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Abstract
Background and Objectives
Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study
evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication
cohort using polygenic scores.

Methods
Participant samples from University of Michigan were genotyped and assayed for the chro-
mosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and
223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the
C9 region were generated using an independent ALS genome-wide association study (20,806
cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves
evaluated the association and classification between polygenic scores and ALS status, re-
spectively. Population attributable fractions and pathway analyses were conducted. An in-
dependent Spanish study sample (548 cases, 2,756 controls) was used for replication.

Results
Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit
in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI
1.04–1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the
ALS polygenic score (p value = 1 × 10−6). The population attributable fraction of the highest
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partment of Neurology, University Hospital Germans Trias I Pujol; Neurosciences (P.P.), The Germans Trias i Pujol Research Institute (IGTP) Badalona; Department of Neurology (C.P.),
Hospital Universitario Virgen del Rocio, Sevilla; and Memory Unit (O.D.-I.), Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau,
Universitat Autonoma de Barcelona, Spain.

Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

The Article Processing Charge was funded by the authors.

Coinvestigators are listed in the Appendix 2 at the end of the article.

Written work prepared by employees of the Federal Government as part of their official duties is, under the U.S. Copyright Act, a “work of the United States Government” for which
copyright protection under Title 17 of the United States Code is not available. As such, copyright does not extend to the contributions of employees of the Federal Government.

1

http://dx.doi.org/10.1212/NXG.0000000000200079
mailto:sgoutman@med.umich.edu
http://ng.neurology.org/lookup/doi/10.1212/NXG.0000000000200079


20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this
polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single
nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04–1.23).

Discussion
ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further
validated, this polygenic score will inform future ALS risk models.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegener-
ative disease characterized by rapidly progressive muscle
weakness and death within 2–4 years from symptom onset1,2

with 50% of patients manifesting cognitive or behavioral
dysfunction.1,2 Although ALS is traditionally divided into fa-
milial and sporadic forms, with familial ALS indicating those
with an ALS family history, ALS genetic risk factors are pre-
sent in both familial and sporadic patients.3 Under a mono-
genic model, a single risk gene is associated with a greater
likelihood of developing ALS4 or contributes to a distinct
phenotypic outcome, such as earlier age of disease onset.4,5

Since 1994, over 40 genes have been associated with ALS.6

The noncoding chromosome 9 open reading frame 72
(C9orf72) hexanucleotide expansion is the most common
genetic form of ALS and is observed in 40% of familial and
10% of sporadic ALS in mixed European populations.7,8 Su-
peroxide dismutase 1, TAR DNA binding protein 43, and
fused in sarcoma are the next most common genes with var-
iation frequencies of around 1% or less in sporadic cases.9 It is
important that most patients with ALS do not carry a single
causative ALS risk gene mutation. This highlights the notion
of heritability, which captures the genetic and shared familial
factors that contribute to disease risk.10 Heritability is as high
as 38%–85% when considering twin data,11 36.9%–52.3% for
parent-offspring pairs,10 43% for all first-degree relatives,12 and
7.2%–9.5% for common single nucleotide variation (SNV)
(formerly single nucleotide polymorphism [SNP]).13-16 It is
increasingly clear that many common SNVs may contribute a
small amount of disease risk.17 Because most patients with ALS
do not have a monogenic cause, it is crucial to understand the
genetic contribution to ALS beyond single highly penetrant
mutations to stratify population risk.

We hypothesize that polygenic scores will improve ALS risk
prediction. The utility of a polygenic score for ALS, in-
dependent of C9orf72 status, has not been tested for ALS risk
prediction. The goals of this study were to develop a genome-
wide ALS polygenic score using an independent ALS cohort
of participants not previously included in any genome-wide
association study (GWAS) and test the score contribution to
ALS risk models independently of C9orf72 status.

Methods
Michigan Study Participants and
Sample Collection
All patients seen at the University of Michigan Pranger ALS
Clinic are invited to participate, although the present case/
control analysis is limited to those with ALS, thereby excluding
participants with other forms of motor neuron disease. Healthy
controls, without a personal or family history of a neurode-
generative disease in a first-degree or second-degree family
member, are identified using a recruitment database available
through the Michigan Institute for Clinical & Health Research
and through population outreach via random address mailings.
Participant demographics including sex (male, female), race/
ethnicity (White or Caucasian, Black or African American, or
Asian and Hispanic or Latino), and age (years) were obtained
at the time of study enrollment. ALS diagnoses were confirmed
by an ALS neurologist (S.A.G., E.L.F.) based on Gold Coast
Criteria, who also recorded onset age (years), diagnosis age
(years), onset segment (bulbar, cervical, lumbar, respiratory,
thoracic), and presence of an ALS family history (yes or no) in
the medical record. A family history of ALS in a first-degree or
second-degree relative is considered positive. All participants
provide venous blood, collected in an EDTA tube and frozen at
−80°C for later DNA extraction.

Standard Protocol Approvals and
Patient Consents
Study procedures of this Institutional Review Board
(HUM28826)–approved longitudinal case/control study are
published.18-20 All participants provided informed consent.

DNA Analysis
DNAwas extracted using the QIAamp DNAKit (Qiagen, Venlo,
theNetherlands). Genome-wide genotypes at 1,748,250 positions
were measured for 512 samples using the Infinium Multi-Ethnic
Global-8 v1.0 array kit (Illumina, San Diego, CA) by the Uni-
versity of Michigan Advanced Genomics Core. All available clin-
ical samples, including intentional duplicates (n = 6) and non-ALS
diseased samples (6 primary lateral sclerosis, 12 other motor
neuron disease), were included at this step to improve imputation

Glossary
ALS = amyotrophic lateral sclerosis; AUC = area under the curve; C9orf72 = chromosome 9 open reading frame 72; GO =
Gene Ontology; GWAS = genome-wide association study; SNV = single nucleotide variation.
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quality. DNA samples were also analyzed for the presence of the
C9orf72 repeat expansion per published protocols.7

PLINK (version 1.9) program was used to perform genetic
microarray data quality control checks.21 Participants and SNVs
were filtered using recommended thresholds.22,23 Participants
were excluded for missing data at >1% of SNVs, discrepancies
between genetic sex and predicted sex, and heterozygosity
greater than 3 SDs from the mean. For intentional technical
duplicate samples and unintentional related samples, the sam-
ple in each pair with the highest missingness was excluded.
Participant inclusion based on genetic data quality control was
visualized using a flow diagram, and 488 unique motor neuron
disease and control participants met genetic quality filtering
(eFigure 1A, links.lww.com/NXG/A610).

SNVs were excluded for missing genomic location data or
missingness frequency in over 1% of samples. SNVs from au-
tosomal chromosomes and the pseudoautosomal region of the
sex chromosomes were handled separately from the non-
autosomal regions of the sex chromosomes. Autosomal and
pseudoautosomal region SNVs were further excluded for minor
allele frequency <5% or for violating Hardy-Weinberg equilib-
rium (p value <10−6). SNV exclusion was described using a flow
diagram, and 610,350 measured autosomal SNVs remained
(eFigure 2, links.lww.com/NXG/A610).

Because population stratification by genetic ancestry can lead
to confounding in genetic analyses,24 principal components
were computed to identify genetic ancestry groups in the co-
hort merged with the 1000 genomes version 525 reference
panel. Individuals of all genetic ancestries were included in the
main analysis, which adjusted for the first 5 multiancestry
principal components. A sensitivity analysis limited participants
to European ancestry by only including those clustered with
known 1000 genomes European ancestry samples (principal
component 1 < 0.02, principal component 2 < 0.08). Principal
components were recomputed within the European ancestry
sample for adjustment covariates.

To harmonize with the ALS GWAS,17 measured and cleaned
genetic data were imputed with 1,000 genomes version 525

using the Minimac4 program.26 After imputation, SNVs were
filtered out if they had an imputation qualityR2 < 0.5 or aminor
allele frequency <1% in the study sample and described using a
flow diagram (eFigure 3, links.lww.com/NXG/A610).

Polygenic Score Development
Imputed and cleaned SNV data facilitated polygenic score
creation for cohort ALS risk. ALS risk SNV weights were de-
rived from a GWAS of 20,806 ALS cases and 59,804 controls.17

Eligible SNVs were those present in the ALS GWAS and this
study’s cleaned and imputed data. PRSice 2.0 generated poly-
genic scores,27 using default pruning and clumping (250 kb
window, R2 threshold 0.1) parameters to account for linkage
disequilibrium. Polygenic scores were defined as the sum of the
weighted number of variant alleles per individual. SNVs were

included in the polygenic scores at a series of p value thresholds
from the parent GWAS ranging from low p values (only most
significant SNVs) to a 1.0 p value threshold (using all SNVs).
The polygenic score with the highestR2 in relation to ALS case-
control status was selected for our primary analyses. Per
Polygenic Score Reporting Standards,28 for each SNV in the
polygenic score, the identifier, chromosome, position, weight,
and p value of association with ALS were provided (eTable 1,
links.lww.com/NXG/A610). The cumulative ALS genetic risk
by SNVs located beyond the C9orf72 genomic region was
determined by excluding chromosome 9 SNVs between
27,400,000 and 27,700,000 base pair positions in the primary
polygenic score. A sensitivity analysis allowing SNVs in this
C9orf72 genomic region was also performed. A locus zoom
plot29 (Figure 1) visualized SNVs in the C9orf72 region, and
correlations of SNVs in this region with C9orf72 expansion
status were tested using the Fisher exact test.

Statistical Analyses
Statistical analyses were performed in R statistical software
(version 4.1). Samples were excluded from analysis if they were
duplicates or if they were from non-ALS or control participants
(n = 17 non-ALS cases, n = 5 at-risk controls). Next, partici-
pants were excluded (n = 24) for missing data key covariates
(sex, family history, age, C9orf72 expansion status). A total of
442 participants met study inclusion criteria (eFigure 1B, links.
lww.com/NXG/A610). The distributions of continuous
covariates were described using mean and SD, and the distri-
butions of categorical covariates were described using number
and sample percent. Covariate distributions for included and
excluded samples were provided. The Wilcoxon rank-sum test
for continuous covariates and the χ2 or Fisher exact test for
categorical covariates tested for differences in the distributions
of covariates between ALS and control participants.

All regression models were adjusted for sex, age, family history
of ALS, and 5 genetic principal components. The first analysis
used multivariable logistic regression assessed the association
between ALS and control status with ALS polygenic score. The
second model tested for an association with C9orf72 expansion
status. The third model included both genetic components
(ALS polygenic score and C9orf72 expansion status) as pre-
dictors. Because family history and C9orf72 expansion status
had zero cell counts in controls, Firth penalized likelihood
regression was used to avoid unstable effect estimates.

Additional statistical analyses, including classification testing,
attributable fraction calculation, sensitivity analyses, and gene
pathway analyses, are presented in eMethods (links.lww.com/
NXG/A610).

Replication: Spanish Neurological Consortium
Participants were recruited across several sites in Spain as
previously published30 or as part of the ALS Genetic Spanish
Consortium as previously published31 (eMethods, links.lww.
com/NXG/A610). All participants provided informed con-
sent, and the study received local ethics board approval. The
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coordination and use of samples for this publication were ap-
proved by the Institutional Review Board of the National In-
stitute on Aging. DNA extraction, genome-wide genotyping,
C9orf72 repeat expansion assay, and processing which followed
published protocols are presented in eMethods. Statistical
methods for assessing replication are also presented in
eMethods.

Data Availability
Data may be shared by qualified investigators by reasonable re-
quest to the corresponding author. A data request proposal is
reviewed and approved by a review panel, and a signed data
sharing agreement will then be approved.

Results
Study Participants
The primary analysis included 442 participants (223 controls
and 219 ALS cases) (Table 1). A family history of ALS was
present in 7.8% of ALS cases and 0% of controls. The C9orf72
repeat was present in 5.9% of ALS cases and 0% of controls.
No age differences occurred between ALS and control par-
ticipants, although the male participant proportion was higher
in the ALS (59.0%) vs control (48%, p value = 0.027) group.
The 24 participants excluded for missing genetic, de-
mographic, or ALS assessment data (eFigure 1B, links.lww.
com/NXG/A610) had similar characteristics to the analysis
cohort (eTable 2).

Genetic Data Characteristics and Polygenic
Score Optimization
SNVs were measured at 1,748,250 positions. SNVs missing
genomic location data, with missingness frequency of >1% of
samples, with minor allele frequency <5%, or of Hardy-
Weinberg equilibrium (p value <10−6) were removed, leaving
601,350 measured autosomal SNVs (eFigure 2, links.lww.
com/NXG/A610). Imputation resulted in 47,109,465 SNVs.
Imputed SNVs with an imputation quality R2 value <0.5 and
SNVs with a minor allele frequency <1% were filtered. The
final data set had 8,179,459 imputed SNVs (eFigure 3).

TheC9orf72 region on chromosome 9 spanned from 27.4Mb to
27.7 Mb. After pruning, 5 SNVs were present in this region
(Figure 1). Of these, 1 SNV rs3849943, located at position
27,543,382, associated with C9orf72 expansion status (Fisher
p value = 0.00001). Because our goal was to estimate the cu-
mulative genetic risk for ALS beyond the C9orf72 expansion, out
of caution, the primary polygenic score excluded this entire re-
gion. Polygenic score construction included SNVs and weights
based on their association with ALS in an independent GWAS.17

Polygenic score performance was highest when constructed us-
ing a p value threshold of approximately 10−4, using 275 SNVs
(eFigure 4, links.lww.com/NXG/A610). At this threshold, the
incremental R2 for the polygenic score was approximately 1.2%.

For sensitivity analyses, a polygenic score using all available SNVs
postpruning (n = 254,307 SNVs) showed an incremental R2 of
approximately 0.4%. Another sensitivity analysis included the 5

Figure 1 C9orf72 Region of Chromosome 9 Visualized as a Locus Zoom Plot

Single nucleotide variations (SNVs) are plotted by genomic position. The y-axis corresponds to −log10(p values) from the ALS genome-wide association study
(Nicolas et al.17). The authors considered the C9orf72 region to span from 27.4Mb to 27.7Mb on chromosome 9 as illustrated with the blue dashed box. In an
independent sample, our primary polygenic score excluded the C9orf72 region, and a sensitivity polygenic score included these SNVs. The SNV highlighted by
the green diamond (rs3849943, located chr9:27543382) was associated with C9orf72 repeat status (fisher p value = 0.00001). Below the plot, positions of
C9orf72 as well as other genes in the region are shown. ALS = amyotrophic lateral sclerosis.
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SNVs in the C9orf72 region that were previously removed, and
the observed polygenic score performance was also highest using
a p value threshold of approximately 10−4 (n = 280 SNVs)
(eFigure 5, links.lww.com/NXG/A610).

Associations Between Genetic Predictors and
ALS Cases Status
In unadjusted analyses, ALS cases had higher mean ALS
polygenic scores (average standardized score of 0.03) vs

controls (average standardized score −0.08) (p value = 0.11)
(eFigure 6, links.lww.com/NXG/A610). We examined the
roles of genetic variables and family history in analyses adjusted
for age, sex, and 5 genetic principal components. In the full
study sample (n = 442 participants), a 1 SD increase in ALS
polygenic score was associated with 1.28 times higher odds of
ALS (95% CI 1.04–1.57) (Table 2), after also adjusting for
C9orf72 repeat expansion status and family history of ALS.
These findings were consistent when limiting the sample to

Table 1 Included Study Sample Characteristics by ALS Case and Control Status for Shared Ancestry Cohort

Characteristic Control (N = 223)a ALS (N = 219)a p Valueb

ALS polygenic score with C9orf72 region removed −0.08 (−0.73 to 0.64) 0.03 (−0.55 to 0.74) 0.11

ALS polygenic score with C9orf72 region included −0.13 (−0.74 to 0.65) 0.08 (−0.56 to 0.75) 0.080

C9orf72 expansion status <0.001

Negative 223 (100) 206 (94)

Positive 0 (0) 13 (5.9)

Family history of ALS 0 (0) 17 (7.8) <0.001

ALS onset segment —

Bulbar 0 (0) 59 (27)

Cervical 0 (0) 80 (37)

Lumbar 0 (0) 73 (33)

Respiratory 0 (0) 1 (0.5)

Thoracic 0 (0) 4 (1.8)

Generalized 0 (0) 2 (0.9)

Not applicable 209 (100) 0 (0)

Age (y) 65 (58–71) 67 (59–73) 0.4

Sex 0.027

Female 115 (52) 90 (41)

Male 108 (48) 129 (59)

Self-reported race/ethnicity 0.037

Asian 2 (0.9) 1 (0.5)

Black or African American 11 (5.0) 2 (0.9)

Hispanic or Latino 5 (2.3) 3 (1.4)

White or Caucasian 203 (92) 213 (97)

Missing 2 0

Multiancestry genetic PC1 0.0080 (0.0077–0.0082) 0.0080 (0.0078–0.0082) 0.9

Multiancestry genetic PC2 −0.020 (−0.020 to −0.020) −0.020 (−0.020 to −0.019) 0.6

Multiancestry genetic PC3 −0.0079 (−0.0086 to −0.0071) −0.0080 (−0.0085 to −0.0071) 0.7

Multiancestry genetic PC4 −0.0095 (−0.0101 to −0.0089) −0.0098 (−0.0102 to −0.0090) 0.066

Multiancestry genetic PC5 −0.004 (−0.007 to 0.000) −0.004 (−0.007 to −0.001) 0.8

Abbreviations: ALS = amyotrophic lateral sclerosis; C9orf72 = chromosome 9 open reading frame 72; PC = principal component.
a Median (25th percentile, 75th percentile); n (%).
b Wilcoxon rank-sum test; Pearson χ2 test; Fisher exact test.
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participants lacking a C9orf72 repeat or family history of ALS
(N = 416 participants). A 1 SD increase in ALS polygenic score
was again associated with 1.28 times higher odds of ALS (95%
CI 1.04–1.57).

ALS Case Classification Performance
Beyond association testing, we were interested in the perfor-
mance of genetic factors in ALS case classification (Figure 2).

The base classification model adjusted for sex, age, and 5 genetic
principal components had an area under the curve (AUC) of
0.591. Adding family history of ALS alone to the base model
increased AUC to 0.631 and improved classification over the
base model (likelihood ratio test p = 0.06). Including C9orf72
repeat status as a covariate on top of the base model and family
history increased the AUC to 0.647 and improved classification
(likelihood ratio test p value <0.001). Adding the ALS polygenic
score after family history andC9orf72 repeat status further raised
AUC to 0.663 and improved classification (likelihood ratio test
p value <0.001). To assess prediction accuracy, data sets were
split into training and testing for 5-fold cross-validation. These
AUC results were 0.539 for the base model, 0.588 adding family
history, 0.603 adding C9orf72 repeat status, and finally 0.620
adding ALS polygenic score (eFigure 7, links.lww.com/NXG/
A610). While the AUCs were attenuated, as a result of the
sampling procedure, similar sequential prediction accuracy
remained, highlighting the prediction capability.

Attributable Fraction
To benchmark the fraction of ALS cases attributable to ge-
netic factors, we compared those in the highest 20th per-
centile of ALS polygenic score with the rest of the sample.
Here, 4.1% (95% CI −9.1 to 17.3) of ALS cases would be
prevented if the highest 20th percentile of ALS polygenic
score was at the level of the rest of the population. For the
C9orf72 expansion, 6.3% (95% CI −2.7 to 15.3) of ALS cases
would be avoided if they lacked the expansion.

Sensitivity Analyses
Sensitivity analysis (eResults, links.lww.com/NXG/A610,
Table 2), including analysis around the C9orf72 region, and an
analysis restricted to European ancestry participants (eTable 3,
eTable 4, eFigure 8), overall showed findings consistent with
the main analysis.

Table 2 Regression Results in the Full Sample Used in Sensitivity Analyses (n = 223 Controls, n = 219 ALS Cases)

Variable

C9orf72 region SNVs excluded from polygenic score C9orf72 region included

Polygenic score
(pthreshold = 0.0001,
N = 275 SNVs)

Polygenic score
(pthreshold = 0.0001,
N = 275 SNVs)

Polygenic score
(pthreshold = 1.0,
N = 254,280 SNVs)

Polygenic score
(pthreshold = 0.001,
N = 280 SNVs)

N = 442
participants

N = 416 participants
(without family history
and/or C9orf72 expansion)

N = 442
participants

N = 442
participants

Polygenic score (1 SD increase) 1.28 (1.04–1.57) 1.28 (1.04–1.57) 1.13 (0.77–1.66) 1.28 (1.05–1.58)

C9orf72 repeat (positive) 22.8 (2.8–2,954) — 20.7 (2.6–2,674) 21.4 (2.7–2,775)

Family history of ALS (yes) 33.2 (4.3–4,268) — 32.6 (4.3–4,184) 32.7 (4.2–4,209)

Age (10-y increase) 1.1 (0.91–1.33) 1.1 (0.91–1.33) 1.09 (0.9–1.32) 1.09 (0.9–1.32)

Sex (male) 1.52 (1.02–2.27) 1.52 (1.02–2.28) 1.47 (0.99–2.19) 1.53 (1.03–2.29)

Abbreviations: ALS = amyotrophic lateral sclerosis; C9orf72 = chromosome 9 open reading frame 72; CI = confidence interval; SNV = single nucleotide
variation.
Regression results provided are odds ratios and 95%CIswithin parentheses for associationwith ALS status. All Firth penalized logistic regressionmodels were
also adjusted for participant age, sex, and 5 genetic ancestry principal components. Polygenic scores for ALS are based onweights in an independent genome-
wide association study.17

Figure 2 ROC Curve

Base model has sex, age, and ancestry principal components (n = 442).
Receiver operating characteristic curve (ROC) for classification of ALS and
control participants. The base model includes sex, age, and 5 genetic prin-
cipal components and has an area under the curve (AUC) of 0.591. Adding
family history to the basemodel increases the AUC to 0.631 (likelihood ratio
test p value = 0.06). Adding C9orf72 expansion in addition to family history
increases the AUC to 0.647 (likelihood ratio test p value <0.001). Adding
polygenic score (PGS, region around C9orf72 removed) in addition to family
history and C9orf72 expansion improves the AUC to 0.663 (likelihood ratio
test p value <0.001). ALS = amyotrophic lateral sclerosis.
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Gene Pathway Analysis
In the 275 SNV-associated genes, included the polygenic score,
richR identified 65 highly enriched Gene Ontology (GO) bi-
ological process terms, including several related to the neuronal
system, such as “neuron differentiation”, “generation of neu-
rons”, “neuron projection morphogenesis”, “neurogenesis”,
and “neuron development” (Figure 3, eTable 5, links.lww.com/
NXG/A610). A total of 9 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were significantly enriched at a
nominal p value <0.05, which included “Glycosphingolipid
biosynthesis-ganglio series”, “Fatty acid degradation”, and
“Pancreatic secretion” (Figure 4, eTable 6).

Replication Results
The Spanish cohort had 548 ALS cases and 2,756 controls, after
removing 232 participants for missing age or C9orf72 in-
formation. Family history, C9orf72 expansion, and sex were as-
sociated with ALS case status (eTable 7, links.lww.com/NXG/
A610). Owing to differences in genotyping arrays and allele
frequencies between theMichigan and Spanish cohorts, available
SNVs varied between the 2 cohorts. To harmonize analyses,
SNVs were restricted to those available in both cohorts; the best
performance in the Michigan cohort among overlapping SNVs
resulted from a polygenic score consisting of 132 SNVs (p value
threshold = 5 × 10−5). In the Spanish cohort, a 1 SD increase in
the harmonized ALS polygenic score was associated with 1.11
higher odds (95% CI 1.01–1.22) of ALS case status (p value =
0.028), adjusted for sex, age, C9orf72 expansion, family history,

and 5 genetic principal components. In the Michigan cohort, a 1
SD increase in the harmonized ALS polygenic score was asso-
ciated with 1.22 higher odds (95% CI 1.00–1.50) of ALS case
status (p = 0.04) when including all ancestries, mirroring results
above with the 275 SNV polygenic score. When limiting to
European genetic ancestry in the Michigan cohort, the harmo-
nized 132 SNVpolygenic score had a stronger association, where
1 SD increase in ALS polygenic score was associated with 1.27
higher odds (95% CI 1.03–1.57) of ALS case status (p value =
0.02). Meta-analysis of the Spanish cohort and Michigan cohort
(all ancestry) resulted in an estimate of 1 SD increase in ALS
polygenic score being associated with 1.13 higher odds (95% CI
1.04–1.23) of ALS case status (p value = 0.004) (eFigure 9, links.
lww.com/NXG/A610).

Discussion
ALS risk factors are incompletely understood. Models that pre-
dict the steps involved in developing ALS32 are necessary to
generate ALS risk profiles. Representing this genetic risk33 is
critical becausemost individuals with ALS lack amonogenic ALS
risk gene. Because genetic riskmay be distributed throughout the
genome, identifying polygenic risk facilitates an understanding of
the multiple ALS pathologic pathways. Here we developed a
weighted polygenic score using a large ALS-control GWAS.17

This score differed significantly in ALS cases vs controls from an
independentMichigan cohort. Furthermore, this polygenic score

Figure 3 Highly Enriched GO Biological Processes

The 50 most significantly enriched bi-
ological functions using GO are illustrated
in dot plots. Rich factor refers to the pro-
portion of single nucleotide variation
(SNV)–associated genes belonging to a
specific term. The color indicates the level
of significance (−log10padj). The numbers
correspond to the number of SNV-associ-
ated genes belonging to the term. GO =
Gene Ontology.
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represents important genes and biological functions in the
pathophysiology of ALS.

In this study, the ALS polygenic score with the best model fit
and lowest p value was represented by 275 SNVs when ex-
cluding the region around C9orf72 and 280 SNVs when in-
cluding the region. We tested other SNV combinations as
determined by default PRSice-2 p-value thresholds and a
model including all SNVs. In each case, the model with fewer
SNVs outperformed the larger models, suggesting that the
genetic contributions to ALS are limited to a smaller subset of
genes as opposed to a wide-ranging set of genes across more
genomic regions. Next, we showed that an SD increase in the
ALS polygenic score raised ALS odds by 1.28 times in both
models without and with the C9orf72 region. Of interest, risk
increased when the C9orf72 region was included, even after
adjusting for theC9orf72 expansion, suggesting a possible role
for alleles around the C9orf72 region on disease status, even in
the absence of the repeat. Unsurprisingly, in these models,
ALS risk was disproportionate for individuals with a family
history or the C9orf72 expansion. Removing individuals with
an ALS family history or a C9orf72 expansion did not change
the impact of the polygenic score on ALS risk, meaning the
polygenic score itself plays an essential role on the overall ALS
risk profile. In addition, findings persisted when restricting to
a European genetic ancestry population.

Polygenic scores summarize the combined effects that common
and low-frequency alleles have on disease risk, thereby summa-
rizing the genetic architecture of that disease.34 Multiple fields
use polygenic scores to explain risks such as cardiovascular

disease, cancers, neurodegenerative diseases,34,35 and other
phenotypic traits.13While polygenic scores are gaining traction
for ALS,36 few studies propose an ALS-specific polygenic score
that can stratify populations at risk for ALS.

In contrast to our methods, an Australian group leveraged
a list of 853 genetic variants with a changed amino acid
sequence from a comprehensive literature search.4 After
screening the population, 43 genetic variants from 18 genes
were retained in the model, affecting 35.4% of their ALS
population. However, the authors did not further develop
polygenic scores.4 Another group36 identified individuals in
the Arivale Scientific Wellness cohort at elevated genetic
risk for ALS using polygenic risk scores developed through
literature and sought linkages to proteomics, metabolomics,
and other clinical laboratory information. This group found
that increased Ω-3 and decreased Ω-6 fatty acid levels and
higher IL-13 levels correlated with ALS genetic risk. Based
on KEGG analysis of the polygenic score developed herein,
we found enrichment of the fatty acid degradation path-
way,37 which is consistent with ALS pathophysiology and
suggests genes included in the polygenic score have biologic
plausibility.

Another study used used sparse canonical correlation analysis
to identify a polygenic score of cognitive dysfunction in an
ALS population.38 Like our methods, the authors focused on
SNVs achieving genome-wide significance in the Nicolas
study17 and with risk loci in ALS and frontotemporal de-
mentia. Of the 45 SNVs used in their models, 27 were asso-
ciated with cognitive performance in their ALS population,

Figure 4 Highly Enriched KEGG Pathways

The significantly enriched Kyoto Ency-
clopedia of Genes and Genomes (KEGG)
pathways are illustrated in dot plots.
Rich factor refers to the proportion of
single nucleotide variation (SNV)–asso-
ciated genes belonging to a specific
term. Node size (gene number) refers to
the number of SNV-associated genes
within each term, andnode color indicates
the level of significance (−log10p value).
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involving the genes MOBP, NSF, ATXN3, ERGIC1, and
UNC13A. Our polygenic score also included SNVs inMOBP,
ATXN3, and UNC13A, thereby supporting its validity. Ad-
ditional uses of polygenic scores in ALS include examining
polygenic traits for other diseases that overlap with ALS.13,39

Although this was not our approach, such studies have yielded
linkages between ALS and traits of schizophrenia, cognitive
performance, and educational attainment.13,39 Our findings are
consistent with an Australian case-control study that observed a
polygenic score for ALS was associated with case status.39

Polygenic scores have shown utility in other neurodegen-
erative conditions, such as Alzheimer disease, to find those at
high and low genetic risk.40 For example, a polygenic score
derived from the International Genomics of Alzheimer’s
Disease Project GWAS showed it could predict participants
who would transition from mild cognitive impairment to
late-onset Alzheimer disease.41 A similar approach using a
polygenic score created from an Alzheimer’s cohort GWAS
data set associated with incident dementia in a large Swedish
birth cohort.42

Our disease classification model further supports the utility
of our polygenic score. Our polygenic score improved model
performance, even one that included the most prevalent
ALS risk gene, the C9orf72 expansion. In Alzheimer’s, similar
findings are noted, where a polygenic risk score was able to
classify Alzheimer cases vs controls with an AUC of 0.83, even
when excluding APOE4 carriers.43 This indicates that these
genetic models are beneficial in case classification, even when
considering strong genetic risks, which superimpose on poly-
genic risk. Another analysis similarly showed that polygenic
scores in Alzheimer disease could classify patients accurately
and that the prediction improved when incorporating addi-
tional variables such as sex and age.44 In other disorders with
large effect size mutations, a polygenic score has also provided
additional classification information.45

Because polygenic scores often overlap in persons with and
without a disease of interest, focusing on patients with poly-
genic scores in distribution tails may offer better predictive
power.46 Thus, to add further perspective to this polygenic
risk, we showed that 4.1% of ALS cases could be avoided for
individuals with the highest 20% of polygenic score if an in-
tervention was possible. While this population attributable
risk approach considers the fraction of disease caused by ex-
posure, this idea can also be applied to genetic data.47,48 For
example, a study of polygenic scores in cutaneous squamous
cell carcinoma showed that removing all risk alleles from a
population would decrease the risk of this cancer by 62%.49

The authors argue that identifying those at the highest genetic
risk could inform programs for skin cancer screening, with the
caveat that interactions of SNVs with environmental factors50

are not included in the model. A parallel approach is also
proposed for breast cancer to help identify populations that
would benefit from targeted risk reduction strategies.51 A
similar analysis has shown changes in the prevalence of type 2

diabetes, breast cancer, hypertension, and myocardial infarc-
tions, if a proportion of polygenic risk is removed or enhanced
in the population.52 Currently, there is no biomarker or tool
that can definitively predict who will develop ALS later in life.
Therefore, even if the polygenic score can only explain a small
number of individuals at risk, it could be an important
screening method for risk reduction.

Replication of these findings is important to determine the
generalizability of the results. We used genotype and ALS
phenotype data from an independent Spanish cohort as a
replication cohort. Although the SNVs included in the poly-
genic score were adjusted due to the available overlap of SNVs
in both data sets, there was consistency in the magnitude of
the polygenic score effect, further providing support for our
proposed polygenic score. Replication of polygenic scores is
critical to ascertain that the methods and population back-
ground used to develop the score is generalizable.46 Fur-
thermore, replication cohorts can determine which risk
variants are applicable across diverse populations.53 Future
work may incorporate a very recent updated ALS GWAS,
although we selected the older GWAS here to maintain
consistency with the existing literature.54 Replicating poly-
genic scores in ALS remains important, although this requires
large numbers of samples from participants not included in
GWAS used to derive SNV weights.55

We next queried how this set of SNVs affects disease patho-
biology. Through gene enrichment and pathway analysis, we
showed that this polygenic score selects multiple pathways
relevant to ALS biology, including synaptic signaling, regula-
tion of protein metabolic process, neuron projection, and axon
guidance. Using KEGG pathways, we also identified important
ALS biological functions, including glycosphingolipid bio-
synthesis and fatty acid degradation.20,56 A cohort of 78,500
individuals developed a polygenic score for biological path-
ways and cell types to determine involvement in ALS.57

Significant pathways included those involved in neuronal de-
velopment and differentiation with an emphasis on the cyto-
skeleton.57 Of these pathways, the cytoskeleton pathway was
significant for individuals both with and without the C9orf72
repeat expansion, whereas the autophagosome pathway was
only significant for C9orf72 carriers. Overlapping enriched GO
pathways in our polygenic score with those of that study58

included neuron projection morphogenesis, cell morphogen-
esis involved in differentiation, neuron development, cellular
component morphogenesis, cell development, and cell pro-
jection organization. The overall overlap shows that these 2
different methods for developing a polygenic score selects
similar pathways. Other studies of gene expression in ALS have
also identified dysregulated metabolic pathways and cyto-
skeletal pathways.58

This study has limitations. Owing to cost and a research in-
terest in common genetic variants, we performed genome-
wide genotyping instead of whole genome sequencing. While
whole genome sequencing would allow us to better account
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for genetic background, the method we used is validated
across many studies. In addition, the study population size is
small compared with the number of individuals affected by
ALS. However, the sample size here was limited to partici-
pants not included in prior GWASs and is thus a strength.
This is important because developing polygenic scores from
participants who are already in the reference GWAS may lead
to biased results. In addition, because we did use a lower-cost
genotyping strategy imputed to maximize overlap with the
ALS GWAS used for weights, these methods could be bene-
ficial for population screening where the cost of whole ge-
nome sequencing is not economically feasible. In addition,
this study mainly consisted of participants with a European
genetic ancestry. To support the generalizability of these
findings, improving enrollment of and study of genotypes
from participants with diverse backgrounds is required.

In conclusion, we find that a polygenic score for ALS can
account for cumulative genetic risk in the population and
reflect cellular processes that are relevant to ALS. If further
validated, this polygenic score can be a valuable tool for ALS
risk models and the design of ALS prevention studies.
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