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Abstract—Energy detection is a well-known detection method
for spectrum sensing in cognitive radio. Its low complexity and
the fact that it does not require any prior knowledge of the
primary signals, has made it a popular method. Despite its sim-
plicity, energy detectors require knowing some parameters to set
the decision threshold (according to a predefined criterion) and
also to estimate its detection performance. Those parameters are
the noise power, the primary signal power, and the duty cycle of
the primary network. In this work, we propose a new sequential
estimation method for jointly estimating those parameters from
the energy measurements exclusively. Applying the Method of
Moments, we derive the estimators as closed-form functions of the
energy values. Their estimation performance is experimentally
evaluated by means of over-the-air experiments with a testbed
based on software-define-radio devices. The experiments also
show the performance of the energy detectors with the estimated
parameters.

Index Terms—Spectrum sensing, energy detection, Method of
Moments, experimental validation, software defined radio.

I. INTRODUCTION

SPECTRUM sensing (SS) is a key operation in cognitive
radio. Through SS the cognitive radios aim at detecting

frequency bands that are not being used by the primary net-
work. Energy detection is probably the most popular detection
technique in SS [1]–[5] due to its simplicity and the fact
that it does not require any prior knowledge of the signals
to be detected. The energy detectors measure the energy
received during a finite time interval, e, and compares it to
a predetermined threshold, γ, to make a decision about the
presence or absence of signals in the channel:

e
H1

≷
H0

γ(θ), (1)

where H0 and H1 refer to the null hypothesis and the
alternative hypothesis, respectively.

A key aspect of energy detection is to set the threshold
adequately. It depends on a set of parameters θ which are
unknown in practice, so they must be estimated. Moreover,
they are needed to compute the detection performance. Those
parameters are the noise power [6]–[9], the primary signal
power at the energy detector [3], [5], [10], [11], and the
channel occupancy rate (COR) also referred to as the duty
cycle [12]–[17].
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In this work, we assume the realistic scenario where the
channel occupancy can dynamically change at random time
while energy detection is in progress. This uncertainty makes
parameter estimation a challenging problem. First, we consider
a probabilistic mixture model of the energy measurements.
Then, we apply the Method of Moments (MM) [18] to
derive estimators for the three parameters with the following
characteristics: 1) the parameters are estimated jointly and
simultaneously from simple closed-form expressions of the
energy measurements, 2) the estimators are fully blind, in
the sense that they only depend on the energy measurements,
and 3) the estimation is sequential. Each time a new energy
measurement is available, the estimates are updated without
the need to store previous energy measurements. The estimates
θ̂ can further serve to dynamically set the decision thresholds
γ(θ̂) and to estimate the detection performance at each time.
To the best of our knowledge, no estimation method with
the above characteristics has been proposed in the context of
energy spectrum sensing.

The performance of the sequential MM-based detectors is
experimentally evaluated by means of a testbed composed
of Universal Software Radio Peripheral (USRP) devices [19].
First, we provide a detailed description of the testbed and the
setup we have built for the over-the-air (OTA) experiments.
Then, we show the performance of the MM estimators. The
experiments also compare the MM-based detectors with the
clairvoyant detector, that is, the one that employ the exact
optimal decision threshold.

II. ENERGY MEASUREMENTS

Let z(m) be the baseband complex signal received at
the energy detector. It has to discriminate between the two
hypotheses

H0 : z(m) = r(m), H1 : z(m) = y(m) + r(m),

where y(m) is the primary user’s signal and r(m) is the noise.
They are assumed to to be independent, zero-mean, white,
complex circular Gaussian processes with variances σ2

y and σ2
r ,

respectively. This is a standard assumption in the SS literature
[20]–[22], which is particularly accurate when y(m) is a multi-
carrier modulated signal. The received signal samples, z(m),
will also be zero-mean, complex circular Gaussian distributed
with variance p = σ2

r under H0, and q = σ2
r + σ2

y under H1.
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Consequently, the primary signal-to-noise ratio (SNR) at the
energy sensor is (q − p)/p.

The energy measurement from M signal samples is

e =
M∑

m=1

|z(m)|2. (2)

Assuming that the channel occupancy does not change dur-
ing the samples acquisition, the energy measurements are
distributed as scaled chi-squared random variables with 2M
degrees of freedom:

H0 : e ∼ p

2
χ2
2M , H1 : e ∼ q

2
χ2
2M . (3)

Then, the probabilities of false alarm and detection will be

PFA(θ) = 1− Fχ2
2M

(
2γ

p

)
, PD(θ) = 1− Fχ2

2M

(
2γ

q

)
,

(4)
where Fχ2

2M
(·) denotes the cumulative distribution function

of χ2
2M . Therefore, computing the PFA and PD of the energy

detector requires knowing p and q, respectively. On the other
hand, computing the probability of error also requires knowing
the COR (prior probability of H1), which we will denote by
u,

PE(θ) = (1− u) PFA + u PD. (5)

There are two main criteria for selecting the decision
threshold, each related to one of the two fundamental ap-
proaches to the signal detection problem [2], [3]. They are
the Neyman-Pearson (NP) criterion (also known as constant-
false-alarm-rate criterion) and the minimum Bayes risk (MBR)
criterion. The NP criterion aims to maximize the probability of
detection subject to a constraint on the false alarm probability.
The MBR criterion selects the threshold to minimize the
so-called Bayesian risk (BR), which depends on predefined
costs assigned to each type of error (false alarms and miss-
detections). When the costs are identical, the BR reduces to
the probability of error, and the MBR coincides with the
maximum-a-posteriori (MAP) criterion.

Considering (4), the NP threshold for a prescribed proba-
bility of false alarm P ∗

FA will be

γNP (θ) =
p

2
F−1
2M (1− P ∗

FA). (6)

which only depends on the noise power. The detector that
minimizes the Bayes risk is [18]

f(e|H1)

f(e|H0)

H1

≷
H0

CFA

CD

1− u

u
, (7)

where f(e|Hi) denotes the probability density function (pdf)
of the energy measurements under Hi, and CFA and CMD

are the costs assigned to the false alarms and miss-detections,
respectively. Substituting the pdf of the energy measurements
(3) into (7), and taking logarithms on both sides, the MBR
detector can be written as follows

e
H1

≷
H0

p q

q − p
log

[
qM (1− u) CFA

pM u CMD

]
= γMBR(θ). (8)

Notice that the MRB threshold depends on p, q and u.

III. METHOD OF MOMENTS ESTIMATION

According to (3), the k-th order conditional moments of e
are

E[ek|H0, p] = mk pk, E[ek|H1, q] = mk qk, (9)

where mk =
∏k−1

i=0 (M + i). Then, the k-th order marginal
moment of the energy measurements is

E[ek|θ] = (1− u) E[ek|H0, p] + u E[ek|H1, q]. (10)

Substituting (9) into (10) we get to,

µ(k) = (1− u) pk + u qk, (11)

where µ(k) = 1
mk

E[ek|θ] is the scaled k-th order marginal
moment. The equations for the first three moments in (11)
constitutes the following system of nonlinear equations,

µ(1) = (1− u) p+ u q,
µ(2) = (1− u) p2 + u q2,
µ(3) = (1− u) p3 + u q3.

(12)

From the first equation,

u =
µ(1) − p

q − p
. (13)

Then, substituting (13) into the second and third equations,
and after some simple algebraic manipulations, we obtain

µ(2) = (p+ q)µ(1) − p q, (14)
µ(3) =

[
(p+ q)2 − p q

]
µ(1) − p q(p+ q). (15)

Now, we consider the following change of variables,

α = p+ q, (16)
β = p q, (17)

so (14) and (15) can be written as

µ(2) = α µ(1) − β (18)
µ(3) = (α2 − β) µ(1) − α β. (19)

From (18),
β = α µ(1) − µ(2). (20)

Substituting (20) into (19), the quadratic terms cancel and we
obtain the following expression for α

α =
µ(1) µ(2) − µ(3)

µ(1) µ(1) − µ(2)
. (21)

Once α and β have been computed, p and q are obtained by
reversing the change of variables. From (17), p = β/q. Then,
substituting it into (16), we obtain

q =
1

2

(
α±

√
α2 − 4β

)
. (22)

Substituting (16) and (17) into (22) we find that the correct
solution is the one associated to the plus sign. Finally, the
estimate of the COR is computed from (13). In summary,

q =
1

2

(
α+

√
α2 − 4β

)
, p =

β

q
, u =

µ(1) − p

q − p
,

where α and β are given by (21) and (20), respectively.
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A. Batch estimation

Let us consider a sequence of N consecutive energy sensing
periods with energy measurements {e1, . . . , eN}. We assume
that the model parameters do not change during that time,
but the channel occupancy can change between consecutive
energy measurements. The scaled sample moments of the
energy values are

µ̂
(k)
N =

1

mkN

N∑
n=1

ekn, k = 1, 2, 3. (23)

Then, replacing the moments µ(k) by the sample moments
(23), we obtain the MM estimators:

q̂N =
1

2

(
α̂N +

√
α̂2
N − 4β̂N

)
, p̂N =

β̂n

q̂N
, ûN =

µ̂
(1)
N − p̂N
q̂N − p̂N

,

α̂N =
µ̂
(1)
N µ̂

(2)
N − µ̂

(3)
N(

µ̂
(1)
N

)2

− µ̂
(2)
N

, β̂N = αN µ̂
(1)
N − µ̂

(2)
N (24)

B. Sequential estimation

Since the energy values are measured sequentially, it is
desirable to derive a sequential estimation method. When
a new energy value, en+1, is measured, the scaled sample
moments can be updated as

µ̂
(k)
n+1 = µ̂(k)

n + ηn+1

[
ekn+1

mk
− µ̂(k)

n

]
, k = 1, 2, 3. (25)

The initial values are µ̂
(k)
0 = 0. The term ηn ∈ (0, 1) is the

learning rate (sometimes called forgetting factor) at time n.
In stationary scenarios, where the model parameters do not
change during the energy measurements, the learning rate is
usually set to ηn = n−1, so µ̂

(k)
n coincides with the sample

moments for the first n energy measurements. Consequently,
the sequential estimates will coincide with the batch estimates.
In non-stationary scenarios, where the parameters are time-
varying, constant learning rates ηn = η are typically used.

Note that estimates can be sequentially updated each time
a new energy measurement is available, without the need to
store previous energy measurements.

IV. EXPERIMENTAL EVALUATION

A. Testbed and experimental setup

We have considered a simple scenario where one node
acts as a primary user (PU) and the other as the energy
sensor. As nodes, we have used two B210 Universal Software
Radio Peripheral (USRP) devices [19]. Both nodes used a
single antenna with omnidirectional radiation pattern in the
azimuth plane. The two nodes are connected to a personal
computer (PC) via USB3.0 interfaces (see Figure 1). The PC
is equipped with the GTEC Testbed Interface Software (GTIS)
[23]. GTIS allows to easily configure and control the USRP
nodes from the PC with MATLAB [24]. It also allows the PC
to provide the transmitting node with the signal samples to be
transmitted, and to store the samples acquired by the receiving
node. The setup is shown in Figure 1. When the PU node is

USB 3.0

USB 3.0

USRP B210

Ubuntu 14.04 LTS
(operative system)

Ettus UHD
driver

GTIS 
middleware

GTIS
Matlab wrapper

Matlab 
software

USRP B210

PU node

Energy sensor node

PC

Fig. 1. Testbed and experimental setup.

active, it transmits OFDM 802.11a/g frames with 76 OFDM
data symbols per frame using 64−QAM modulation and 3/4
coding rate. As a result, each frame has Lf = 6000 samples.
The sampling rate is fs = 20 Msamples per second, so the
frame duration is Tf = Lf · f−1

s = 0.3 ms. The total channel
bandwidth is 20 MHz with an occupied bandwidth of 16.6
MHz. The central frequency is 5.9 GHz.

We model the PU activity as a two states (active and
inactive) homogeneous Markov chain with time steps equal
to the frame duration Tf . In each frame interval, the PU
transmits one frame if it is active, and remains silent if it
is inactive. Markov models have been widely used to model
the PU network activity in cognitive radio systems [25], [26].
In particular, we adopt the model in [26] where the transition
probabilities P(inactive → inactive) = 1 − u, P(active →
active) = u. Then, the average busy period duration is
Tf · u/(1 − u), and the average idle period duration is
Tf · (1 − u)/u. Notice that other parameters (e.g. frames,
PU activity model) could have been used for the experiments,
since the MM estimators do not assume any. The sensing node

ℋ! …

frame interval sensing interval
time

… ℋ! ℋ" ℋ!

Fig. 2. PU activity pattern.

acquires samples, also at fs = 20 Msamples/s to compute
the energy values, en, by selecting the corresponding sets
of M consecutive samples (2). The energy sensing interval
(time elapsed between consecutive energy measurements) was
Te = 60µs, then, the average number of energy measurements
per frame interval was 5. The sensing node is not synchronized
with the PU node, so there could be energy measurements with
some of the samples acquired when the PU is active and others
when it is inactive. Although our energy model (3) does not
consider these situations, they can occur in our experiments
and in practical cases, especially when M is large.

1442

Authorized licensed use limited to: UNIVERSIDAD DE CANTABRIA. BIBLIOTECA UNIVERSITARIA. Downloaded on November 02,2023 at 18:03:48 UTC from IEEE Xplore.  Restrictions apply. 

© EURASIP. First published in the Proceedings of the 31th European Signal Processing Conference EUSIPCO 2023  
(EUSIPCO-2023) in 2023, published by EURASIP. IEEE is granted the nonexclusive, irrevocable, royalty free worldwide rights to publish, sell and distribute the copyrighted 

work in any format or media without  
restriction 



Each experiment comprises N = 400 energy measurements,
so it lasts N ·Te = 24 ms. After each energy measurement, en,
we sequentially update the estimates θ̂n, compute the decision
threshold γ(θ̂n) according to the selected criterion, apply the
energy detector to en, and check whether the decision is
correct or not. We average the results of R = 320 consecutive
experiments under the same conditions.

In the initial energy sensing periods, when all energy values
come from the same channel occupancy, the mixture model
(10) is inappropriate. In those cases, the estimates (24) usually
take invalid values. In particular, the term inside the square
root in q̂n can result negative and ûn out of range. When this
happens we assume that the energy values have been measured
under H0, so ûn = 0, and p̂n = q̂n = µ

(1)
n .

The experiments were conducted in the laboratory of the
Signal Processing Group at the University of Cantabria in a
rather static indoor environment. Each set of R experiments
took about 8 seconds (there is some latency between con-
secutive experiments). We avoided anybody moving in the
propagation environment to guarantee that q does not change
during that time. Since, the model parameters θ remained
invariant during the experiments, we always used ηn = n−1

as learning rate in (25).
To analyze the estimation and detection performance we

must know the true values of p and q. Since they are unknown,
we approximated them by the sample variances of all signal
samples z(m) acquired under H0 and H1, respectively, along
the R experiments. The number of samples in each set of
experiments was Lf · Nf · R = 1.5 · 108, which guarantees
that the sample variances are close to the true values of p and
q. We call clairvoyant detector [18] the one that uses those
values to set the decision threshold. Its performance can be
considered as an upper bound for the MM-based detector.

B. Experimental results
Figures 3 and 4 show how the experimental bias and the root

mean-squared-error (RMSE) of the estimates evolve with the
number of energy measurements (n). The results correspond
to the case u = 0.3, M = 200, and SNR = −8.13 dB. The
bias and the RMSE of p̂n and q̂n are normalized.

Fig. 3. Transient bias of the estimates.

Figure 5 compares the transient performance of the MM-
based detector and the clairvoyant detector for two criteria:

Fig. 4. Transient RMSE of the estimates.

NP with P ∗
FA = 0.1, and MBR with CMD = 5, CFA = 1.

The conditions was as in previous figures 3 and 4.

Fig. 5. Performance for the NP and MBR criteria with P ∗
FA = 0.1 and

CMD = 5, CFA = 1, respectively.

Figure 6 shows the detection performance of the MBR
detectior, with CMD = 5, CFA = 1, for different values of
M . The rest of the conditions was as in previous figures.

Fig. 6. Performance for the MBR criterion, with CMD = 5, CFA = 1, and
different values of M .

Finally, 7 shows the probability of error for the MAP crite-
rion and two different values of SNR. In this case M = 400
and u = 0.3.
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Fig. 7. Probability of error for the MAP criterion (CMD = CFA = 1), and
different values of SNR.

V. CONCLUSIONS

We have presented a new blind sequential algorithm, based
on the Method of Moments, for jointly estimate the parameters
involved in energy detection. The parameter estimates are
used to set the decision threshold and predict the detection
performance. The algorithm has been experimentally evaluated
by means of a testbed composed of software-define-radio de-
vices. The experiments show that the algorithm can efficiently
estimates the parameters, so the detection performance is close
to the clairvoyant detector in realistic conditions.
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