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Abstract

Wire rod steel rolling is a highly complex metallurgical process involving numerous phases.
One of the most critical is the heating phase, where steel billets (semi-finished steel products)
undergo various heating treatments in an induction furnace. These heating treatments enable
their subsequent shaping in the rolling phase, and determine the quality of the final product.

This research focuses on introducing a novel methodology that integrates finite element model-
ing, machine learning, and reinforcement learning to optimize energy consumption during the
heating phase of the wire rod steel rolling process. Specifically, the proposed methodology con-
sists of three major phases. In the first phase, a finite element digital twin of an induction
furnace has been developed that accurately simulates the heating process of the billets. In
the second phase, two machine learning models based on convolutional and/or recurrent neural
networks have been implemented. These models can predict the temperature profiles of the
billets at the induction furnace’s exit with satisfactory precision. Finally, in the third phase,
a reinforcement learning framework based on deep Q-learning has been proposed to identify
heating patterns that reduce the energy consumption of the furnace.

These goals have been accomplished using real-world data provided by Global Steel Wire, a
steelmaker located in Santander (Cantabria, Spain). This data mainly comprises multivariate
time series related to the instantaneous power of the furnace’s inductors and the advance of the
billets in the furnace.

Keywords: energy consumption optimization; artificial intelligence; reinforcement learning;
deep q-network; deep q-learning; machine learning; recurrent neural networks; LSTM; convolu-
tional neural networks; Industry 4.0; steel rolling; induction furnace.



Resumen

El laminado de acero en alambrón es un procedimiento siderúrgico altamente complejo en el que
están involucradas numerosas fases. Una de las más cŕıticas es la fase de calentamiento, donde
las palanquillas de acero (productos semielaborados de acero) se someten a diversos tratamientos
térmicos en un horno de inducción que permiten su posterior moldeado y determinan la calidad
del producto final.

Este trabajo tiene como objetivo introducir una metodoloǵıa novedosa que integra el modelado
por elementos finitos, el aprendizaje automático y el aprendizaje de refuerzo para optimizar el
consumo de enerǵıa durante la fase de calentamiento del proceso de laminado en alambrón. En
particular, la metodoloǵıa propuesta consta de tres fases principales. En la primera fase, se ha
desarrollado un gemelo digital por elementos finitos de un horno de inducción para simular con
precisión el proceso de calentamiento de las palanquillas. En la segunda fase, se han imple-
mentado dos modelos de aprendizaje automático basados en redes neuronales convolucionales
y/o recurrentes que son capaces de predecir los perfiles de temperatura de las palanquillas a la
salida del horno con una precisión satisfactoria. Finalmente, en la tercera fase, se ha propuesto
un marco de trabajo de aprendizaje por refuerzo basado en deep Q-learning para identificar
patrones de calentamiento de las palanquillas que reduzcan el consumo energético del horno.

Estos objetivos se han logrado utilizando datos reales proporcionados por Global Steel Wire,
una empresa siderúrgica situada en Santander (Cantabria, España). Estos datos consisten
principalmente en series temporales multivariantes relacionadas con la potencia instantánea de
los inductores del horno y el avance de las palanquillas en el horno.

Palabras clave: optimización del consumo de enerǵıa; inteligencia artificial; aprendizaje por
refuerzo; deep q-network; deep q-learning; aprendizaje automático; redes neuronales recurrentes;
LSTM; redes neuronales convolucionales; Industria 4.0; laminado de acero; horno de inducción.
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Chapter 1

Introduction

The industrial sector plays a key role in the global economy, being the second largest contributor
to the Gross Domestic Product (GDP) of the European Union (EU) after the services sector [1].
It encompasses a wide range of industries, such as textiles, food processing, petrochemicals, and
metallurgy, among others. However, it is also one of the largest energy consumers within the EU,
accounting for 25.6% of the final energy consumption in 2021 [2]. To address this, several green
policies have been implemented, including the 2030 Agenda [3], the Paris Agreement [4], and
the European Green Deal [5], which aim to promote sustainable and energy-efficient industrial
practices to reduce energy consumption, thereby curbing climate change.

Recently, the industrial sector has undergone a transition towards the so-called Industry 4.0 [6],
mainly driven by the implementation of green policies such as those mentioned earlier. This
transition has also been accelerated by the recent war in Ukraine, which has caused global
energy strategies to be rethought as many manufacturers have been forced to reduce their pro-
duction and even close down due to rising energy prices and resource scarcity. This transforma-
tion process towards Industry 4.0 entails greater integration of information and communication
technologies (ICT) into production systems, seeking greater energy efficiency and productivity.
In particular, this involves linking equipment, systems, and people in a networked production
environment using technologies such as artificial intelligence (AI), the internet of things (IoT),
and big data [7, 8, 9].

Indeed, AI has been successfully applied to a large number of industrial processes. For instance,
the textile industry has used computer vision (CV) for both cloth inspection and defect detection
throughout the production process [10, 11]. In the petrochemical industry, artificial neural
networks (ANNs) have been used to recognize seismic patterns, and genetic algorithms have been
utilized to optimize oil well performance [12]. The food industry has employed ANNs for food
classification and production planning [13, 14, 15]. Last but not least, CV and other machine
learning techniques have been used for flaw detection [16, 17] and preventive maintenance [18]
in the metallurgical industry.

This master’s thesis focuses on the application of AI to optimize energy consumption in one
of the most sophisticated and well-known metallurgical processes: wire rod steel rolling. Wire
rod steel rolling is an extremely complex industrial process characterized by the number and
diversity of subsystems involved and the complex interactions between them. The workpieces
in this process are billets (see Figure 1.1), which are semi-finished steel products with polished
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corners. The main advantage of billets is that, being semi-finished products, they are easier
to handle and transport than raw steel, which facilitates their commercialization and use in
production processes.

Figure 1.1: Steel billets.

Figure 1.2: Billet exiting GSW’s induction furnace.

In wire rod rolling, two main energy-intensive phases can be distinguished: the heating phase
and the rolling phase. During the heating phase, the billets undergo various heating treatments
in an induction furnace, preparing them for subsequent deformation. Following the heating
phase, the rolling phase takes place, where the hot billets are passed through a wire rod rolling
mill. This mill reduces their cross-section, increases their length, and shapes them into wire rods
through compression. Once the wire rods have cooled down, they undergo additional processes
such as straightening and cutting to achieve the desired final product.

Figure 1.3: Sketch of the billet heating process in the induction furnace.

Specifically, the research conducted in this master’s thesis concentrates on the heating phase.
One of the key elements in this phase is the induction furnace (see Figure 1.2), which is used to
heat the billets and reach the necessary temperature profiles for wire rod rolling, as mentioned
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earlier. The furnace comprises a series of inductors that apply heat and rollers that are in
charge of the billet’s advance. Furthermore, the furnace is equipped with two pyrometers, one
at the entrance and one at the exit, which record the billets’ temperature (see Figure 1.3).
Based on the input temperature and the target output temperature, the furnace regulates the
power supplied by each of the inductors. However, in practice, the set target temperature is not
always achieved, and the operator in charge has to manually adjust it. This provides leeway
to seek more optimized and energy-efficient inductor management strategies from an AI-driven
perspective.

The main objective of this thesis is to serve as a proof of concept for a methodology combining
finite element (FE) modeling, machine learning (ML), and reinforcement learning (RL) aimed
at optimizing the energy consumption of the induction furnace during the billet heating process.
For this purpose, the work has been divided into three major phases:

• The first phase involves developing and validating a FE digital twin that simulates the
heating process of a billet as it passes through the induction furnace.

• The second phase aims to develop a ML model based on ANNs that can generate real-
time predictions of the temperature profiles of the billets at furnace’s exit, leveraging the
results from the previous FE model.

• The third phase focuses on establishing a RL framework able to optimize the energy
efficiency of the induction furnace, specifically identifying inductor heating patterns that
cut down on energy consumption. To this end, the ML model developed in the second
phase serves as the virtual environment for the RL framework.

Figure 1.4: Outline of the methodology to be applied in the project.

To the best of our knowledge, no prior study has explored the application of AI to optimize
energy consumption in the wire rod steel rolling process using our approach (summarized in
Figure 1.4). Therefore, the methodology presented in this thesis not only opens up new possi-
bilities for research but also holds potential for broader application, including other industrial
processes such as glass manufacturing, cement production, or petroleum refining.

The remainder of this master’s thesis is organized as follows: Chapter 2 provides an overview of
the dataset and the preprocessing steps, as well as an explanation of the ML and RL techniques
used throughout the project. Chapter 3 focuses exclusively on the FE digital twin of the
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induction furnace. Chapter 4 delves into the development of a ML model based on ANNs to
accurately predict the temperature profiles of the billets at the furnace’s exit. Chapter 5 is
dedicated to introducing a RL framework in order to optimize the energy consumption of the
furnace during the billet heating phase. Finally, Chapter 6 concludes the thesis by presenting
the conclusions and future work.

In order for this research to comply with FAIR (findable, accessible, interoperable, and reusable)
principles, especially in terms of accessibility and reusability, both the dataset and the code
developed for this thesis have been made openly available under an MIT license in the following
GitHub repository:

https://github.com/bolivars/furnace-energy-optimization.

https://github.com/bolivars/furnace-energy-optimization


Chapter 2

Dataset and Methods

The purpose of this chapter is twofold: firstly, to provide a complete description of the dataset
under study, including its origin and the applied preprocessing steps; and secondly, to offer some
background on the ML and RL techniques used in this research.

It should be noted that all the tasks carried out in this thesis, including data importation,
preprocessing, and the application of ML and RL techniques, have been performed using Python,
version 3.9.16, and some of its libraries, including NumPy [19], Pandas [20], Matplotlib [21], and
Keras [22], among others. Specific details regarding the libraries used in each project phase can
be found in the headers of the Jupyter notebooks developed for this thesis, which are available
in the GitHub repository. �

2.1 Dataset Overview

This research has been conducted in partnership with Global Steel Wire (GSW), a steel man-
ufacturer situated in Santander (Cantabria, Spain), which has provided the data required for
the project. Specifically, the induction furnace under study in this thesis is located within
the facilities of this steelmaker. It is worth mentioning that this furnace has dimensions of 20
meters in length, 2 meters in width, and 1 meter in height. Furthermore, together with the
inlet and outlet pyrometers employed for monitoring the temperature of the billets during the
heating phase, the furnace incorporates 12 induction coils arranged in series and grouped into
4 groups of inductors (each of them encompassing 3 coils). Most of the data provided by GSW
corresponds to measurements related to one of the aforementioned devices.

The dataset comprises information concerning the heating process of 217 steel billets. For each
of these billets, the following data is available:

• Identification and descriptive details such as the billet’s unique identifier, length, and
corresponding family (resulfurized, stamped, or microalloyed, among others).

• Multivariate time series data related to the heating process, including the billet’s tip
position in the induction furnace, the instantaneous power of each of the four groups of
inductors, and the temperature measured by the inlet and outlet pyrometers. In total,
there are seven time series available for each billet.

5
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Figure 2.1 displays as an example the multivariate time series associated with the heating process
of a specific billet. The subplots in the first two rows illustrate the instantaneous power of the
four groups of inductors, while the left subplot in the third row represents the temperature
monitored by the inlet and outlet pyrometers. The right subplot in the third row illustrates the
position of the billet’s tip as it passes through the furnace.

Figure 2.1: Multivariate time series associated with the heating process of billet 6211341.

The raw data provided by GSW, which consisted of CSV (comma-separated values) files, has
undergone some preprocessing prior to modeling and analysis. In addition to typical prepro-
cessing steps such as adapting the data formats for easier reading, other more specific actions
that are worth highlighting have been carried out, namely:

• One issue was that, as billets are typically fed into the furnace sequentially (one after the
other) to maximize energy efficiency, some time series contained recordings from different
billets, causing overlap. For instance, this led to non-zero measurements at the outlet
pyrometer even before the billet had passed through the furnace, which makes no sense.
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To address this, inconsistent records were removed based on a criterion using the length
of the billets.

• The granularity of the time series’ temporal resolution was adjusted. Specifically, time
series originally had a fine resolution of 0.1 seconds, but were resampled to a coarser period
of 1 second to alleviate data processing.

• Outliers were also detected in the time series of the billet’s tip position, potentially due to
debris near the pyrometer. These outliers were corrected using interpolation techniques.

• The time each billet spent inside the furnace was variable depending on the billet’s length
and the heating treatment applied, which presented a consistency problem for models that
required fixed-dimensional inputs, such as the FE model or ANNs. To solve this, the time
series were extended by padding them with zero values until a predetermined fixed length
of 200 one-second time steps was reached. This length was chosen because none of the
billets for which data was available were in the furnace for more than 200 seconds.

It is worth mentioning that all the preprocessing of the raw data provided by GSW is well
documented in the Jupyter notebooks developed for the thesis, which can be found in the
GitHub repository created for the project. �

2.2 Artificial Neural Networks in a Nutshell

This section provides an overview of the basic aspects of ANNs without delving into many
details, as they have been extensively covered during the master’s degree. In particular, special
emphasis is given to fully connected neural networks (FCNNs), long short-term memory (LSTM)
recurrent neural networks, and convolutional neural networks (CNNs), as these are the most
commonly used ANN architectures in subsequent chapters.

2.2.1 Foundations of Artificial Neural Networks. Fully Connected Networks

ANNs are a computational model inspired by the learning mechanisms observed in the human
brain [23]. Indeed, ANNs are made up of interconnected nodes known as neurons, which mimic
biological neurons. These nodes establish connections based on a specified network architecture
in charge of governing the transmission of information, with each connection having a weight that
indicates its importance within the network [24]. Thus, neurons are computational units that
receive an input signal (usually from other neurons) and compute the output signal by means of
a nonlinear function known as the activation function, which is applied to the weighted sum of
the inputs. This weighting is done on the basis of the weights associated with each connection.

FCNNs, also known as dense neural networks, are one of the most popular architectures for
ANNs, alongside CNNs and LSTMs. In FCNNs, neurons are arranged in layers so that every
neuron in a given layer is connected to every neuron in the subsequent layer (feed-forward
network). This layered structure, shared with other architectures, consists of the input layer
(responsible for data acquisition), the output layer (dedicated to producing predictions), and
the hidden layers (those between the input and the output layers).

Regarding activation functions, the most popular ones include sigmoid, hyperbolic tangent,
rectified linear unit (ReLU), and softmax, among others [25]. The activation function of the
output layer is chosen according to the problem (usually softmax for classification tasks and
linear for regression tasks), but it is critical to notice that the activation functions employed in

https://github.com/bolivars/furnace-energy-optimization/tree/main/code
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hidden layers must be nonlinear; otherwise, the resulting model would become a linear regres-
sion. For instance, in the regression problem tackled in Chapter 4, ReLU has been employed
as the nonlinear activation function for the hidden layers (which helps mitigate the vanishing
gradient problem), while a linear activation function has been used for the output layer.

The most important characteristic of ANNs is their ability to learn. Just as external stimuli
are essential for human learning, external stimuli in ANNs are provided by the training set,
which contains input observations where the desired output is known. In this sense, learning in
ANNs is supervised and occurs by updating the weights associated with the connections between
neurons. Therefore, the purpose of the training process is to find the weights for each connection
in the network in such a way that the predicted output is as close as possible to the desired
output. The way to assess the optimality of the obtained weights is through the loss function,
which in the case of a regression problem like the one addressed in this thesis is typically the
mean squared error (MSE). More formally, if the training set consists of N observations, the
goal is to solve the following minimization problem:

Minimize
ω∈Rp

MSE(ω) :=
1

N

N∑
i=1

(
θi(ω)− θ̂i

)2
, (2.1)

where ω represents the weights of all possible connections in the neural network, p is the number
of total connections in the network, θi(ω) is the model’s prediction for the i-th observation of
the training set, and θ̂i is its target value.

In order to tackle the previous problem, an iterative process is followed in which the network
weights are updated so that the loss function is reduced. Various techniques exist for weight
updates, including gradient descent, mini-batch gradient descent, and stochastic gradient de-
scent, along with their variants that incorporate momentum [26]. Specifically, the analysis in
this thesis will be performed using Adam [27], an extension of gradient descent with momentum.

One of the challenges associated with ANNs is that they are prone to overfitting, leading to
high variance. Overfitting occurs when a model fits the training set remarkably well, but fails to
generalize to unseen data. Several techniques can be employed to address this issue, such as L1
or L2 regularization (which incorporates a term in the loss function accounting for the weight
vector’s norm), dropout (randomly deactivating nodes to simplify the network and prevent
over-specialization), or data augmentation (to increase the diversity of the training data).

2.2.2 Long Short-Term Memory Recurrent Neural Networks

LSTM networks are a subset of recurrent neural networks (RNNs), which are ANNs with feed-
back connections enabling the processing of sequential inputs [28, 29]. LSTMs were mainly
developed to address two common challenges that conventional RNNs face: (1) the vanishing
gradient problem in deep architectures, and (2) their limited ability to learn and retain long-term
dependencies.

The architecture of LSTMs is more complex than that of conventional RNNs, incorporating
memory and gate mechanisms that supervise the flow of information through the network [30].
This complex design enables LSTMs to capture long-term dependencies in sequential data,
making them particularly well-suited for diverse tasks, including but not limited to time series
analysis (the focal point of this thesis) [31], natural language processing [32], and even speech
generation [33]. The architecture of LSTM cells is explained in a little more detail below, with
emphasis on the long-term recall mechanism.
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Figure 2.2: LSTM cell architecture (graph inspired in [34]).

Figure 2.2 illustrates the architecture of an LSTM cell. The input at time t, denoted as xt,
is represented by a line towards the LSTM cell, while the output, ht, is represented by an
arrow leaving the cell. The LSTM unit is made up of four dense layers (three of them with
sigmoid activation function, and one of them with hyperbolic tangent), which are shown as
yellow rectangles. These layers help process the information as well as make decisions within
the LSTM cell. In addition, the small pink circles represent point-wise operations between
vectors in the LSTM cell. These operations allow the integration of information across the
different components of the LSTM unit.

(a) Step I: Forget Gate. (b) Step II: Input Gate.

(c) Step III: Cell State Update. (d) Step IV: Output Gate.

Figure 2.3: Learning process in a LSTM cell [34].
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The cell state, Ct, represented by the top horizontal line that spans the unit from left to right
in Figure 2.2 and Figure 2.3, is probably the most important component of the LSTM unit.
The cell state is in charge of controlling the information flow inside the network and, thus, of
managing the recall of dependencies and/or features in the long term. Even though it often
remains unchanged, it is feasible to delete (forget) or add (remember) information to the cell
state in a controlled way using structures known as gates [34].

Figure 2.3 shows a diagram (taken from [34]) of the learning process in an LSTM cell. The first
step (see Figure 2.3a) is to decide which information should be remembered and which should be
forgotten, a task that is performed by the forget gate, ft. This gate uses the sigmoid to assign a
value in [0, 1] to each element/feature in Ct−1 based on the values of xt and ht−1. In particular,
a value of 0 blocks the information flow for that particular feature (completely forget), whereas
a value of 1 fully allows the information to flow (completely remember). Intermediate values
weigh the significance of the information to be remembered. Formally, this is represented as

ft = σ (Wf · [ht−1, xt] + bf ) , (2.2)

where Wf and bf are the weights and bias, respectively, of the forget gate.

The second step (see Figure 2.3b) is to decide which new information should be stored in the cell
state. This is accomplished through the input gate, denoted by it, which is a sigmoid layer that
selects which components of the cell state should be updated. Furthermore, a hyperbolic tangent
function generates a new state vector, Ĉt, which can be added to the cell state. Mathematically,
the above operations can be written as

it = σ (Wi · [ht−1, xt] + bi) and Ĉt = tanh (WC · [ht−1, xt] + bC) , (2.3)

where Wi, bi, WC and bC represent the weights and biases associated with the input gate and
the layer with hyperbolic tangent activation, respectively.

The third step (see Figure 2.3c) is to update the cell state by combining the results of the forget
gate, the input gate, and the new information. Formally, this update can be expressed as

Ct = ft ∗ Ct−1 + it ∗ Ĉt, (2.4)

where the operation ∗ is an element-wise product.

The fourth step (see Figure 2.3d) is to determine the output, ht, of the LSTM cell. This output
is a filtered version of the cell state that is obtained through a sigmoid layer as follows:

ot = σ (Wo · [ht−1, xt] + bo) and ht = ot ∗ tanh (Ct) , (2.5)

where W0 and b0 are the weights and bias associated with the last sigmoid activation layer.

2.2.3 Convolutional Neural Networks

CNNs [35, 36] represent a specific type of ANNs in which consecutive layers are connected
through a convolutional operation that enables them to learn complex spatial structures or
patterns within data, especially data having a grid-like topology, such as images, videos, or
even time series. Unlike FCNNs, CNNs are able to learn local patterns rather than global
patterns from the input feature space. This is achieved by setting up the parameters in filters
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or kernels that convolute across the dimensions of the input layer to extract features, allowing
for local learning [37].

A typical CNN architecture is made up of stacked repetitions of convolutional blocks, which are
in charge of feature extraction and are usually composed of a convolutional layer followed by a
pooling layer for dimension reduction. Following the convolutional blocks, there is a flattening
layer that converts the feature maps into a one-dimensional vector that serves as the input
layer for one or more fully connected layers that handle the classification or regression task,
depending on the problem at hand.

Because of their relationship with computer vision, 2D CNNs are often the first architecture
that comes to mind when thinking about CNNs. In 2D CNNs, filters are small, two-dimensional
windows typically convoluted with images or video frames. However, when dealing with one-
dimensional time series, such as audio recordings, stock prices, or electrocardiogram signals, 2D
CNNs become incompatible from a dimensional point of view. As a consequence, 1D CNNs were
introduced, which have been shown to be particularly useful for the analysis of 1D signals [38].
The main difference with a 2D CNN is that the filters are one-dimensional, so there are fewer
parameters, which reduces computational complexity and eases training and implementation.

The data available for this research are multivariate time series, as explained in Section 2.1,
since several variables (instantaneous power of the four groups of inductors, advance of the tip
of the billet inside the furnace, temperatures...) are recorded as a function of time. Contrary
to what might be thought, this data structure can fit perfectly with a 1D CNN scheme: it
is enough that the input is a one-dimensional time series with several channels, each of them
accounting for one of the variables of interest (similar to when a color image is divided into
three channels: red, green, and blue (RGB)). Figure 2.4 shows the 1D CNN architecture used
as the basis for the convolutional models implemented in this thesis.

Figure 2.4: One-dimensional convolutional neural network architecture for a regression problem.
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2.3 Background on Reinforcement Learning

RL is one of the three learning paradigms of ML, together with supervised and unsupervised
learning. RL is a framework where an agent learns to make decisions based on its interactions
with a dynamic environment, with the goal to maximize a reward [39]. Specifically, the decision-
making policy is learnt through trial and error [40]. Hence, there are two key elements in RL: the
environment (representing the problem to be solved) and the agent (representing the learning
algorithm).

The agent constantly interacts with the environment, so that at each time step t of an episode,
the agent makes a decision by taking an action at based on its policy, π(st), being st the state of
the environment at time t. In response to this action, the state of the environment transitions
to an updated state, st+1, and the agent receives a reward, rt+1 [39]. The agent’s ultimate goal
is to update its decision-making policy to maximize the discounted cumulative sum of rewards
in an episode, R, which is defined as follows:

R := r0 + γ1r1 + . . .+ γtrt + . . .+ γT rT :=

T∑
t=0

γtrt, (2.6)

where rt is the reward at time step t, T is the time-step at which the episode terminates, and
γ ∈ [0, 1) is the discount factor. Given that γ < 1, this factor is in charge of discounting future
rewards relative to immediate rewards [39].

There are plenty of approaches to tackle RL problems, including policy gradient methods [41],
actor-critic methods [42], Monte Carlo methods [43], temporal difference methods [44], and Deep
Q-Networks [45], among others. Nevertheless, this thesis only focuses on Deep Q-Networks,
which are explained in greater detail below.

2.3.1 Deep Q-Networks

In 2015, DeepMind developed Deep Q-Network (DQN) [45], an algorithm capable of solving a
wide variety of Atari games by combining a classical RL technique, Q-learning, and deep neural
networks (DNNs). The development of DQNs set a precedent for laying the groundwork for
what is nowadays known as Deep Q-Learning. Before diving deeper into it, a brief overview of
Q-Learning is given to become familiar with the terminology.

Q-Learning

Q-learning (QL) [39, 46] is a classical RL technique based on a state-action function known
as the Q-function. Given a decision-making policy π, the Q-function Qπ(st, at) represents the
expected discounted cumulative sum of rewards that would be obtained from a state st by first
taking an action at and then following the policy π. Formally,

Qπ(st, at) = E[Rt|st, at, π], (2.7)

where Rt :=
∑T

t′=t γ
t′−trt′ is the discounted cumulative sum of future rewards from time t [45].

Consequently, the optimal Q-function Q∗(st, at) is defined as the maximum expected cumulative
reward that could be obtained by starting from the state st, taking the action at, and following
any policy π. The expression for the optimal Q-function obeys Bellman’s equation [39], that is,

Q∗(st, at) = max
π

E[Rt|st, at, π] = E[rt+1 + γmax
a′

Q∗(st+1, a
′)]. (2.8)
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In other words, the previous identity indicates that the optimal Q-value of an action at applied
to a state st, Q

∗(st, at), is the immediate reward (the one obtained after applying the action at
to state st) plus the maximum expected reward that could be obtained in the next state st+1

corrected by the discount factor γ.

The idea behind QL is to approximate Q∗(st, at) by means of an iterative process, as it can be
ensured that Qi 7−→ Q∗ as i 7−→ ∞ [39]. The iterative update [47] can be expressed as follows:

Qi+1(st, at)← (1− α)Qi(st, at) + α

(
rt+1 + γmax

a′
Qi(st+1, a

′)

)
, (2.9)

where α ∈ (0, 1] is the learning rate, and rt+1 is again the reward obtained when transitioning
from state st to state st+1. Therefore, the Q-function is nothing more than a table that stores
the “optimal” Q-value for each action-state pair obtained during the iteration process.

Deep Q-Learning

One of the main disadvantages of QL is that each action-state pair must be visited many times
to obtain a reliable approximation of the Q-values via the iterative process. Consequently,
its application is limited to problems with discrete, finite, and few-element action and state
spaces [46]. However, in most real-world problems, the state space is very large, even continuous.
One possible solution to overcome this problem is to use a function that approximates the Q-
function, instead of using a lookup table as QL does. Indeed, finding a parametrized function
Q(s, a; θ) ≈ Q∗(s, a) that approximates the optimal Q-function, not only allows to obtain the Q-
values quickly (lookup tables are sometimes not efficient), but also enables to estimate Q-values
for unseen states [39, 46, 45].

Figure 2.5: Structural diagram of Deep Q-Learning.

In this context, DQL [48, 49] emerges as a RL method that approximates the Q-function using
a ANNs. Specifically, DQL uses DQNs to approximate the Q-function, allowing it to capture
more complex patterns. Figure 2.5 shows a classic DQL diagram, where the most remarkable
aspect is that the agent is now a DQN. Furthermore, it is observed that the states are the
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inputs to the DQN, while the outputs correspond to the predicted Q-values (each neuron in
the output layer corresponds to an action in the action space). The DQN’s parameters are
iteratively updated in order to minimize the following loss function [45]:

Li(θi) := E

[(
rt+1 + γmax

a′
Q(st+1, a

′, θi−1)−Q(st, at, θi)

)2
]
, (2.10)

where θi denotes the parameters of the DQN at the i-th iteration.

In light of the above, in order to apply DQL it is necessary to: define the space of actions and
states, fix the learning objective (in the case of chess, for instance, would be capturing the king),
establish the reward system, and determine the initial state from which actions can be taken.

How are actions selected?

Once the DQN has been trained, what is obtained is a decision-making policy πθ, where θ
are the parameters of the DQN. Thus, given a state s, the optimal action, a∗, is the one that
maximizes the obtained Q-value following the learned policy, that is,

a∗ = argmaxaQ(s, a; θ). (2.11)

Consequently, by taking the optimal action, a∗, it is ensured that the environment transitions
to a new state that maximizes the reward.

However, it is common to use an epsilon-greedy action selection criterion to ensure good coverage
of the state-action space (something that is sometimes not achieved if the optimal policy is
strictly followed). This epsilon-greedy algorithm balances the exploration and exploitation of
the environment by randomly choosing between exploration and exploitation [40]. In particular,
this method exploits the learnt decision-making policy most of the time, with a small probability
of randomly exploring [50]. According to this criterion, the selected action at time t would be

at =

{
argmaxaQ(st, a; θ), with probability 1− ε.

choose an action at random, with probability ε,
(2.12)

where ε is the exploration probability.



Chapter 3

Development of a Digital Twin of
the Induction Furnace

This chapter focuses on the initial phase of the project, whose objective is to develop and
experimentally validate a FE-based digital twin of GSW’s induction furnace that faithfully
simulates the heating process of the billets. The chapter provides a description of the FE model,
including its purposes, fundamental assumptions, and implementation details. Furthermore, it
outlines the calibration process of the FE model and assesses the accuracy of the simulations.

3.1 Implementation of the Finite Element-Based Digital Twin

Examining the influence of operating conditions on the performance of GSW’s induction furnace
is of great interest for two reasons. Firstly, it facilitates the analysis of the final product’s
quality from a metallurgical point of view. Secondly, it offers a chance to explore innovative
inductor management strategies aimed at reducing energy consumption during the heating
phase. However, a major challenge in pursuing these objectives is the lack of data. This is
because the primary focus of production laboratories, such as GSW’s, is not data generation for
analysis, but the manufacturing of products for commercialization. Therefore, the need arises
to develop and use a digital twin of the induction furnace, i.e., a virtual model of the furnace
that, receiving the same inputs as the real furnace, is able to faithfully reproduce its output.

In this context, mathematical modeling using finite elements proves to be a valuable asset for
developing the digital twin. By incorporating all relevant physical laws, including those related
to heat transfer during the heating phase, FE modeling allows to create a virtual prototype of
the furnace that closely mimics GSW’s real furnace behavior. This characteristic makes the
FE-based simulator a robust model with excellent extrapolation capabilities, thereby enabling
simulations of various operating conditions (especially different heating patterns), which may
not be feasible in GSW’s factory. Consequently, the FE-based digital twin becomes a powerful
tool for generating background data that can be directly analyzed or used to train a ML model
capable of making real-time predictions of the temperature profiles of the billets upon exiting the
furnace, as discussed in Chapter 4. It is beyond the scope of this thesis to tackle the theoretical
foundations of FE numerical modeling; please refer to [51, 52, 53] for a detailed mathematical
description.

15
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3.1.1 Finite Element Model Overview

A FE model has been developed to simulate, in a simplified manner, the heating process of steel
billets as they pass through GSW’s induction furnace. Indeed, the model successfully predicts
the temperature profiles of the billets as they exit the furnace. It is worth highlighting that
the term “temperature profile” refers to the time series that would be measured by the outlet
pyrometer along a horizontal line on the upper surface of the billet as it leaves the furnace (see
Figure 3.3).

The FE model uses five time series as inputs to simulate the temperature profile of each billet
upon exiting the furnace. These include the four time series corresponding to the instantaneous
power of each of the four groups of inductors (also referred to as heating pattern), and the time
series representing the billet’s position or advance within the furnace. It is worth noting that
the time series used to feed the model have been preprocessed, rather than using the original
raw data, according to the criteria outlined in Section 2.1.

Furthermore, the model imposes two boundary conditions in addition to those dictated by the
furnace’s real geometry. The first condition is the initial temperature of the billets, which is
determined by averaging the time series measured by the inlet pyrometer. The second condition
is the temperature of the air surrounding the furnace, which is supplied by GSW and allows to
take into account the heat convection processes between the air and the steel. Lastly, the model
incorporates some thermal properties of steel, such as conductivity, specific heat, density, and
air-steel convection coefficient, which were obtained from the literature.

3.1.2 Finite Element Model Assumptions

It is important to bear in mind that the developed FE model simplifies the heating process of
the billets. Consequently, some physical processes are simplified, including:

• The energy exchange by radiation is replaced by an equivalent convective process, which
considerably simplifies the simulations because radiation is a highly non-linear process.

• The heat density generated internally in the steel due to induction is assumed to be uniform
in each cross section, which is not strictly true since theoretical induction models indicate
that the distribution of the thermal intensity generated depends on the electromagnetic
frequency of the induction.

• Inductor losses, which are non-linear and depend not only on the material used but also
on the working power of the inductors, have not been taken into account. However, only a
fraction of the energy consumed by the inductors is actually invested in heating the mate-
rials, so it would be ideal to upgrade the existing FE model to include an electromagnetic
FE model that accounts for these losses.

• The temperature of each billet at the entrance of the furnace is assumed to be constant
across its entire surface, with the assigned value being the average of the time series mea-
sured by the inlet pyrometer. However, small variations in the initial surface temperature
distribution around this mean value are not expected to have a significant effect on the
temperature profile at the furnace exit, which makes it a reasonable assumption.



17

3.1.3 Implementing the Finite Element Model using ANSYS MAPDL

The FE model was implemented using Mechanical ANSYS Parametric Design Language (MAPDL),
a programming language designed for 3D modeling using FE methods [54]. Initially, simula-
tions were conducted using the native applications developed by ANSYS (the software provider).
However, they ended up being performed using the PyMAPDL module [55] of the PyAnsys li-
brary, which enables the usage of ANSYS products through Python [56]. The main reasons for
selecting this Pythonic interface were its interoperability (allowing for the integration of data
preprocessing and simulations within a single script) and its support for parallel computing.
The latter made it possible to reduce the simulation time for each billet to 7 minutes, compared
to the 20 minutes required when using the native applications.

Figure 3.1 shows an example of a three-dimensional simulation of a billet employing PyMAPDL,
which, as mentioned above, supports Pythonic access to MAPDL. The visualization includes a
color map showing the temperature distribution over the surface of the meshed billet.

Figure 3.1: Three-dimensional simulation of a billet.

To obtain a more detailed description of the implementation of the FE model, including the def-
inition of meshed surfaces and volumes, and the application of loads, please refer to the Jupyter
notebook responsible for the FE simulation, which can be found in the GitHub repository. �

3.2 Calibration and Analysis of Digital Twin Outcomes

The FE model has undergone a calibration process to fine-tune the simulation parameters
(especially the one controlling the equivalent convection), ensuring that the simulations replicate
the behavior of GSW’s induction furnace as accurately as possible. In this calibration process,
the reference values were the time series corresponding to the billet temperature profiles at the
furnace exit recorded by GSW. Specifically, the main objective of the calibration was to achieve
the maximum possible resemblance between the temperature profiles simulated using the FE
model and the temperature profiles measured by GSW’s outlet pyrometer. Figure 3.2 represents
a flow chart of the calibration procedure.

https://github.com/bolivars/furnace-energy-optimization/tree/main/code/2-finite-element-model/furnace-simulator
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Figure 3.2: Flow chart of the calibration procedure.

The metrics used to assess the quality of the simulations were the Root Mean Squared Error
(RMSE) and the Pearson correlation coefficient, ρ, which are defined as follows:

RMSE(T, T s) :=

√√√√ 1

n

n∑
i=1

(T s
i − Ti)

2, and (3.1)

ρ(T, T s) :=

∑n
i=1

(
Ti − T

) (
T s
i − T s

)√∑n
i=1

(
Ti − T

)2∑n
i=1

(
T s
i − T s

)2 , (3.2)

where T ∈ Rn is the temperature profile of the billet upon exiting the furnace measured by
GSW’s outlet pyrometer, and T s ∈ Rn is the temperature profile simulated using the FE model.

It is worth noting that RMSE is a measure of accuracy, while the Pearson correlation coefficient
is a measure of association. Indeed, RMSE evaluates the point-to-point correspondence between
simulated and observed time series values, with lower values indicating a better fit. On the other
hand, the Pearson correlation coefficient measures the linear relationship between measured and
simulated time series values, having a score between -1 (perfectly negative correlation) and 1
(perfectly positive correlation).

For instance, Figure 3.3 displays the temperature profile for the steel billet with ID 6211341,
whose time series were previously illustrated in Figure 2.1. The temperature profiles shown
correspond to the measured and/or simulated temperatures along a central horizontal line on
the billet’s surface (measurements are avoided at the edges due to loss effects).

Initially, it was intended to calibrate the FE model so that it could reproduce the valleys or
cold spots observed in the black curve of Figure 3.3. These valleys occur due to the contact
between the billets and the rollers that make them advance, resulting in heat losses. However,
it was finally decided to calibrate the model to replicate the trend. The reason is that GSW was
not interested in the exact positions of the cold spots but rather in the presence of consistent
temperature drops over time, something that is reflected in the trend. It is worth mentioning
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that the FE model was exclusively calibrated using billets belonging to the resulfurized family,
as data related to other billet families was provided in subsequent phases of the project.

PYROMETER
MEASUREMENT

LINE

Figure 3.3: Comparison between the temperature profile measured at the exit of GSW’s induc-
tion furnace and the one simulated using the simplified FE model for billet 6211341. The black
curve represents the temperature profile measured by the outlet pyrometer, while the green
curve illustrates its trend (obtained through exponential moving averages). The red curve rep-
resents the temperature profile simulated using the FE model. Evaluation metrics are included
in the lower right corner.

Continuing with the example presented in Figure 3.3, the numerical results demonstrate a
situation in which an RMSE of 4.505 and a Pearson correlation coefficient of 0.961 are obtained
between the simulated temperature profile (red curve) and the trend of the temperature profile
measured by GSW’s outlet pyrometer (green curve). It is noteworthy that the RMSE represents
the average point-to-point difference between the simulated and actual values, expressed in
degrees Celsius in this case. Considering that the measurement error of the output pyrometer
fluctuates between 10ºC and 20ºC depending on the temperature, it can be concluded that the
simulated profile aligns quite accurately with the measured profile.

The aforementioned graph and discussion belong to a specific billet, the one with ID 6211341,
which might suggest that the favorable results obtained are an isolated case. However, this
behavior has been observed consistently across the entire family of resulfurized billets, as illus-
trated in Figures 3.4 and 3.5. These two histograms show the distribution of the RMSE and the
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Pearson correlation coefficient between the simulated temperature profiles and the measured
trends within the resulfurized billet family. It is observed that all RMSE values are below 5ºC,
and all correlations exceed 0.95, thus highlighting the accuracy of the FE model.

Figure 3.4: Histogram displaying the
distribution of the RMSE for billets
belonging to the resulfurized family.

Figure 3.5: Histogram displaying the
distribution of the correlation for bil-
lets of the resulfurized family.

In light of the obtained results, it can be concluded that the simplified FE model is a valuable
tool for accurately predicting the temperature distributions of the billets upon exiting GSW’s in-
duction furnace based on the operating conditions (the time series corresponding to the advance
of the billet and the instantaneous power of the four groups of inductors). This information
regarding the billets’ temperature distribution is very useful from a metallurgical point of view
to determine the quality of the material and optimize subsequent processes involved in wire rod
rolling.



Chapter 4

Using Neural Networks to Exploit
the Digital Twin

This chapter delves into the second phase of the project, which seeks to develop some ML models
based on ANNs that leverage the outcomes of the FE model to generate real-time predictions of
the temperature profiles of the billets at the induction furnace’s exit. The chapter discusses the
need and importance of these ML models, outlines their architecture, describes the methodology
employed for implementing them, and presents the obtained results.

It is worth mentioning that these ANN-based models have been implemented using Keras library
(version 2.10.0) in Python [22]. Specifically, the training process has been boosted using a
NVIDIA GeForce RTX 3090 GPU.

4.1 The Role of the Machine Learning Models

Thus far, an accurate FE model has been developed, showing remarkable extrapolation capa-
bilities and robustness as it encapsulates most of the physical laws governing the billet heating
process. However, one limitation of this FE model is the simulation time, especially when con-
sidering its implementation in a factory as part of an intelligent decision-making algorithm.
Indeed, the simulation time of the FE model is approximately 7 minutes, nearly three times the
time each billet spends inside the furnace. This makes the FE model unsuitable for real-time
predictions, thereby reducing its practical utility.

In this context, training a ML model to predict the temperature profiles emerges as a highly
feasible solution since, once trained, its evaluation in unseen data is extremely fast, taking only
a few milliseconds. Furthermore, the quick evaluation of ML models makes them appropriate
to be used within a RL framework, as will be seen in Chapter 5.

Indeed, RL consists of a trial-and-error process involving thousands of iterations, as mentioned
earlier in Section 2.3. In each iteration, the current state transitions to a new state based on the
selected action, which makes it necessary to have a method capable of quickly computing the
reward to assess the decision that has just been made. In the problem under study, the reward
will depend mainly on the RMSE between the target and the simulated temperature profiles,
as will be explained later in Chapter 5. Therefore, in each iteration, it is necessary to simulate
the billet temperature profile associated with the heating pattern reached after applying the
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selected action. Consequently, this methodology is only feasible if a fast simulator such as an
ML model is available, but would be impractical for the FE model because of its long simulation
time.

In light of the above, it may seem that a time-consuming FE simulator is useless. However,
even though it might not be useful to be integrated into an RL scheme, it is a valuable tool for
generating synthetic samples thanks to its robustness and extrapolation capability (a task for
which most ML models are not competitive because, although they interpolate very well, they
are not able to correctly extrapolate). Indeed, it is enough to use Monte Carlo techniques to
generate synthetic realistic operating conditions (that is, time series representing the advance
of the billet inside the furnace and the instantaneous powers of the inductors), and feed them
into the FE simulator to obtain the associated temperature profiles. This is particularly useful
in the industrial sector, where one of the limitations when applying AI is the lack of data: most
factories focus on production, which limits the number of real samples available for research.
However, since this thesis is a proof of concept aiming to test the proposed methodology and
synthetic data is not yet available, the idea of increasing the dataset by means of these synthetic
samples is left for future work.

4.2 Implementation and Results of the Neural Network Models

Two ML models were developed using recurrent and/or convolutional neural networks. These
models were trained using data from 200 out of the 217 available steel billets, allocating the
remaining 17 (approximately 8%) to the test set. It is important to note that these are regression
models designed to predict the temperature profile of the billets at the exit of the furnace. Hence,
the target variable is represented by a temperature vector that captures the temperature profile.

On the one hand, the inputs of the models were the same as those used by the FE model, namely:
the preprocessed time series of the advance of the billets inside the furnace and the instantaneous
power of the four groups of inductors (a multivariate time series with 5 channels). On the other
hand, the target vectors of the training set observations corresponded to the temperature profiles
simulated via the FE model (not the time series registered by the outlet pyrometer).

Even though the time series related to the temperature recordings of the outlet pyrometer were
available for the training set observations, the simulated temperature profiles were used as the
target vectors to train the ML models for two main reasons. Firstly, to mitigate the influence
of cold spots, which are present in the outlet pyrometers’ recordings but are not replicated by
the FE model (it is recalled that its purpose is to replicate the overall trend). Secondly, when
in later phases of the project synthetic samples are used to retrain the ML models, it will not
be possible to compare the predicted temperature profiles with real time series as they will not
be available, which makes it necessary to exclusively work with the simulated time series.

It is worth mentioning that in order to reduce the complexity of the problem and avoid a large
number of neurons in the output layer, the temperature profiles have been interpolated to only
50 points, despite the original simulated profile having 200 points. Figure 4.1 shows an example
of the original simulated profile with 200 points compared to the interpolated profile with 50
points. Although some fine details are lost, the overall trend is preserved.

In the following, the implemented models are described, and the results obtained with each of
them are discussed. Once again, the RMSE was used as the evaluation metric to assess the
performance of the models.
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Figure 4.1: Interpolation of the simulated temperature profiles to reduce the models’ complexity.

4.2.1 One-Dimensional Convolutional Model

This neural network model, as its name suggests, is mainly based on one-dimensional convolu-
tional layers (see Section 2.2.3). The architecture of the model, depicted in Figure 4.2, consists
of three convolutional blocks, each one composed of a 1D convolutional layer with ReLU activa-
tion, a batch normalization layer, and a pooling layer. These blocks are followed by a flattening
layer with dropout, and two dense layers with L2 regularization to mitigate overfitting.

Figure 4.2: Architecture of the one-dimensional convolutional model.
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Remark 1 Batch normalization [57] is a technique that enables accelerating and stabilizing
the training process of ANNs. The method involves normalizing (centering and scaling) each
mini-batch that enters the network using the mean and standard deviation calculated from that
specific mini-batch. The data is then re-scaled and re-centered using a set of parameters learned
by the ANN. Moreover, since the mean and standard deviation are computed per mini-batch
rather than the entire training set, batch normalization introduces some noise that serves as a
regularization method and helps reduce overfitting.

Hyperparameters and Learning Process

The model’s hyperparameters have been fine-tuned to find a trade-off between variance and
bias. The hyperparameters related to the architecture of the one-dimensional convolutional
model are indicated in Figure 4.2, while those related to the training phase are reported in
Table 4.1.

Hyperparameter Value

Optimizer Adam

Learning Rate
Starting from 10−2, the learning rate was reduced by 3% each time there
was no improvement in the loss function (evaluated over the training

set) for 15 epochs. The minimum value it could reach was 10−5.
Batch size 200 (all training observations)
Epochs 5000

Table 4.1: Learning hyperparameters of the one-dimensional convolutional model.

Remark 2 The implemented variable learning rate technique gradually decreases the learning
rate if there is no improvement in a given metric over a certain number of epochs (in this
study, this metric is the RMSE evaluated on the training set). In other words, the learning rate
remains unchanged when the reference metric improves but is reduced when the model’s learning
process stagnates. This is useful, for instance, to avoid oscillations around minimums. Another
advantage of this method is that it saves time in manually optimizing this hyperparameter, as
the learning rate is automatically self-regulated (exploring a wide set of values), depending on
the evolution of the metric used as a reference.

It is worth mentioning that the average execution time per epoch was approximately 50 ms
when using the NVIDIA GPU, resulting in a total training time of 4 minutes. If the GPU was
not used, the execution time per epoch was 250 ms, and the total training time exceeded 20
minutes.

Results of the One-Dimensional Convolutional Model

Regarding the results of the one-dimensional convolutional model, an RMSE of 4.95ºC was
obtained in the training set and an RMSE of 16.26ºC in the test set. This indicates high vari-
ance or overfitting, despite regularization (dropout combined with L2-regularization). However,
considering that the training set is small and that the measurement uncertainty of the outlet
pyrometer fluctuates between 10ºC and 20ºC depending on the temperature, the result is not
of such poor quality. For instance, Figure 4.3 illustrates some temperature profile predictions
obtained with the one-dimensional convolutional model for both the training and test sets,
showing that the model is capable of predicting the temperature profile quite accurately.
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Figure 4.3: Comparison between the simulated temperature profiles using the FE model and
those predicted using the one-dimensional convolutional model for two observations from the
test set (first column) and two observations from the training set (second column).

4.2.2 Convolutional-Recurrent Model

This model is an adaptation for a regression problem of the ANN-based model proposed in the
paper “Multivariate LSTM-FCNs for Time Series Classification” [58]. The model’s architec-
ture combines convolutional blocks with LSTM cells, as can be observed in Figure 4.4. One
peculiarity of this architecture is that the convolutional blocks include an attention mechanism
based on squeeze and excite blocks [59]. This mechanism assigns weights to each of the channels
in the convolutional block, allowing the network to adaptively adjust them (they are trainable
parameters) by giving more importance to some feature maps than others. However, what is
perhaps most striking about the architecture is the dimension shuffle layer.

The dimension shuffle layer transposes the temporal dimension of the inputs to the convolutional
blocks [58], which are multivariate time series consisting of 200 time steps with 5 different
channels or variables (the advance of the billet and the power of each of the four groups of
inductors) per time step. The reason for including this layer is the following: if the dimension
shuffling is not applied, the LSTM would have to process 200 time steps with 5 variables each,
whereas if the dimension shuffling is applied, the LSTM would have to process 5 time steps with
200 variables each. In other words, this dimension shuffling reduces the number of time steps
the LSTM has to process from 200 to just 5, which is precisely the number of variables [58].
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Figure 4.4: Architecture of the convolutional-recurrent model.

More formally, after the dimension shuffling, at each time step t, where 1 ≤ t ≤ 5, the LSTM
receives as input the univariate time series of length 200 that represents how variable t evolves
with time [58]. Thus, the LSTM receives all the information about each of the variables together.
This dimension shuffling technique helps reduce the training time, especially in cases where the
number of variables is much smaller than the number of time steps (before the dimension
shuffling), as in the problem studied. Even though it might seem that with this methodology
there is information leakage (the correlation between variables is somehow lost), it has been
proven in [58] that the performance obtained with this model is statistically the same as that of
other models that do not use this dimension shuffling technique. Moreover, in [58], it has also
been proven that the model with the architecture of Figure 4.4 outperforms other models that
do not use dimension shuffling in a large number of UCR datasets [60].

Hyperparameters and Learning Process

Figure 4.4 indicates the hyperparameters associated with the convolutional-recurrent model’s
architecture, while Table 4.2 provides the hyperparameters specific to the training phase.

Hyperparameter Value

Optimizer Adam

Learning Rate
Starting from 10−2, the learning rate was reduced by 2% each time there
was no improvement in the loss function (evaluated over the training

set) for 15 epochs. The minimum value it could reach was 10−5.
Batch size 200 (all training observations)
Epochs 7000

Table 4.2: Learning hyperparameters of the convolutional-recurrent model.
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In terms of execution time, each epoch took an average of 120 ms to complete when the NVIDIA
GPU was used, resulting in a training time of about 14 minutes. However, if the GPU was not
used, the execution time of an epoch shot up to 1s 700 ms, causing the total training time to
reach almost 3.5 hours.

Results of the Convolutional-Recurrent Model

The convolutional-recurrent model achieves an RMSE of 5.70ºC on the training set and 9.85ºC
on the test set. This indicates little degree of overfitting in the model, although to a lesser
extent compared to the one-dimensional convolutional model. The fact that the error in the
test set has now been reduced to 9.85ºC means that it is below the measurement error of the
outlet pyrometer, which ranges between 10ºC and 20ºC, thereby enabling its usage within the
RL environment (the error in the test set for the one-dimensional model was almost twice as
high, exceeding the pyrometer uncertainty threshold). Figure 4.5 shows some predictions of the
temperature profiles obtained with the convolutional-recurrent model for both the training and
test sets.

Figure 4.5: Comparison between the simulated temperature profiles using the FE model and
those predicted using the convolutional-recurrent model for two observations from the test set
(first column) and two observations from the training set (second column).
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Chapter 5

Optimizing the Energy Consumption
of the Induction Furnace

This chapter addresses the third phase of the project, which aims to introduce a proof-of-
concept RL framework to optimize the energy consumption of GSW’s induction furnace during
the billets’ heating process. Specifically, it outlines how a typical DQN-based RL scheme is
tailored to the problem being studied by providing a description of its key components, such as
the environment, the agent, the state space, the action space, and the reward system, among
others. Furthermore, the chapter shows some preliminary results obtained for the resulfurized
family of billets and discusses how to interpret them.

It should be noted that the ultimate purpose of this third phase is not to provide a definitive
solution to the problem, but rather to serve as groundwork for the development of a RL-based
framework to be enhanced in later phases of the project. Indeed, meaningful results cannot be
delivered until GSW has fully defined the requirements and strategy, the FE model has been
improved by incorporating the thermal losses of the inductors, and the ML model that plays
the role of the virtual environment in the RL framework has been retrained with synthetic data.
Thus, the goal of this chapter is to describe this framework, outline the workflow, and provide
an example of how some preliminary results would be interpreted for a specific family of billets
(namely, the resulfurized family). Hence, the results presented and analyzed in this chapter are
neither binding nor global, but serve as a proof of concept of what could be achieved using the
proposed methodology.

5.1 Configuration of the Reinforcement Learning Framework

When configuring a RL framework, it is necessary to determine who is going to play the role of
each of its basic elements in the problem being studied. The first step involves identifying the
agent and the environment. In this research, a DQL approach has been employed to tackle the
RL problem, and therefore, the agent is represented by a DQN, as mentioned in Section 2.3.
On the other hand, the environment with which the agent interacts is a virtual prototype of
GSW’s real induction furnace, and it is emulated by the ML model that combines convolutional
and recurrent neural networks (see Section 4.2.2). This ML model is preferred over the one
based exclusively on CNNs because of its higher generalization capability (the one-dimensional
convolutional model had a higher variance). Figure 5.1 shows the structure of the proposed RL
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framework, particularized to the problem under study.

Figure 5.1: Structure of the proposed RL framework particularized to the problem under study.

Once the agent and the environment have been established, the next step is to determine the
objective to be pursued by the agent when making decisions (e.g., in the context of chess, the
goal would be to achieve a checkmate against the opponent’s king).

Figure 5.2: Target temperature profile of the DQN agent. The shaded curves correspond to the
(simulated) temperature profiles associated with the billets belonging to the resulfurized family,
while the thick red curve represents the average temperature profile of the resulfurized billets.
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In the absence of clear criteria defined by GSW, the target for the DQN agent is set to discover
states (or operating conditions, see Section 5.1.1) whose associated temperature profiles are as
close as possible to the average temperature profile of the billets belonging to the resulfurized
family. This approach, which is quite conservative as too hot or too cold temperature profiles are
avoided, guarantees that there is no prominent bias. Figure 5.2 shows the target temperature
profile along with the simulated temperature profiles of the resulfurized billets.

Remark 3 It is worth highlighting that the temperature profile set as the agent’s target is indica-
tive, meaning that the temperature profiles associated with the new states found by the agent are
not required to exactly match it. Indeed, a temperature profile with minor upward or downward
temperature variations remains equally valid as long as it is similar to the target temperature
profile (two temperature profiles are considered similar if their RMSE is below 5ºC, as will be
further discussed in Section 5.1.3). Thus, there is a similarity margin encompassing all tem-
perature profiles whose RMSE with respect to the target temperature profile is below 5ºC, which
can be used by the agent to look for operating conditions that reduce energy consumption.

In addition to the agent, the environment, and the agent’s target, there are still some components
that have to be defined within a RL framework, namely: the state space, the action space, and
the reward system. These aspects are discussed in the following subsections.

5.1.1 State Space

Each state vector, which represents both the advance of the billet inside the induction furnace
and the heating pattern (the four time series accounting for the instantaneous powers of the four
inductor groups) applied to it, consists of 1000 values arranged in a 200× 5 matrix as follows:

st =


x1 x2 . . . x199 x200
p1,1 p1,2 . . . p1,199 p1,200
p2,1 p2,2 . . . p2,199 p2,200
p3,1 p3,2 . . . p3,199 p3,200
p4,1 p4,2 . . . p4,199 p4,200


T

,

where xi ≥ 0, with
∑200

i=1 xi = 40 (twice the furnace’s length), denotes the billet’s advance in the
i-th simulation step, measured in meters. Similarly, pj,i ∈ [0, 1000] denotes the instantaneous
power of the j-th group of inductors in the i-th simulation step, with j ∈ {1, 2, 3, 4}, and is
measured in kilowatts. The simulation has been configured to have 200 one-second steps, so
i ∈ {1, . . . , 200}. Moreover, the upper and lower bounds for the power have been agreed upon
with GSW.

Initial State

It should be noted that RL is an iterative process that requires an initial state from which
the agent can begin taking actions. Ideally, this initial state would be the null state (with all
its entries set to zero), so that the agent builds the optimal state based on the experience it
acquires. However, this presents two challenges, at least in this preliminary proof-of-concept:
one computational and another operational.

On the one hand, the computational challenge is directly related to the continuous nature of
the space state. Indeed, the fact that the state space is continuous and not discrete implies
that, if starting from the null state, the agent would require numerous iterations and a very
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fine granularity in the action space to be able to simulate a feasible and realistic state similar
to that of Figure 2.1 (excluding the pyrometer recordings, as they are not part of the operating
conditions). If reproducing a single state is already challenging, exploring the entire state space
becomes impractical without taking measures to reduce the computational cost.

On the other hand, the operational problem is that, if the agent is left to learn from scratch,
it may learn operating conditions that cannot be applied to billets in GSW’s furnace, either
because they require higher working powers or because they are operationally unfeasible, for
instance, requiring equipment that can adjust the powers in a faster and more local way.

Figure 5.3: Heating pattern associated with the initial state (thick dashed blue line), which
serves as the starting point for taking actions in the RL model. It corresponds to the average
heating pattern applied by GSW to the resulfurized billet family, shown as shaded curves.

Therefore, in the absence once again of a definite strategy, the average of the operating conditions
currently applied by GSW when heating the resulfurized billets has been chosen to be the
initial state from which the agent can begin taking actions and interacting with the virtual
environment. The main reason to follow this criterion is that, although it limits the optimization
process by restricting it to a very specific area of the state space (in some way, it starts from
a very specific state, characteristic of the resulfurized family), it guarantees that the operating
conditions discovered by the agent are feasible in GSW’s furnace or at least are similar to current
practices (setting upper limits for the instantaneous power, of course). Figure 5.3 shows the
heating pattern associated with this initial state (the advance of the billet inside the furnace is
not shown).
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Based on the foregoing, it is worth highlighting that the ultimate goal is not to look for the
pattern that optimizes the overall billet heating process, but rather to use the RL framework
to find actions that lead to new operating conditions that reduce energy consumption. In the
particular case of the illustrative example at hand, the aim is to use the proposed RL-based
methodology to enhance the operating conditions that GSW currently uses for heating billets of
the resulfurized family, seeking how to modify them to reduce energy consumption, rather than
finding a global optimal pattern for that family (at least with the current state of the research).

5.1.2 Action Space

One of the challenges of the problem being studied is that the state space is continuous (e.g., the
instantaneous power of the inductors can take any value between 0 and 1000 kW). Consequently,
the space of possible actions is also continuous. For instance, an action could consist of increasing
the power of a group of inductors at a given instant by 10 kW, 10.1 kW, 10.11 kW, 10.111 kW,
and so on, with the theoretical possibility of infinitely making small increments, even though
these actions would be indistinguishable in real life. Moreover, each of these actions can be
taken instantaneously at each of the 200 steps of the simulation, unveiling the complexity of
working with a continuous action space.

In order to reduce the computational cost and develop a feasible RL model, the action space has
been discretized. Furthermore, in this preliminary proof of concept, the billet’s advance pattern
inside the furnace has been kept intact, so that the actions are applied exclusively to the heating
patterns (time series of the instantaneous power of the four inductor groups). Specifically, the
actions have been considered to have a granularity of 20 simulation steps, i.e., instead of being
applied instantaneously, they are applied as a whole in batches of 20 contiguous steps.

Figure 5.4: Some discretized actions applied on a billet heating pattern.
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It has been initially agreed with GSW that the agent can adjust the power of the inductor
groups separately in batches of 20 steps by means of 5 operations: increasing or decreasing the
power by 10%, increasing or decreasing the power by 15%, and decreasing the power by 100%
(partially turning off the inductors). Considering that each time series consists of 200 steps and
actions are used to modify four power time series separately, the cardinality of the discretized
action space is (200/20) batches × 5 operations × 4 time series = 200 actions. Figure 5.4 shows
some examples of how these discretized actions that are available to the agent could be applied.

For instance, if the agent were to select an action that involves increasing the power of the
second group of inductors by 15% for the initial 20 steps, the environment’s current state, st,
would transition towards a new state, st+1, which would be expressed as follows:

st+1 =


x1 x2 . . . x20 x21 . . . x199 x200
p1,1 p1,2 . . . p1,20 p1,21 . . . p1,199 p1,200

1.15 · p2,1 1.15 · p2,2 . . . 1.15 · p2,20 p2,21 . . . p2,199 p2,200
p3,1 p3,2 . . . p3,20 p3,21 . . . p3,199 p3,200
p4,1 p4,2 . . . p4,20 p4,21 . . . p4,199 p4,200


T

.

5.1.3 Reward System

Once the agent has selected an action, the current state transitions to a new state, and then the
environment (the ML model) simulates the temperature profile associated with it. Right after
that, a reward is computed, which is later used to update the agent’s decision-making policy
and evaluate whether the selected action helps the agent move in the right direction and achieve
its goal. The reward in the problem under study has been defined so that it depends on both
the RMSE and the Pearson correlation coefficient between the temperature profile simulated by
the ML model and the target temperature profile, as well as the energy consumption. Formally,
the implemented reward function is expressed as follows:

rt =



−106 − RMSE(T obj., T st), if RMSE(T obj., T st) ≥ 25.

−104 − RMSE(T obj., T st), if RMSE(T obj., T st) ∈ [10, 25).

−103 − RMSE(T obj., T st), if RMSE(T obj., T st) ∈ [7, 10).

−102 − RMSE(T obj., T st), if RMSE(T obj., T st) ∈ [5, 7).

(100− Est) · ρ(T obj., T st), if RMSE(T obj., T st) < 5,

where RMSE(T obj., T st) and ρ(T obj., T st) are, respectively, the root mean squared error and the
Pearson correlation coefficient between the target temperature profile, T obj., and the temperature
profile simulated by the ML model (the RL environment) for the state st, T

st .

Remark 4 The energy consumption, measured in kilowatt-hours (kWh), has been calculated as
the sum of the area under the curve of the four time series accounting for the instantaneous
power of the four groups of inductors. Following the notation introduced in Section 5.1.1, the
energy consumption computation can be expressed as follows:

Est :=
1

3600

4∑
j=1

200∑
i=1

pj,i ·∆ti,

where ∆ti = 1s, ∀i ∈ {1, . . . , 200}, and 1
3600 is a conversion factor from kW-second to kW-hour.
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From the expression above, it follows that the reward increases as the RMSE decreases, so that
the highest rewards are assigned when it can be ensured that the simulated temperature profile
is very similar to the target profile. Specifically, the criterion initially agreed upon with GSW is
that two temperature profiles are very similar if the RMSE between them is less than 5ºC (it is
recalled that the pyrometer measurement error ranges between 10ºC and 20ºC, depending on the
temperature). Thus, the implemented reward system especially penalizes operating conditions
or states that result in temperature profiles with an RMSE greater than 5ºC, where the penalty
decreases as the threshold of an RMSE of 5ºC is approached.

This definition of the reward function encourages the agent to first focus on finding states that
result in temperature profiles very similar to the target. Only after this similarity criterion is
satisfied does the agent focus its efforts on reducing energy consumption. Indeed, when the
RMSE is less than 5ºC, the reward no longer depends on the RMSE, but becomes dependent
on both the energy consumption and the Pearson correlation coefficient between the target
and simulated temperature profiles. In particular, the reward becomes positive only when the
correlation coefficient is positive. Furthermore, it reaches its maximum value when, in addition
to the correlation being equal to 1, energy consumption is minimal. The correlation is included
as a correction factor to reward those temperature profiles that not only fulfill the RMSE
criterion, but also exhibit a strong positive correlation with the target temperature profile.

5.1.4 Deep Q-Network Architecture and Training

Once all the components of the RL framework have been defined, the next step is to train
the DQN representing the agent. Specifically, the implemented DQN is an FCNN that takes
the state or operating conditions as inputs, and outputs the Q-values associated with each of
the 200 possible actions within the action space. Consequently, the output layer, which has
a linear activation function, is formed by 200 neurons, each one representing a specific action.
In addition, the DQN includes four dense hidden layers with ReLU activation and He-weight
initialization [61] that are composed, respectively, by 1024, 1024, 512, and 256 neurons.

Regarding the training phase, the MSE has been used as the loss function, and Adam has been
used as the optimizer. Moreover, a learning rate (step size of the gradient descent algorithm)
of 0.01 and a batch size of 64 have been used. The learning process has been executed for 500
episodes, each of which involves a maximum of 100 weight updates if the stopping criterion
is not met. In particular, the stopping criterion has been set to achieve a positive reward
and an energy consumption below 10 kWh, which is slightly lower than the minimum energy
consumption observed among the resulfurized family. Therefore, the DQN weights have been
dynamically updated up to a total of 50000 times. The average execution time per episode
using the NVIDIA GPU is approximately 9 seconds, resulting in a total training time of 1 hour
and 15 minutes.

5.2 Analysis of Reinforcement Learning-Driven Results

Once the DQN has been trained, the outcome is a decision-making policy (see Section 2.3).
The procedure to take advantage of this policy in order to identify heating patterns that reduce
energy consumption is as follows. Firstly, a steel billet is selected, and the current operating
conditions used by GSW in the factory for heating that specific billet are set as the initial
state. Right after that, the learnt decision-making policy is iteratively used to select actions
following an epsilon-greedy criterion (see Equation 2.12) and modify this initial state. Ideally,
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this epsilon-greedy criterion should assign a low probability to randomly exploring the action
space to encourage the agent to exploit the learnt decision-making policy. This iterative process
is executed for a certain number of episodes, where the number of actions selected in each of
them varies based on whether the stopping criterion is met or not.

If everything goes according to plan, the outcome of this iterative process is potentially a new
state or set of operating conditions that could exhibit reduced energy consumption, with its
associated temperature profile being very similar to the target profile. The optimized state
corresponds to the state that has achieved the highest reward throughout the iterative process.

Figure 5.5: Results of energy consumption optimization for billet with ID 6211341 in the re-
sulfurized family. The heating patterns are shown in the first two rows, where the gray curve
represents the currently used pattern, and the green curve represents the optimized one obtained
using the proposed RL pipeline. In the last row, the target temperature profile (red curve) is
compared with the current (gray curve) and optimized (green curve) temperature profiles.
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Figure 5.6: Results of energy consumption optimization for billet 6211354 in the resulfurized
family. The arrangement and meaning of the different curves are the same as in Figure 5.5.

The aforementioned RL pipeline has been tested on the operating conditions related to the
heating of the billets belonging to the resulfurized family, as indicated in this chapter’s intro-
duction. In particular, a total of 300 episodes have been executed in the iterative process. In
each of them, the initial state is reset, and a maximum of 1000 actions are sequentially se-
lected based on the learnt policy (they are less if the stopping criterion is met, which, as in
the training phase, consists of obtaining a positive reward and an energy consumption below
10 kWh). Furthermore, a probability of 0.2 has been set for random exploration, which means
that in 80% of the cases the action is chosen based on the learnt policy and only in 20% of
the cases it is chosen at random. It is worth mentioning that the reason to choose a non-zero
probability of random exploration is that it allows for better coverage of the action space and
prevents stagnation. Figure 5.5 and Figure 5.6 show the results obtained when applying the
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proposed methodology to the operating conditions of two billets belonging to the resulfurized
family, serving as illustrative examples.

On the one hand, Figure 5.5 illustrates a situation where the operating conditions currently
applied by GSW (gray curves) result in a temperature profile that is “colder” than the target
profile. Consequently, in this case, the challenge for the RL agent is to look for a state with an
associated temperature profile as hot as the target profile, while reducing energy consumption if
possible. It is observed that the RL agent has indeed been able to find a new state (green curves)
with an associated temperature profile that is quite similar to the target profile (quantitatively,
the RMSE is 3.48ºC). Moreover, this new state is associated with an energy consumption of
13.05 kWh compared to the 17.2 kWh of the initial state, indicating energy savings.

Specifically, the green curves in the first two rows of Figure 5.5 show one way in which the
heating pattern currently used by GSW to heat the billet with ID 6211341 could be modified
to achieve the desired temperature profile in a more energy-efficient manner. For instance,
the plots suggest that this can be potentially achieved by slightly increasing the power of the
second and fourth groups of inductors during the first 75 seconds, while delaying the second
activation of the fourth group of inductors, and almost completely deactivating the third group
of inductors once the billet has been inside the furnace for 50 seconds.

On the other hand, Figure 5.6 shows the opposite situation, i.e., when the initial operating
conditions lead to a temperature profile that is “hotter” than the target temperature profile,
suggesting that the heating pattern currently used by GSW to heat the billet with ID 6211354
uses too high powers in some inductor groups, presumably consuming more energy than nec-
essary. Therefore, it is reasonable to expect that the RL agent is going to be able to find new
operating conditions with lower powers that allow reaching the target temperature profile while
consuming less energy.

The heating pattern identified by the RL agent, represented by the green curves in the first two
rows of Figure 5.6, suggests that it is not necessary to apply as much power to the fourth group
of inductors to reach the desired temperature profile. In fact, the plots indicate that simply
reducing the power of the fourth inductor group to almost half in the first 75 seconds and
temporally turning off its inductors for approximately 25 seconds prior to the third activation
not only still allows to obtain a profile similar to the target (the RMSE between the target
profile and that of the new state is 4.76°C), but also allows to do so while consuming less
energy. Specifically, the consumption of this new state is 12.97 kWh, whereas the consumption
associated with the initial state was 17.72 kWh.

Thus far, the results for two billets from the resulfurized family have been analyzed and discussed
as examples to illustrate how the results obtained with the proposed RL pipeline would be
interpreted. To complete this information, Figure 5.7 presents a summary of the results obtained
for all 18 billets within the resulfurized family. Figure 5.7a shows the energy consumption
associated with the operating conditions currently used by GSW to heat each billet (dark green),
as well as the energy consumption associated with the optimized states discovered through the
RL pipeline (light green). Similarly, Figure 5.7b shows the RMSE between the temperature
profile associated with the operating conditions employed by GSW to heat each billet and the
target temperature profile (dark red), along with the RMSE between the target temperature
profile and the temperature profile associated with the optimized states (light red).
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(a) Comparison of energy consumption between current and optimized states.

(b) Comparison of RMSE between current and optimized temperature profiles.

Figure 5.7: Results of energy consumption optimization obtained using the proposed RL pipeline
for the 18 billets that make up the resulfurized family.

It is observed in Figure 5.7a that the RL agent successfully identifies operating conditions that
reduce energy consumption compared to the conditions currently used at GSW for all billets
in the resulfurized family. Furthermore, Figure 5.7b shows that the RMSE between the target
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temperature profile and the temperature profiles associated with these optimized states is always
below the similarity threshold of 5ºC. This means that the states found by the agent not only
result in lower energy consumption, but also generate temperature profiles very similar to the
desired one.

However, it is seen for some billets that the RMSE corresponding to the most energetically
favorable states found by the RL agent is higher than the RMSE obtained when considering the
initial states. This means that, in certain cases, the reduction of energy consumption comes at
the expense of the similarity between the target temperature profile and the one associated with
the optimized state. Hence, although the optimized profiles still meet the established similarity
criterion, the RL agent should ideally seek new operating conditions that reduce energy without
worsening the RMSE associated with the initial state.

The latter requires caution when quantifying the reduction in energy consumption, since part of
this reduction could have been achieved at the expense of a worsening in the RMSE towards a
“colder” temperature profile (which presumably requires less power and, therefore, less energy),
even within the established similarity margin. However, while these energy consumption quan-
titative values may not be entirely meaningful, they do suggest that the proposed methodology
allows for finding energy-efficient operating conditions, even though the reduction in energy
consumption may not be as high as reported in Figure 5.7a. Indeed, the impact of a worsening
in the RMSE is not expected to be significant enough so that the agent would be suddenly
unable to find operating conditions that cut down on energy consumption.

In short, despite the assumptions made, the lack of a fully defined strategy established by GSW,
and the limitations in the performance of the FE and ML models, it can be concluded that the
proposed RL pipeline allows for finding more energy-efficient billet heating operating condi-
tions than those currently used by GSW, while achieving temperature profiles at the induction
furnace’s exit very similar to the target one (at least for the resulfurized family). However, it
is expected that in future phases of the project, when the strategy and similarity criteria are
better defined and more data is available to enhance the ML model (RL environment), similar
results could be obtained for the remaining billet families.



Chapter 6

Conclusions and Future Work

This master’s thesis applies AI to address one of the greatest challenges that the industrial
sector has faced in recent years: the energy crisis. Specifically, this research focuses on one of
the most complex metallurgical processes, the wire rod steel rolling process, which results in a
material widely used in cable manufacturing and construction. More precisely, the project deals
with the heating phase within this process, which is a really energy-consuming stage where steel
billets (semi-finished steel products) undergo certain heating treatments in an induction furnace
to enable their subsequent deformation and shaping.

In this master’s thesis, a proof of concept is conducted to assess a methodology that combines
FE numerical modeling, ML techniques, and RL in order to optimize the energy consumption of
an induction furnace located at Global Steel Wire (GSW), a steelmaker situated in Santander
(Cantabria, Spain). The details and conclusions related to each of the three major phases into
which the project is divided are outlined in what follows.

In the first phase (addressed in Chapter 3), a FE digital twin of GSW’s induction furnace
has been developed that, although simplifying some physical processes, is capable of faithfully
simulating the heating process of the billets. Specifically, the model has been calibrated for
the resulfurized billet family, achieving RMSEs below 5ºC and Pearson correlation coefficients
exceeding 0.95 between the simulated temperature profiles and those recorded by GSW’s outlet
pyrometer. The main role of this FE model in the proposed workflow has been the generation
of background data, given its robustness and extrapolation capabilities.

In the second phase (discussed in Chapter 4), two ML models based on ANNs have been
implemented that are able to predict the temperature profiles of the billets at the furnace’s
exit in real time, leveraging the outcomes of the FE model developed in the previous phase. In
particular, a model combining one-dimensional CNNs and LSTMs has been implemented, which
yields an error slightly lower than 10ºC on the test set (below the measurement uncertainty of
the outlet pyrometer). The main role of this convolutional-recurrent ML model has been to
serve as a virtual environment for the induction furnace within a RL framework, something
that would be unfeasible for the FE model due to its long simulation times.

Finally, in the third phase (covered in Chapter 5), a DQL framework has been introduced to
identify billet heating patterns that reduce the energy consumption of GSW’s induction furnace.
Specifically, the agent is a DQN, and the virtual environment is the convolutional-recurrent ML
model developed in the second phase. A preliminary proof of concept has been conducted to test
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this pipeline using the resulfurized billet family. The results show that the methodology allows
for finding heating patterns that reduce energy consumption while maintaining a temperature
profile similar to the target one, although it is worth noting that the quantitative interpretability
of the results is limited by the absence of a clear strategy and quality criteria.

Nevertheless, the proposed methodology has some limitations that would be interesting to ad-
dress in future work, for instance:

• The FE model does not take into account the thermal losses of the inductors. How-
ever, there is already a group of project members working to develop and implement a
theoretical electromagnetic model in the digital twin that incorporates these losses.

• The FE model uses the average temperature recorded by the inlet pyrometer as a boundary
condition. Thus, it is possible to enhance the FE model by including the inlet temperature
time series as an additional input. This modification is expected to be useful to reproduce
the cold spots shown in Figure 3.3.

• The dataset provided by GSW (consisting of the heating operating conditions for 217
billets) is insufficient to train the ML models. It would be interesting to expand the
training set by generating synthetic samples using the FE model.

• MLmodels are somewhat overfitted, especially the model based on one-dimensional CNNs.
To mitigate this, two potential solutions could be: (1) expanding the training set, as
suggested in the previous item; and (2) exploring alternative ML models that manage to
reduce variance.

• The strategy for applying the RL pipeline is not fully defined. Indeed, it would be nec-
essary for GSW to provide further guidelines to, for instance: study how to define both
the initial state and the target temperature profile to avoid biases, look for an appro-
priate granularity of the action space that is feasible to apply in the factory, or refine
the similarity criterion between temperature profiles to enhance the interpretability of the
quantitative results.

In spite of these limitations, it can be concluded that the results obtained in this preliminary
proof of concept are promising and demonstrate the usefulness of the methodology proposed in
this master’s thesis to reduce energy consumption in the billets’ heating process within GSW’s
induction furnace. Furthermore, it is expected that in the not-so-distant future, the introduced
workflow can be further enhanced by incorporating the improvements indicated above, which
would presumably lead to more significant results that could enable the implementation of this
framework in GSW’s real-life factory. Moreover, this proof of concept paves the way for the
application of the proposed methodology in other industrial processes with similar conditions,
such as glass manufacturing, metal casting, or petroleum refining, among others.
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