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Psychiatric polygenic risk as a predictor of COVID-19 risk and
severity: insight into the genetic overlap between
schizophrenia and COVID-19
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Despite the high contagion and mortality rates that have accompanied the coronavirus disease-19 (COVID-19) pandemic, the
clinical presentation of the syndrome varies greatly from one individual to another. Potential host factors that accompany greater
risk from COVID-19 have been sought and schizophrenia (SCZ) patients seem to present more severe COVID-19 than control
counterparts, with certain gene expression similarities between psychiatric and COVID-19 patients reported. We used summary
statistics from the last SCZ, bipolar disorder (BD), and depression (DEP) meta-analyses available on the Psychiatric Genomics
Consortium webpage to calculate polygenic risk scores (PRSs) for a target sample of 11,977 COVID-19 cases and 5943 subjects with
unknown COVID-19 status. Linkage disequilibrium score (LDSC) regression analysis was performed when positive associations were
obtained from the PRS analysis. The SCZ PRS was a significant predictor in the case/control, symptomatic/asymptomatic, and
hospitalization/no hospitalization analyses in the total and female samples; and of symptomatic/asymptomatic status in men. No
significant associations were found for the BD or DEP PRS or in the LDSC regression analysis. SNP-based genetic risk for SCZ, but not
for BD or DEP, may be associated with higher risk of SARS-CoV-2 infection and COVID-19 severity, especially among women;
however, predictive accuracy barely exceeded chance level. We believe that the inclusion of sexual loci and rare variations in the
analysis of genomic overlap between SCZ and COVID-19 will help to elucidate the genetic commonalities between these
conditions.
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INTRODUCTION
The severe acute respiratory syndrome or coronavirus disease-19
(COVID-19) caused by the novel coronavirus SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2) turned into the worst
global health problem during 2020 and 2021 given the rapid
spread of the virus, and the severity and mortality of the
syndrome. After recognition of COVID-19 as a pandemic by the
World Health Organization (WHO) on March 11, 2020, researchers
all over the world have attempted to characterize the syndrome’s
epidemiology and to identify aggravating factors that may be
highly diverse in nature.
Despite the high contagion and mortality rates, not everyone

exposed to SARS-CoV-2 is affected the same way, with some
people even presenting no symptoms at all after infection.
Growing evidence points to certain groups being at higher risk of

a severe COVID-19 outcome, such as the elderly, people with
previous health conditions, men, and those with a high body mass
index [1–5]. Thus, the identification of individual characteristics
that correspond with increased risk is one of the greatest and
most important challenges in COVID-19 research.
Certain previous clinical comorbidities that have been linked to

worse COVID-19 outcomes and persistent or long COVID-19, such
as cardiovascular disease (CVD), respiratory diseases, metabolic
disorders, gastrointestinal symptoms, systemic inflammation, or
autoimmunity, are often reported among psychiatric probands
[6–12]. However, evidence on the prevalence of COVID-19, just as
of COVID-19 severity and outcome, among psychiatric patients is
scarce. Some authors have reported increased prevalence of
COVID-19 among schizophrenia (SCZ) patients, with a higher fatal
outcome frequency in 65- to 80-year-old patients, and higher
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intensive care unit (UCI) admission rates in patients younger than
55, than in non-psychiatric COVID-19 patients in the same age
ranges [7, 8, 13].
Although not meeting the criteria for the abovementioned

medical conditions that accompany a greater risk of COVID-19, the
immunological dysfunctions usually reported in psychiatric
disorders may increase vulnerability to COVID-19 among this
population. SCZ, major depressive disorder (MDD) and bipolar
disorder (BD), among other conditions, have been associated with
a persistent inflammatory state, with increased pro-inflammatory
markers, such as C-reactive protein, CRP; interleukin (IL)-1β and IL-
6; tumor necrosis factor (TNF)-α; transforming growth factor (TFG)-
β; interferon (IFN)-γ; or vascular endothelial growth factor (VEGF)
[14–22]. Impaired adaptive immunity and autoimmunity have also
been reported in these three psychiatric conditions [23–28].
Meanwhile, COVID-19 has been found to directly or indirectly

induce the abovementioned medical conditions and also patho-
physiological mechanisms reported to be more prevalent among
psychiatric subjects than healthy controls (such as chronic
systemic inflammation and neuroinflammation, microbiome dis-
ruptions, or increased oxidative stress) [9–11, 29–35]. Furthermore,
certain medications used in the treatment of psychosis or affective
disorders have been proved to be useful in preventing
neurotropic adverse events caused by SARS-CoV-2 [36, 37].
However, despite the pathophysiological parallels observed in
certain psychiatric disorders and COVID-19, we do not know to
what extent they might be due to shared genetic risk factors.
Potential genetic host factors that accompany greater risk from

COVID-19 have been sought via such initiatives as the COVID-19
Host Genetics Initiative (COVID-19 HGI), an international research
consortium that studies the role of human genetics in SARS-CoV-2
infection and COVID-19 disease response. Besides the implication
of ACE2 and TMPRSS2 (which code for the main proteins involved
in SARS-CoV-2 infection) stemming from the results of candidate
gene and gene expression studies [38–41], genome-wide associa-
tion studies (GWASs) have reported consistent evidence on the
involvement of a cluster of genes in the 3p21.31 region (SLC6A20,
LZTFL1, CCR9, FYCO1, CXCR6 and XCR1), with SLC6A20 having been
proposed as a candidate gene for this region; and the AB0 blood
type locus at chromosome 9 (9q34.2) [42–46]. In silico analysis [47]
has also implicated variations of the major histocompatibility
complex (MHC) class I genes (human leukocyte antigen (HLA)
genes) in susceptibility to and severity of COVID-19 [47].
Genetic approaches to the study of psychiatric disorders have

associated B-lymphocyte activity and MHC loci with SCZ and BD
through non-synonymous, untranslated variant regions (UTR), and
gene enhancer variants [48–50]; and genetic variants involved in
inflammatory pathways have been reported as sources of
convergence in the etiology of depression (DEP), BD, and SCZ
[51]. Beyond risk involving genes with an immune function, others
with different biological functions have been identified as
common risk factors for COVID-19 and different psychiatric
disorders. Analysis of GWASs and whole-genome sequencing
(WGS) data in COVID-19 and psychiatric patients revealed 20 and
32 genes, out of 146 significant COVID-19 genes, to be associated
with BD and SCZ, respectively [52]. In addition, analysis of
peripheral blood mononuclear cell (PBMC) transcriptomes in these
three conditions revealed 39 and 22 dysregulated genes in COVID-
19 patients, and in BD and SCZ, respectively, as well as multiple
shared biological pathways and processes after enrichment
analysis. Furthermore, COVID-19 could result in the perturbed
expression of genes involved in SCZ and BD [52].
In this study, we construct polygenic risk scores (PRSs) from SCZ,

BD, and DEP risk alleles and test their predictive ability for COVID-
19 susceptibility and severity. Given that different biological
functions that go beyond brain function and even the immune
system [53–55] have been implicated in the pathophysiology of
neuropsychiatric disorders, and that some well-characterized

genes may have functions that as yet remain unknown, we
analyzed the predictive capability of global PRSs that gathered
together common variants across the whole genome. We also
analyzed the predictive power of a more specific PRS, built from
variants of genes with known immune function when significance
was reached in the global PRS analyses. We expected to find that
both the global and immune PRSs predict SARS-CoV-2 infection
and COVID-19 severity, symptomatology, and need for
hospitalization.

METHODS AND MATERIALS
Detailed information on recruitment and the genotyping and quality
control procedures are described elsewhere [56].

Subjects—target sample
Our COVID-19 cohort comprised 11,977 subjects with a positive diagnosis
for COVID-19 (PCR-based test or local clinical and laboratory procedures)
from 34 Spanish hospitals in 25 different cities (See Table S1 in Cruz et al.
[56] for a list of hospitals or research centers with their respective samples).
All the hospitals formed part of the Spanish COalition to Unlock Research
on host GEnetics on COVID-19 (SCOURGE). The study samples and data
were collected by the participating centers through their respective
biobanks after informed consent. The whole project was approved by the
Galician Ethical Committee, ref.: 2020/197. An additional 5943 people with
unknown COVID-19 status were included as the control sample: 3437 from
the Spanish DNA biobank (https://www.bancoadn.org) and 2506 samples
from the GR@CE consortium [57]. Study data were collected and managed
using the REDCap software at the Centro de Investigación Biomédica en Red
(CIBER) [58, 59].

Genotype data, quality control and imputation
Details of the genotyping of the samples, quality control procedures and
imputation process are described in the main study [56]. Given that
imputation was conducted based on the TOPMed version r2 reference
panel (GRCh38) [60], data were realigned to the version GRCh37 in order to
match it with the discovery sample data using the UCSC Genome Browser
[61] (http://genome.ucsc.edu). We further removed imputed variants with
a call rate < 98%.

Polygenic risk score (PRS) analysis
In the present study we followed a polygenic scoring approach. Briefly, a
PRS is a weighted sum of the risk alleles associated with a trait that an
individual carries and provides an estimate of the genetic liability for that
given trait. Effect sizes for each SNP are retrieved from GWAS summary
statistics of a discovery sample and are used to build the PRS, which is
applied to a target sample for which genotype data is available. Here, PRS
were built for SCZ, BD and DEP using summary statistics from the PGC
[50, 62–64] (discovery sample) and applied to our COVID-19 cohort [56]
(target sample), resulting in a score for each individual and trait. From
these scores we identified which individuals were at a higher or lower
genetic risk of developing either SCZ, BD or DEP and explored whether this
genetic liability was associated to a higher risk of developing severe
COVID-19 disease.

Composition of the polygenic risk scores—discovery sample
The discovery sample for SCZ PRS estimation included those individuals
with European ancestry from the Waive 3 Schizophrenia Meta-analysis [62],
which constitutes the SCZ GWAS data most recently uploaded to the
Psychiatric Genomics Consortium (PGC) webpage (https://
www.med.unc.edu/pgc/download-results/). The Waive 3 Schizophrenia
Meta-analysis summary statistics were downloaded from the PGC
webpage. European individuals accounted for approximately 80% of the
total sample of 161,405 unrelated individuals from 90 different cohorts
(67,390 patients with SCZ or schizoaffective disorder and 94,015 healthy
controls) [62]. A full clinical characterization of the Waive 3 SCZ sample can
be seen in the supplementary material of Trubetskoy et al. [62]
(Supplementary Information; Case-control sample descriptions).
For the BD PRS, the discovery sample was formed of 57 BD cohorts

recruited in Europe, Australia, and North America consisting of 41,917
cases diagnosed with type I or type II BD and 371,549 controls of European
descent. The summary statistics were downloaded from the PGC webpage
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and corresponded to the results of the largest GWAS and most recent
meta-analysis of BD [50]. A description of the BD samples can be seen in
the supplementary material of Mullins, et al., 2021 (Supplementary Note,
Sample Descriptions) [50].
The discovery sample for the DEP PRS was formed of 33 cohorts from

the Psychiatric Genomics Consortium (excluding the UK Biobank and
23andMe data) [63] and the broad DEP phenotype in the full release of the
UK Biobank [64]. The total sample was formed of 246,363 cases and
561,190 controls. DEP summary statistics were also downloaded from the
PGC webpage. Clinical description of the samples studied in the published
DEP GWAS can be seen in Howard et al. [64] (“Methods” and
Supplementary information, Supplementary Note 2).
Using the summary statistics from the GWASs of the three psychiatric

disorders, we derived PRSs using the PRS-CS software [65], which uses all
SNPs in a Bayesian framework, inferring posterior effect sizes under
continuous shrinkage (CS) priors, making use of a linkage disequilibrium
(LD) reference panel, in this case the 1000 Genomes Project LD reference
panel for European ancestry (https://github.com/getian107/PRScs). Instead
of setting a specific shrinkage parameter, we carried out a grid search (e.g.,
phi = 1e−6, 1e−4, 1e−2, 1) to find the most appropriate phi value for the
dataset, as recommended in the software manual to improve the
predictive performance. We set 10,000 as the number of Markov chain
Monte Carlo (MCMC) iterations, and the default values for the remaining
parameters.

Polygenic risk score (PRS) statistical analysis
Global PRSs. Logistic regression models were used to analyze the capacity
of the calculated PRSs to predict SARS-CoV-2 infection (RISK analysis), the
presence or absence of symptoms (SYMP), having been hospitalized or not
(HOSP), and critical status (CRIT). Given that COVID-19 severity was assessed
in the cases using a five-level severity scale (0–4), as described elsewhere
(see Table 1 in Cruz et al. [56]), cases were considered critical if their
severity score was 4. We added sex, age, and the first 10 principal
components as adjustment variables in the models. To compare the
variance proportions explained by the different PRSs we estimated a
pseudo R2 on the liability scale, as described in Lee et al. [66]. The
prevalence of cases and symptomatic cases were considered to be 9.9%
and 6.9%, respectively, as reported at the end of 2020 by the Spanish
government (https://www.mscbs.gob.es/gabinetePrensa/notaPrensa/pdf/
15.12151220163348113.pdf). The prevalence of both hospitalization and
critical status were considered to be 0.5% [56]. These analyses were
performed with the R package, version 4.0.2. The same analyses were
performed after stratifying by sex, including age and the first 10 principal
components as adjustment variables.
Logistic regression analysis was also performed classifying the PRSs in

deciles to estimate the corresponding odds ratio (OR) considering a
confidence interval (CI) of 95%.
We estimated the area under the receiver operating characteristic (ROC)

curve (the AUC) to evaluate the performance of the PRSs as predictors of
each of the dependent variables by comparing the AUC when including
and excluding the PRSs in the covariate model. OR and AUC were
calculated when significance was reached after applying a multiple
comparison correction strategy.

Immune PRS. Given the growing evidence of immune dysfunction
playing a role among psychiatric patients, we calculated a PRS constructed
from variants of genes with an established immune role when associations
had been obtained with the global PRSs. In this way we aimed to narrow
down the genetic burden of the PRS and analyze whether immune-related
variants were responsible for the observed prediction. We used MAGMA
v1.08b to annotate the SNPs in common between the SCOURGE data and
the SCZ/DEP/BD summary statistics, and selected those SNPs in genes that
are involved in immune pathways according to KEGG pathways (Kyoto
Encyclopedia of Genes and Genomes; https://www.genome.jp/kegg/
pathway.html#organismal). Five kb upstream and downstream windows
were added to the start and end of these immune-related genes. The same
analyses described above were performed for the resultant immune PRS.
We applied a multiple-comparison correction considering the 4 tests

(RISK, SYMP, HOSP, and CRIT,) and 3 PRSs (SCZ, BD, and DEP): 0.05/
12= 0.004. Given that some of these tests overlapped in some way (RISK
and SYMP: a large proportion of cases were symptomatic; HOSP and CRIT: a
large proportion of critical cases were hospitalized), we chose a rather
conservative approach when correcting for significance.

Genetic correlation (rG) analysis: linkage disequilibrium score
(LDSC) regression
We performed post-hoc LD score (LDSC) regression analysis [67] in order to
estimate the correlation between the genomic risks for each of the three
psychiatric disorders and the COVID-19 variables when significance was
reached in the analysis of any of the three global PRSs. The purpose of this
was to seek confirmation of the results obtained by PRS analysis through a
different approach, assessing the genomic risk overlap between different
phenotypes [68].

RESULTS
Sample, genotype and imputed data
The final target sample was formed by 15,045 individuals: 9371
COVID-19 positive cases (5028 female, 53.7%; mean age = 62.6)
and 5674 individuals with unknown COVID-19 status added as a
control population (2752 female, 46.3%; mean age = 53.1). The
sociodemographic and clinical characteristics of the SCOURGE
sample can be seen elsewhere (Table 2 in Cruz et al. [56]). After
imputation and QC, 6,317,562 genetic markers were kept.

Polygenic risk scores
Schizophrenia (SCZ). The global PRS was constructed from
708,399 variants. Table 1 shows the results of the analyses in
which significance was reached (RISK, SYMP, and HOSP, p < 0.004).
The associations found in the total sample were maintained in the
female sample, while only SYMP analysis was significant in the
male sample. The ORs by the decile of the estimated PRS for case/
control, symptomatic/asymptomatic and hospitalization/no hospi-
talization are shown in Fig. 1. The AUC did not vary when
comparing covariate models with and without PRS in the

Table 1. Results of the global SCZ PRS analysis in the total and sex-
stratified samples.

β SE P R2 PRS R2

Total sample

RISK (N= 15,047; 5674 controls and 9373 cases)

96,906.49 26,991.08 3.30E−04* 0.199 0.002

SYMP (N= 14,885; 6295 controls and 8590 cases)

125,266.50 26,527.47 2.33E−06* 0.170 0.002

HOSP (N= 15,024; 9056 controls and 5968 cases)

100,892.5 29,053.52 5.15E−04* 0.417 6E−04

Female sample

RISK (N= 7658; 2630 controls and 5028 cases)

128,303.2 38,597.79 8.87E−04* 0.182 0.001

SYMP (N= 7658; 3073 controls and 4483 cases)

154,087.1 37,285.84 3.59E−05* 0.148 0.007

HOSP (N= 7645; 5115 controls and 7645 cases)

127,810.40 42,244.92 2.48E−03* 0.397 0.001

Male sample

RISK (N= 7387; 3044 controls and 4343 cases)

83,947.24 39,023.89 0.032 0.275 0.003

SYMP (N= 7387; 3222 controls and 4105 cases)

115,629.3 38,890.53 0.003* 0.273 0.005

HOSP (N= 7377; 3941 controls and 3436 cases)

84,937.02 40,377.29 0.035 0.280 −6E−04

β beta value, SE standard error, R2 Nagelkerke R2 on the liability scale for
the covariate model, PRS R2 Nagelkerke R2 on the liability scale for the PRS
(PRS predictive performance).
Asterisks (*) represent significance after multiple-comparison correction
(p < 0.004).
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following cases: total sample (RISK AUC= 73.2%/73.2%; SYMP
AUC= 72.3%/72.2%; HOSP AUC= 81.4%/81.4%); female sample
(RISK AUC= 71.3%/71.2%; SYMP AUC= 70.0%/69.8%; HOSP AUC=
80.8%/80.8%); or male sample (SYMP AUC= 77.1%/77.1%).
Since significant associations were found with the global SCZ

PSR, in this case variants of genes involved in different immune
pathways were selected to construct the immune PRS. One
thousand and ten genes involved in immune pathways (KEGG
pathways) were present in the discovery and target sample data.
The immune PRS was built from 7,375 variants. No significant
association was reached in the total or sex-stratified samples.

Bipolar disorder (BD). The global BD PRS was formed from
707,450 variants. No analysis with the global BD PRS reported
significant results.

Depression (DEP). The global DEP PRS was formed from 699,966
variants. No significant associations were obtained.

Linkage disequilibrium score (LDSC) regression analysis
Given that the SCZ PRS was the only one for which associations
were obtained, we performed LDSC regression analysis for those
variables predicted by the SCZ PRS in the total sample. We
considered the GWAS results of COVID-19 case/control and
hospitalization/no hospitalization analyses [56]. Although

significant associations were found for the SCZ PRS in the SYMP
analysis, symptomatic/asymptomatic status was not analyzed in
the main GWAS [56], thus we did not have results for this analysis.
The analyses were also performed with the summary statistics
from the last COVID-19 HGI GWAS meta-analysis (https://
www.covid19hg.org/results/r7/). LDSC regression analyses did
not report significant genetic correlations between SCZ risk and
COVID-19 case/control or hospitalization/no hospitalization with
the summary statistics from Cruz et al. [56] or COVID-19 HGI GWAS
meta-analysis (See Supplementary Table 1). Given the lack of
significance in the LDSC regression analyses, performing Mende-
lian randomization for COVID-19 and SCZ genetic risks was not
justified.

DISCUSSION
In this study we analyzed the ability of PRSs built from SCZ, BD,
and DEP risk alleles to predict SARS-CoV-2 infection susceptibility,
the presence/absence of symptomatology, being hospitalized or
not, and COVID-19 critical status. We obtained significant
predictions for the global SCZ PRS in the case/control (RISK),
symptomatic/asymptomatic (SYMP), and hospitalization/no hospi-
talization (HOSP) analyses in the total sample, all of which were
maintained in the female only sample. Significant results were
obtained in the SYMP analysis in men. No significant associations

Fig. 1 Odds ratios (OR) by the decile of the global SCZ PRS. OR for A COVID-19 cases; B symptomatic COVID-19 cases; and C hospitalized
COVID-19 cases. Error bars represent 95% confidence intervals.
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were found for the immune SCZ PRS, or the global BD or DEP
PRSs. The LDSC regressions revealed a non-significant trend
towards genetic correlations between SCZ risk and COVID-19
case/control and hospitalization/no hospitalization.
The loss of significant associations for the immune SCZ PRS as

compared to the global SCZ PRS seems to point to a loss of
statistical power when considering only variants of immune-
related genes, and thus the involvement of a wider range of
functional categories with regards to the genetic overlap between
SCZ and COVID-19. Besides the immune dysfunction found in SCZ
patients [15, 23] and the association of SCZ risk with immune-
related genetic loci [48, 69], multiple medical conditions and
biological abnormalities that go beyond immune function may be
shared between SCZ [9, 33–35, 70, 71] and COVID-19 patients
[30, 72]. Transcriptomic markers have been reported to be shared
between COVID-19 and SCZ, implicating the dysregulation of 22
genes (only two of which are immune related) and multiple
biological pathways [52]. More importantly, 32 genes involved in a
variety of biological systems have been genome-wide associated
(P < 1E−06) with both COVID-19 and SCZ in WGS and GWAS
results [52].
We expected to obtain positive results in the LDSC regression

analysis for SCZ and COVID-19 given that PRS associations had
been found, and considering the genetic correlation between
COVID-19 and SCZ suggested by Moni et al. [52]. However, those
authors analyzed the overlap of differentially expressed genes in
COVID-19 and psychiatric patients, not the correlation of their
SNP-based risks. In addition, although both PRS and LDSC
regression analyses look for similarities in the genetic architecture
associated with two disorders, their approaches are qualitatively
different. This is particularly relevant in our study, where the effect
sizes used in the estimation of the different PRSs were posterior
effect sizes (see Methods), instead of the original ORs from the
summary statistics, which are those used in genetic correlation
analyses. Divergent results have been found for PRS and genetic
correlation analyses even when both traits studied were
psychiatric. As an example, although BD and SCZ have been
reported to be genetically correlated, an SCZ PRS does not seem
to predict first-episode psychosis among BD patients [73]. Thus,
although we cannot conclude that there is a SNP-based genetic
correlation between COVID-19 case/control or hospitalization/no
hospitalization, and SCZ risk, a polygenic score constructed from
SCZ weighted risk common variants is capable of predicting these
COVID-19 variables together with symptomatic/asymptomatic
status.
Although SNP-based risk for SCZ seems to be identical for

females and males, this is not the case for COVID-19 risk and
severity, which appear to have greater genetic burden in males
[56]. Thus, we decided to stratify the PRS analyses by sex. The
associations found for the global SCZ PRS (RISK, SYMP and HOSP)
were maintained in the female sample and lost in males, except
for the SYMP analysis. These findings could be partly explained by
the greater presence of pleiotropic genetic risk variants for
different clinical conditions in female patients already suggested
[74–76]. The parity reached in the epidemiology of different
psychiatric and neurologic disorders in adulthood in comparison
to the disparity found in childhood for a variety of psychiatric
disorders, where prevalence is greater in males during childhood,
suggests that different factors and mechanisms may be involved
in the pathophysiology of different disorders in females and males
[77, 78]. Some X and Y chromosome-linked loci have been
proposed as mediators of the sex-based differences in SCZ risk
[79, 80]. However, the X chromosome was not accounted for in
our PRSs, thus we cannot know if the inclusion of X-linked risk
alleles would have made any difference to our results. Beyond sex
chromosomes, the results of some genomic studies suggest that
males may be protected from the development of certain
psychiatric conditions: they may require a greater genetic burden

to express a given clinical phenotype [74–76]. In line with this,
different biomarkers involved in gene expression regulation have
been reported for female and male SCZ patients [81, 82] and
epidemiological studies have also noted higher prevalence of
neurologic and somatic comorbidities among female SCZ patients
[83–86].
Contrary to what we expected, different results were obtained

for the different psychiatric disorders. We especially expected to
find similar results for SCZ and BD, considering the commonalities
reported in their genetic risks and the high SNP-based genetic
correlation and coheritability between the conditions (rG =
0.68 ± 0.04) [48–51, 87–89]. However, disorder-specific genetic
loci have been proposed, and different phenotypes have been
correlated with SCZ and BD [87, 90]. In addition, greater genetic
similarities between SCZ and BD have been found when psychotic
symptoms were present in the latter, which is in accordance with
the suggestion that different BD subtypes have different biological
underpinnings [91]. In accordance with this last notion, we think
that the study on the genetic overlap between BD subtypes with
psychosis and COVID-19 may reveal different results than those
presented in this study.
From our findings with the DEP PRS, we cannot conclude that

the risk for DEP predicts SARS-CoV-2 infection vulnerability, or
COVID-19 symptomatology or severity. It is noteworthy that, in
addition to a relatively low heritability of MDD (28–44% [92]) when
compared to SCZ or BD, part of the DEP discovery sample was
comprised of individuals with a self-reported broad DEP
phenotype, in contrast to individuals diagnosed with MDD by
experts following international diagnostic manuals [93]. We think
that the use of a discovery sample in which cases were only
patients diagnosed with MDD, which may represent rather
endogenous, biologically-determined forms of DEP, would facil-
itate the identification of PRS associations.
Despite the significant associations with SCZ passing multiple-

comparison correction, the inclusion of the SCZ PRS in the
adjusted models (sex + age+ principal components) did not
involve any change in the estimated AUCs (see Supplementary
Fig. 1). However, in previous research even BD PRS models applied
to SCZ and MDD samples barely surpassed chance discrimination
levels (AUC= 0.56 and 0.55, respectively [94]). Thus, given that
quite different phenotypes are being analyzed in the present
study (COVID-19 and psychiatric disorders), our main purpose was
not to validate predictive models for SARS-CoV-2 infection or
COVID-19 syndrome, but rather to analyze possible overlap
between common variations underlying SCZ/BD/DEP and
COVID-19 that could be further explored in the future. The fact
that the prediction obtained for case/control, symptomatic/
asymptomatic, and hospitalization/no hospitalization—the last
involving an intermediate severity level between symptomatic
and critical—was lost in the comparison of critical and non-critical
status may be due to admission to the intensity care unit, need for
mechanical ventilation, or fatal outcome after hospitalization
depending more on disease-specific genetic factors, in addition to
non-genetic ones such as age [56, 95].
One of the limitations of our study is the lack of information

regarding the possible use of psychotropics in our sample, given
their possible influence on COVID-19 response, such as the
evidenced protective effect of diverse antidepressants against
COVID-19, and an apparent greater risk of COVID-19 infection
associated with the use of some antipsychotics [96, 97]. In
addition, although the status for a variety of comorbid medical
conditions was collected for our COVID-19 cohort, we did not have
information regarding psychiatric diagnosis. Having information
about psychiatric comorbidities in our COVID-19 cohort would
have enable statistically controlling for psychiatric status, or
performing stratified analyses for psychiatric status.
In this study, we decided to use a PRS approach, which we

consider was the most powerful method for our goal, since it
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permits us to account for genomic markers with small effects and
to analyze genomic overlap that may go unnoticed by looking at
GWAS results, given the difficulties for GWASs to identify
associated loci [65, 98]. Looking at our significant findings with
the global SCZ PRS, there may be shared SNP-based genetic risk
between SCZ and COVID-19, and this would, at least partly, explain
the greater COVID-19 prevalence and severity reported among
SCZ patients [7, 8, 13]. Given that GWAS results for women and
men are reported to be almost identical in SCZ, the differences
found in the prediction capability of the PRS in this study must be
due to the sex-based differences in the genetic risk for COVID-19
previously reported [62]. Considering previous findings concern-
ing certain overlap between gene expression profiles of COVID-19
and those of psychiatric patients, including SCZ [52], and the
important role of inherited and rare de novo variants in SCZ and
COVID-19 [99–101], further research on genetic risk overlap
between these conditions, including the analysis of rare variation
from DNA sequencing approaches, will offer more insight into the
greater risk that SCZ patients may have for COVID-19 risk and
severity. Moreover, the inclusion of sexual chromosomes in the
analysis will further inform about sex-based differences in the
genetic risk shared by the two conditions.

DATA AVAILABILITY
Summary statistics of the data of the main study [56] has been aggregated with those
from the COVID-19 Host Genetics Initiative (https://www.covid19hg.org); results of
this study will be shared upon request to the corresponding author.

CODE AVAILABILITY
All the analysis software used is open source (PLINK 1.9, TopMed Imputation Server
version r2, PRS-CS software, MAGMA v1.08b, LDSC (LD SCore) v1.0.1). No custom
algorithms or software were used.

REFERENCES
1. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW,

et al. Presenting characteristics, comorbidities, and outcomes among 5700
patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323.
https://doi.org/10.1001/jama.2020.6775.

2. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical char-
acteristics of Covid-19 in New York City. N Engl J Med. 2020;382. https://doi.org/
10.1056/NEJMc2010419.

3. Vahidy FS, Pan AP, Ahnstedt H, Munshi Y, Choi HA, Tiruneh Y, et al. Sex differ-
ences in susceptibility, severity, and outcomes of coronavirus disease 2019:
cross-sectional analysis from a diverse US metropolitan area. PLoS ONE. 2021;16.
https://doi.org/10.1371/journal.pone.0245556.

4. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al.
Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO
Clinical Characterisation Protocol: prospective observational cohort study. BMJ.
2020. https://doi.org/10.1136/bmj.m1985.

5. Wu Z, McGoogan JM. Characteristics of and important lessons from the cor-
onavirus disease 2019 (COVID-19) Outbreak in China. JAMA. 2020;323:1239.

6. Ejaz H, Alsrhani A, Zafar A, Javed H, Junaid K, Abdalla AE, et al. COVID-19 and
comorbidities: deleterious impact on infected patients. J Infect Public Health.
2020;13:1833–9.

7. Ji W, Huh K, Kang M, Hong J, Bae GH, Lee R, et al. Effect of underlying
comorbidities on the infection and severity of COVID-19 in Korea: a nationwide
case-control study. J Korean Med Sci. 2020;35. https://doi.org/10.3346/
jkms.2020.35.e237.

8. Kozloff N, Mulsant BH, Stergiopoulos V, Voineskos AN. The COVID-19 global
pandemic: implications for people with schizophrenia and related disorders.
Schizophr Bull. 2020;46:752–7.

9. Partti K, Vasankari T, Kanervisto M, Perälä J, Saarni SI, Jousilahti P, et al. Lung
function and respiratory diseases in people with psychosis: population-based
study. Br J Psychiatry. 2015;207:37–45.

10. Rosenblat J, McIntyre R. Bipolar disorder and immune dysfunction: epidemio-
logical findings, proposed pathophysiology and clinical implications. Brain Sci.
2017;7:144.

11. Tang SW, Helmeste D, Leonard B. Inflammatory neuropsychiatric disorders and
COVID-19 neuroinflammation. Acta Neuropsychiatr. 2021;33:165–77.

12. Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, et al. Obesity ‑ a
risk factor for increased COVID‑19 prevalence, severity and lethality (Review).
Mol Med Rep. 2020;22:9–19.

13. Fond G, Pauly V, Leone M, Llorca PM, Orleans V, Loundou A, et al. Disparities in
intensive care unit admission and mortality among patients with schizophrenia
and COVID-19: a national cohort study. Schizophr Bull. 2021;47:624–34.

14. Hoseth EZ, Ueland T, Dieset I, Birnbaum R, Shin JH, Kleinman JE, et al. A study of
TNF pathway activation in schizophrenia and bipolar disorder in plasma and
brain tissue. Schizophr Bull. 2017;43:881–90.

15. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflamma-
tion and immunity in schizophrenia: implications for pathophysiology and
treatment. Lancet Psychiatry. 2015;2. https://doi.org/10.1016/S2215-0366(14)
00122-9.

16. O’Brien SM, Scully P, Dinan TG. Increased tumor necrosis factor-alpha con-
centrations with interleukin-4 concentrations in exacerbations of schizophrenia.
Psychiatry Res. 2008;160:256–62.

17. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine
alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psy-
chiatry. 2011;70. https://doi.org/10.1016/j.biopsych.2011.04.013.

18. Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar
disorder: a meta-analysis of 30 studies. Biol Psychiatry. 2013;74:15–25.

19. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the
interactions between inflammation and mood disorders. Prog Neuro Psycho-
pharmacol Biol Psychiatry. 2014;53:23–34.

20. Miller BJ, Gassama B, Sebastian D, Buckley P, Mellor A. Meta-analysis of lym-
phocytes in schizophrenia: clinical status and antipsychotic Effects. Biol Psy-
chiatry. 2013;73. https://doi.org/10.1016/j.biopsych.2012.09.007.

21. Castillo MFR, Cohen A, Edberg D, Hoppensteadt D, Fareed J, Martin B, et al.
Vascular endothelial growth factor in bipolar depression: a potential biomarker
for diagnosis and treatment outcome prediction. Psychiatry Res.
2020;284:112781.

22. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression
and inflammation: double trouble. Neuron. 2020;107:234–56.

23. Al-Diwani AAJ, Pollak TA, Irani SR, Lennox BR. Psychosis: an autoimmune dis-
ease? Immunology. 2017;152:388–401.

24. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB.
Autoimmune diseases and severe infections as risk factors for schizophrenia: a
30-year population-based register study. Am J Psychiatry. 2011;168:1303–10.

25. Jha MK, Cai L, Minhajuddin A, Fatt CC, Furman JL, Gadad BS, et al. Dysfunctional
adaptive immune response in adolescents and young adults with suicide
behavior. Psychoneuroendocrinology. 2020;111:104487.

26. Siegmann E-M, Müller HHO, Luecke C, Philipsen A, Kornhuber J, Grömer TW.
Association of depression and anxiety disorders with autoimmune thyroiditis.
JAMA Psychiatry. 2018;75:577.

27. Andersson NW, Gustafsson LN, Okkels N, Taha F, Cole SW, Munk-Jørgensen P,
et al. Depression and the risk of autoimmune disease: a nationally representa-
tive, prospective longitudinal study. Psychol Med. 2015;45:3559–69.

28. Rege S, Hodgkinson SJ. Immune dysregulation and autoimmunity in bipolar
disorder: Synthesis of the evidence and its clinical application. Aust N Z J Psy-
chiatry. 2013;47:1136–51.

29. Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, Kanduc D, et al.
Covid-19 and autoimmunity. Autoimmun Rev. 2020;19:102597.

30. Zendelovska D, Atanasovska E, Petrushevska M, Spasovska K, Stevanovikj M,
Demiri I, et al. Evaluation of oxidative stress markers in hospitalized patients
with moderate and severe COVID-19. Rom J Intern Med. 2021;59:375–83.

31. Domènech L, Willis J, Alemany-Navarro M, Morell M, Real E, Escaramís G, et al.
Changes in the stool and oropharyngeal microbiome in obsessive-compulsive
disorder. Sci Rep. 2022;12:1448.

32. Stefanescu C, Ciobica A. The relevance of oxidative stress status in first episode
and recurrent depression. J Affect Disord. 2012;143:34–38.

33. Correll CU, Solmi M, Veronese N, Bortolato B, Rosson S, Santonastaso P, et al.
Prevalence, incidence and mortality from cardiovascular disease in patients
with pooled and specific severe mental illness: a large-scale meta-analysis of
3,211,768 patients and 113,383,368 controls. World Psychiatry.
2017;16:163–80.

34. Ward M, Druss B. The epidemiology of diabetes in psychotic disorders. Lancet
Psychiatry. 2015;2:431–51.

35. Zareifopoulos N, Bellou A, Spiropoulou A, Spiropoulos K. Prevalence of comor-
bid chronic obstructive pulmonary disease in individuals suffering from schi-
zophrenia and bipolar disorder: a systematic review. COPD J Chronic Obstr Pulm
Dis. 2018;15:612–20.

36. Nguyen L, Lucke-Wold BP, Mookerjee S, Kaushal N, Matsumoto RR. Sigma-1
receptors and neurodegenerative diseases: towards a hypothesis of sigma-1
receptors as amplifiers of neurodegeneration and neuroprotection. Adv Exp
Med Biol. 2017;964:133–52.

M. Alemany-Navarro et al.

6

Translational Psychiatry          (2023) 13:189 

https://www.covid19hg.org
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.1056/NEJMc2010419
https://doi.org/10.1056/NEJMc2010419
https://doi.org/10.1371/journal.pone.0245556
https://doi.org/10.1136/bmj.m1985
https://doi.org/10.3346/jkms.2020.35.e237
https://doi.org/10.3346/jkms.2020.35.e237
https://doi.org/10.1016/S2215-0366(14)00122-9
https://doi.org/10.1016/S2215-0366(14)00122-9
https://doi.org/10.1016/j.biopsych.2011.04.013
https://doi.org/10.1016/j.biopsych.2012.09.007


37. Lenze EJ, Mattar C, Zorumski CF, Stevens A, Schweiger J, Nicol GE, et al. Flu-
voxamine vs placebo and clinical deterioration in outpatients with symptomatic
COVID-19. JAMA. 2020;324:2292.

38. Suryamohan K, Diwanji D, Stawiski EW, Gupta R, Miersch S, Liu J, et al. Human
ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Com-
mun Biol. 2021;4. https://doi.org/10.1038/s42003-021-02030-3.

39. Benetti E, Tita R, Spiga O, Ciolfi A, Birolo G, Bruselles A, et al. ACE2 gene variants
may underlie interindividual variability and susceptibility to COVID-19 in the
Italian population. Eur J Hum Genet. 2020;28. https://doi.org/10.1038/s41431-
020-0691-z.

40. Asselta R, Paraboschi EM, Mantovani A, Duga S ACE2 and TMPRSS2 variants and
expression as candidates to sex and country differences in COVID-19 severity in
Italy. Aging. 2020;12. https://doi.org/10.18632/aging.103415.

41. Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and
smoking: is nicotine the hidden link? Eur Respir J. 2020;55:2001116.

42. Ellinghaus, et al. Genomewide association study of severe covid-19 with
respiratory failure. N Engl J Med. 2020;383:1522–34.

43. Ganna A, et al. Mapping the human genetic architecture of COVID-19 by
worldwide meta-analysis. MedRxiv. 2021; 54. https://doi.org/10.1101/
2021.03.10.21252820.

44. Zietz M, Zucker J, Tatonetti NP. Testing the association between blood type and
COVID-19 infection, intubation, and death. medRxiv Prepr Serv Heal Sci. 2020.
https://doi.org/10.1101/2020.04.08.20058073.

45. Degenhardt F, Ellinghaus D, Juzenas S, Lerga-Jaso J, Wendorff M, Maya-Miles D,
et al. New susceptibility loci for severe COVID-19 by detailed GWAS analysis in
European populations. MedRxiv. 2021;54. https://doi.org/10.1101/
2021.07.21.21260624.

46. de Rojas I, Hernandez I, Montrreal L, Quintela I, Calero M, Royo JL, et al. Genomic
characterization of host factors involved SARS-CoV-2 infection in people with
dementia and control populations: the GR@ ACE/DEGESCO study. In: Alzhei-
mer’s Association International Conference. Denver: Alzheimer’s Association
International Conference; 2021.

47. Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, et al. Human
leukocyte antigen susceptibility map for severe acute respiratory syndrome
coronavirus 2. J Virol. 2020;94. https://doi.org/10.1128/JVI.00510-20.

48. Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, et al. Biological
insights from 108 schizophrenia-associated genetic loci. Nature.
2014;511:421–7.

49. The Schizophrenia Working Group of the Psychiatric Genomics Consortium,
Stephan Ripke, Walters JTR, O’Donovan MC. Mapping genomic loci prioritises
genes and implicates synaptic biology in schizophrenia. MedRxiv. 2020. https://
doi.org/10.1101/2020.09.12.20192922.

50. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al.
Genome-wide association study of more than 40,000 bipolar disorder cases
provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

51. O’Dushlaine C, et al. Psychiatric genome-wide association study analyses
implicate neuronal, immune and histone pathways. Nat Neurosci.
2015;18:199–209.

52. Moni MA, Lin P-I, Quinn JMW, Eapen V. COVID-19 patient transcriptomic and
genomic profiling reveals comorbidity interactions with psychiatric disorders.
Transl Psychiatry. 2021;11:160.

53. de Melo LGP, Nunes SOV, Anderson G, Vargas HO, Barbosa DS, Galecki P, et al.
Shared metabolic and immune-inflammatory, oxidative and nitrosative stress
pathways in the metabolic syndrome and mood disorders. Prog Neuro Psy-
chopharmacol Biol Psychiatry. 2017;78:34–50.

54. Zhou X, Liu L, Lan X, Cohen D, Zhang Y, Ravindran AV, et al. Polyunsaturated
fatty acids metabolism, purine metabolism and inosine as potential indepen-
dent diagnostic biomarkers for major depressive disorder in children and
adolescents. Mol Psychiatry. 2019;24:1478–88.

55. Penninx BWJH, Lange SMM. Metabolic syndrome in psychiatric patients: over-
view, mechanisms, and implications. Dialogues Clin Neurosci. 2018;20:63–73.

56. Cruz R, Almeida SD, Heredia ML, Quintela I, Ceballos FC, Pita G, et al. Novel
genes and sex differences in COVID-19 severity. Hum Mol Genet. 2022. https://
doi.org/10.1093/hmg/ddac132.

57. Moreno-Grau S, de Rojas I, Hernández I, Quintela I, Montrreal L, Alegret M, et al.
Genome-wide association analysis of dementia and its clinical endophenotypes
reveal novel loci associated with Alzheimer’s disease and three causality net-
works: The GR@ACE project. Alzheimer’s Dement. 2019;15:1333–47.

58. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap
consortium: building an international community of software platform partners.
J Biomed Inf. 2019;95:103208.

59. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic
data capture (REDCap)—A metadata-driven methodology and workflow process
for providing translational research informatics support. J Biomed Inf.
2009;42:377–81.

60. Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing
of 53,831 diverse genomes from the NHLBI TOPMed program. Nature.
2021;590:290–9.

61. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The
human genome browser at UCSC. Genome Res. 2002;12:996–1006.

62. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB,
et al. Mapping genomic loci implicates genes and synaptic biology in schizo-
phrenia. Nature. 2022;604:502–8.

63. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al.
Genome-wide association analyses identify 44 risk variants and refine the
genetic architecture of major depression. Nat Genet. 2018;50:668–81.

64. Howard DM, Adams MJ, Shirali M, Clarke T-K, Marioni RE, Davies G, et al.
Genome-wide association study of depression phenotypes in UK Biobank
identifies variants in excitatory synaptic pathways. Nat Commun.
2018;9:1470.

65. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian
regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

66. Lee SH, Goddard ME, Wray NR, Visscher PM. A better coefficient of determi-
nation for genetic profile analysis. Genet Epidemiol. 2012;36:214–24.

67. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD
Score regression distinguishes confounding from polygenicity in genome-wide
association studies. Nat Genet. 2015;47:291–5.

68. Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk
score analyses. Nat Protoc. 2020;15:2759–72.

69. Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizo-
phrenia: where are we now and what’s next? Mol Psychiatry.
2020;25:114–30.

70. Cunningham R, Poppe K, Peterson D, Every-Palmer S, Soosay I, Jackson R. Pre-
diction of cardiovascular disease risk among people with severe mental illness: a
cohort study. PLoS ONE. 2019;14:e0221521.

71. Bitter I, Czobor P, Borsi A, Fehér L, Nagy BZ, Bacskai M, et al. Mortality and the
relationship of somatic comorbidities to mortality in schizophrenia. A nation-
wide matched-cohort study. Eur Psychiatry. 2017;45:97–103.

72. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology,
risk factors, and treatments. Infect Dis. 2021;53:737–54.

73. Vassos E, Di Forti M, Coleman J, Iyegbe C, Prata D, Euesden J, et al. An exam-
ination of polygenic score risk prediction in individuals with first-episode psy-
chosis. Biol Psychiatry. 2017;81:470–7.

74. Rivas MA, Pirinen M, Neville MJ, Gaulton KJ, Moutsianas L, Lindgren CM, et al.
Assessing association between protein truncating variants and quantitative
traits. Bioinformatics. 2013;29:2419–26.

75. DeBoever C, Tanigawa Y, Lindholm ME, McInnes G, Lavertu A, Ingelsson E, et al.
Medical relevance of protein-truncating variants across 337,205 individuals in
the UK Biobank study. Nat Commun. 2018;9:1612.

76. Kang H-J, Park Y, Yoo K-H, Kim K-T, Kim E-S, Kim J-W, et al. Sex differences in the
genetic architecture of depression. Sci Rep. 2020;10:9927.

77. Snell DM, Turner JMA. Sex chromosome effects on male–female differences in
mammals. Curr Biol. 2018;28:R1313–R1324.

78. Slavich GM, Sacher J. Stress, sex hormones, inflammation, and major depressive
disorder: extending Social Signal Transduction Theory of Depression to account
for sex differences in mood disorders. Psychopharmacology. 2019;236:3063–79.

79. Carrera N, Sanjuán J, Moltó MD, Carracedo Á, Costas J. Recent adaptive selection
at MAOB and ancestral susceptibility to schizophrenia. Am J Med Genet Part B
Neuropsychiatr Genet. 2009;150B:369–74.

80. Bergen SE, Fanous AH, Walsh D, O’Neill FA, Kendler KS. Polymorphisms in
SLC6A4, PAH, GABRB3, and MAOB and modification of psychotic disorder fea-
tures. Schizophr Res. 2009;109:94–97.

81. Safari MR, Komaki A, Arsang-Jang S, Taheri M, Ghafouri-Fard S. Expression
pattern of long non-coding RNAs in schizophrenic patients. Cell Mol Neurobiol.
2019;39:211–21.

82. Fallah H, Azari I, Neishabouri SM, Oskooei VK, Taheri M, Ghafouri-Fard S. Sex-
specific up-regulation of lncRNAs in peripheral blood of patients with schizo-
phrenia. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-49265-z.

83. Pettersson D, Gissler M, Hällgren J, Ösby U, Westman J, Bobo WV. The overall
and sex- And age-group specific incidence rates of cancer in people with
schizophrenia: a population-based cohort study. Epidemiol Psychiatr Sci. 2020.
https://doi.org/10.1017/S204579602000044X.

84. Ku H, Lee E-K, Lee K-U, Lee M-Y, Kwon J-W. Higher prevalence of dementia in
patients with schizophrenia: A nationwide population-based study. Asia Pac
Psychiatry. 2016;8:145–53.

85. Harvey PD, Silverman JM, Mohs RC, Parrella M, White L, Powchik P, et al. Cog-
nitive decline in late-life schizophrenia: a longitudinal study of geriatric
chronically hospitalized patients. Biol Psychiatry. 1999;45:32–40.

86. Cai L, Huang J. Schizophrenia and risk of dementia: a meta-analysis study.
Neuropsychiatr Dis Treat. 2018;ume 14:2047–55.

M. Alemany-Navarro et al.

7

Translational Psychiatry          (2023) 13:189 

https://doi.org/10.1038/s42003-021-02030-3
https://doi.org/10.1038/s41431-020-0691-z
https://doi.org/10.1038/s41431-020-0691-z
https://doi.org/10.18632/aging.103415
https://doi.org/10.1101/2021.03.10.21252820
https://doi.org/10.1101/2021.03.10.21252820
https://doi.org/10.1101/2020.04.08.20058073
https://doi.org/10.1101/2021.07.21.21260624
https://doi.org/10.1101/2021.07.21.21260624
https://doi.org/10.1128/JVI.00510-20
https://doi.org/10.1101/2020.09.12.20192922
https://doi.org/10.1101/2020.09.12.20192922
https://doi.org/10.1093/hmg/ddac132
https://doi.org/10.1093/hmg/ddac132
https://doi.org/10.1038/s41598-019-49265-z
https://doi.org/10.1017/S204579602000044X


87. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic rela-
tionship between five psychiatric disorders estimated from genome-wide SNPs.
Nat Genet. 2013;45:984–94.

88. Wu Y, Cao H, Baranova A, Huang H, Li S, Cai L, et al. Multi-trait analysis for
genome-wide association study of five psychiatric disorders. Transl Psychiatry.
2020;10:209.

89. Goes FS, Pirooznia M, Parla JS, Kramer M, Ghiban E, Mavruk S, et al. Exome
sequencing of familial bipolar disorder. JAMA Psychiatry. 2016;73:590.

90. Ohi K, Muto Y, Takai K, Sugiyama S, Shioiri T. Investigating genetic overlaps of
the genetic factor differentiating schizophrenia from bipolar disorder with
cognitive function and hippocampal volume. BJPsych Open. 2022;8. https://
doi.org/10.1192/bjo.2021.1086.

91. Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry.
2020;25:544–59.

92. Fernandez-Pujals AM, Adams MJ, Thomson P, McKechanie AG, Blackwood DHR,
Smith BH, et al. Epidemiology and heritability of major depressive disorder,
stratified by age of onset, sex, and illness course in generation Scotland: Scottish
Family Health Study (GS:SFHS). PLoS ONE. 2015;10:e0142197.

93. Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al.
Genome-wide meta-analysis of depression identifies 102 independent variants
and highlights the importance of the prefrontal brain regions. Nat Neurosci.
2019;22:343–52.

94. Schulze TG, Akula N, Breuer R, Steele J, Nalls MA, Singleton AB, et al. Molecular
genetic overlap in bipolar disorder, schizophrenia, and major depressive dis-
order. World J Biol Psychiatry. 2014;15:200–8.

95. Abrams MP, Wan EY, Waase MP, Morrow JP, Dizon JM, Yarmohammadi H, et al.
Clinical and cardiac characteristics of COVID‐19 mortalities in a diverse New York
City Cohort. J Cardiovasc Electrophysiol. 2020;31:3086–96.

96. Clelland CL, Ramiah K, Steinberg L, Clelland JD. Analysis of the impact of anti-
depressants and other medications on COVID-19 infection risk in a chronic
psychiatric in-patient cohort. BJPsych Open. 2022;8:e6.

97. Diez‐Quevedo C, Iglesias‐González M, Giralt‐López M, Rangil T, Sanagustin D,
Moreira M, et al. Mental disorders, psychopharmacological treatments, and
mortality in 2150 COVID‐19 Spanish inpatients. Acta Psychiatr Scand.
2021;143:526–34.

98. Fullerton JM, Nurnberger JI. Polygenic risk scores in psychiatry: will they be
useful for clinicians? F1000Research. 2019;8:1293.

99. Velavan TP, Pallerla SR, Rüter J, Augustin Y, Kremsner PG, Krishna S, et al. Host
genetic factors determining COVID-19 susceptibility and severity. eBioMedicine.
2021;72:103629.

100. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric
genetics. Cell. 2012;148:1223–41.

101. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding
variants in ten genes confer substantial risk for schizophrenia. Nature.
2022;604:509–16.

ACKNOWLEDGEMENTS
MA, and AC acknowledge Fundación María José Jove for the support of this work.
This study has been funded by Instituto de Salud Carlos III (COV20_00622 to AC) and

cofunded by European Union (ERDF) “A way of making Europe”, Fundación Amancio
Ortega, Banco de Santander (to AC). The contribution of the Centro National de
Genotipado (CEGEN), and Centro de Supercomputación de Galicia (CESGA) for
funding this project by providing supercomputing infrastructures, is also acknowl-
edged. Authors are also particularly grateful to Banco Nacional de ADN and GRA@CE
cohort group. MA was supported by a Juan de la Cierva contract (FJC2021-047538-I).

AUTHOR CONTRIBUTIONS
Study design: AC, MA-N. Data collection: SCG. Analysis: MA-N, RC, SD-DA.
Interpretation: MA-N, SD-DA, RC. Drafting of the manuscript: MA-N, RC, SD-DA.
Critical revision of the manuscript: AC, JAR, AR-M, PL, CF. Approval of the final version
for publication: all co-authors.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-023-02482-7.

Correspondence and requests for materials should be addressed to M. Alemany-
Navarro.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

M. Alemany-Navarro et al.

8

Translational Psychiatry          (2023) 13:189 

https://doi.org/10.1192/bjo.2021.1086
https://doi.org/10.1192/bjo.2021.1086
https://doi.org/10.1038/s41398-023-02482-7
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Psychiatric polygenic risk as a predictor of COVID-19 risk and severity: insight into the genetic overlap between schizophrenia and COVID-19
	Introduction
	Methods and materials
	Subjects—target sample
	Genotype data, quality control and imputation
	Polygenic risk score (PRS) analysis
	Composition of the polygenic risk scores—discovery sample
	Polygenic risk score (PRS) statistical analysis
	Global PRSs
	Immune PRS

	Genetic correlation (rG) analysis: linkage disequilibrium score (LDSC) regression

	Results
	Sample, genotype and imputed data
	Polygenic risk scores
	Schizophrenia (SCZ)
	Bipolar disorder (BD)
	Depression (DEP)

	Linkage disequilibrium score (LDSC) regression analysis

	Discussion
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




