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Resumen

Aunque a primera vista el alineamiento de un dispositivo experimental puede parecer un
problema simple o incluso trivial, en los experimentos de test beam ha demostrado tener
una gran complejidad. Este trabajo busca ser una referencia a la que los estudiantes e
investigadores puedan recurrir cada vez que se encuentren con este problema en sus propios
experimentos.

El objetivo de este trabajo es el estudio sistemático del efecto que produce cada paráme-
tro de desalineamiento sobre los observables relevantes. Con este fin se ha implementado
una simulación Monte Carlo que modeliza una versión simplificada de un experimento de
test beam. Se ha estudiado el efecto que cada parámetro tiene sobre la simulación, lo que
ha servido para determinar la casúıstica que conecta el desalineamiento con los principales
observables.

Una vez cumplido este objetivo, el estudio amplió su alcance para explorar aspectos más
complejos. Se ha estudiado el efecto de combinar distintos parámetros de desalineamiento,
de utilizar modelos más complejos y de incorporar ruido en la simulación para simular un
experimento real.

Palabras Clave: Experimentos de test beam, desalineamiento del DUT, Monte
Carlo, simulación de f́ısica de part́ıculas.



Abstract

Identifying misalignment in a test beam experiment has proven to be a far more difficult
problem that what it may appear at first glance. This project aims to be a reference that
students and researchers can come back to whenever they encounter this problem on their
own experiments.

The goal of this project is to systematically characterise the effects that each misalign-
ment parameter has over the measured observables. In order to achieve this, a Monte
Carlo simulation was used to model a simplified version of a test beam experiment. By
varying the misalignment parameters in the simulation, the causal relationship between
misalignments and the corresponding changes in key observables was established.

Having successfully achieved the initial goal, the study expanded its scope to explore
more intricate aspects. This involved investigating combinations of different misalignment
parameters, introducing more complex models, and incorporating simulated noise to en-
hance the realism of the simulation.

Keywords: Test beam experiments, DUT misalignment, Monte Carlo, particle
physics simulation.
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Chapter 1

Introduction

This first chapter introduces the main theoretical concepts needed to properly understand
and contextualize the problem of device under test misalignment on test beam experiments.

The first section covers test beam experiments, as well as the main concepts and ter-
minology that will be used throughout this project. Then it will dive into real world
experiments from IFCA and CERN to show how a real world experimental set up may
look like, and to give a brief overview of the state-of-the-art on the field. Once all this
topics have been covered, it will be time to explain what exactly is DUT misalignment and
why it is a common problem in test beam experiments.

1.1 Test beam experiments

A test beam experiment is a particle beam experiment designed to test a particle detector.
They have proven to be particularly valuable for examining how a detector behaves and
responds under conditions similar to those it will encounter when integrated into the actual
experiment [1]. The detector, which is usually a new technology with unclear accuracy, is
called the Device Under Test, or simply DUT.

This project will be focused on a specific type of test beam experiment, where the
goal is to test the spacial resolution of a pixelated silicon detector. As stated in [2, p7],
this kind of detectors are “solid-state analogous to gaseous ionization chambers”. They
are mostly used for reconstructing particles tracks in collider experiments, which can be
achieved because the interaction of the passing particles with the semiconductor material
creates charge carrier pairs that can be measured.

Designing an experimental set up with the goal of testing the spatial resolution of the
DUT is not a trivial task. The initial thought that might come to mind is to place a
known detector really close to the DUT, then make a beam pass through both of them
and compare the measurements of the two detectors. This approach has several problems.
First, if the particle tracks are not perfectly perpendicular to the detectors, which they are
not in real experiments, then the same track intersects each detector at a slightly different
position. Another problem is that this set up would be limited by the accuracy of the
known detector, which is not exactly convenient when the main goal of the experiment is
to test a new, potentially more accurate, detector.

In order to solve these problems test beam experiments use what is known as a particle
telescope [3]. A telescope is an arrangement of multiple particle detectors, called telescope
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Chapter 1 – Introduction 2

planes, that allows the trajectory of the particles passing through to be reconstructed with
high accuracy. The DUT is placed inside the telescope so that the intersection of the
reconstructed tracks with the DUT can be calculated.

Figure 1.1: Diagram displaying a particle telescope. When a single particle goes through the
telescope, each telescope plane will record a hit. These hits allow the reconstruction of the
particle’s track and, assuming the DUT position is known, the intersection of the track with the
DUT plane shows which is the correct position that the DUT should measure, according to the
telescope. Then, the position of the track when it intersects the DUT plane is compared with the
DUT measurement to check the accuracy of the latter.

The telescope solves both of the previously mentioned problems. A track reconstructed
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using multiple detectors is more accurate than a single detector hit, and non-perpendicular
tracks are not a problem. However this set up introduces some new challenges, the main
one being DUT misalignments, which will be discussed on the following section.

1.1.1 State of the art in test beam experiments

Figure 1.2: Scheme of the experimental set up used by Roa M. and Duarte J. on their test beam
experiment [2]. Apart from the particle telescope and the DUT, this set up also involves a pair
of scintillators, used to start the process of data acquisition, and a reference device (REF) with
a higher temporal resolution that checks the hit association in multiple particle measurements.
Measuring the passing of a fast moving particle naturally requires taking a lot of measurements
on a small time interval. This requirement imposes a complex data treatment process, which
involves a TLU that triggers data acquisition, a pair of Digital Test Boards (DTBs) that acquire
the data, and the EUDAQ software that stores and manages the data.

Figure 1.2 illustrates the set up used for a real test beam experiment as opposed to
the simplified diagram of figure 1.1. Fortunately, the intricacies of the set up do not
radically change the behaviour of the system when subjected to a misalignment. The main
patterns that appear when studying the relevant observables, and their connections with
the alignment parameters, remain almost unchanged from the simplest to the most complex
model. In fact, as we’ll see later, using a simplistic model often leads to better results, as
the patterns become more transparent. Therefore, a clear understanding of the simplified
toy version of a test beam experiment shown in figure 1.1 is enough to understand all the
concepts relevant to the problem of DUT misalignment.

As stated earlier, the purpose of a test beam experiment is to test the behavior of a
piece of equipment, usually a particle detector, when it’s subjected to a particle beam.
Primarily, these experiments are used to test the precision of new equipment before it goes
into production, but they can also be used to calibrate and test the durability of production
ready detectors, and to study the behavior of particles in different materials.

Test beam facilities at CERN are heavily used, with bookings being consistently full [4].
Numerous test beam facilities exist at CERN, and each of them accommodates multiple
projects on a monthly basis. Because of this it would be impossible to list every single
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experiment. Instead, this chapter is only going to mention just a handful of experiments,
corresponding to the most cited recent papers on this field.

ALICE stands out as one of the best known experiments at CERN. It is specifically
designed to study the properties of matter under extreme conditions, such as those that
existed shortly after the Big Bang. Central to this endeavor are the ALICE AD modules,
which are responsible for triggering data acquisition. A crucial experiment for testing
the latest upgrade of this modules was the 2021 study by M. Broz et al [5], which used
the CERN PS test beam facilities to examine the position dependence of the modules’
efficiency.

The LHCf (Large Hadron Collider forward) experiment is another well known CERN
experiment. Unlike the ALICE experiment mentioned earlier, LHCf does not study heavy-
ion collisions but rather focuses on studying the forward region of high-energy particle
collisions involving protons and heavy ions. To achieve this, LHCf uses specialized calorime-
ters. A crucial experiment for testing this calorimeters was the 2012 study by T. Maz et
al.[6], which used the CERN SPS test beam facilities to examine the energy resolution and
linearity of said detectors.

Finally it is important to mention the paper [1], as it specifically covers the same topic as
this project: the characterization of pixelated silicon sensors with a test beam experiment.
The study leveraged the electron beam facilities at CERN [7] and DESY [8] to asses the
accuracy and efficiency of an experimental 3d pixelated sensor technology when exposed
to a high radiation environment, similar to what the detector would experience if it was
mounted at the High Luminosity Large Hadron Collider (HL-LHC) project [9].

1.2 DUT alignment

As previously stated, this project is focused on a specific type of test beam experiment
that uses a telescope to reconstruct the particle’s track, which is then compared to the
measurement of the DUT. To meaningfully compare the track measured by the telescope
and by the DUT their relative position must be known. The term perfect alignment is used
to denote the ideal case where the DUT’s position with respect to the telescope is measured
with no error. On the other hand, DUT misalignment is the term used to describe any
discrepancies between the measured and real DUT position. A straightforward example of
DUT misalignment is shown in figure 1.3.

Each iteration of the alignment process consists of reducing the error in the measure-
ment of the DUT’s position and taking this into account to calculate the point where the
track hits the device. Alternatively, the DUT could be moved so that its real position gets
closer to the measured position. However, this is only possible for the first few iterations.
On each iteration the adjustment becomes smaller and it quickly becomes impossible to
move the DUT with the required accuracy. This means that aligning the DUT does not
mean physically moving the device, as it may appear at first glance. Instead, the core of
the alignment process revolves around precisely characterizing the DUT’s position so that
its measurements of the track can be compared to those of the telescope.

This alignment process must continue until the measured position of the DUT is close
enough to its real position. Clearly, the real position of the DUT is unknown on a real
experiment. However, as chapter 3 will prove, the effect of the misalignment over the results
can be estimated with the residuals, which are defined as the difference between the track’s



Chapter 1 – Introduction 5

Figure 1.3: Diagram displaying a simple example of DUT misalignment. The error in the mea-
surement of the DUT’s position leads to an incorrect estimation of the point where the track hits
the DUT.

position measured by the DUT and the telescope. Therefore, in practice the iterations must
continue until the residuals are small enough, after which point the set up is considered to
be aligned. In order to achieve alignment the residuals must be tiny, because this project
studies experiments that test the spatial resolution of particle detectors, which naturally
require great precision in position measurements. The exact precision requirement depends
on the experiment. For example, in the previously mentioned experiment [2], the DUT was
considered to be aligned when the residuals where less than 0.005mm for every recorded
event.

Although not the primary focus of this project, it is worth mentioning some of the
existing track alignment methods. In this context, special recognition goes to Milepede
II, a software developed by the German research center DESY (Deutsches Elektronen-
Synchrotron, which translates to German Electron Synchrotron). As stated in the official
documentation [10]: “Detector alignment and calibration based on track fits is one of
the problems, where the interest is only in optimal values of the global parameters, the
alignment parameters. The method, called Millepede, [is used] to solve the linear least
squares problem with a simultaneous fit of all global and local parameters, irrespectively
of the number of local parameters.”



Chapter 2

Methodology: Designing the
simulation

This chapter will be focused on explaining the approximations, methodology, and in general
the process that was followed to design the Monte Carlo simulation. The main goal is to
create the simplest possible model, the toy model, of a test beam that allows the study of
DUT alignment.

2.1 Approximations

With the purpose of constructing the toy model, a series of approximations will be made
to mimic the real physical phenomena in the simplest way possible.

2.1.1 Negligible telescope error

In most test beam experiments it is possible to achieve a very accurate spatial resolution in
the telescope’s measurements. This is the result of multiple factors. First, the telescope is
using the information from the measurements of multiple planes to reconstruct the track.
Through this mechanism the telescope is able to achieve an accuracy much higher than
the one from a single plane.

Additionally, it should be taken into account that any DUT has some strict quickness
restrictions, i.e. it has to take many measurements in a very small time interval, therefore
limiting its accuracy. Therefore it is possible to design the test beam experiment in a way
that has less time restrictions than the DUT, allowing the use of slower but more accurate
detectors in the telescope.

As a result of this factors, most test beam experiments have a telescope that is sig-
nificantly more accurate than the DUT. For this reason, the model assumes a negligible
telescope error which means that, in the simulation, the telescope perfectly reconstructs
the track of every particle.

2.1.2 2-dimensional DUT

This project was inspired by M. Roa and J. Duarte’s work on particle sensors [2] where they
characterized the behavior of a silicon based detector that consists of multiple connected 3d
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pixel sensors. On said project they already encountered the problem of DUT misalignment
when trying to measure the 2d position of each particle inside the cross-sectional area of
the beam. This proves that the effects of DUT misalignment can be observed even when
we are only interested in measuring a 2d position. Therefore, we can safely assume a
2-dimensional DUT and the model will still be useful to study the misalignment effects.

Given this approximation it is natural that from now on we will only consider the 2d
position of the particle inside of the DUT as the variable of interest. We will still consider
the third coordinate to do the internal calculations but at the end of the simulation we
will only be left with the 2d observables.

2.1.3 Particles follow a straight line

In test beam experiments the particles arrive to the telescope from a narrow long cylinder.
The particles must stay inside the confines of this geometry, but they could follow a slightly
curved path. However given the small cross sectional and the high speed at which the
particles travel, we can assume that the curvature radius is much bigger than any distance
considered in the experiment. Therefore we will consider that the particles follow a straight
line.

2.2 Simulating track data with Monte Carlo

As stated in approximation 2.1.1 the telescope can be considered to have perfect accuracy.
This means the track reconstructed by the telescope can effectively be interpreted as the
real track followed by the particle. This raises the question of how exactly one could
simulate reliable particle track data.

An immediate consequence of approximation 2.1.3 is that in order to simulate the track
of a particle we simply need to generate a straight line inside of the simulation.

The plane that contains the 2-d DUT can act as a reference to build the coordinate
system. To define a straight line we only need to set its intersection point (x, y) and
the angle it forms with the plane (θx, θy). After this point it seems like the problem of
generating a particle track is already solved. However it’s not clear exactly how can we
generate this variables.

We could just start with all the variables set to 0 then increment the value of the first
variable by ∆x amount until we reach a boundary xmax then do the same for negative
values until we reached xmin, do the same for all values and try every single combination.
This seems like a cumbersome solution for what it looked like a simple problem. Also using
this approach runs into multiple problems, for example, its not possible to pick the number
of particle track without introducing a significant bias.

The solution is to use the Monte Carlo approach: just use (pseudo)random numbers.
The term Monte Carlo is widely used to refer to any computational technique that in-
volves using random numbers to generate a random sample from the desired probability
distribution.

For our use case we must set some boundaries for the variables and then pick a proba-
bility distribution. If we wanted the same behavior as we had without using Monte Carlo
then we should choose a uniform distribution. Once that’s done we only need to specify
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the number of particle tracks desired, n, and use any Random Number Generator to get
the desired data points.

It’s important to point out that using Monte Carlo for a physics simulation is not
exactly a break through idea. Indeed there’s a long history of Monte Carlo based particle
physics simulations. One in particular, Geant4, deserves a special mention. It is the
most sophisticated and comprehensive simulation tool available for particle physics, and
its documentation [11] is a great resource to further explore the topic of Monte Carlo
simulations.

2.3 Geometry

As stated in 1.2, in order to study DUT alignment on its simplest form, the model only
needs to compute the intersection point of the track with the measured and real position
of the DUT. Given approximation 2.1.3, the model can neglect any particle interaction,
as these interactions cannot modify the particle’s track. Therefore we can remove the
telescope planes from the simulation without any consequences.

After this simplification it is clear that the only geometry elements required in the model
are the track, which is a straight line following approximation 2.1.3, and the measured and
real position of the DUT, which is a 2-dimensional polygon following approximation 2.1.2.

Figure 2.1: Diagram displaying the geometry of the simulation. There are only 3 elements:
one straight line, representing the track, and two rectangles, representing the measured and real
position of the DUT.

2.4 Variables definition

As stated in 2.1.2 this model considers a DUT that measures the two dimensional position
of the particles that pass through it. Therefore the main observables of the simulation will
be the (x, y) coordinates of a point inside of the DUT.

The true position, (x, y)true, is the point of intersection of the track with the real position
of the DUT, measured relative to the center of the real DUT. This represents the position
that would be measured by a perfectly accurate DUT.

The telescope position, (x, y)telescope is the point of intersection of the track with the
measured position of the DUT, measured relative to the center of the measured DUT. This
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Figure 2.2: Diagram that illustrates the physical meaning of the key observables. The top section
shows the points in the 3D geometric diagram, introduced in section 2.3. The middle section
introduces the scattering plots that will be used from now on to display the individual data points,
and clarifies the relationship between these plots and the 3D diagram. The bottom section shows
the key variables (x, y)telescope, (x, y)true, and (x, y)dut inside of the scattering plots.
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represents the position that would be measured by the telescope. If alignment is perfect
then this coincides with the true position.

The dut position, (x, y)dut is the position measured by the real DUT, relative to its center
point. In the simulation, this is calculated as a function of the true position, (x, y)dut =
f((x, y)true). How exactly this calculation is performed will be the topic of the following
section (2.5).

On a real experiment the true position is unknown, and the only positional data avail-
able is the position measured by the telescope, (x, y)telescope, and the DUT, (x, y)dut. In
addition to this, it is also possible to use the telescope to measure the impingement angles,
θx and θy, that were introduced in section 2.2.

In order to extract as much information as possible from these observables, it is useful
to define a new variable

∆x = xtelescope − xdut (2.1)

∆y = ytelescope − ydut (2.2)

where ∆x and ∆y are known as the residuals.
As previously explained, in a real experiment only two positional measurements are

taken, one with the DUT and one with the telescope. The residuals, ∆x and ∆y, quantify
the difference between these two measurements.

2.5 Simulating DUT measurements

In this simulation we are trying to mimic a pixelated silicon detector such as the one used
in experiments [2] and [1]. As mentioned in Section 1.1, the working principle behind this
kind of detector is the creation of charge carrier pairs as a result of the interaction between
the passing particle and the semiconductor material. The most simplified description of
the measurement process is that whenever a particle hits some pixel of the DUT, some
amount of charge carriers will be measured on that pixel.

In order to replicate this process, the simulated DUT is going to be divided into a
number of pixels (generally we are going to use a 32x32 pixel DUT to mimic the real
device found in [2] ). Firstly the true position is calculated, which represents the point
where the particle hits the DUT, as discussed in section 2.4. When a particle hits the DUT
it will hit some pixel inside of it. That pixel will activate and the position measurement
of the DUT will be the position of the center of said pixel. This process is illustrated on
figure 2.3.

An important caveat is that the real pixelated device used in experiments [1] and [2]
does not simply measure the position of the particle when it hits the device. Instead it
can be used to reconstruct the 3D track followed by the particle when it is inside of the
geometry of the device. However, because of approximation 2.1.2, the simulation is only
considering a 2-dimensional DUT. This means that it can be considered that the DUT
measures the 2D position of the particle instead of its 3d track.

In the real device the pixel directly hit by the particle is not the only one that gener-
ates charge carriers. Instead, the adjacent pixels will also measure some amount of charge.
When the particle hits the DUT in a point close to the boundary between two pixels, it
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Figure 2.3:
Diagram that illustrates the process followed to simulate the DUT measurements. First the true
position, (x, y)true where the track hits the DUT is computed (1). The true position belongs
inside some pixel, that pixel is considered to be activated (2). The position measured by the
simulated DUT, (x, y)dut, is the center of the activated pixel (3).

is even possible that two different pixels will measure the same amount of charge. This
mechanism allows to reconstruct the position of the hit using information from more than
one pixel, enabling higher accuracy. This process, known as cluster sharing, will be dis-
cussed on further detail in chapter 4, where it will be used to build more complex realistic
models. However, for the toy model, the single pixel measurement discussed on this section
is accurate enough.

2.6 Code implementation

The previous sections introduced the foundations required to pose the toy model. However,
the question of which tools can be employed to execute this simulation and analyze its
results remains to be addressed.

The project involves a lot of data analysis and visualization, and it could be argued
that it is the most important part because it is the one that will be visible to the reader.
The programming language python is the industry standard for projects centered around
data analysis, making it a natural choice for this project. As stated by google engineer J.
VanderPlas on his book Python Data Science Handbook [12, p2] : “Python has emerged
over the last couple decades as a first-class tool for scientific computing tasks, including
the analysis and visualization of large datasets. [...] The usefulness of Python for data
science stems primarily from the large and active ecosystem of third-party package” This
project used 4 of these third-party packages: NumPy, Matplotlib, Seaborn and Click.

Many different resources discuss in detail why vanilla python, i.e. python without any
third-party libraries, is slow and not suited for performance critical applications, such as
the chapter Performance from the book Python in a Nutshell [13] or the preface of High
Performance Python [14]. Critically, python is very inefficient at array operations, which
are the core of the calculations needed to implement the simulation. The tool that enables
the simulation to be run without suffering a severe lack of performance is NumPy, which
is a library that allows an “efficient implementation of the [array] structure together with
basic arithmetic and linear algebra” [15].

Matplotlib is the plotting library that enables data visualization in python [16, p253].
Seaborn is a library built on top of Matplotlib that provides built in functions to easily
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replicate the most common plots used in a scientific article, such as scattering plots with
a linear fit [16, p268]. In this project the latter is used for standard scattering graphs
and histograms, such as the ones from figure 2.4, while the former is used for graphs that
require more customization, such as figure 2.3 or figure 3.1.

As stated on the official website [17], “ Click is a Python package for creating beautiful
command line interfaces [CLIs] in a composable way with as little code as necessary.”. This
library was used to build a CLI, enabling quick adjustments of simulation parameters, e.g.
number of events, without having to manually modify the source code.

We published the final version of the source code [18] so that anyone can experiment
with the simulation if they wish to do so. Further information on where to access the
simulation as well as how to use it appears at the end of this project, in Chapter 5.

2.7 Toy model

As stated at the beginning of this chapter, the goal was to create the simplest working
simulation that allows the study of DUT misalignment, which we named the toy model.
After all the previous considerations we are now able to achieve this goal.

First the simulation employs the geometry explained in section 2.3, building an empty
world with a straight track intersecting two rectangles that symbolize the measured and
real position of the DUT.

The track is defined by its incidence angle, θx and θy and the point where it intersects
the real position of the DUT, (x, y)true . As stated in section 2.2 the Monte Carlo method
will be used to generate a sample of this variables. In order to do this, we first need to
specify the probability distribution and the boundaries.

A reasonable boundary for the incidence angle is ±0.5◦, that is θx, θy ∈ [−0.5◦,+0.5◦]
, which is a value that you may expect on a real experiment. Similarly, the boundary for
the true position of the hits is ±16pixels, that is xtrue, ytrue ∈ [−10px,+10px] , meaning
the track must hit the DUT on its central 20x20 pixel region. The toy model considers
that these 4 variables follow a uniform distribution, meaning that any value in the specified
boundaries is equally likely. The more complex models that will be introduced in chapter
4 use a Gaussian instead of a uniform distribution, which is closer to the measurements of
a real experiments.

Figure 2.4: Plot showing the histograms for the values of θx, θy, xtrue and ytrue obtained in a
test run of the toy model using n = 10000 events. The plots clearly show the use of a uniform
distribution, the boundaries at ±0.5◦ and ±10pixels, and the random noise due to a finite sample.
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To initialize the simulation the user must specify the number of events simulated, n,
and the misalignment parameters (these parameters will be explained on detail in chapter
3). Once this values have been specified, the simulation will generate a sample of n tracks
with random θx, θy, xtrue and ytrue values.

The misalignment parameters determine the measured position of the DUT relative to
its true position. The DUT then computes its intersection point with each track, which
corresponds to the position measurements of the telescope, (x, y)telescope. Finally, the sim-
ulation computes the position measurements of the DUT, (x, y)dut,following the simple
procedure outlined in section 2.5.

Once all the measurements of the telescope and DUT have been simulated the data is
plotted into multiple graphs for later analysis. First the data is displayed into the scattering
plots introduced in figure 2.2. These plots show the true position of the track as well as
the position measured by the telescope and the DUT. The black grid represents the pixels
of the DUT. The data is also plotted into multiple different graphs, such as ∆x vs. x or
∆x vs. y, with the goal of identifying any correlations that may arise between different
variables. These graphs will be discussed in detail on chapter 3.



Chapter 3

Simulation Results

The preceding chapter explained the design process behind the toy model, the simplest
model that allows the study of DUT alignment. This chapter is focused on the data
analysis of the results of said model. First, it will examine the results of a run with perfect
alignment. Then, it will introduce the meaning of each misalignment parameter and the
effects of increasing that parameter in the simulation. Following this, multiple parameters
will be combined to observe emergent effects and identify an approach to streamline this
scenario into that of individual misalignment parameters. Ultimately, everything will be
brought together to deduce the best alignment procedure, addressing the realistic situation
of combining all misalignment parameters.

3.1 Perfect alignment

This section analyses the results of a simulation run in the toy model with perfect align-
ment.

Figure 3.1: Plots showing the true position as well as the position measured by the telescope and
DUT for all the n = 1000 events simulated. Each point corresponds to a single event, i.

On the case of perfect alignment, the measured and real position of the DUT coincide.
Therefore the true position of the hits equals the position measured by the telescope,
x
(i)
telescope = x

(i)
true, y

(i)
telescope = y

(i)
true. This fact can be observed in figure 3.1 where the

plots for the true and telescope positions have the exact same data points. Because of

14
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Figure 3.2: This figure consist of 2 histograms and 6 scattering plots. The histograms are used
to display the distribution of the residuals, while the scattering plots are used to identify any
correlations that may arise between different variables.

this, the telescope measurements have no uncertainty, and the only source of error is
the intrinsic uncertainty of the DUT measurement, which corresponds to the variance of
a binary distribution with the width of the pixels’ pitch. This uncertainty is a direct
consequence of the binary resolution, which is the name given to the spatial resolution of
the pixelated sensor.

Figure 3.1 clearly shows the way in which the true position translates to the position
measured by the DUT. Any point in the true position plot moves to the closest pixel center
in the DUT plot, which means that the latter only displays positions that sit exactly in
the middle of a pixel. The holes in the DUT plot correspond to the pixels that did not
contain any data points in the true position plot.

The residuals histograms in figure 3.2, show that ∆x and ∆y follow a uniform distri-
bution ranging from -0.5 to +0.5 pixels. As previously stated, this variance is entirely
explained by the intrinsic uncertainty of the DUT measurement. In the best case scenario,
the true position falls right in the center of a pixel, coinciding with the corresponding DUT
measurement, and resulting in zero residuals ∆x,∆y = 0. In the worst case scenario, the
true position falls in the corner of a pixel, at a distance of ∆x,∆y = 0.5px from the closest
pixel center. Because the true position in sampled from a uniform distribution, any value
that falls between this extremes is equally likely, and therefore the residuals will follow a
uniform distribution ranging from -0.5 to +0.5 pixels.

The ∆x vs. xtelescope and ∆y vs. ytelescope plots in figure 3.2 display a curious pattern.
Examining just the region corresponding to one pixel, such as the range x ∈ [0, 1)px there
is a perfect correlation between the variables. The underlying cause of this pattern is
that the DUT measurement always corresponds to the center of a pixel. This means that
multiple (x, y)true points are mapped to a single (x, y)dut point, which leads to a correlation
between xdut − xtrue and xtrue inside an individual pixel.

If the full range of xtelescope and ytelescope is considered, then the slope of the linear fit is
0. If noise > 0.5px was introduced into the data, the diagonal lines would disappear and
these plots would be identical to all the other scattering graphs. This observation, among
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with other insights obtained from the more complex models of the fourth chapter allow us
to deduce that the diagonal lines of the ∆x vs. xtelescope and ∆y vs. ytelescope plots will not
appear in real world data.

As a conclusion, in the case of perfect alignment the ∆x and ∆y histograms show a
uniform distribution with a zero mean and the scattering plots have a zero slope. In both
cases the variance in ∆x and ∆y is determined by the intrinsic uncertainty of the DUT
measurements.

Finally, a key point is that figure 3.2 shows the results of a run with n = 10000 events,
while the figure 3.1 corresponds to a run of just n = 1000. This is a deliberate choice
that will be consistent across this whole chapter. A graph that plots variables against
each other, such as the one in 3.2, will always benefit from more data points because
the correlation between different variables will appear more clearly with a higher n. The
opposite is true for the graphs in figure 3.1. If this graphs plotted n = 10000 events then
there would be so many data points that the graphs would just show a 20x20 pixel square.

3.2 Individual misalignment parameters

This section will introduce each misalignment parameter individually. First, a diagram
will be used to explain the physical meaning of each parameter, then a simulation will be
run with that misalignment parameter set to a non-zero value. The resulting data will
be plotted in the same graphs that we used in the previous section in order to show the
differences between each case and the case of perfect alignment.

The misalignment parameters determine the difference between the real and measured
placement of the DUT. In the simulation the real and measured positions of the DUT
are represented by 2-dimensional polygons occupying 3D space. In order to specify the
relative position of these polygons 6 different parameters must be set, corresponding to the
6 degrees of freedom of the system.

3.2.1 Translation along X axis: δx parameter

The first misalignment parameter is denoted as δx and quantifies translation along the X
axis. More precisely, δx parameter determines the distance along the X axis that separates
the center point of the measured position of the DUT from the center point of the real
position of the DUT.

Based on the information presented in figures 3.4 and 3.5 it can be deduced that the
primary indicator of a δx misalignment is the ∆x histogram. The mean of the histogram,
for example +4.99px in figure 3.5, is a highly accurate approximation of δx.

The true position of the track as well as the position measured by the DUT are indepen-
dent of the misalignment parameters. To illustrate this fact the simulation used the same
same random seed in 3.4 as it did in the run with perfect alignment that is displayed in 3.1.
Because of this the middle and right most plots in both figures are the exact same, which
shows that (x, y)true and (x, y)dut are not affected by the misalignment parameters. On
the other hand, track positions measured by the telescope are indeed dependent on these
parameters. Based on this reasoning, for the rest of this section only the telescope plot
will be shown, and not the DUT and real plots, in order to avoid unnecessary repetition.
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Figure 3.3: Diagram that illustrates translation along the X axis. The graph on the left shows a
3D layout of the coordinate system while the graph on the right displays a projection of the system
onto theXY plane. On the latter, the green point symbolizes the track impinging perpendicularly
on the plane from above.

Figure 3.4: Plots showing the true position as well as the position measured by the telescope
and DUT for all the n = 1000 events simulated in a run with a misalignment of δx = 5px. The
position measured by the telescope is the only one affected by the misalignment. All the position
measurements are shifted 5 px to the right, which corresponds to the positive x direction, as it
can clearly be seen in the corresponding plot.
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Figure 3.5: This figure consist of 2 histograms and 6 scattering plots showing the results of a
run with n = 10000 events and a misalignment of δx = 5px. All the scattering plots show no
correlation between the variables, just as they did in the case of perfect alignment. Indeed, the
only plot that changes with respect to that case is the ∆x histogram. The histogram still shows
a uniform distribution with a variance of ±0.5px, but the mean is equal to 4.99px instead of 0.

In the same fashion, any of the plots from figure 3.4 that display the same patterns as
the ones shown in the case of perfect alignment (figure 3.2) will not be shown. In summary,
any histogram with a 0 mean, and any scattering plot that shows no correlation will be
omitted.

3.2.2 Translation along Y axis: δy parameter

The second misalignment parameter is denoted as δy and quantifies translation along the
Y axis. This case is very similar to the first one. Based on the information presented in
figure 3.7 it can be deduced that the primary indicator of a δy misalignment is the ∆y
histogram. The mean of the histogram is a highly accurate approximation of δy.

Figure 3.6: Diagram that illustrates translation along the Y axis showing a 3D layout of the
coordinate system and a projection of the XY plane.
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(a) Positions measured by the telescope. Com-
paring to the case of perfect alignment, all the
positions are shifted upwards (i.e. in the posi-
tive y direction) by 5 px.

(b) ∆y histogram. The distribution is centered
at +5px, instead of being centered at 0 like it
was in the case of perfect alignment.

Figure 3.7: Results of a run with n = 10000 events and a misalignment of δy = 5px. The plot on
the left only displays the first 1000 events.

3.2.3 Translation along Z axis: δz parameter

The third misalignment parameter is denoted as δz and quantifies translation along the Z
axis. Based on the information presented in figure 3.9 it can be deduced that the primary
indicator of a δy misalignment is a linear correlation between the variables ∆x vs. θx and
∆y vs. θy. If these variable pairs are plotted against each other, then the slope can be
used to obtain the value of the parameter δz, given that α = β = γ = 0.

Figure 3.8: Diagram that illustrates translation along the Z axis showing a 3D layout of the
coordinate system and a projection of the Y Z plane. If the impingement angle is zero, then this
translation has no effects on the DUT measurements, assuming the real and measured DUT are
parallel. However, if either θx or θy have non-zero values then the telescope measurements will
be affected by the misalignment, as shown on the right most graph.

The hits displayed in figure 3.9 (a) are different from the case of perfect alignment
because not all the dots are placed inside the central 20x20 pixel region. However there is
not a clear pattern like in previous two cases. This is due to the fact that the residuals only
depend on the angle and not on the position. This graph does not display any information
regarding the impingement angle, and therefore the displacement of each dot with respect
to the case of perfect alignment appears random.

The scattering graphs 3.9 (b) and 3.9 (c) clearly show a linear correlation between the
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(a) (x, y)
(i)
telescope

(b) ∆x vs. θx. (c) ∆y vs. θy.

Figure 3.9: Results of a run with n = 10000 events and a misalignment of δz = 30px.

variables. Assuming that real and measured positions of the DUT are parallel, which can
only occur when α = β = γ = 0, then the displacement of the telescope measurements due
to a δz misalignment is

xtrue − xtelescope = δz tan θx =⇒ ∆x ≈ −δz · θx

which uses xdut ≈ xtrue, equation 2.1, and the small angle approximation (tan θx ≈ θx) to
get to the final result.

Similarly, it can be obtained that ∆y ≈ −δz · θy. This shows that the slope of the
graphs can be used to estimate the value of the parameter δz. For example the slope of
the graphs 3.9 (b) and 3.9 (c) is m(b) = m(c) = −0.523px/◦, which converted to radians
is −29.97px, and therefore δz ≈ 29.97px which is remarkably close to the actual value of
30px.

3.2.4 Rotation around X axis: α parameter

The fourth misalignment parameter is denoted as α and quantifies rotation along the X
axis. Based on the information presented in figure 3.11 it can be deduced that the primary
indicator of a α misalignment is a linear correlation between the variables ∆y and y . If
these variables are plotted against each other, then the slope can be used to obtain the
value of the parameter α, given that γ = 0.

Figure 3.10: Diagram that illustrates rotation around the Z axis showing a 3D layout of the
coordinate system and a projection of the Y Z plane.

When compared to the case of perfect alignment, the hits displayed in figure 3.11 (a)
are shifted closer to the center in the Y axis. The shift is greater for the points further
away from the center, i.e. the points with a greater y.
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(a) (x, y)
(i)
telescope (b) ∆y vs. y for α = +30◦. (c) ∆y vs. y for α = −30◦.

Figure 3.11: Results of a run with n = 10000 events and a misalignment of α = ±30◦.

The scattering graphs 3.11 (b) and 3.11 (c) show a linear correlation between the
variables. Applying the 3D rotation matrix [19, p167] and considering that the error in the

DUT measurements is negligible, (x, y)
(i)
dut ≈ (x, y)

(i)
true , one can derive the displacement of

telescope measurements caused by an α misalignment

ytelescope = (sinα sin γ sin γ + cosα cos γ) ytrue + (cos β sin γ)xtrue

if γ = 0 =⇒ ytelescope = cosα · ytrue =⇒

∆y ≈
Å
1− 1

cosα

ã
ytelescope

If that approximation was strictly correct, then all the measurements would follow a
perfectly thin straight line. Instead there is a variance of ±0.5px from the center of that
ideal line because of the intrinsic intensity of the DUT measurements, just like in the case
of perfect alignment (figure 3.2).

The interpretation of this result is that, if the misalignment in the γ parameter has
already been solved, then the slope of the ∆y vs. y graph will be approximately equal to
1− 1/ cosα. This expression allows the calculation of the absolute value of α, but it does
not provide any information about the sign of α. This is the consequence of 1 − 1/ cosα
being a symmetrical function, meaning that f(α) = f(−α), which explains why graphs
(b) and (c) appear to be completely identical. In order to solve the sign, an additional
measurement must be taken, changing α by a small positive amount. If the slope increases
then α is positive, otherwise it is negative.

For example, the figures 3.11 (b) and 3.11 (c) both have a slope of m = −0.155 that
translates to an absolute value of |α| = 30.0◦ which is exactly equal to the actual value of
α that we set before starting the simulation. This shows that the formula can give a very
precise result in the ideal case. On a real case however, γ cannot be exactly 0 and noise
does not allow a 100 % accurate measurement of m. As previously stated, we would need
an additional measurement to infer the sign of α.

Finally it is important to note an angle as high as 30◦ could never appear on a real
experiment. Such a misalignment could easily be spotted and corrected visually. The only
reason why such a high value is used is so that the patterns in figure 3.11 are immediately
apparent. Typically a real experiment deals with misalignment of the order of a few degrees
or less.
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3.2.5 Rotation around Y axis: β parameter

The fifth misalignment parameter is denoted as β and quantifies rotation along the Y axis.
This case is very similar to the previous one. Based on the information presented in figure
3.13 it can be deduced that the primary indicator of a β misalignment is a linear correlation
between the variables ∆x and x. If these variables are plotted against each other, then the
slope can be used to obtain the value of the parameter β, given that γ, α = 0

Figure 3.12: Diagram that illustrates rotation around the Y axis showing a 3D layout of the
coordinate system and a projection of the XZ plane.

(a) (x, y)
(i)
telescope (b) ∆y vs. y for β = +30◦. (c) ∆y vs. y for β = −30◦.

Figure 3.13: Results of a run with n = 10000 events and a misalignment of β = ±30◦.

When compared to the case of perfect alignment, the hits displayed in figure 3.13 (a)
are shifted closer to the center in the X axis. The shift is greater for the points further
away from the center, i.e. the points with a greater x.

The scattering graphs 3.13 (b) and 3.13 (c) show a clear correlation between the vari-
ables. Applying the 3D rotation matrix [19, p167] and considering that the error in the

DUT measurements is negligible, (x, y)
(i)
dut ≈ (x, y)

(i)
true , one can derive the displacement of

telescope measurements caused by a β misalignment

xtelescope = (cos β cos γ)xtrue + (sinα sin β cos γ − cosα sin γ) ytrue

if γ, α = 0 =⇒ xtelescope = cos β · xtrue =⇒

∆x ≈
Å
1− 1

cosβ

ã
xtelescope

The meaning of this result is that the slope of the ∆x vs. x graph is approximately
equal to 1 − 1/ cos β, given γ, α = 0. Similar to the previous case, this expression allows
the calculation of the absolute value of β, but it does not give any information about the
sign of β .
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3.2.6 Rotation around Z axis: γ parameter

The sixth misalignment parameter is denoted as γ and quantifies rotation along the Z
axis. Based on the information presented in figure 3.15 it can be deduced that the primary
indicator of a γ misalignment is a linear correlation between the variables ∆y and xtelescope.
If these variables are plotted against each other, then the slope can be used to obtain the
sign the parameter γ.

Figure 3.14: Diagram that illustrates rotation around the Z axis showing a 3D layout of the
coordinate system and a projection of the XY plane.

(a) (x, y)
(i)
telescope for γ = +10◦. (b) ∆y vs. x for γ = +10◦. (c) ∆y vs. x for γ = −10◦.

Figure 3.15: Results of a run with n = 10000 events and a misalignment of γ = ±10◦.

The scattering graphs 3.13 (b) and 3.13 (c) show a linear correlation between the
variables. Applying the 3D rotation matrix [19, p167] and considering that the error in the

DUT measurements is negligible, (x, y)
(i)
dut ≈ (x, y)

(i)
true, one can derive the displacement of

telescope measurements caused by a γ misalignment

ytelescope = (sinα sin γ sin γ + cosα cos γ) ytrue + (cos β sin γ)xtrue

ytelescope − ytrue = (sinα sin γ sin γ + cosα cos γ − 1) ytrue + (cos β sin γ)xtrue

∆y ≈ (cos β sin γ)xtelescope + f(ytelescope)

When studying the relationship between ∆y and xtelescope the function f(ytelescope) can
be interpreted as random noise introduced into the data, due to the fact that ytelescope and
xtelescope are independent.

The previous result implies that the slope of the ∆y vs. x graph is equal to cos β sin γ.
If β is unknown then the value of γ cannot be solved from just the slope of the graph. On
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the other hand, the angles will always be smaller than 45◦ and therefore it is guaranteed
that the slope approaches 0 in the limit γ −→ 0 and that the sign of the slope is equal to
the sign of γ. This properties allow the alignment of γ through iteration. If γ is negative
then it can be increased by a small positive amount to reduce the slope, and this process
can be repeated until the slope is sufficiently small or until it switches signs. On the case of
a positive γ the same process must be followed but using a small negative amount instead.

3.3 Combining multiple misalignment parameters

The previous section determined that each individual parameter is connected to some
relationship in the observables. For example, a δz misalignment is connected to the slope
of the graphs ∆x vs. θx and ∆y vs. θy. In some cases the observed relationship is also
dependant on other misalignment parameters. Continuing with the δz example, the slope
of the graphs also depends on the parameters α, β and γ. In practice this means that we
first need to set α = β = γ = 0 in order to identify a δz misalignment, and therefore we
must align the former parameters before attempting to align the latter.

Figure 3.16: Results of a run with n = 10000 events and a misalignment of δx = δy = 5px,
δz = 30px, α = β = 30◦, γ = 10◦ .

Figure 3.16 shows a run where all the parameters have non-zero values, meaning no
parameter has been aligned. There are 3 parameters that can be evaluated regardless of the
value of any other parameters: γ, δx and δy. The parameters δx and δy can be determined
with the histograms, and the parameter γ can be aligned using the ∆y vs. xtelescope plot.

Figure 3.17. shows a run where the 3 previously mentioned parameters ( γ, δx and δy)
have already been aligned. Once γ is set to 0, the slope of the ∆y vs. ytelescope plot only
depends on the parameter α, enabling its alignment. Moreover, once α has been aligned
(figure 3.18) we can evaluate β using the slope of the ∆x vs. xtelescope. After successfully
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Figure 3.17: Results of a run with n = 10000 events and a misalignment of δz = 30px, α = β =
30◦.

Figure 3.18: Results of a run with n = 10000 events and a misalignment of δz = 30px, β = 30◦, .
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aligning β we arrive at the case where there is only one parameter (δz) with a non-zero
value, which was already covered in the previous section.

As a conclusion, in the case of a simulation where multiple different misalignment
parameters have a non-zero value, we must follow a strict order in the alignment process,
namely δx, δy, γ → α → β → δz . Aligning the parameters in this order allows us to
simplify the problem to the case of individual misalignment parameters that we studied in
the previous section.

3.4 Alignment procedure

A key reminder is that the alignment procedure does not involve physically moving the
DUT. Instead the procedure is about analyzing the data to determine the value of the
misalignment parameters in order to solve the real position of the DUT.

Section 3.2 determined how we can identify and correct each individual misalignment
parameter, and section 3.3 determined the order in which the parameters must be aligned.
With this information we can now define the exact procedure that should be followed to
align the DUT.

1. δx and δy. The mean of the distribution that appears in the ∆x and ∆y histograms
is a good estimation for the value of δx and δy, respectively. Using this property the
two parameters can be aligned until both histograms have a mean sufficiently close
to 0.

2. γ. Plot ∆y against xtelescope and use a linear regression to determine the slope’s value.
The sign of this slope coincides with the sign of γ. If γ is negative, then increase
it by a small positive amount to reduce the slope. If γ is negative do the opposite.
Iterate through this process until the slope is sufficiently close to 0.

3. α. Obtain the slope of the ∆y vs. ytelescope plot. Increase α by a small positive
amount and recalculate the slope. Assuming this amount is small enough, an increase
in the slope’s value indicates that α is positive, and vice-versa. Once the sign of α is
determined, its value can be approximated with the expression m ≈ (1 − 1/ cosα),
where m denotes the slope. Iterate through this process until the slope is sufficiently
close to 0.

4. β. Use the same process from the previous step, but using the plot ∆x vs. xtelescope

and the expression m ≈ (1− 1/ cos β), instead.

5. δz. Both the ∆x vs. θx and the ∆y vs. θy plots can be used to align this param-
eter. Obtain the slope of either plot and use m ≈ −δz to estimate the value of the
parameter. Iterate until the slope of both plots is sufficiently close to 0..



Chapter 4

Beyond the Toy Model

This chapter will introduce new complications that expand the toy model with the aim to
make the simulation more closely resemble the real world experiment that it is trying to
model.

4.1 Gaussian distribution

Figure 4.1: Plot showing the histograms of a random sample of n = 10000 events for the variables
θx, θy, xtrue and ytrue obtained in a test run of the simulation once the Gaussian distributions
have been introduced.

As previously stated, the simulation uses the Monte Carlo method to simulate the
track data. In the toy model, the variables xtrue, ytrue, θx and θy are drawn from a uniform
probability distribution. This is the simplest case and also the one that leads to the
cleanest correlation plots, but it is not likely that a real test beam experiment would ever
use a squared uniform particle beam. On the contrary, it is common to have a test beam
experiment with a Gaussian particle beam, which is what makes it more realistic.

The boundaries used for the uniform distributions were θx, θy ∈ [−0.5◦,+0.5◦] and
xtruye, ytrue ∈ [−10px,+10px]. To define a Gaussian distribution the standard deviation
must be specified, not the boundaries. The chosen values for the standard deviation are
σ(θx) = σ(θy) = 0.125◦ and σ(xtrue) = σ(ytrue) = 2.5px. This way any value has a proba-
bility of 4σ (99.994%) to fall inside of the boundaries of the previous uniform distributions.

The three plots in the top row of figure 4.2 show the true position as well as the position
measured by the telescope and DUT for the first n = 1000 events. Everything that was

27
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Figure 4.2: Results of a run with n = 10000 events and a misalignment of δx = δy = 5px,
δz = 30px, α = β = 30◦, γ = 10◦, using a Gaussian distribution to sample the track data.The
standard deviation of the ∆x and ∆y histograms is 0.539 and 0.558px, respectively.
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mentioned in the analysis of chapter 3, such as the position of the DUT measurements and
how they relate to the true position, still apply here. The fundamental difference lies in the
shape of the data points, which now conform to the characteristics of a Gaussian distribu-
tion rather than the square pattern seen in the toy model. The change in the probability
distribution also introduces outliers. In contrast to the previous scenario where data points
were confined within strict boundaries, they can now assume any position. However, it’s
important to note that data points located far from the center have a significantly lower
probability of occurrence.

The rest of the graphs of figure 4.2 are the histograms and scattering graphs that have
been used throughout the previous chapter. It is interesting to compare these graphs with
the ones from figure 3.16, because both represent the case with δx = δy = 5px, δz = 30px,
α = β = 30◦ and γ = 10◦, the only difference being the use of the Gaussian distribution.
All the patterns still appear in the new graphs. For example, the histograms still have a
mean that is a highly accurate approximation of the parameters δx and δy, and the positive
slope of the ∆y vs. xtelescope plot again indicates a positive value of γ. The main difference
is that the histograms have a smaller deviation and that the points in the scattering graphs
are concentrated closer to the mean value. This difference makes it harder to identify the
patterns, which is why all the in depth analysis of these patterns was done using the toy
model with the uniform distribution.

As a conclusion, all the analysis from the previous chapter, including the optimal align-
ment procedure, still applies in this case. Using a Gaussian distribution changes the simu-
lation results in a way that makes them more closely resemble real world data, but at the
same time it blurs the patterns that were clearly visible in the previously used toy model.

4.2 Charge sharing

As stated in the first chapter, this project focuses on a specific type of DUT: a pixelated
silicon detector. The working principle behind this kind of device is the interaction of the
passing particles with the semiconductor material, which generates charge carrier pairs
that can be measured. The position of the particle can be solved knowing which pixel
measured the charge carriers. Previously the supposition was that a single particle only
activated one pixel at a time, the pixel which center was closer to the particles position,
as discussed on detail in section 2.5.

In reality, a particle only activates a single pixel if the particle crosses the sensor perpen-
dicularly and away from the pixel edges. In any other case, more than one pixel measures
charge carriers, and the position of the particle must be reconstructed using the measure-
ments from multiple pixels. Therefore, the position of the particle as measured by the
device is a function of the position of the activated pixels and the amount of charge mea-
sured on each one. The closer the particle passes to the center of a pixel, the more charge
it will measure.

The number of pixels activated by a single event is denoted as cluster size. Charge
sharing occurs whenever the cluster size is higher than 1, because the charge generated by
the passing of the particle will be shared between more than one pixel.

To facilitate charge sharing modeling one can assume that when a particle strikes the
detector, it generates charge carriers within a radius of 0.25px from the impact point,
and that the density of generated charge carriers is constant throughout that radius. The
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previous models did not implement any mechanism to model the amount of charge created
by each particle, but they do calculate the point where the particle hits the DUT, (x, y)

(i)
real,

Taking advantage of the aforementioned assumptions, this point can be used as a staring
point to mimic the charge measured by each pixel. Finally, it is important to note that the
assumptions are closely based on the paper [20], which studies the relationship between
the track’s position and the charge generation in the detector.

There are many possible methods that can be used to reconstruct the (x, y)dut position,
but we decided to use a Center of Gravity (CoG) method [21]. Let the area of a circle with

radius 0.5px centered at (x, y)
(i)
real represent the total charge deposited by the particle, and

the charge measured by each pixel equal the fraction of the area that falls into each pixel.
The position measured by the DUT can be estimated as the average of the position of all
the pixels, weighted by the fraction of the area of the circle that falls into each pixel:

xdut =
∑
j

xjcj (4.1)

ydut =
∑
j

yjcj (4.2)

where (x, y)j is the position of the j-th pixel and cj is the fraction of the area that falls
inside it.

Figure 4.3: Graph that illustrates the process followed to simulate charge sharing. First the true

track position, (x, y)
(i)
true , is computed. Then a circle centered at that position with a radius of

0.25px is drawn, and the fraction of its area that falls into each pixel, cj , is calculated. Finally

the position measured by the DUT, (x, y)
(i)
dut , is computed using equations 4.1 and 4.2.

Figure 4.3 shows 4 events. The values of the track position, (x, y)
(i)
true, were handpicked

so that each event represent one of the possible cluster sizes. The top right point illustrates
the case of a size one cluster. The circle falls completely within the central pixel, and the
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position measured by the DUT is simply the center of that pixel. This result is identical to
the one that would be obtained using the toy model before implementing charge sharing.

The top left. bottom left and bottom right points correspond to size 2, 3 and 4 clusters,
respectively. The track position measured by the DUT is closer than the pixel center to
the true track position, which shows that the use of charge sharing allows more precise
DUT measurements, resulting in smaller residuals. This can be exemplified by comparing
the histograms from the model with cluster sharing (fig. 4.5) against a simulation without
it (4.2). The introduction of cluster sharing has reduced the standard deviation by around
10% for both the ∆x and ∆y histograms.

The only problem remaining is how to compute equations 4.1 and 4.2, specifically
the term cj. This could be achieved by approximating the required integrals with some
numerical method or simply using Monte Carlo. However, when experimenting with this
methods in the simulation, they proved to be very inefficient, slowing down the execution
time by 2 or 3 orders of magnitude.

Ideally this problem could be solved simply by finding a function that calculates cj
for every pixel based on the true position of the track: c⃗ = (c1, c2, ..., cn) = f(x

(i)
true, y

(i)
true).

However this would involve finding a universal formula for the overlap area of a circle and a
rectangle in R2. There are many books [22, p93] [23, p244] [24, p312] and online resources
[25] [26] [27] that discuss this problem on one form or another. However, even after an
intensive research we could not find the derivation of a universal formula for the overlap
of a circle an rectangle.

Even though none of this sources contained the desired formula,one of them [25] proved
to be very useful. It derives the expression for the intersection area A between the unit
circle, i.e. a circle with a radius of 1 centered at (0, 0), and the half plane (−∞, u) ×
(−∞,∞)

A = f(u) =


π, u ∈ [1,∞)

π − arccos (u) + u
√
1− u2, u ∈ (−1,+1)

0, u ∈ (−∞,−1]

(4.3)

Starting from equation 4.3 through a process of trial and error, we were able to find the
function f : f(x

(i)
true, y

(i)
true) = (x, y)

(i)
dut that successfully computes the DUT measurements

from the true track positions. If the track position is in the range xtrue, ytrue ∈ [0, 1) , then
the function is

f(qtrue) =


h(qtrue) + 0.5 q ∈ [0, 0.25)

0.5, q ∈ [0.25, 0.75)

h(qtrue − 1) + 1.5 q ∈ [0.75, 1)

(4.4)

where q = x, y and h(q) is

h(q) = −16

π

(
R2 arccos(q/R)− q

»
2R(R + q)− (R + q)2

)
where R = 0.25px is the radius of the circle. Using a modern computing library like
NumPy, generalizing this function to the full range of xtrue, ytrue is trivial.

Figure 4.4 shows that the results using Monte Carlo and numerical integration approach
the function 4.4 when the former computes more events or when the latter uses more bins.
Apart from this, multiple other test were performed, such as plotting ydut vs. ytrue, and
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analyzing the data from figure 4.5, to compare the function f(q) from equation 4.4 to make
sure that it leads to the same results as the other methods.

Figure 4.4: xdut vs. xtrue. Starting with the true track position, xtrue, Monte Carlo and numerical
integration are used to estimate the fraction of the circle’s area that falls on each pixel cj , which
is then used to obtain xdut for that particular event. This is repeated for n = 10000 events and
compared to the results of using the function f(q) from equation 4.4 .

Figure 4.5 show the results after charge sharing has been implemented in the simulation.
The misalignment parameters and the number of events are the same as the ones used in
figures 3.16 and4.2, which display the results of the toy model before and after implementing
Gaussian distribution to sample the track data. The parameters are kept constant among
these three runs so that they can be compared with each other to study the effects of
adding more complexity to the simulation.

Looking at figure 4.5, there are a few differences that are visible at first glance. Firstly,
the top right plot that shows the position measured by the DUT for all the events, (x, y)

(i)
dut,

does not only have points at the pixel center. Instead, a position measurement can fall
anywhere within a certain pixel, as a direct result of implementing charge sharing. This
fact also has an effect on the ∆x vs ytelescope and ∆y vs xtelescope plots, where the data
points do not always fall inside diagonal lines, as they did in figures 3.16 and4.2.

In size one clusters the DUT measurement is always the center of the pixel. This
means that multiple (x, y)true points are mapped to a single (x, y)dut point, which leads to
a correlation between xdut − xtrue and xtrue inside an individual pixel. The lines of the ∆x
vs ytelescope and ∆y vs xtelescope plots are a consequence of this correlation. Before charge
sharing was implemented all the measurements came from size one clusters, and therefore
all the points in these plots fell in diagonal lines. After charge sharing was implemented,
size one cluster are still present, which is why this lines still appear, but the points coming
from size 2,3 and 4 do not follow within this lines, making them harder to see when looking
at the hole data set.

If the proportion of size one clusters or the number of events decreases, the number of
pixels increases, or some noise due to measurement errors is introduced into the data, then
the pattern of diagonal lines in the plots disappears completely. This indicates that the
pattern will not be visible in real world data, which is confirmed with the experimental
results of the experiment [2].
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Figure 4.5: Results of a run after implementing charge sharing into the simulation. The run has
n = 10000 events and a misalignment of δx = δy = 5px, δz = 30px, α = β = 30◦, γ = 10◦. The
model still uses a Gaussian distribution to sample the track data. The standard deviation of the
∆x and ∆y histograms is 0.484 and 0.500, respectively.
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Another key insight from figure 4.5 is that the ∆x and ∆y distributions are slightly
narrower, and therefore the scattering plots have less variance in the vertical axis. As
explained before, this is due to the fact that the introduction of charge sharing in the
simulation leads to more precise measurements by the DUT.

Apart from the differences highlighted earlier, the results still show the same patterns.
The misalignment can still be solved using the procedure described in Section 3.4, and
all the analysis from the preceding chapter, which correlated each specific misalignment
parameter with a crucial indicator in the simulation data, remain applicable to this more
intricate model.
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Conclusion

This project has extensively studied the alignment of the DUT in test beam experiments
through a Monte Carlo simulation. The toy model, the simplest possible model that
allows the simulation of the misalignment effects, was posed and implemented following
the methodology outlined in the second chapter. Chapter 3 covered all the data analysis of
the results for this model, which is the bulk of this project. First, it focused on the case of
perfect alignment, which allowed the study of the effect caused by the intrinsic error of the
DUT measurements, which appear independently of alignment. Then, it was determined
that there are 6 degrees of freedom in which the DUT can be misaligned with respect to
the telescope, and consequently 6 misalignment parameters were defined to characterize
every possible state.

Subsequently, this project covered the case of individual misalignment parameters,
where only one parameter has a non-zero value. This allowed the establishment of a
link between each parameter and a distinct indicator that appears in the simulation re-
sults whenever the parameter has a non-zero value. For example, a non zero mean of the
residuals ∆x indicates a misalignment on the δx parameter. These indicators enabled a
way to infer the value of each parameter based on the results, which allows the alignment
of that parameter.

The next step was to put multiple parameters together to study the emergent effects.
This helped to determine which indicators require the previous alignment another parame-
ter to be accurate. For example, the linear fit of ∆y vs. ytelescope is an accurate indicator of
the parameter α only once the misalignment in γ has already been corrected. This analysis
allowed us to determine which order must be followed in order to deconvolute the data in
a case where multiple misalignments have a non-zero value.

Putting everything together, we were able to infer the optimal alignment procedure
that enables the alignment of any state, regardless of the values of any parameters. This
procedure is explained in detail in Section 3.4.

Once this procedure was deduced and all the analysis of the results of the toy model was
exhausted we decided to move on to more complex model with the aim to more accurately
replicate the real world experiments. With this goal, additional complications were added
to the simulation. First, a Gaussian was used to sample the track data, which is more
realistic than the uniform distribution used in the toy model. Additionally, we found a
way to implement cluster sharing so that the simulation of detector measurements is more
realistic. After implementing this complications in the simulation it becomes apparent that,
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while this effort makes the simulation results more closely resemble experimental data, the
underlying indicators are the same as they were in the toy model and that the previous
alignment procedure still applies to the more intricate models. Critically, the indicators
and relevant patterns appear most clearly in the simple toy model. The complications are
useful to check that the simulation is accurate to the real experiment that it is trying to
model, however the toy model is the most useful way to study the misalignment effects on
their purest form, without any added noise.

As mentioned in Section 2.6, the simulation was implemented in Python. The full source
code [18] is published on GitHub [28], the most common tool used to share repositories ,
with the address https://github.com/PerezSergioTFG/test-beam-alignment-simulation.
Alternatively, the repository [18] can also be found in Zenodo [29], a publishing platform
that allows the long-term storage and academic citation of code repositories. From both
of these sources anyone can access the full script, and we authorize and encourage that the
reader downloads it to be able to run this simulation locally whenever they wish to do so.
The only requirements needed to run the script are to install Python and all the relevant
libraries mentioned in Section 2.6. Alternatively it can also be run online using a tool like
Jupyter Notebooks [30].

The user can customize the simulation through a Command Line Interface (CLI). If
one where to run the script as it is , it would display the results of a run of the toy model
with perfect alignment for n = 1000 events. The CLI allows the user to change all the
alignment parameters and the number of events, and it is also possible to choose if they
want to add the complications that implement charge sharing and a Gaussian distribution
of the track data. To get more information about how to run the simulation, visit the
repositories address and read the README.md file or type --help on the CLI.

There are a few potential improvements of this project. Firstly, the development of a
Graphical User Interface (GUI) as an alternative to the CLI would make the simulation
more accessible for researchers and students that are not familiar with the command line.
Furthermore, the GUI could also be used to visualize the geometry of the problem and the
possible misalignments.

Additionally, it may also be useful to develop a tool that accepts real world data of a test
beam experiment and outputs the predicted values of the misalignment parameters, which
could help to accelerate the alignment process in real world experiments. Moreover, it is
possible that the alignment process described in Section 3.4 could be optimized further.The
extensive analysis of the third chapter does not leave much room for improvement apart
from 2 distinct issues: the misalignment parameters must be solved one at a time, and
the parameter γ cannot be estimated analytically from the slope of any graph. Machine
Learning (ML) has proven to be very efficient for dealing with complex regression problems
like these ones, and therefore it is possible that some sort of ML model is capable of solving
or mitigating this issues.

https://github.com/PerezSergioTFG/test-beam-alignment-simulation
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S. Döbert, W. Farabolini, D. Gamba, et al., “Status of the clear electron beam user
facility at cern,” Proc. IPAC’19, pp. 983–986, 2019.

[8] R. Diener, J. Dreyling-Eschweiler, H. Ehrlichmann, I.-M. Gregor, U. Kötz, U. Krämer,
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