+ 1
4y +

1
2z = y

3
4y = z

x+ y + z = 1

Where we obtain the following solution:

π =

(
3

17

8

17

6

17

)
≈ (0.176 0.471 0.353)

• Calculating the n-th power of P :

For n = 5: 0.165 0.403 0.434
0.218 0.482 0.302
0.130 0.491 0.381


For n = 20: 0.176 0.471 0.353

0.176 0.471 0.353
0.176 0.471 0.353


Which gives us a fairly good approximation of π.
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2.2 Every Markov chain has a stationary distribution

In order to give the conditions for a Markov chain to have a unique stationary distribution,
some previous definitions and propositions are required.
Let P be the transition matrix of a Markov chain with state space X :

Definition 2.2.1 (Irreducible matrix). P is a irreducible matrix if for any two states
i, j ∈ X there exists a t ∈ N such that P t(i, j) > 0, i.e., it is possible to get from any state
to any other state using only transitions of positive probability.

Proposition 2.2.2. A transition matrix P ∈ Rn×n is irreducible ⇐⇒ its directed graph
is strongly connected (for every i, j ∈ V there exists a directed path from i to j)

Proof. The proof is direct due to the very definition of P .

In order to prove the existence of stationary distribution for any Markov chain we need
to introduce some definitions and results related with the states in X .

Let i, j ∈ X ; we say that j is accessible from i and denote it as i → j if there exists
r ∈ N such that P r(i, j) > 0. That is to say, if there is a path from i to j in the graph of
the Markov chain. If i is also accessible from j (not necessarily with the same r), we say
that i communicates with j and write i ↔ j. A state i ∈ X is essential if for every j such
that i → j it is also true that j → i. A state i is inessential if it is not essential.

Lemma 2.2.3. If i is an essential state and i → j, then j is essential.

Proof. Let k be a reachable state from j. As i → j → k and i is essential, then k → i and
therefore k → j.

Communicating with defines an equivalence relation and we denote by [i] the commu-
nicating class of i. Observe that communicating classes in the Markov chain are the same
as strongly connected components in the graph.

Lemma 2.2.4. Every Markov chain with finite X has at least one essential class. [11]

Proof. Let us build a sequence of states (i0, i1, ...). Fixed i0, for m ≥ 1, if im is essential
we stop due to Lemma 2.2.3, as we have an essential class made up of every state that
communicates with im. If im is not essential, we choose im+1 such that im → im+1 but
im+1 ��→ im. There can not be repeated states, because if im+1 = il for l < m, then
im+1 → im as il → im.
As |X | < ∞, we will reach an essential state at some point, concluding the proof.

Lemma 2.2.5. In every directed graph G = (V,E) without sinks, there exists a subset
W ⊂ V such that:

• G
∣∣∣
W

is strongly connected.

• W has no edge that leaves W .
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Proof. Consider a Markov chain with graph G. For example, we can give equal probability
to all the edges that go out from each i ∈ V . That is, we take P (i, j) = 1/deg+(i), where
deg+(i) denotes the out-degree of i.

By Lemma 2.2.4, there exists an essential class W ⊂ V . Being a class implies the
induced subgraph is strongly connected and being essential implies that W can not be left
once you reach it.

Corollary 2.2.6. Knowing that every irreducible chain has stationary distribution, so
does the reducible chains.

Proof. Consider the induced directed graphG from the transition matrix P of the reducible
chain. By Lemma 2.2.5 consider W as the strongly connected component of G. Reordering
rows of the transition matrix we obtain (

W 0
∗ ∗

)
where the upper left quadrant is the transition matrix of the Markov chain defined as on
proof of Lemma 2.2.5. The stationary distribution of the reducible chain is a vector made
of the stationary distribution of W πW , and |V \W | zeros:

π = (πw 0 . . . 0),

and it is easily shown that
πP = π

Definition 2.2.7 (Hitting time). For i ∈ X , the hitting time of i is the first time the
chain visits i.

τi := min{t ≥ 0 : Xt = i}

If we exclude the case in which we start at i we can define

τ+i := min{t ≥ 1 : Xt = i}

Lemma 2.2.8. Given a finite irreducible Markov chain, for every k ∈ X we have that:

• Pk{τ+k < ∞} = 1

• Ek(τ
+
k ) < ∞

Proof. For every state i ∈ X we denote by li as the minimum number of steps to reach k
from i in the graph of the Markov chain, and by pi := P (Xli = k|X0 = i), which is always
greater than 0 since the chain is irreducible. Consider

L := max
i∈X

{li}.

By the definition of τ+k , for every initial distribution π0 we have that

Pπ0(τ
+
k ≤ L) ≥ min pi.
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Letting ϵ = mini∈V pi > 0 and iterating multiples of L steps:

Pπ0(τ
+
k > L) ≤ 1− ϵ

Pπ0(τ
+
k > 2L) = Pπ0(τ

+
k > L) · PPLπ0

(τ+k > L) ≤ (1− ϵ)2

and, in general
Pπ0(τ

+
k > mL) ≤ (1− ϵ)m, ∀m ∈ N. (2.3)

We prove the first point of the Lemma taking π0 = δk and making m tend to infinity:

lim
m→∞

Pk(τ
+
k > mL) ≤ lim

m→∞
(1− ϵ)m = 0

In order to prove the second result

Ek(τ
+
k ) =

∞∑
t=1

tPk(τ
+
k = t) =

=

L∑
t=1

tPk(τ
+
k = t) +

2L∑
t=L+1

tPk(τ
+
k = t) +

3L∑
t=2L+1

tPk(τ
+
k = t) + · · · ≤

≤ L2 Pk(τ
+
k > 0) + 2L2 Pk(τ

+
k > L) + 3L2 Pk(τ

+
k > 2L) + · · · =

= L2
∞∑

m=0

(m+ 1)(1− ϵ)m < ∞.

The last inequality (saying that
∑∞

m=0(m+1)(1−ϵ)m is convergent) follows for example
from D’Alambert ratio test (also known as ratio test): in a series of positive terms, if the
ratio between consecutive terms has limit strictly smaller than 1 then the series converges.
In our case, calling am = (m+ 1)(1− ϵ)m:

C = lim
m→∞

am+1

am
= lim

m→∞

(m+ 2)(1− ϵ)m+1

(m+ 1)(1− ϵ)m
= 1− ϵ < 1.

Theorem 2.2.9. Every (finite, time-homogeneous) Markov chain has some stationary
distribution.

Proof. By Corollary 2.2.6 we assume without loss of generality that the Markov chain is
irreducible.

The proof is based on Lemma 2.2.8.
Let

π̃(j) :=Ek(number of visits to j before returning to k) = (2.4)

=
∞∑
t=0

Pk{Xt = j ∧ τ+k > t} =
∞∑
t=0

Pk{Xt = j ∧ τ+k ≥ t+ 1}.

The idea of the proof is to show that the vector π̃ normalized so that
∑

i∈X π̃(i) = 1
is a stationary distribution.

Recall that π̃ is a stationary distribution if π̃P = π̃,
∑

i∈X π̃(i) = 1 and π̃(i) ≥ 0
∀i ∈ V . In this case we need to prove the first two equalities as the third is granted by
the very definition of π̃.
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Observe that π̃(k) = 1 and that∑
i∈X

π̃(i) = Ek(τ
+
k ),

which gives us the fact that π̃(i) ≤ ∞ ∀i ∈ X by Lemma 2.2.8. Let us show that π̃ is
stationary: ∑

i∈X
π̃(i)P (i, j) =

∑
i∈X

∞∑
t=0

Pk{Xt = i ∧ τ+k > t}P (i, j). (2.5)

We can write the last term as

Pk{Xt = i ∧ τ+k > t}P (i, j) = Pk{Xt = i ∧Xt+1 = j ∧ τ+k ≥ t+ 1}.

When substituting on (2.5) we can get rid of Xt = i due to the first summation hence we
obtain ∑

i∈X
π̃P (i, j) =

∞∑
t=0

Pk{Xt+1 = j ∧ τ+k ≥ t+ 1} =

∞∑
t=1

Pk{Xt = j, τ+k ≥ t}.

By the definition of π̃ (2.4)

∞∑
t=1

Pk{Xt = j, τ+k ≥ t} =π̃(j)− Pk{X0 = j ∧ τ+k ≥ 0}+
∞∑
t=1

Pk{Xt = j ∧ τ+k = t} =

=π̃(j)− Pk{X0 = j}+ Pk{Xτ+k
= j}

If we show that Pk{X0 = j} = Pk{Xτk = j} the first part of the proof is done. We
can consider two cases:

• j = k: As the initial distrubution is δk, the first term is equal to 1 and by the
definition of τ+k , Pk{Xτ+k

= j} = 1.

• j ̸= k: Again due to the initial distribution, the first term is equals to 0, and so is
the second.

This proves that π̃P = π̃. We now normalize by∑
i∈X

π̃(i) = Ek(τ
+
k )

obtaining

π(i) =
π̃(i)

Ez(τ
+
k )

Remark 1. The theorem can also be proved using Brouwer fixed-point theorem:

Theorem 2.2.10 (Brouwer’s fixed-point theorem). Every continuous function from
Bd −→ Bd has some fixed point.
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The proof of the theorem for any d ∈ N goes beyond the scope of this work, although
throughout the mathematics degree various proofs for d = 2 have been studied, with both
topological and complex analysis arguments.

Second proof of Theorem 2.2.9. This proof is based on the homeomorphism between ∆n−1

and Bn−1, ∆n−1 ∼= Bn−1, where

∆n−1 = {(x1, ..., xn)
∣∣∣ n∑
i=1

= 1 ∧ xi ≥ 0∀i}

is called the unit simplex or equivalently probability simplex.
We can now interpret the transpose of P as a continuous function from ∆n−1 −→ ∆n−1

and by Brouwer’s fixed-point theorem, there exists a vector v ∈ Rn such that P T v = v.
This vector v is the stationary distribution we are looking for.

If we do not consider a finite Markov chain (Markov chain with finite state space), the
existence of stationary distribution is not granted:

Given the state space X = N, consider the transition matrix P as the infinite matrix
with P (i, i+ 1) = 1 for every i ∈ X .

P =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .


Let π0 be a distribution. If π0 is a stationary distribution π0P = π0, then we have that
π0(j) = π0(j+1) ∀j > 0. This implies that π0 is a constant vector, but since the state space
is infinite, there is no infinite vector such that

∑∞
i=1 π0(i) = 1 and π0(i) = c for some c ∈ R.

2.3 Convergence to the stationary distribution

In Theorem 2.3.6 we are going to show that any Markov chain with irreducible, aperiodic
transition matrix P on a finite state space X converges to its unique stationary distribution
π:

∀(i, j) ∈ X 2, P t(i, j)
n→∞−−−→ π(j)

By aperiodic we mean the following:

Definition 2.3.1 (Period. Aperiodic chain). Let i ∈ X and T (i) = {t ≥ 1 : P t(i, i) > 0}
the set of times when it is possible to return to i. The period of the state i is g.c.d(T (i)).
A chain is aperiodic if all states have period 1.

Proposition 2.3.2. If P is aperiodic and irreducible, there exist r0 ∈ N such that
P r(i, j) > 0 ∀i, j ∈ X and for every r ≥ r0.
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Proof. Let i ∈ X . As P is aperiodic, g.c.d(T (i)) = 1. For l,m ∈ T (i), since P l+m(i, i) ≥
P l(i, i)Pm(i, i) > 0 we have l+m ∈ T (i). Then it has to exist t(i) ∈ N such that for every
t ≥ t(i), t ∈ T (i).
Since P is irreducible, for every j ∈ X , let r(i, j) be an integer such that P r(i, j) > 0.
Consider t′(i) := t(i) + maxj∈X r(i, j), we have that P t(i, j) > 0 ∀j and ∀t ≥ t(i). Given
that i was fixed, if t ≥ maxi∈X (t

′(i)), P t(i, j) > 0 for every i, j ∈ X .

Definition 2.3.3 (Harmonic function). Consider X a finite set and P a transition matrix.
A function h : X → R is harmonic at i ∈ X if:

h(i) =
∑
j∈X

P (i, j)h(j)

If h is harmonic at every state, that is, if Ph = h we simply say that h is harmonic on X .

Observe that a harmonic function of P is nothing but a right eigenvector with eigen-
value 1, while a stationary distribution is a (nonnegative, normalized to 1) left eigenvector
with that eigenvalue.

Lemma 2.3.4. If P is an irreducible transition matrix then the harmonic functions on
X are exactly the constant functions.

Proof. Since every row of P has sum equal to 1, any constant vector is harmonic.
For the converse, let h be harmonic and let i0 ∈ X be such that h(i0) reaches its

maximum (which exists because X is finite). Let us denote M = h(i0). Since h is
harmonic:

h(i0) = M = (Ph)(i0) =
∑
j∈X

P (i0, j)h(j)

Let k ∈ X be an arbitrary state:

• If P (i0, k) > 0,

M =
∑
j∈X

P (i0, j)h(j) = P (i0, k)h(k) +
∑
j∈X
j ̸=k

P (i0, j)h(j) ≤

≤P (i0, k)h(k) + (1− P (i0, k))M

That is to say
M ≤ P (i0, k)h(k) + (1− P (i0, k))M,

which implies
M ≤ h(k).

• If P (i0, k) = 0, as P is irreducible, there exists nk ∈ N such that Pnk(i0, k) > 0. As
Pnkh = h, reasoning in the same way as in the first case, we obtain that M ≤ h(k).

Since for every state k in X , M ≤ h(k), we conclude that M = h(i0) = h(k), finishing the
proof.

Proposition 2.3.5. If P is irreducible then it has a unique stationary distribution.
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Proof. We already saw in Theorem 2.2.9 that a stationary distribution π exists, so we only
need to proof uniqueness.

The proof is based on Lemma 2.3.4:
Since P is irreducible, the constant vectors are the only vectors with Ph = h, that is, the
only vectors with (P − I)h = 0. That is, dim(ker(P − I)) = 1. By rank-nullity theorem,

rank(P − I) = |X | − 1 = rank(P t − I).

Using rank-nullity theorem again, rank(ker(P t − I)) = 1, which means that the equation

(P t − I)vt = 0

has a 1-dimensional space of solutions. This equation is equivalent to vP = v. By
hypothesis, as πP = π, every other solution must be of the form v = λπ but as the sum
of v must be 1, λ = 1 =⇒ v = π.

The reciprocal of 2.3.5 is not true: Consider a directed graph with only two vertices,
one directed edge 12 and one loop on 2. The transition matrix is

P =

(
0 1
0 1

)
whose stationary distribution is π = (0, 1) and unique, but P is reducible, as you can not
leave 2 once you get there.

1 2

The condition of irreducibility of P on Proposition 2.3.5 is necessary for uniqueness,
as if P is reducible, we may have infinite stationary distributions: Consider the n × n
transition matrix

P =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


P is reducible since P r = P ∀r ∈ N and for every π ∈ Rn, πP = π

Theorem 2.3.6 (Convergence Theorem). Suppose P is irreducible and aperiodic with
stationary distribution π. Then there exist constants α ∈ (0, 1) and C > 0 such that

max
i∈X

∥P t(i, ·)− π∥TV ≤ Cαt.
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Proof. Since P is aperiodic and irreducible, Proposition 2.3.2 ensures that there exists r
such that the matrix P r has only positive entries. For ϵ small enough

P r(i, j) ≥ ϵπ(j) for every i, j ∈ X .

Let θ = 1− ϵ and Π be the |X | × |X | matrix with every row equal to π. The following
equation defines a stochastic matrix Q:

P r = (1− θ)Π + θQ (2.6)

In order to prove the theorem we need to show by induction on k that

P rk = (1− θk)Π + θkQ (2.7)

For k = 1, it is obvious due to (2.6). Assuming that it holds for k = n, let us prove it for
k = n+ 1:

P r(n+1) = [(1− θn)Π + θnQ]P r

= [1− θn]ΠP r + (1− θ)θnQnΠ+ θn+1Qn+1

Since πP = π, πPm = (πP )Pm−1 = · · · = π for every m ∈ N, we have that ΠPm = Π.
The same occurs for Qn:

(QnΠ)(i, j) =
∑
k∈X

Qn(i, k)Π(i, j) = π(j)
∑
k∈X

Qn(i, k) = π(j) = Π(i, j),

by the fact that Q is stochastic. Hence:

P r(n+1) = [(1− θn+1)Π + θn+1Qn+1,

concluding that the equality (2.7) holds for every k. Multiplying by P l with 0 ≤ l < r
and reordering terms

P rk+l −Π = θk(QkP l −Π).

To conclude the proof we focus on the i-th row of the resulting matrices. If we sum the
absolute values of the row and divide by 2, we can use the Proposition 2.1.3. The right
term can be bounded by θk as ∥QkP l(i, ·)− π∥TV is at most 1. Therefore

∥P rk+l(i, ·)− π∥TV ≤ θk

Taking t = rk + l, α = θ1/r ∈ (0, 1) and C = α−r = 1/θ > 1 we finish the proof in the
following manner:

∥P rk+l(i, ·)− π∥TV ≤ θk = αrk ≤ αrkαl−r = α−rαrk+l = Cαt.

Remark that we need the aperiodicity of P , as otherwise the theorem would not be
true:
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1

2

34

5

Example 2.3.7. Consider a Markov with state space X = {1, 2, 3, 4, 5}, transition matrix

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


and with the following cycle directed graph:

Consider π a distribution on the state space X . In order for π to be stationary it must
be a solution of the following system of equations

π(1) = π(2)

π(2) = π(3)

· · ·
π(5) = π(1)∑5

i=1 π(i) = 1

hence

π(1) = π(2) = · · · = π(5) =
1

5

P is not aperiodic, as g.c.d(T (i)) = 5 for every state on X . Let us show that there does
not exist α and C defined as on Theorem 2.3.6: For every row of the matrix P t,

∥P t(i, ·)− π∥TV =
1

2

(∣∣∣∣1− 1

5

∣∣∣∣+ ∣∣∣∣−1

5

∣∣∣∣+ ∣∣∣∣−1

5

∣∣∣∣+ ∣∣∣∣−1

5

∣∣∣∣+ ∣∣∣∣−1

5

∣∣∣∣) =
4

5
.

For every pair C0, α0, since C0 is constant and αt
0 tends to 0 as t → ∞, 4

5 > C0α
t
0 for

every t ≥ t0, which contradicts the Convergence Theorem.

2.4 Cutoff phenomena

When understanding total variation distance from equilibrium new concepts appear:
Remember that we denote by d(t) the maximum total variation distance at time t:

d(t) := max
i∈X

∥P t(i, ·)− π∥TV

We define the variation distance mixing time or simply mixing time as

tmix(ϵ) := min{t ∈ N : d(t) ≤ ϵ}.
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It is convenient to speak of the mixing time without referring to an ϵ. For this we
consider:

tmix := tmix(1/4)

For each n ∈ N, let Xn be a finite state space. Let X(n) = (X
(n)
0 , X

(n)
1 , X

(n)
2 , . . . ) be

a Markov Chain with state space Xn. The mixing time for the n-th chain is denoted by

t
(n)
mix(ϵ).

Definition 2.4.1 (Cutoff). The sequence of chains X(0), X(1), X(2), . . . has a cutoff if for
every ϵ ∈ (0, 1)

lim
n→∞

t
(n)
mix(ϵ)

t
(n)
mix(1− ϵ)

= 1 (2.8)

Lemma 2.4.2. A sequence of Markov chains has a cutoff if and only if

lim
n→∞

d(n)(ct
(n)
mix) =

{
1 if 0 < c < 1

0 if c > 1
(2.9)

Proof. Assume that (2.9) holds and let ϵ > 0 be fixed.
Given γ ∈ (0, 1), (2.9) implies{

limn→∞ d(n)
(
(1 + γ)t

(n)
mix

)
= 0

limn→∞ d(n)
(
(1− γ)t

(n)
mix

)
= 1

From the first equation we get that for n large enough d(n)
(
(1 + γ)t

(n)
mix

)
< ϵ, which

implies that

t
(n)
mix(ϵ) ≤ (1 + γ)t

(n)
mix (2.10)

relying on the very definition of t
(n)
mix(ϵ). Similarly, the second equation says that for n

large enough d(n)
(
(1− γ)t

(n)
mix

)
> 1− ϵ, which implies that

t
(n)
mix(1− ϵ) ≥ (1− γ)t

(n)
mix. (2.11)

Equations (2.10) and (2.11) give

t
(n)
mix(ϵ)

t
(n)
mix(1− ϵ)

≤ 1 + γ

1− γ

Making γ tend to 0 we have (2.8).
Conversely, assume that (2.8) holds. Given γ > 0, for any ϵ > 0 and for n large enough,

t
(n)
mix(ϵ) ≤ (1 + γ)t

(n)
mix. Indeed, if ϵ > 1/4 then

t
(n)
mix(ϵ) ≤ t

(n)
mix ≤ (1 + γ)t

(n)
mix;

and if ϵ < 1/4 then

t
(n)
mix(ϵ) < (1 + γ)t

(n)
mix(1− ϵ) ≤ (1 + γ)t

(n)
mix,
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where the first inequality follows from (2.8), for n large enough.

Hence limn→∞ d(n)
(
(1 + γ)t

(n)
mix

)
≤ ϵ. Since this holds for every ϵ,

lim
n→∞

d(n)
(
(1 + γ)t

(n)
mix

)
= 0.

The same arguments give t
(n)
mix(1− ϵ) ≥ (1− γ)t

(n)
mix for n large enough

limn→∞ d(n)
(
(1− γ)t

(n)
mix

)
≥ 1− ϵ. As this also holds for every ϵ,

lim
n→∞

d(n)
(
(1− γ)t

(n)
mix

)
= 1

Remark 2. Observe that this proof would work the same taking tmix := tmix(r) for any
r ∈ (0, 1/2), instead of the choice r = 1/4.

Definition 2.4.3 (Cutoff window). Let (wn)n∈N be a sequence in (0,∞) (equivalently, we
can consider w : N → (0,∞) a function). A sequence of Markov chains has a cutoff with

a window of size O(wn) if wn = o(t
(n)
mix) and

lim
α→∞

lim inf
n→∞

d(n)(t
(n)
mix − αwn) = 1

lim
α→∞

lim sup
n→∞

d(n)(t
(n)
mix + αwn) = 0

To understand better the concept of cutoff, we dedicate the following chapter to analyze
an example taken from [11, Section 18].



Chapter 3

The lazy biased random walk on a
chain

3.1 Lazy biased random walk on a line segment

Consider the lazy nearest-neighbor random walk with bias β on the interval Xn = {0, 1, . . . , n}.
When at an interior vertex, the walk remains in its current position with probability 1/2,
moves one step to the right with probability p/2 with p ∈ (1/2, 1) and one step to the
left with probability q/2 with q = 1− p. When at an end vertex, the walk remains in its
current position with probability 1/2 and moves to the interior vertex with probability
1/2. The bias β is defined as β := (p− q)/2 = p− 1/2.

0 1 2 3 4

1/2 1/2 1/2 1/2 1/2

1/2 p/2 p/2 p/2

q/2 q/2 q/2 1/2

Figure 3.1: Biased random walk with five elements

Theorem 3.1.1. For each n ∈ N, let (X(n)
t )t∈N be the lazy random walk with bias β =

p − 1/2 on Xn = {0, 1, 2, . . . , n}. Then, there exists a constant c(β) > 0 that depends on
β only, such that for every α ∈ R

lim
n→∞

d(n)(tn(α)) = Φ(−c(β)α),

where tn(α) = β−1n+ α
√
n and Φ denotes the cumulative normal distribution function.

Corollary 3.1.2. The lazy random walks (X
(n)
t )t∈N with bias β = p − 1/2 on Xn =

{0, 1, 2, . . . , n} have a cutoff at t = β−1n with a window of size O(
√
n).

Let us here prove the corollary from the theorem. The proof of the theorem itself will
occupy the rest of this chapter.

21
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Proof. By the definition of cutoff window, we need to show that

lim
α→∞

lim inf
n→∞

d(n)(t
(n)
mix − αwn) = 1

lim
α→∞

lim sup
n→∞

d(n)(t
(n)
mix + αwn) = 0,

where the first equality can be rewritten as

lim
α→−∞

lim inf
n→∞

d(n)(t
(n)
mix + αwn) = 1.

Assuming Theorem 3.1.1, we can distinguish two cases depending on α:

• If α < 0
lim

α→−∞
lim
n→∞

d(n)(β−1n+ α
√
n) = lim

α→−∞
Φ(−c(β)α),

which tends to 1 by properties of the cumulative error function combined with the
fact that c(β) > 0.

• If α > 0, we have

lim
α→∞

lim
n→∞

d(n)(β−1n+ α
√
n) = lim

α→∞
Φ(−c(β)α),

which tends to 0 due to a same reasoning as on the equality above.

Along the proof we use several times the idea of coupling two or more Markov chains
(extracted from Chapter 5 of [11]), with the following definition:

Definition 3.1.3 (Coupling). [[11, Chapter 5]] Let {Xt} and {Yt} be two Markov chains
with state spaces X and Y respectively.

A coupling of the two chains is any Markov chain {(Xt, Yt)} on X × Y such that
forgetting Xt (respectively Yt) the chain equals Yt (respectively Xt).

We always assume that the coupling is Markovian:

P (Xt+1 = i′|Xt = i, Yt = j) = P (Xt+1 = i′|Xt = i),

P (Yt+1 = j′|Xt = i, Yt = j) = P (Yt+1 = j′|Yt = j).

That is, the evolution of one of the variables is independent of where the other one is.

One result that we need about Markovian coupling is:

Corollary 3.1.4 ([11, Chapter 5]). Let P be a transition matrix on X and suppose that
for each pair of states i, j ∈ X there is a Markovian coupling (Xt, Yt) with X0 = i and
Y0 = j. For each coupling, let τcouple be the first time s where Xs = Ys. Then

d(t) ≤ max
i,j∈X

Pi,j(τcouple > t) (3.1)

We also need the following properties about X(n). Let θ = q/p, which we assume to
be smaller than 1.
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Lemma 3.1.5. In the lazy random walk X(n) we have

P1(hit 0 before n) =
θ − θn

1− θn

Proof. Remember that P1(·) denotes the probability of something when the Markov chain

starts with X
(n)
0 = 1. That is, we want to compute the probability that the random walk

starting at 1 passes through 0 before passing through n.
Our first remark is that this depends only on the trajectory of the walk and not on

the time it takes to move, so the probability is the same in X(n) as in the usual biased
random walk that moves to the left with probabilty q and to the right with probability p.

We are going to prove the statement by induction on n, starting with n = 2:

• For n = 2:

P1(hit 0 before 2) = q =
θ

1− θ
=

θ − θ2

1− θ2
,

where we use that θ = q/p and q + p = 1 imply that p and q are described by

q =
θ

1 + θ
, p =

1

1 + θ

• We now assume that the formula holds for n− 1. We claim that:

P1(hit 0 before n) = q + pP2(hit 1 before n)P1(hit 0 before n)

The explanation of this formula is as follows: Starting at 1 we either move to 0 with
probability q (which gives the first summand) or to 2, with probability p. From 2
we need to go to 1 and then to 0, both without hitting n.

This leads to

P1(hit 0 before n) = q · 1

1− p · P2(hit 1 before n)
(3.2)

If we denote by An := P1(hit 0 before n) then we have

An−1 = P1(hit 0 before n− 1) = P2(hit 1 before n),

since the Markov chain in {0, . . . , n− 1} has the same probabilities as in {1, . . . , n}.
Hence (3.2) can be expressed as:

An = q · 1

1− p ·An−1
=

1

1/q − p/q ·An−1
(3.3)

Returning to equation (3.3) and applying induction hypothesis

An =
1

1 + θ

θ
−

θ − θn−1

θ(1− θn−1)

=
θ

(1 + θ)(1− θn−1)− (θ − θn−1)

(1− θn−1)

=
θ(1− θn−1)

1− θn
=

θ − θn

1− θn
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Lemma 3.1.6. Let h ∈ N and let π(n) denote the stationary distribution of X(n). Then

π(n)(n− k) ≤ θk−1

for every k = {0, . . . , n}. In particular,

π(n)({0, . . . , n− h}) ≤ θh−1

1− θ
.

Proof. The second formula follows from the first one by summing the geometric series:

π(n)({0, . . . , n− h}) =
n∑

k=h

π(n)(n− k) ≤
n∑

k=h

θk−1 =
θh−1 − θn

1− θ
≤ θh−1

1− θ

Let us first show that for computing the stationary distribution we can also forget the
laziness factor of the random walk. That is, we can consider the random walk that moves
to the right with probability p and to the left with probability q when at an interior vertex,
and that moves with probability one to the closest interior vertex when at an end vertex.
For n = 3, the transition matrix of X(3) is

P (3) =


1/2 1/2 0 0
q/2 1/2 p/2 0
0 q/2 1/2 p/2
0 0 1/2 1/2


Getting rid of the laziness:

P
(3)
nolazy =


0 1 0 0
q 0 p 0
0 q 0 p
0 0 1 0


For this, let π(n) be the stationary distribution of X(n) (that is, π(n)P (n) = π(n)),

where P (n) is the transition matrix of the lazy walk. Then, denoting P
(n)
nolazy the transition

matrix of the non-lazy walk we have:

P (n) =
I + P

(n)
nolazy

2

Multiplying on both sides by π(n):

π(n) = π(n)P (n) = π(n)

I + P
(n)
nolazy

2

 =
1

2
π(n) +

1

2
π(n)P

(n)
nolazy,

so π(n) = π(n)P
(n)
nolazy, which implies that π(n) is also the stationary distribution of P

(n)
nolazy.
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Considering that π(n) is the unique solution of the linear system π(n)P (n) = π(n), we
have the following explicit solution:

π(n)(0) = qπ(n)(1)

π(n)(1) = π(n)(0) + qπ(n)(2) = q
(
π(n)(1) + π(n)(2)

)
=⇒ π(n)(1) =

q

p
π(n)(2)

π(n)(2) = pπ(n)(1) + qπ(n)(3) = q
(
π(n)(2) + qπ(n)(3)

)
=⇒ π(n)(2) =

q

p
π(n)(3)

...

π(n)(n− 2) =
q

p
π(n)(n− 1)

π(n)(n− 1) =
1

p
π(n)(n)

In particular,
π(n)(i− 1) = θπ(n)(i), for i = 2, . . . , n− 1

which gives

π(n)(n− k) = θk−1π(n)(n− 1) ≤ θk−1, for k = 1, . . . , n− 1,

as we wanted to show. For k = 0 the statement is trivial and for k = n we use

π(n)(n− n) = π(n)(0) = qπ(n)(1) ≤ θπ(n)(1) ≤ θn−1.

3.2 Proof of the cutoff Theorem 3.1.1

The proof consists in proving the equality by demonstrating the upper bound and the
lower bound separately.

Upper bound. Part 1. First of all, we are going to prove that if τn := min{t ∈ N : Xt = n},
then:

lim sup
n→∞

P0(τn > tn(α)) ≤ Φ(−c(β)α). (3.4)

Let (St)t∈N be a lazy biased random walk with X = Z. We can write

St = S̃1 + S̃2 + · · ·+ S̃t,

where each S̃i is a random variable which represents a step and can be equal to 1 with
probability p/2, −1 with probability q/2 and 0 with probability 1/2. We can obtain the
expected value for each of these random variables as

E
[
S̃1

]
= 1 · p

2
− 1 · q

2
+ 0 · 1

2
=

p− q

2
= β

We can calculate the expected value of St starting at x
(n)
0 = k using the linearity of the

expected value:

Ek [St] = k + E
[
S̃1

]
+ E

[
S̃2

]
+ · · ·+ E

[
S̃t

]
= k + βt (3.5)
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We now couple with (St) the following Markov chain (Xt) with state space X+ :=
{0, 1, 2, . . . }. We define X0 = S0 and

Xt+1 =

{
1 if Xt = 0 and St+1 − St = −1

Xt + St+1 − St otherwise.

Observe that (assuming k ≤ n), for every t ≤ τn we have that Xt = X
(n)
t .

Let us to prove that for every t ≤ τn, we have that X
(n)
t ≥ St. For this we use

induction:

• X
(n)
0 = S0 by the very definition of the coupling.

• Assume that it holds for t ≤ τn. Let us show that it holds for t+ 1 ≤ τn:

X
(n)
t+1 = X

(n)
t + St+1 − St ≥ St+1 ⇐⇒ X

(n)
t − St ≥ 0 ⇐⇒ X

(n)
t ≥ St,

which is true due to induction hypothesis.

By equation (3.5) E0Stn(α) = tn(α)β = n+ αβ
√
n and

P0(Stn(α) < n) = P0

(
Stn(α) − EStn(α)√

tn(α)v
<

−αβ
√
n√

tn(α)v

)
,

where v = 1/2− β2. By the Central Limit Theorem 1.2.3

lim sup
n→∞

P0(Stn(α) < n) = Φ(−c(β)α) (3.6)

with c(β) = β3/2√v.

Since X
(n)
t = Xt ≥ St for t ≤ τn,

P0

(
max

0≤s≤tn(α)
X(n)

s < n

)
≤ P0

(
max

0≤s≤tn(α)
Ss < n

)
≤ P0(Stn(α) < n). (3.7)

By the definition of τn

P0(τn > tn(α)) = P0

(
max

0≤s≤tn(α)
X(n)

s < n

)
.

Combining this with (3.7) and (3.6) we obtain the desired (3.4).

Upper bound. Part 2 We now show that

lim
n→∞

d(n)(tn(α)) ≤ lim sup
n→∞

P0(τn > tn(α)). (3.8)

We couple two copies of (X
(n)
t ) as follows: Consider the Markov chain {(Xt, Yt)} with

state space Xn ×Xn constructed as follows. At each time t we chose which particle (X or
Y ) to move, each with probability 1/2. Once we have decided which particle moves, if the
particle is at an interior state it takes a +1 step with probability p and a −1 step with
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probability q. If the particle is at an end state (i.e. at 0 or n) it moves to the adjacent
vertex with probability 1.

Observe that if we forget one of the particles, the Markov chain followed by the other

particle is exactly the original (X
(n)
t )). That is, this is a Markovian coupling according to

the Definition 3.1.3.
The coupled Markov chains may have different initial distributions. We write Pi,j(·)

with i, j ∈ Xn for the probability of some event in the coupled Markov chain assuming
that the first particle starts at i and the second at j.

We call meeting time of the coupled chain the first time when the two particles are at
the same position. We denote it τcouple.

If i < j, the time when the particles meet τcouple is upper bounded by the time it takes
for the first particle to hit n. From this we deduce

Pi,j(τcouple > tn(α)) ≤ P0(τn > tn(α)) (3.9)

Combining this with Corollary 3.1.4 we have

lim sup
n→∞

dn(tn(α)) ≤ Φ(−c(β)α)

Lower bound. Part 1. Consider θ = (q/p). In this first step we are going to show that

∀h ∈ [n], lim sup
n→∞

P0(Xtn(α) > n− h) ≤ 1− Φ(−c(β)α) + θh−1. (3.10)

Consider the coupled chains Xt and St of the upper bound, and couple with them a
third Markov chain X̃t defined as follows: We define X̃0 = 1 and

X̃t+1 =

{
1 if X̃t = 1 and St+1 − St = −1

X̃t + St+1 − St otherwise.

Observe that X̃t stays always in {1, 2, 3, . . . }. However, we interpret it as a lazy biased
random walk on {0, 1, . . . } that starts at 1 and which “restarts from 1” whenever it should
hit 0. When this happens (that is, when X̃t = 1 and St+1 − St = −1) we say that X̃t+1

“returns to zero”.
We have the following properties:

1. X̃t −Xt ∈ {0, 1} for all t. In fact, this difference changes from 1 to 0 and from 0 to
1 everytime that X̃t returns to 0.

Indeed, let
t0 = min{t ≥ 1 : Xt = 0 ∧ X̃t = 1 ∧ St+1 − St = −1}

be the first time when X̃t returns to 0. By the definition of Xt and X̃t, Xt − X̃t = 1
for every t ≤ t0.

At time t0 + 1 we have that Xt0+1 = 1 = X̃t0+1 and from there we will have that
Xt = X̃t until the time

t1 := min{t > t0 : Xt = X̃t = 1 ∧ St+1 − St = −1}.

At time tt1+1 we have Xt1+1 = 0 and X̃t1+1 = 1, so we are again at the initial
situation.
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2. In particular, X̃t ≥ Xt for all t.

3. X̃t − St = h+ 1 where h is the number of times that X̃t has returned to zero before
time t.

Indeed, at t = 0 we have X̃0 = 1 = S0 + 1, and by definition of X̃ the difference
X̃t − St stays constant unless X̃ returns to zero, and when this happens it increases
by 1.

As a result, we have that

P0(Xt > x) ≤ P0(X̃t > x), (3.11)

for every x ≥ 0 and that

P0(X̃t − St ≥ h) = P0(at least h− 1 returns of (X̃t) to 0)

By Lemma 3.1.5 the chance that a random walk on N starting on 1, hits 0 before n is
1− (1− θ)/(1− θn).

Letting n → ∞ we can deduce that the probability of hitting 0 is θ. Hence

P0(at least h− 1 returns of (X̃t) to 0) = θh−1 (3.12)

By (3.11) and Boole’s Inequality 1.2.4

P0(Xtn(α) > n− h) ≤ P0(X̃tn(α) > n− h) =

= P0(X̃tn(α) + Stn(α) − Stn(α) > n− 2h+ h) ≤

≤ P0((X̃tn(α) − Stn(α) > n− 2h) ∨ (Stn(α) > h)) ≤
≤ P0(Stn(α) > n− 2h) + P0(Xtn(α) − Stn(α) ≥ h)

Combining the inequality with (3.12) we obtain

P0(Xtn(α) > n− h) ≤ P0(X̃tn(α) > n− h) ≤ P0(Stn(α) > n− 2h) + θh−1. (3.13)

As shown on the first part of the upper bound by the Central Limit Theorem 2.3.6, for
every h ∈ N

lim
n→∞

P (Stn(α) > n− 2h) = 1− Φ(−c(β)α). (3.14)

We prove (3.10) joining (3.13) with (3.14).

Lower bound. Part 2
Observe that for every subset S ⊂ [n] we have

dn(tn(α)) ≥ π(n)(S)− P0(Xtn(α) ∈ S).

Taking S = {n− h+ 1, . . . , n}, Lemma 3.1.6 says that ∀h ∈ [n],

π(n)(S) ≥ 1− θh−1

1− θ
.

On the other hand in part 1 we have shown that
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lim sup
n→∞

P0(Xtn(α) ∈ S) ≤ 1− Φ(−c(β)α) + θh−1. (3.15)

Hence

lim inf
n→∞

dn(tn(α)) ≥ 1− θh−1

1− θ
− (1− Φ(−c(β)α) + θh−1) = Φ(−c(β)α)− θh−1

1− θ
− θh−1.

Since this holds for any h, we can take h going to infinity (for example h = n/2) and
get

lim inf
n→∞

dn(tn(α)) ≥ Φ(−c(β)α).



30 CHAPTER 3. THE LAZY BIASED RANDOM WALK ON A CHAIN



Chapter 4

The configuration model and its
Markov chain

4.1 Definition and properties

The main goal of the remaining chapters is to understand and describe the main results
in the paper [3].

In order to build a directed multigraph (directed graph which allows multiple edges)
with prescribed degree sequences we start with a vertex set V = {1, ..., n} and two se-
quences of natural numbers (d−i )1≤i≤n and (d+i )1≤i≤n, with equal sum m which represent
the in-degrees and out-degrees of the n vertices. We equip each vertex i ∈ V with a set
E+

i of d+i (out-degree) tails and a set E−
i of d−i (in-degree) heads. We then build the

environment: a bijection ω :
⋃

iE
+
i →

⋃
iE

−
i , where ω(e) = f means arc ef from vertex

e to vertex f .

In what follows we denote by ∆ the maximum among all the d−i and d+i and by δ the
minimum, and we assume δ ≥ 2 and ∆ = O(1).

As ω is a bijection between two sets of size m, there are m! possible environments.

Definition 4.1.1 (Configuration model). We call configuration model the random multi-
graph obtained giving equal probability to each of the m! possible environments.

The configuration model was introduced by B. Bollobas for undirected graphs [2].

The fact that we consider δ ≥ 2 is that the random multigraph, denoted by G, is
strongly connected with high probability (see [5]) which combined with Propositions 2.2.2
and 2.3.5 implies that the stationary distribution is unique with high probability.

An important observation needs to be made: different environments can produce the
same graph, so that the number of possible graphs is smaller than m!, and different graphs
may arise with different probabilities.

Example 4.1.2. Let us consider the in-degree sequence (1, 4) and the out-degree (3, 2),
with m = 5. There are two possible directed graphs, depicted in Figure 4.1. They arise,
respectively with probability 6/10 and 4/10, as shown in Example 4.1.3.

Each environment in Figure 4.2 matches with a different graph in Figure 4.1 but both
environments have the same probability 1

5!
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1 2

(a)

1 2

(b)

Figure 4.1: The two possible graphs with the given sequences
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Figure 4.2: Two possible environments

Example 4.1.3. Suppose we have two vertices 1 and 2 with out-degrees (d+1 , d
+
2 ) and in-

degrees (d−1 , d
−
2 ). Without loss of generality suppose that min{d+1 , d

+
2 , d

−
1 , d

−
2 } = d−1 . Then

the number of loops at vertex one can be any number between zero and and d−1 , and the
number of loops at vertex 1 completely determines the rest of the graph:
Denote by i the number of loops on vertex 1 and by j the number of loops on vertex 2.
The edges 12 and 21 appear with multiplicity d+1 − i and d+2 − j respectively. Moreover i
and j are dependent since

d+1 − i = d−2 − j,

hence
i− j = d+1 − d−2 = d−1 − d+2

We want to compute the probability of having each of these possible d−1 + 1 graphs.
The probability that a graph has i loops on vertex 1 is:

P (i loops vertex 1) =

(d+1
i

)( d+2
d−1 −i

)(m
d−1

) (4.1)

The approach to obtaining the formula 4.1 is as follows:
(m
d−1

)
represents the number of

tail sets that can be joined to the d−1 heads at vertex one. Each of such sets appears with
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the same probability, so the probability of having i loops is the fraction of those sets that
consist of exactly i tails from 1 (that is, loops at vertex 1) and d−1 − i tails from 2 (that is,

edges from 2 to 1). These two numbers give the numerator
(d+1

i

)( d+2
d−1 −i

)
.

Remark 3. In the configuration model we say that something happens with high prob-
ability if the environments for which it happens have probability going to 1 as n goes to
infinity for every choice of the degree sequences (as long as every degree is at least two and
at most ∆; the upper bound ∆ is considered bounded and not depending on n).

For example, the biased random walk on a chain studied in the previous chapter is a
possible environment in the configuration model. Indeed, if, say, p = 3/5 and q = 2/5 we
can mimic the lazy biased chain letting d+i = d−i = 10 and putting it each vertex i three
edges going to the right, two edges going to the left, and five loops.

However, this “environment” will appear with probability going to zero as n → ∞, so
the cutoff theorems of the previous chapter are not contradicting the ones in this and the
next chapter.

4.2 Sequential generation and local tree structure

One important property of the environment ω is that it can be generated sequentially by
repeating m times (where m is the number of edges) the following steps:

1. An unmatched tail e is selected arbitrarily.

2. An unmatched head f is chosen uniformly at random.

3. e is matched with f so that ω(e) = f

It is important to notice that in step 1 we do not need to choose the tail e uniformly
at random. Any rule for step 1 produces the uniform environment.

Theorem 4.2.1. Given a sequence of in-degrees and out-degrees (with respective sum m),
any random graph built with this algorithm has the same probability as in the configuration
model.

Proof. By definition, in the configuration model each environment ω has the same prob-
ability, equal to 1

m! . We want to show that the sequential algorithm gives this same
probability to them.

For this, let ω be an environment, that is to say, a bijection between the m tails and m
heads, and let us calculate the probability of getting that ω with the sequential algorithm:

The first unmatched tail is chosen arbitrarily from the set of m tails. There are m
possible heads to build an edge, and we choose one uniformly at random, so the proba-
bility of choosing precisely the one that is in ω is 1/m. We select another unmatched tail
and match it with one of the m− 1 remaining heads. The probability of choosing the one
in ω is 1/(m − 1). We repeat this until there are no tails/heads left. As each of these
experiments of choosing head to match a tail is independent, the probability of obtaining
the resulting environment is:

1

m
· 1

m− 1
· · · 1

1
=

1

m!
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During the sequence of matching tail to heads we can say that a collision occurs
whenever a head, whose endpoint i was alive (some tail e ∈ E+

i or head f ∈ E−
i had

previously been picked), gets chosen. When the k-th head gets chosen, since less than 2k
vertices are alive, (equality holds only when there are no collisions), less than 2∆k of the
m− k+1 possible choices for the head can cause a collision, as at most every alive vertex
has ∆ heads. Since the head is chosen uniformly at random, the probability that the k-th
arc results in a collision is less than

2∆k

m− k + 1
. (4.2)

In the next result, for two random variables A and B with integer values we say that
B stochastically dominates A if P (A ≥ k) ≤ P (B ≥ k) for all k.

Lemma 4.2.2. Let 1 ≤ k ≤ m, and assume 2∆k ≤ m − k + 1. Then, in any sequential
generation of the environment for the configuration model the number Zk of collisions
caused by the first k arcs is stochastically dominated by a Bin(k, 2∆k

m−k+1) random variable.

Proof. We want to prove that

P (Zk ≥ i) ≤ P (Binomial

(
k,

2∆k

m− k + 1

)
≥ i)

Suppose that the statement is true for k − 1. Let us prove that it is true for k:

P (Zk ≥ i) = P ((Zk−1 ≥ i) ∪ (Zk = i|Zk−1 = i+ 1)) =

= P (Zk−1 ≥ i) + P (Zk = i|Zk−1 = i+ 1) ≤

Applying induction hypothesis and the inequality 4.2

≤ P (Bin

(
k − 1,

2∆(k − 1)

m− (k − 1) + 1

)
≥ i) +

2∆k

m− k + 1
≤

≤ P
(
Bin

(
k − 1,

2∆k

m− k + 1

)
≥ i)+

+ P (Bin

(
k,

2∆k

m− k + 1

)
= i
∣∣∣Bin(k − 1,

2∆k

m− k + 1

)
= i− 1

)
=

= P (Bin

(
k,

2∆k

m− k + 1

)
≥ i)

In particular:

Corollary 4.2.3. In any sequential generation of the configuration model the number Zk

of collisions caused by the first k arcs satisfies:

P (Zk ≥ 1) ≤ 2∆k2

m− k + 1
and P (Zk ≥ 2) ≤ 2∆2k4

(m− k + 1)2
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In order to prove the first inequality we will use the next theorem:

Theorem 4.2.4 (Bernouilli’s inequality). Let x ∈ R such that 1+x > 0 and n ∈ N. Then
(1 + x)n ≥ 1 + nx.

Proof. Let us prove the result by induction on n:
Let n = 1. It is obvious that 1 + x ≥ 1 + x.
Suppose that the statement is true for n = k− 1 and let us prove that it is true for n = k:

(1 + x)k = (1 + x)k−1 · (1 + x)

Using induction hypothesis, and the fact that n ≥ 1 and x2 ≥ 0 ∀x ∈ R, we conclude the
prove:

(1 + x)k−1 · (1 + x) ≥ (1 + (k − 1)x) · (1 + x) =

= 1 + x+ (k − 1)x+ (k − 1)x2 = 1 + kx+ (k − 1)x2 ≥ 1 + kx.

Observe that the first inequality needs the hypothesis 1 + x > 0.

Corollary 4.2.5. Let k ∈ N and p ∈ [0, 1]. Then P (Binomial(k, p) ≥ 1) ≤ kp and
P (Binomial(k, p) ≥ 2) ≤ k2p2.

Proof. The first inequality is easily proved thanks to Bernouilli’s inequality 4.2.4:

P (Binomial(k, p) ≥ 1) = 1− P (Binomial(k, p) = 0) = 1−
(
k

0

)
· p0 · (1− p)k =

= 1− (1− p)k ≤ 1− (1− kp) = kp

For the second inequality:

P (Binomial(k, p) ≥ 2) = 1− P (Binomial(k, p) = 1)− P (Binomial(k, p) = 0)

We are not using Bernouilli’s inequality in this step, as we would obtain a looser bound.

= 1−
(
k

1

)
p(1− p)k−1 −

(
k

0

)
(1− p)k = 1− kp(1− p)k−1 − (1− p)k =

= 1− (1− p)k−1(kp+ (1− p)) = 1− (1− p)k−1((k − 1)p+ 1).

This time we will employ the Bernouilli’s inequality in order to conclude the proof:

1− (1− p)k−1((k − 1)p+ 1) ≤ 1− (1− (k − 1)p)(1 + (k − 1)p) = 1− (1− (k − 1)2p2) =

= 1− 1 + (k − 1)2p2 ≤ k2p2

Proof of Corollary 4.2.3. The proof is based on the stochastic dominance displayed on
Lemma 4.2.2 and Corollary 4.2.5 and goes as follows:
For the first inequality:

P (Zk ≥ 1) ≤ P (Binomial

(
k,

2∆k

m− k + 1

)
≥ 1) ≤ 2∆k2

m− k + 1
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For the second inequality we reason the same way:

P (Zk ≥ 2) ≤ P (Binomial

(
k,

2∆k

m− k + 1

)
≥ 2) ≤ 4∆2k4

(m− k + 1)2

Definition 4.2.6 (Forward ball). The forward ball of radius t around a vertex i ∈ V is the
subgraph B+(i, t) ⊆ G induced by the directed paths of length t from i. We can generate
it sequentially choosing first those tails e from vertices at the lowest distance from i until
the minimal distance is greater than t.

Proposition 4.2.7. Let h = ⌊ lnn
10 ln∆⌋. Then, with high probability, G is locally tree-like

in the following sense:

∀i ∈ V,B+(i, 2h) is either a directed tree, or a directed tree with an extra arc.

Proof. Consider the configuration model built sequentially from a certain vertex i in a
breath-first search manner: first choose the neighbors of i, then the neighbors of the
neighbors, and so on.

Let k be the number of edges that have been selected when we finish constructing the
forward ball B+(i, 2h). We have

k ≤ ∆+ · · ·+∆2h ≤ 2∆2h ≤ 2∆
lnn

5 ln∆ = 2n
ln∆
5 ln∆ = 2n

1
5 ,

where in the first inequality we use that ∆ ≥ 2 and n the first equality that aln b = bln a.
By Corollary 4.2.3 we have that

P (Zk ≥ 2) ≤ 2∆2k4

(m− k + 1)2
≤ 32∆2n4/5

(2n− 2n1/5 + 1)2

Thus, for each vertex i the probability of having more than one collision in the forward
ball of i is bounded above by O(n−6/5). The probability that this happens for one of the n
vertices is bounded by the sum of the individual probabilities, that is, by O(n−1/5). Hence,
with high probability the forward boalls of all vertices have at most one collison.

4.3 The uniform random walk in the configuration model

A random walk on the directed graph G of the configuration model is now defined as the
discrete-time Markov chain with state space V and transition matrix

P (i, j) =
1

d+i
card

{
e ∈ E+

i : ω(e) ∈ E−
j

}
.

That is, from each vertex i ∈ V we take with equal probability 1/d+i any of the d+i edges
that have i as tail.

A directed path of length t from i ∈ V to j ∈ V is a sequence of arcs p = (e1f1, ..., etft)
with ek ∈ E+

ik−1
, fk ∈ E−

ik
for some sequence of vertices {ik}k ∈ V such that i0 = i and

it = j, and where the weight of the path is defined by

w(p) =
1

d+i0 ...d
+
it−1

≤ 1

δt
≤ 1

2t
.
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Figure 4.3: Directed graph with its transition matrix [4]

Let P t
ij be the set of all directed paths of length t from i ∈ V to j ∈ V . The probability

that a walk starting from i reaches j at time t (in t steps) can be expressed as:

P t(i, j) =
∑
p∈P t

ij

w(p)

Let V⋆ denote the set of vertices i ∈ V such that B+(i, h) is a directed tree. Combining
Proposition 4.2.7 with the fact that all out-degrees are at least 2, we can prove the following
proposition:

Proposition 4.3.1. With high probability,

∀i ∈ V,∀ℓ ∈ N, P ℓ(i, V \V⋆) ≤ 2−min(ℓ,h)

Proof. Recall that V \V⋆ are the vertices from where you can have a collision in h steps.
By Proposition 4.2.7 with high probability we can suppose that B+(i, 2h) has at most one
collision for every vertex i ∈ V . We distinguish the case ℓ ≥ h from ℓ < h:

• ℓ ≥ h: Let Ṽ ℓ−h
i be the set of vertices reachable from i in ℓ−h steps. By hypothesis

B+(j, 2h) has at most one collision. We can bound P ℓ(i, V \V⋆) as:

P ℓ(i, V \V⋆) =
∑

j∈Ṽ ℓ−h
i

P ℓ−h(i, j) · P h(j, V \V⋆) ≤ max
j∈Ṽ ℓ−h

i

P h(j, V \V⋆),

so we can bound the right term. If B+(j, 2h) has no collision, then P h(j, V \V⋆) = 0.
If there is exactly one collision two cases may occur:

– If the collision occurs in k > h steps, then only one of the more than 2h possible
walks from j leads to a vertex from which we reach a collision: From j we reach
a vertex x, which is in V \V⋆, since we can reach a collision from x in k − h
steps. Hence, P h(j, V \V⋆) is ≤ 2−h.

– If the collision occurs in k ≤ h steps, then there are two subcases: (a) the head
of the collision lies in the (unique) path from j that leads to the tail of the
collision. Then, a cycle is formed in B+(j, 2h), and it is the only cycle because
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it is the only collision. In this case, the only path leading from j to a vertex in
V \ V⋆ is the path that first goes from j to the collision and then stays in the
cycle. This is one among the more than 2−h possible paths, so its probability
is less than 2−h. (b) the head of the collision does not lie in the path from j to
the collision. In this case all paths of length h from j end in vertices of V⋆ and
P h(j, V \V⋆) is zero.

• ℓ ≤ h: In this case, instead of working with B+(j, 2h) for the vertices j ∈ Ṽ ℓ−h
i we

use a similar reasoning directly with the ball B+(i, h+ ℓ) ⊆ B+(i, 2h). This ball has
at most one collision and the same case distinction gives us bounds of 2−h or 2−ℓ

depending on whether the collision happens after or before h steps. Since in this
case 2−h ≤ 2−ℓ = 2−min(ℓ,h) we are done.



Chapter 5

Cutoff in the configuration model

5.1 Statement of the cutoff theorem and idea of the proof

In this chapter we study the cutoff behaviour of the configuration model. First, we will
show that the mixing time of a random walk under the configuration model is logarithmic
in the number n of nodes. For this, let us define

t⋆ :=
lnn

µ

where µ is constant depending on the input data and defined as

µ :=
1

m

n∑
i=1

d−i ln d+i

Since ln δ ≤ ln d+i ≤ ln∆ and m =
∑

i d
−
i =

∑
i d

+
i we have

ln δ ≤ µ ≤ ln∆.

Recall that Di(t) denotes the total variation distance from equilibrium at time t:

Di(t) = ∥P t(i, ·) + π∥TV

With this we can state the main result in this chapter, saying that the distance from
equilibrium exhibits a cutoff at time t⋆.

Theorem 5.1.1. For t = λt⋆ + o(t⋆) with λ > 0, we have

λ < 1 =⇒ min
i∈V

Di(t)
P−−−→

n→∞
1,

λ > 1 =⇒ max
i∈V

Di(t)
P−−−→

n→∞
0

To prove this theorem, instead of working with the stationary distribution π we use
as an approximation the following one. Denote π−

h := π−
0 P

h where π−
0 is the in-degree

distribution, that is, π−
0 (j) :=

d−j
m for every j ∈ V .

39
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When h is sufficiently big π−
h is close to π. In what follows we fix h to be the same as

in Proposition 4.2.7. That is to say:

h :=

⌊
lnn

10 ln∆

⌋
.

The following statement is the analogue to Theorem 5.1.1 with the distribution π−
h

instead of the stationary distribution π:

Theorem 5.1.2. For h as above and letting

D̃i(t) := ∥P t(i, ·)− π−
h ∥TV ,

and with t = λt⋆ + o(t⋆) and λ > 0, we have

λ < 1 =⇒ min
i∈V

D̃i(t)
P−−−→

n→∞
1,

λ > 1 =⇒ max
i∈V

D̃i(t)
P−−−→

n→∞
0

The proof of Theorem 5.1.2 occupies most of the rest of this chapter, but before starting
the proof let us see how it implies Theorem 5.1.1.

Corollary 5.1.3. With D̃ defined as in Theorem 5.1.2 we have that

sup
i∈V,t∈N

|D̃i(t)−Di(t)|
P−−−→

n→∞
0.

Proof. By Theorem 5.1.2 we have in particular that for (say) t ≥ 2t⋆

max
i∈V

∥P t(i, ·)− π−
h ∥TV

P−−−→
n→∞

0.

By convexity of the total variation (Proposition 2.1.5), this is true for any starting distri-
bution, that is, putting π0P

t instead of P t(i, ·), for an arbitrary π0. In particular, if we
consider π0 = π, since πP t = π, we have

∥π − π−
h ∥TV

P−−−→
n→∞

0.

By the triangle inequality we have

sup
i∈V, t∈N

|D̃i(t)−Di(t)|
P−−−→

n→∞
0.

That is, Theorem 5.1.1 is equivalent to Theorem 5.1.2.
To prove Theorem 5.1.2 we introduce the following notation and state Propositions 5.1.4

and 5.1.5 which will be proved in the next sections.
Recall that we denote P t

ij the set of paths of length t from node i to node j, and that
for each p ∈ P t

ij we denote w(p) the weight of the path, which is the probability that
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starting at i the next t steps follow the path p. With this notation we now define for each
vertex i, number of steps t, and threshold weight θ

Qi,t(θ) :=
∑
j∈V

∑
p∈P t

ij

w(p)1w(p)>θ.

That is, Qi,t(θ) equals the sum of weights of all paths of length t and weight greater
than θ starting at i. Observe that Qi,t(θ) is a decreasing function of θ with Qi,t(0) = 1
and Qi,t(1) = 0.

With this, Theorem 5.1.2 decomposes in the following two steps:

Proposition 5.1.4 ([3, Prop. 7]). For any t = t(n):

∀i ∈ V, D̃i(t) ≥ Qi,t

(
ln3 n

n

)
− oP (1),

max
i∈V

D̃i(t) ≤ max
i∈V

Qi,t

(
1

n ln3 n

)
+ oP (1).

where oP (1) is a term that converges to 0 in probability as n tends to infinity.

Proposition 5.1.5 ([3, Prop. 8]). Consider t = Θ(lnn) and θ depending arbitarily on n:

1. If µt+ln θ√
t

−→ ∞ as n −→ ∞, then

max
i∈V

Qi,t(θ)
P−−−→

n→∞
0.

2. If µt+ln θ√
t

→ −∞ as n −→ ∞, then

min
i∈V

Qi,t(θ)
P−−−→

n→∞
1.

Proof of Theorem 5.1.2. Let us consider

t = λ
lnn

µ
+ o

(
lnn

µ

)
= Θ(lnn)

• If λ < 1, we are going to lower bound mini∈V D̃i(t) by 1, to prove the first implication
of Theorem 5.1.2:

Take θ = ln3 n
n ,

lim
n→∞

µt+ ln θ√
t

= lim
n→∞

µλ lnn
µ + o (lnn) + ln

(
ln3 n
n

)
√
λ lnn

µ + o
(
lnn
µ

) =

= lim
n→∞

λ lnn+ o(lnn) + ln(ln3 n)− lnn√
λ lnn

µ + o
(
lnn
µ

)
The denominator is greater than 0 and since λ < 1, for n sufficiently large the
numerator is smaller than 0. These implies that the limit tends to −∞ as n → ∞.
This limit implies that we can use the second result of Proposition 5.1.5 which
combined with the lower bound on Proposition 5.1.4 leads to the wanted implication.
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• For λ > 1 we establish an upper bound for maxi∈V D̃i(t) of 0. Take θ = 1
n ln3 n

lim
n→∞

µt+ ln θ√
t

= lim
n→∞

µλ lnn
µ + o (lnn) + ln

(
1

n ln3 n

)
√
λ lnn

µ + o
(
lnn
µ

) =

= lim
n→∞

λ lnn+ o(lnn)− lnn− ln(ln3 n)√
λ lnn

µ + o
(
lnn
µ

)
In this case, for n large enough the numerator is< 0 since λ > 1, hence the numerator
tends to infinity as n tends to infinity. Combining the first result of Proposition 5.1.5
with the upper bound on Proposition 5.1.4 we conclude the proof of the theorem.

So, we have a proof of Theorem 5.1.2 except for the fact that we need to prove the two
propositions 5.1.4 and 5.1.5. For lack of space we are not going to say anything about the
proof of Proposition 5.1.5 and we are going to give an incomplete one for Proposition 5.1.4.
Still, this “incomplete” proof will occupy the rest of this chapter. The missing part is that
in Section 5.3 we state without proof the very technical Proposition 5.3.2.

5.2 Proof of the lower-bound in Proposition 5.1.4

Proof of the lower-bound. Consider ω an environment, i, j two vertices of V , π̃ a proba-
bility distribution on V , t ∈ N and θ ∈ (0, 1). As

P t(i, j) =
∑
p∈P t

ij

w(p)1w(p)≤θ +
∑
p∈P t

ij

w(p)1w(p)>θ, (5.1)

we deduce that

P t(i, j) ≥
∑
p∈P t

ij

w(p)1w(p)≤θ. (5.2)

When equality holds on 5.2, then

π̃(j)−
∑
p∈P t

ij

w(p)1w(p)≤θ ≤ [π̃(j)− P t(i, j)]+

where [π̃(j)− P t(i, j)]+ = maxj∈V
(
π̃(j)− P t(i, j), 0

)
. If the inequality 5.2 is strict, there

must exist p ∈ P t
ij such that w(p) > θ, which implies that

π̃(j)−
∑
p∈P t

ij

w(p)1w(p)≤θ ≤ π̃(j) = π̃(j) 1P t(i,j)>θ

due to 1P t(i,j)>θ = 1 by the definition of P t(i, j) and because of the path from i to j whose
weight exceeds θ.
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In either case

π̃(j)−
∑
p∈P t

ij

w(p)1w(p)≤θ ≤ [π̃(j)− P t(i, j)]+ + π̃(j)1P t(i,j)>θ

By Equation 5.1

π̃(j)− P t(i, j) +
∑
p∈P t

ij

w(p)1w(p)>θ ≤ [π̃(j)− P t(i, j)]+ + π̃(j)1P t(i,j)>θ (5.3)

We are now going to sum over all j, obtaining the following equalities∑
j∈V

π̃(j) =
∑
j∈V

P t(i, j) = 1

∑
j∈V

∑
p∈P t

ij

w(p)1w(p) = Qi,t(θ)

∑
j∈V

[π̃(j)− P t(i, j)]+ = ∥π̃ − P t(i, ·)∥TV ,

where in the last equality we use that [π̃(j) − P t(i, j)]+ is nonzero if and only if π̃(j) ≥
P t(i, j). Hence,

Qi,t(θ) ≤ ∥π̃ − P t(i, ·)∥TV +
∑
j∈V

π̃(j)1P t(i,j)>θ. (5.4)

For the last term we use the Cauchy-Schwartz inequality. We regard the sum as the dot
product of the following two vectors:

• π̃: The probability distribution on V.

• vP t(i,j)>θ : a vector in {0, 1}|V |, where each position j is 1 if P t(i, j) > θ for every

j ∈ V . At most 1
θ positions are 1 otherwise the sum of the i-th row of the matrix

P t would be greater than 1.

Hence, Cauchy-Schwartz gives∑
j∈V

π̃(j)1P t(i,j)>θ ≤ ∥π̃∥2 · ∥vP t(i,j)>θ∥2

As we said before, there can be at most 1
θ non zero terms on vP t(i,j)>θ. Then

∑
j∈V

π̃(j)1P t(i,j)>θ ≤
√∑

j∈V
π̃(j)2

√
1

θ
=

√
1

θ

∑
j∈V

π̃(j)2

Applying this bound on Equation 5.4

Qi,t(θ) ≤ ∥π̃ − P t(i, ·)∥TV +

√
1

θ

∑
j∈V

π̃(j)2 (5.5)
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We now need to show that the last term is oP (1) when we take π̃ = π−
h and θ = ln3 n

n .
In fact, let us prove that a stronger equality holds:

E

∑
j∈V

(π−
h )

2(j)

 = O

(
ln2 n

n

)

Since π−
h = π−

0 P
h, we can interpret the left term as∑

j∈V
Pπ−

0
(Xh(j) = Yh(j)) = Pπ−

0
(Xh = Yh),

where (Xk)0≤k≤h and (Yk)0≤k≤h are two independent walks starting with the same distri-
bution π−

0 . In order to build (Xk)0≤k≤h, we choose X0 according to π−
0 . The following

steps can be repeated for every k ≥ 1:

• We choose a tail e from the vertex Xk−1 uniformly at random.

• If e is unmatched, we choose a head f uniformly at random.

• Let Xk be the endpoint of ω(e).

We generate by a similar process (Yk)0≤k≤h. At most 2h arcs are formed. Xh = Yh
may occur either because X0 = Y0, which has probability ∆

m , or due to a collision, which

has probability bounded from above by 2∆(2h)2

m−2h+1 according to Lemma 4.2.2. Substituting

h by its value ⌊ lnn
10 ln∆⌋, we obtain an upper bound of the order of O

(
ln2 n
n

)
. Considering

θ = ln3 n
n and taking minimum value for every i ∈ V on 5.5 we have

min
i∈V

Qi,t

(
ln3 n

n

)
− oP (1) ≤ min

i∈V
∥π̃ − P t(i, ·)∥TV

5.3 Proof of the upper-bound in Proposition 5.1.4 (Sketch)

For lack of space, and because this proof is quite complicated (six pages in [3]) we only
give a sketch of the proof of the upper bound. What we do not include is the proof of
Proposition 5.3.2 (Proposition 10 in [3]).

In order to calculate Qi,t(θ), we are going to estimate P t(i, j) considering only certain
paths, defined as follows. Recall that we have defined

h =

⌊
lnn

10 ln∆

⌋
.

Definition 5.3.1 (Nice path). A path p starting at i ∈ V of length t is a nice path if it
satisfies:

• w(p) ≤ 1
n ln2 n

.
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• The first t − h steps are contained in a tree Ti ⊆ B+(i, t − h) ⊂ G, constructed
sequentially as explained in Section 4.2, with a certain rule for step 1 that we are
not going to specify (see details in Section 6.2 of [3]).

• Let j be the vertex after t − h steps in the path and k the end of the path. Then,
the last h steps in the path are the only path of length at most h from j to k.

Remark that
P t(i, j) =

∑
p∈P t

ij

w(p). (5.6)

We denote by P t
0(i, j) the sum 5.6 restricted only to nice paths, i.e

P t
0(i, j) =

∑
{w(p) : p nice path of length t from i to j}.

Proposition 5.3.2 ([3, Proposition 10]). Let ϵ > 0 and t = t⋆ + o(t⋆). Then with high
probability:

1. Every pair of vertices i, j ∈ V satisfies

P t
0(i, j) ≤ (1 + ϵ)π−

h (j) +
ϵ

|V |
(5.7)

2. Every vertex i ∈ V⋆ satisfies 1− P t
0(i, V ) ≤ Qi,t

(
1

n ln2 n

)
+ ϵ

We then have the following:

Lemma 5.3.3. Let ϵ > 0 and t = t⋆ + o(t⋆). Then with high probability:

∥π−
h − P t(i, ·)∥TV ≤ 1− P t

0(i, V ) + 2ϵ.

Proof.

∥π−
h − P t(i, ·)∥TV =

∑
j∈V

(π−
h (j)− P t(i, j))+

≤
∑
j∈V

(
π−
h (j)(1 + ϵ) +

ϵ

|V |
− P t

0(i, j)

)
+

,

=
∑
j∈V

(
π−
h (j)(1 + ϵ) +

ϵ

|V |
− P t

0(i, j)

)
,

where the first inequality follows from P t
0(i, j) ≤ P t(i, j) and π−

h (j) ≤ π−
h (j)(1 + ϵ) + ϵ

|V | ,

and the second inequality from (5.7) in part (1) of Proposition 5.3.2.
We can split the summation in two obtaining the following result:∑
j∈V

(
π−
h (j)(1 + ϵ) +

ϵ

|V |
− P t

0(i, j)

)
+

= −P t
0(i, V ) +

∑
j∈V

(
π−
h (j)(1 + ϵ) +

ϵ

|V |

)
≤

≤ −P t
0(i, V ) +

∑
j∈V

(
ϵ

(
π−
h (j) +

1

|V |

)
+ π−

h (j)

)
= 1− P t

0(i, V ) + 2ϵ
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Where the last equality comes from the fact that∑
j∈V

π−
h (j) = 1 =

∑
j∈V

1

|V |

Corollary 5.3.4. For every t and for every i ∈ V⋆:

∥π−
h − P t(i, ·)∥TV ≤ Qi,t

(
1

n ln2 n

)
+ oP (1).

Proof. Assume first that t = t⋆ + o(t⋆). Then by Lemma 5.3.3 and Proposition 5.3.2 for
every ϵ we have that with high probability

∥π−
h − P t(i, ·)∥TV ≤ 1− P t

0(i, V ) + 2ϵ ≤ Qi,t

(
1

n ln2 n

)
+ 3ϵ ≤ Qi,t

(
1

n ln2 n

)
+ oP (1).

To extend this to arbitrary t we use Proposition 5.1.5 with θ = 1
n ln2 n

, distinguishing
whether t > t⋆ + o(t⋆) or t < t⋆ + o(t⋆).

If t < t⋆ + o(t⋆) then we can assume t < t⋆ − t⋆
2/3. Let t′ = t⋆ − t⋆

2/3. We have:

lim
n→∞

µt′ + ln θ√
t′

= lim
n→∞

µ

(
lnn
µ −

(
lnn
µ

)2/3)
+ ln

(
1

n ln2 n

)
√

lnn
µ −

(
lnn
µ

)2/3 =

= lim
n→∞

lnn− µ1/3 ln2/3 n− lnn− ln ln2 n√
lnn
µ −

(
lnn
µ

)2/3 =

= lim
n→∞

−−µ1/3 ln2/3 n− ln ln2 n√
lnn
µ +

(
lnn
µ

)2/3 = lim
n→∞

−µ5/6 ln1/6 n = −∞

Hence, part 1 of Proposition 5.1.5 ensures that Qi,t′

(
1

n ln2 n

)
≥ 1 − oP (1). Since Qi,t

is non-increasing with t we have that Qi,t

(
1

n ln2 n

)
≥ 1− oP (1) for every t ≤ t⋆ − t⋆

2/3 (in

particular whenever t < t⋆+o(t⋆)) and then the result follows from ∥π−
h −P t(i, ·)∥TV ≤ 1.

If t > t⋆ + o(t⋆) then we can assume t > t⋆ + t⋆
2/3. Let t′ = t⋆ + t⋆

2/3. Then, we have:

lim
n→∞

µt′ + ln θ√
t′

= lim
n→∞

µ

(
lnn
µ +

(
lnn
µ

)2/3)
+ ln

(
1

n ln2 n

)
√

lnn
µ +

(
lnn
µ

)2/3 =

= lim
n→∞

lnn+ µ1/3 ln2/3 n− lnn− ln ln2 n√
lnn
µ +

(
lnn
µ

)2/3 =

= lim
n→∞

µ1/3 ln2/3 n− ln ln2 n√
lnn
µ +

(
lnn
µ

)2/3 = lim
n→∞

µ5/6ln1/6 n = +∞,
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so part 2 of Proposition 5.1.5 states that Qi,t′

(
1

n ln2 n

)
≤ oP (1). Observe that Proposi-

tion 2.1.5, together with the triangular inequality, implies

∥π−
h − P t(i, ·)∥TV ≤ max

j∈V
∥P t(j, ·)− P t(i, ·)∥TV ≤ 2max

j∈V
∥π − P t(j, ·)∥TV ,

∥π − P t(i, ·)∥TV ≤ max
j∈V

∥P t(j, ·)− P t(i, ·)∥TV ≤ 2max
j∈V

∥π−
h − P t(j, ·)∥TV .

Since ∥π − P t(j, ·)∥TV is non-increasing with t (Corollary 2.1.7) we have that for t >
t⋆ + o(t⋆)

∥π−
h − P t(j, ·)∥TV ≤ 2max

j∈V
∥π − P t(j, ·)∥TV

≤ 2max
j∈V

∥π − P t′(i, ·)∥TV

≤ 4max
j∈V

∥π−
h − P t′(j, ·)∥TV

≤ 4max
j∈V

Qj,t′

(
1

n ln2 n

)
+ oP (1) = oP (1)

where the last inequality uses the case t′ = t⋆ + o(t⋆) shown at the beginning of the
proof.

Lemma 5.3.5. For every s ∈ N, Qi,t−s(θ) ≤ Qi,t(θ∆
−s)

Proof. Consider p a walk from i ∈ V to j ∈ V in t − s steps with weight w(p) > θ. In s
steps from j, the weight will be at least θ∆−s.

Lemma 5.3.6. W.h.p., for every i ∈ V and for s < h we have that

D̃i(t) ≤max
i∈V⋆

D̃i(t− s) + 21−s.

Proof. We clearly have that

D̃i(t) =D̃P s(i,·)(t− s),

where we denote

D̃π(t) := ∥πP t − π−
h ∥TV

the distance to π−
h after the Markov chain runs for t steps starting with a probability

distribution π.

Now, by Proposition 4.3.1, we have that w.h.p.,

λ := P s(i, V⋆) ≥ 1− 2−s, 1− λ = P s(i, V \ V⋆) ≤ 2−s.

For each subset W of V let P s(i, ·)W denote the probability distribution P s(i, ·) con-
ditioned to be in W . We have that

P s(i, ·) = λP s(i, ·)V⋆ + (1− λ)P s(i, ·)V \V⋆
.
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Since || · ||TV is a metric on the space of probability distributions, we have that

D̃P s(i,·)(t− s) =∥P s(i, ·)P t−s − π−
h ∥TV

≤∥P s(i, ·)V⋆P
t−s − π−

h ∥TV + ∥P s(i, ·)V⋆P
t−s − P s(i, ·)P t−s∥TV

≤∥P s(i, ·)V⋆P
t−s − π−

h ∥TV + (1− λ)

≤∥P s(i, ·)V⋆P
t−s − π−

h ∥TV + 2−s

≤max
i∈V⋆

∥δiP t−s − π−
h ∥TV + 2−s

=max
i∈V⋆

∥P t−s(i, ·)− π−
h ∥TV + 2−s = max

i∈V⋆

D̃i(t− s).

Here, the last inequality uses the same convexity argument of Proposition 2.1.5 but taking
into account that the distribution P s(i, ·)V⋆ has support contained in V⋆, hence it is a
convex combination of the distributions {δi}i∈V⋆ .

Proof of the upper bound in Proposition 5.1.4. Consider s = ⌊ ln lnn
ln∆ ⌋. Observe that

∆s ≤ ∆
ln lnn
ln∆ = eln lnn = lnn.

On the other hand,

∆h ≃ ∆
lnn

10 ln∆ = n1/10,

so that, for large n, we have s < h.
Then, for every i ∈ V⋆ we have

D̃i(t− s) + oP (1) =∥π−
h − P t−s(i, ·)∥TV + oP (1)

≤Qi,t−s

(
1

n ln2 n

)
+ oP (1)

≤Qi,t

(
1

n ln3 n

)
+ oP (1),

where the first equality is the definition of D̃, the next inequality is Corollary 5.3.4 and
the last inequality is Lemma 5.3.5, taking into account that ∆s ≤ lnn. Then we have

max
i∈V

D̃i(t) ≤max
i∈V⋆

D̃i(t− s) + oP (1)

≤max
i∈V⋆

Qi,t

(
1

n ln3 n

)
+ oP (1)

≤max
i∈V

Qi,t

(
1

n ln3 n

)
+ oP (1),

where the first inequality if Lemma 5.3.6 (since 21−s ∈ o(1)), the second one is what we
have shown above, and the third one is obvious.
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